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ABSTRACT

Recent advancements in Multi-modal Large Language Models (MLLMs) have
opened new avenues for applications in Embodied AI. Building on previous work,
EgoThink, we introduce VidEgoThink, a comprehensive benchmark for evalu-
ating egocentric video understanding capabilities. To bridge the gap between
MLLMs and low-level control in Embodied AI, we design four key interrelated
tasks: video question-answering, hierarchy planning, visual grounding and re-
ward modeling. To minimize manual annotation costs, we develop an automatic
data generation pipeline based on the Ego4D dataset, leveraging the prior knowl-
edge and multimodal capabilities of GPT-4o. Three human annotators then filter
the generated data to ensure diversity and quality, resulting in the VidEgoThink
benchmark. We conduct extensive experiments with three types of models: API-
based MLLMs, open-source image-based MLLMs, and open-source video-based
MLLMs. Experimental results indicate that all MLLMs, including GPT-4o, per-
form poorly across all tasks related to egocentric video understanding. These
findings suggest that foundation models still require significant advancements to
be effectively applied to first-person scenarios in Embodied AI. In conclusion,
VidEgoThink reflects a research trend towards employing MLLMs for egocentric
vision, akin to human capabilities, enabling active observation and interaction in
the complex real-world environments.

1 INTRODUCTION

In recent years, Multi-modal Large Language Models (MLLMs; Du et al., 2022; Gan et al., 2022;
Tang et al., 2023) have made significant strides in conventional vision-language tasks (Alayrac et al.,
2022; Driess et al., 2023; Li et al., 2023b), profoundly impacting the field of Embodied Artificial
Intelligence (Embodied AI; Ahn et al., 2022; Kuo et al., 2022; Huang et al., 2023; Zitkovich et al.,
2023). Training data (Sharma et al., 2018; Schuhmann et al., 2022; Lin et al., 2014; Jia et al., 2021)
for predominate MLLMs are typically collected from object-centric and exocentric perspectives,
mirroring the distribution of conventional vision-language benchmarks (Liu et al., 2023; Xu et al.,
2023; Li et al., 2023a; Ning et al., 2023), which focus primarily on object and scene understand-
ing. However, to be effectively applied in Embodied AI, it is crucial not only to understand the
surrounding environment but also to have extensive knowledge about the relationship between “my-
self” and the environment. For example, compared to the absolute position in the whole environment
(e.g., “the microwave is in the kitchen”), the relative position to my body is more important (e.g.,
“the microwave is one meter to my right”) for interaction and manipulation. Therefore, egocentric
videos (Grauman et al., 2022; Damen et al., 2018), containing observations typical of third-person
perspectives and additional interactions with the surrounding environment, can improve predomi-
nate MLLMs to be more general and expand their applications to the real world.

Various egocentric benchmarks (Cheng et al., 2024; Fan, 2019) have emerged to evaluate the ca-
pabilities of MLLMs from a first-person perspective. For instance, EgoTaskQA (Jia et al., 2022)
and EgoPlan (Chen et al., 2023c) assess the planning capabilities of MLLMs for long-horizon tasks,
while EgoSchema (Mangalam et al., 2024) aims to diagnose the understanding of very long-form
video. However, the absence of a comprehensive video benchmark from the egocentric perspective
presents a significant challenge to the development of general foundation models. Furthermore, cur-
rent benchmarks, both in task design and textual output forms, focus on traditional video question-
answering settings and neglect the potential to support downstream applications in Embodied AI,
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Question: Have I completed 
the task of sorting eggs?

time

Question: My goal is to make a 
cake. What is my next step and 
the low-level actions?

Answer: Sort eggs. 
1. take(egg). 2. break(egg). 3. …

Answer: [546, 570, 597, 626]

Question: What is the  
bounding box of the object if I 
want take an egg?

Answer: True. Answer: Four.

Question: How many eggs are 
there left to be sorted?

Hierarchy Planning Visual Grounding

Reward Modeling Video Question Answering

VidEgoThink

Figure 1: The main tasks of VidEgoThink benchmark to comprehensively assess the egocentric
video understanding capabilities in Embodied AI. There are four types of tasks, including video
question answering, hierarchy planning, visual grounding, and reward modeling. These four tasks
are complementary to each other to implement a complete goal for Embodied AI.

such as glass devices or autonomous robots. For example, the natural language output format (e.g.,
“put salmon in microwave”) cannot be directly processed by robotics to take actions, whereas bound-
ing boxes of grounded objects (e.g., “microwave [290, 202, 835, 851]” or function calls for low-level
actions (e.g., “find(microwave)”) align more closely with the input requirements of robotic con-
trol systems. Therefore, it is crucial to design suitable task formats that can be effectively applied to
downstream applications in Embodied AI.

In this paper, we introduce VidEgoThink, as illustrated in Fig. 1, a comprehensive egocentric video
understanding benchmark aimed at better aligning the capabilities of MLLMs for application in Em-
bodied AI. Due to the stratospheric demand for training data of end-to-end Vision-Language-Action
models (Driess et al., 2023; Padalkar et al., 2023; Li et al., 2024a), systems in Embodied AI are
always structured into specialized hierarchical components. In detail, MLLMs can perform sev-
eral key functions: (1) video question-answering, the basic module to comprehend the surrounding
environment and human activities, and then generate corresponding responses to specific instruc-
tions (Cheng et al., 2024; Fan, 2019; Jia et al., 2022); (2) hierarchy planning, the core component
to decompose high-level instructions to mid-level sub-goals and low-level actions (Ahn et al., 2022;
Huang et al., 2022b;a); (3) visual grounding, the detector module to help Embodied AI system
ground complex instruction to the physical world (Gao et al., 2023a; Chiang et al., 2024; Munas-
inghe et al., 2023); (4) reward modeling, the auxiliary module to classify task completion and further
provide feedback according to the observations (Kwon et al., 2023; Di Palo et al., 2023; Yu et al.,
2023). Rather than solely considering traditional question-answering or planning tasks like previ-
ous egocentric benchmarks, we specifically design these four tasks to comprehensively evaluate the
capabilities for different functions of MLLMs in Embodied AI.

Considering the high cost of manually labeling data for four different tasks, we design a series of
automatic construction pipelines leveraging existing annotations from the Ego4D dataset (Grauman
et al., 2022). we use GPT-4o, known for its superior reasoning capabilities, to generate appropri-
ate question-answering pairs by combining our designed prompts with existing human annotations.
For the reward modeling task, we further adopt clipped images from each video to generate feed-
back for negative instances. To ensure diversity and quality, three annotators are asked to filter
the automatically generated instances. For evaluation, we extensively compare 14 MLLMs across
three categories: API-based MLLMs, open-source image-based MLLMs, and open-source video-
based MLLMs. Experimental results indicate that all MLLMs perform poorly across all tasks. For
example, GPT-4o with 32 frames and 8 frames achieve only 31.17 and 32.83 accuracy in video
question-answering tasks. Detailed scores reveal that while MLLMs can determine existence across
object, action, and scene dimensions, they particularly lack the ability to judge order or sequence. In
other tasks, although GPT-4o’s performance is subpar, other open-source MLLMs are almost com-
pletely unusable, showing significant performance gaps. Overall, applying current MLLMs directly
to first-person scenarios in Embodied AI remains challenging and requires further effort. However,
MLLMs hold great potential for advancing Egocentric Vision and Embodied AI, offering ample
room for exploration and improvement.
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2 RELATED WORK

Multi-modal Large Language Models. The advancement of large language models (LLMs; Brown
et al., 2020; Ouyang et al., 2022; Wang et al., 2024) now extend into MLLMs. Visual modules, such
as CLIP (Radford et al., 2021) and Q-Former (Dai et al., 2024), are integrated with pre-trained LLMs
using various transition layers, equipping them with visual capabilities. From the wide selection of
open-source LLMs, numerous image-based MLLMs (Chen et al., 2023b; Liu et al., 2024b; Zhang
et al., 2023; Dai et al., 2024; Alayrac et al., 2022) have emerged. Moreover, the popularization of
these image-based MLLMs has driven advancements in video perception. Video-based models like
Video-LLaVA (Lin et al., 2023), Vision-LLaMA (Chu et al., 2024), and PandaGPT(Su et al., 2023)
are capable of capturing the temporal information present in video form. In this work, we explore
egocentric video understanding capabilities of MLLMs.

Video-Langugae Benchmarks. Numerous video-language benchmarks assess MLLMs, primar-
ily focusing on instruction-following via visual question-answering tasks (Ning et al., 2023; Li
et al., 2023d; Patraucean et al., 2023). Few benchmarks explore egocentric videos (Mangalam et al.,
2024; Jia et al., 2022), like EgoTaskQA (Jia et al., 2022), EgoPlan-Bench (Chen et al., 2023c), and
EgoGoalStep (Song et al., 2023). However, they often lack variety in assessed capabilities. Ego-
Think (Cheng et al., 2024) covers more comprehensive capabilities but uses static images. More-
over, all these egocentric benchmarks with only conventional VQA tasks neglect that the designed
task format should be grounded in the potential applications. Therefore, in this paper, we focus on
comprehensively exploring the capabilities for different functions of MLLMs in Embodied AI. A
comparison to recent video-language benchmarks is presented in Table 3 in Appendix A.

Egocentric Video Datasets. Egocentric video datasets (Grauman et al., 2022; Damen et al., 2018;
Pirsiavash & Ramanan, 2012; Sigurdsson et al., 2018) capture first-person interactions with envi-
ronment, aiding robotic tasks and augmented reality. These datasets are often recorded via head-
mounted cameras or wearable glasses. As more egocentric videos become available, specialized
datasets focusing on specific aspects of ego-perspective have emerged. For instance, LEMMA (Jia
et al., 2020) includes data on goal-directed actions and multi-task situations. Ego-ExoLearn (Huang
et al., 2024) and Ego-Exo4D (Grauman et al., 2024) emphasize egocentric videos that demonstrate
an individual’s understanding of activities when given an exocentric demonstration. These datasets
provide a robust foundation for training and evaluating MLLMs from a first-person perspective.

3 TASK TYPES IN VidEgoThink

Given that the use of MLLMs in Embodied AI remains an open research question, we design four in-
terrelated tasks, as shown in Fig. 1: video question-answering, hierarchy planning, visual grounding,
reward modeling. The detailed descriptions of these four tasks are as follows.

3.1 VIDEO QUESTION ANSWERING

Previous evaluation studies on egocentric vision (Cheng et al., 2024) focus on static images, con-
strained by the input format limitations of earlier MLLMs. However, recent advancements in
MLLMs (Achiam et al., 2023; Anthropic, 2024; Reid et al., 2024; Li et al., 2023c; Lin et al., 2023)
have demonstrated significant progress. Since our real world is inherently dynamic, it is crucial to
evaluate the video understanding capabilities of MLLMs.

Dimensions. To underscore the differences between static images and dynamic videos (Li et al.,
2023d), we ensure questions require the entire video for accurate answers rather than just a single
frame. We decompose video content around “myself” into three main elements: object, action, and
scene. Furthermore, we explore fine-grained dimensions for each element, as shown in Fig. 2.

• Object. Egocentric videos emphasize the objects seen or used by “myself”. We divide the object
category into six dimensions: (1) Object Existence (OE): Determining whether an object appears;
(2) Object Order (OO): Identifying the sequence of appeared objects; (3) Object Interaction (OI):
Assessing whether and how an object has been used; (4) Object Count (OC): Counting the total
number of objects for a specific type; (5) Object State (OS): Assessing whether the state of an
object has changed; (6) Object Prediction (OP): Predicting what will happen to a certain object.
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O
b

je
ct

time

Action Count

Question: How many times did I close the oven?

Answer: Twice.

Object Existence

Question: What object am I putting into the oven?

Answer: Taco.

Action Sequence

Question: What action do I perform right before 

turning the knob?

Answer: I close the oven.

Object Count

Question: How many tacos do I pick in the video?

Answer: Two tacos.

Object Interaction

Question: What did I turn in the video?

Answer: I turned the knob.

Object State

Question: What is the state of the oven at the 

beginning of the video?

Answer: The oven is open.

Scene Prediction

Question: What is the next location I will likely visit 

after heating up the tortillas?

Answer: Stay in the kitchen to prepare additional 

ingredients or dishes.

Scene Existence

Question: Where is the oven located in the video?

Answer: The oven is located in the kitchen.

Figure 2: Case of video question answering.

• Action. Egocentric videos emphasize events that involve interactions with “myself”. Since action
prediction is important and has become a standard task in Embodied AI, we will elaborate on it in
Sec. 3.2. We divide the action category into three fine-grained dimensions: (1) Action Existence
(AE): Determining whether an action occurs; (2) Action Sequence (AS): Identifying the sequence
of occurred actions; (3) Action Count (AC): Counting the frequency of occurred actions.

• Scene. Perceiving scenes from a first-person perspective is essential for interacting with the en-
vironment. The constant movements in egocentric videos makes describing object positions chal-
lenging, requiring environmental context integration. Specifically, we design three dimensions:
(1) Scene Existence (SE): determining whether the video is in a certain scene; (2) Scene Transition
(ST): Identifying transitions between scenes; (3) Scene Prediction (SP): Predicting the next scene.

Task Format. Two mainstream methods for video question-answering include multiple-choice and
open-ended question-answering. Open-ended text generation is more natural and practical for real-
world applications than multiple-choice, which can be challenging to design distractors without
inherent shortcuts. Therefore, we primarily adopt open-ended text generation for our traditional
video question-answering tasks.

• Open-Ended Question-Answering. Given an egocentric video i along with a question qi, the
model is asked to generate responses ri in free-text form, akin to human communication. The
generate answer ri is then compared to its corresponding ground-truth response rgti .

Metrics. Traditional metrics (Chen et al., 2019; Papineni et al., 2002) fail to accurately assessing se-
mantic similarity. Follwing Zheng et al. (2024b), we use API-based LLMs (Acc-VQA) as automatic
evaluators. These evaluators have shown high correlation with human labels (Zheng et al., 2024b;
Cheng et al., 2024), making them reliable substitutes for human assessment.

• Acc-VQA. Given the limitations of traditional metrics, we use API-based LLMs g(·) with superior
reasoning abilities to evaluate open-ended answers. Specifically, we assign the score g(r̂i, ri) as
0 (wrong), 0.5 (partially correct), or 1 (correct) to the generated response r̂i with reference to the
question qi and the corresponding ground-truth response ri. The performance of benchmark D is
then computed by averaging all scores as follows:

Acc-VQA =
1

|D|

|D|∑
i=1

g(r̂i, ri), g(r̂i, ri) =


1 correct
0.5 partially correct
0 incorrect

(1)

3.2 HIERARCHY PLANNING

Recently, a hierarchy planning framework (Ahn et al., 2022; Singh et al., 2023; Vemprala et al.,
2024) has been proposed to combine foundation models and traditional methods in Embodied
AI. Foundation models serve as planners, decomposing high-level goals (e.g., “cook salmon”)
into mid-level steps (e.g., “# put salmon in the microwave’) or low-level atomic actions (e.g.,
“find(microwave)”). Although EgoPlan-Bench (Chen et al., 2023c) explores planning from a first-
person perspective, it only considers decomposing high-level goal into mid-level steps and uses a
multiple-choice format, which is less natural.
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Next Action

Fold dumplings on a cutting board.

Task Progress      12Current Observation

My high-level goal is to making dumpling. What is my next step?

High-Level Goal

1. Pick(dough)

2. Fold(dough, meatball)

…

My next step is to Fold dumplings on a cutting board. What is 

the trajectory of low-level atomic actions to complete the step?

+

Mid-level Step

Mid-level Step Low-level Action
Full Video

+

Figure 3: Case of hierarchy planning.

Task Format. As illustrated in Fig. 3, we design two types of planning tasks: high-level goal to
mid-level step (High-to-Mid), and mid-level step to low-level action (Mid-to-Low).

• High-to-Mid. Given an egocentric video i with historical and current observations, a high-level
goal Gi, MLLMs are required to generate the next step ŝi in free-text format. This generated
step is then compared to the ground-truth step si that follows the provided video. We adopt a
step-by-step format rather than directly generating the entire long-term plan because our focus is
on evaluation rather than method development.

• Mid-to-Low. Given a pre-defined set of low-level atomic actions A that encompasses common
functions in daily human activities, an egocentric video Vi, and the ground-truth of a mid-level step
si that is yet to be complete, MLLMs are required to generate the trajectory of low-level actions
T̂i = (â1, · · · , ân) using functions from A to complete the mid-level step. The corresponding
ground-truth trajectory of actions that appeared after the provided video is Ti = (a1, · · · , am).

Metrics. Considering the difficulty of hierarchical planning tasks, we directly use API-based LLMs
to compute accuracy (Acc-H2M and Acc-M2L). However, these metrics are a trade-off due to the
challenges of evaluation video planning tasks. We will introduce an advanced version in future
work, as discussed in Sec. 6.

• Acc-H2M. For the High-to-Mid task, we use API-based LLMs g(·) to compute the similarity
score g(ŝi, si) between the generated step ŝi and the ground truth si for the benchmark D. We
assign the score as 0 (wrong), 0.5 (partially correct), or 1 (correct), similar with Eq. 1.

• Acc-M2L. For the Mid-to-Low task, which is akin to tool learning (Guo et al., 2024; Qin et al.,
2023) by calling low-level functions and evaluating the success rate, we also use API-based LLMs
to determine the completion status. We assign the score g(T̂ , T ) to compute the similarity between
the generate action trajectory T̂ and the ground-truth trajectory T , using a scale from 0 to 10 to
increase the degree of differentiation. The scoring method is otherwise similar to Eq. 1.

3.3 VISUAL GROUNDING

Natural language is effective for communication but cannot be directly grounded in the real world.
Visual grounding (Peng et al., 2023; Chen et al., 2023a; Munasinghe et al., 2023) addresses this
by linking language to images or videos, producing pixel-level bounding boxes, masks, or frames.
These outputs identify actionable objects (Munasinghe et al., 2023; Zheng et al., 2024a) and provide
spatial or temporal information for downstream tasks (Li et al., 2024c; Chiang et al., 2024).

Task Format. RefEgo (Kurita et al., 2023) considers object tracking from the first-person perspec-
tive but uses an output format suited for conventional computer vision methods rather than MLLMs.
To bridge this gap, we design three tasks tailored for different situations, as shown in Fig. 4: object
grounding, frame grounding, and temporal grounding.

• Object Grounding. Given an egocentric video i and a natural language query qi for an ob-
ject, the model must provide a bounding box Bi = [x1, x2, y1, y2] containing the query object
in the last frame of the video. Performance is evaluated by comparing with the ground truth
Bgt

i =
[
xgt
1 , xgt

2 , ygt1 , ygt2
]
. Notably, the query qi is based on the entire video, not just the last

frame. Accurately locating target objects that appeared earlier is crucial for downstream tasks like
manipulation and navigation.
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Object Grounding

Question: Which card did I just get?

Answer: [1169, 762, 1595, 1072]

time

Question: In which frame did 
something I could dip in the paint last 
appear?

Answer: 537

time

Frame Grounding

Question: Can you identify the time 
segment in the video where I started to 
swing and hit the golf ball?

Answer: [10.10, 12.03]

time

Temporal Grounding

Figure 4: Cases of visual grounding.

• Frame Grounding. Given an egocentric video i and a natural language query qi, the model must
identify the keyframe Ki containing the required information. This keyframe is compared with the
ground-truth keyframe set {Kgt

ij } around the last appearance of the target, as it generally holds the
most useful information for the current situation. In embodied scenes, retrieving objects, people,
or events from earlier moments is often necessary.

• Temporal Grounding. Given an egocentric video i and a natural language query qi, the model
must identify the time segments in the video corresponding to the query, represented as Ti =
[li, ri], where 0 ≤ li ≤ ri ≤ |Vi| and |Vi| is the total number of frames. The ground truth T gt

i
follows the same format. Identifying relevant time segments is crucial for understanding event
frequency, object trajectories and so on.

Metrics. For object grounding and temporal grounding, we use mean intersection over union (mIoU)
as the uniform metric, named mIoU-Object and mIoU-Temporal, respectively. These metrics calcu-
late the similarity between the output and ground truth, as their results can be expressed as regions
or ranges. For frame grounding, we use mean square error (MSE), since the output is an integer.

• mIoU-Object. We denote the bounding box output as B̂i and the ground truth as Bi, where i
represents a sample. The similarity in the benchmark D is calculated using mIoU as follows.

mIoU-Obj =
1

|D|

|D|∑
i=1

|B̂i ∩Bi|
|B̂i ∪Bi|

(2)

• Acc-Frame. Given the keyframe index k̂i produced by the model and its corresponding ground
truth set Ki, we can calculate the accuracy in the benchmark dataset D as follows. Here, χ(·) is
an indicator function that equals 1 if k̂i in Ki, and 0 otherwise.

Acc-Frame =
1

|D|

|D|∑
i=1

χKi

(
k̂i

)
(3)

• mIoU-Temporal. We denote the time interval covered by the model output as Ti and the ground
truth as T gt

i , where i represents a video sample. Similarly, we calculate the similarity in the
benchmark D using the same method as in Eq. 2.

3.4 REWARD MODELING

In Embodied AI, designing reward functions for human activities is challenging due to accuracy
and diversity requirements. Foundation Models, with their superior commonsense and reasoning
capabilities, can serve as reward models. There are three main approaches: (1) Using a sparse proxy
reward function with a binary score (Kwon et al., 2023); (2) Computing similarity between action
phrases and images (Di Palo et al., 2023; Rocamonde et al., 2023); (3) Generating code to translate
task semantics into reward functions (Yu et al., 2023; Ma et al., 2023). This paper focuses on the
first approach for video data.

6
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Question: Did the person remove the milk from 

the microwave?

Answer: Yes

time

Question: Did the person close the microwave 

door after removing the milk?

Answer: No

Explanations:

1. The video does not show the person closing the microwave door 

after removing the milk.

2. The final frames focus on the person holding the milk, not on the 

microwave door.

3. There is no visible action of the person moving to close the 

microwave door.

Critique Feedback

Figure 5: Case of reward modeling.

Task Format. As a reward model, MLLMs should observe the video to determine the completion
status of the target motion. If the action is not completed, the model should further provide fine-
grained feedback to help achieve the goal (Wang et al., 2020; Cheng et al., 2023). We design two
tasks, as shown in Fig. 5: critique, and feedback.

• Critique. Given an action-specific egocentric video i and its corresponding natural language
action description ai, the reward model needs to directly generate a binary answer ŷi (i.e., Yes or
No) that indicates whether the action has been completed in the observed video.

• Feedback. Given an uncompleted action ai in the i-th egocentric video, the reward model pro-
vides fine-grained feedback r̂i on why the action is not completed based on current observations,
compared to the ground-truth references Ri = {r1i , r2i , r3i }. This feedback guides and corrects
downstream models to learn the policy for completing the target action.

Metrics. We use the following accuracy metrics to assess performance in critique and feedback
tasks (Acc-Critique and Acc-Feedback) for the reward modeling tasks.

• Acc-Critique. We compare the generated critique ŷi with its ground-truth label yi in the bench-
mark D. The boolean function I(·) returns one for each identical labels and zero otherwise.

Acc-Cri =
1

|D|

|D|∑
i=1

I(ŷi = yi) (4)

• Acc-Feedback. To assess the similarity between the generated feedback r̂i and the set of reference
feedback Ri, we use evaluator LLM g(·) to assign a score of 0 (wrong), 0.5 (partially correct) or
1 (correct), similar to Eq. 1.

4 DATA COLLECTION IN VidEgoThink

Recent releases of egocentric video datasets (Grauman et al., 2022; 2024; Huang et al., 2024) have
advanced Embodied AI. We use the popular Ego4D dataset (Grauman et al., 2022) for our bench-
mark. Ego4D-v21 contains 3,900 hours of 9,611 egocentric videos with diverse human annotations.
To avoid data leakage, we select videos from the validation dataset. However, due to the video
length limitations of MLLMs, the lengthy Ego4D videos, ranging from tens of minutes to over an
hour, are unsuitable. Additionally, manually labeling question-answering data requires significant
human effort. To address these problems, we design strategies to automatically clip the videos to
appropriate lengths and generate corresponding question-answer pairs. To prevent the VidEgoThink
benchmark from being compromised through prompt engineering, the detailed prompts used for au-
tomatic annotation construction will not be released. The statistics of each task in VidegoThink are
presented in Table 4 in Appendix B.

Video Question-Answering. To construct this benchmark, we integrate Narration data, capturing
interactions between the camera wearer and the environment, focusing on object, action, and scene.
We develop specific prompts, combined with the narrations, as inputs for GPT-4o tailored to each
fine-grained dimension. GPT-4o then generate diverse question-answering pairs for these dimen-
sions. Due to the noise in generated instances and the cost of API-based evaluation, three human

1https://ego4d-data.org/docs/updates/
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annotators filter them to ensure quality and diversity, selecting the most representative examples.
Finally, we totally collect 600 instances with 50 examples per fine-grained dimensions.

Hierarchy Planning. We use existing human annotations in Ego4D with goals-steps-substeps labels
to construct our hierarchical data. For video inputs, we use from 00:00 to the start time of the current
step for both high-to-mid and mid-to-low subtasks. In the high-to-mid task, high-level goals serve
as inputs and corresponding mid-level step as labels. Steps requiring numerous low-level actions
and exceeding 180 seconds are decomposed into essential substeps. Next, we use the ground-truth
mid-level step and its Narration as potential low-level atomic actions. To align with Embodied AI
controller, GPT-4o converts narrations (e.g., “C cuts a mango with a knife”) into function calls (e.g.,
“cut(mango, knife)”) and merges semantically similar functions. To ensure MLLMs understand
the available low-level functions and their usage, we apply GPT-4o to generate their documentation.
After filtering by three annotators, we obtain 598 clipped videos and instances for both tasks, with
the mid-to-low task comprising 74 atomic actions.

Visual Grounding. Visual Queries in Ego4D includes queries about objects and their tracks in
the video, represented as frames with bounding boxes. We use these annotations to collect object
grounding and frame grounding subtasks. For object grounding, given a clipped video and its anno-
tations, we select the video from the beginning to the last annotated frame. We construct a prompt
with the Narration in this segment for GPT-4o to generate a query. The answer is the bounding
box annotation of the object in the final frame. In frame grounding, the video input spans from the
start of the clipped video to either the “query video frame” annotated in Visual Queries or the end
frame of the clip. We prompt GPT-4o using the object name and narrations within the time segment
to generate a specific description of the frames containing the object. All annotated frames in the
input video are considered the answer. Considering that step-substep annotations in Goal-Step in-
clude temporal information, we primarily use these clipped videos. By providing annotations and
prompts to GPT-4o, we obtain a specific description of the selected sub-step as the query and the
temporal interval of the sub-step as the answer. Finally, we obtain 369 instances for object and frame
grounding, and 735 instances for temporal grounding.

Reward Modeling. Our clipped videos in the hierarchy planning task contain entire mid-level steps,
which we use to construct the reward modeling dataset. We label the original complete videos as
positive instances. For negative instances, we employ two strategies: (1) using GPT-4o to generate
questions where the action is similar but different from the video content; (2) manually crop each
video clip to 60%–80% of its original length to ensure the action remains unfinished. Each negative
sample includes three feedback demonstrating the incomplete action. Considering narrations often
lack detailed descriptions to determine whether an action is complete, we employ FFmpeg1 to extract
keyframes from each clipped video. Then, we use GPT-4o to generate feedback from different
aspects for negative instances based on step annotations and the extracted keyframes. After filtering
by three annotators, we obtain 963 and 638 instances for critique and feedback tasks.

5 EXPERIMENTS

In this section, we mainly introduce our extensive adopted models, including API-based models, a
series of open-source image-based and video-based MLLMs. The detailed information of all these
MLLMs are presented in Appendix C and the prompts for both inference and evaluation are shown
in Appendix D. Furthermore, we summarize the experimental results for different tasks, and their
correpsonding case studies are illustrated in Appendix E.

5.1 MODELS

API-based Models. We conduct experiments with the representative GPT-4o (2024-05-13). Since
GPT-4o does not support video input, we address this limitation and enhance methodological di-
versity with the following assessment scheme: (1) w/ 32 frames: Select 32 keyframes based on
the video context; (2) w/ 8 frames: Select 8 keyframes with the same input format as most open-
source MLLMs; (3) w/ captions: Replace 32 keyframes with its corresponding captions generated
by GPT-4o; (4) w/ only-qa: Input only the question without any frames or captions.

1https://www.ffmpeg.org/
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Table 1: Experimental results of video question answering. OE, OO, OI, OC, OS, OP denote object
existence, object order, object interaction, object count, object state, object prediction. AE, AS,
AC indicates action existence, action sequence, action count. SE, ST, SP denote scene existence,
scene transition, scene prediction. The bold font denotes the best performance and the underline
font denotes the second-best performance.

Models Object Action Scene Average
OE OO OI OC OS OP AE AS AC SE ST SP

GPT-4o w/ only-qa 13.00 00.00 12.00 06.00 31.00 23.00 25.00 04.00 02.00 18.00 06.00 20.00 13.33
GPT-4o w/ captions 51.00 16.00 14.00 30.00 25.00 44.00 34.00 05.00 22.00 42.00 28.00 16.00 27.25
GPT-4o w/ 8 frames 51.00 16.00 30.00 33.00 35.00 45.00 38.00 25.00 22.00 43.00 23.00 24.00 32.83
GPT-4o w/ 32 frames 52.00 18.00 30.00 35.00 32.00 40.00 39.00 20.00 24.00 46.00 20.00 18.00 31.17

mPLUG-Owl2-llama2-7B 29.00 06.00 15.00 30.00 10.00 16.00 28.00 08.00 28.00 20.00 10.00 06.00 17.17
Qwen-VL-7B-Chat 41.00 07.00 13.00 33.00 14.00 30.00 17.00 03.00 27.00 16.00 13.00 10.00 18.67
LLaVA-1.5-7B 46.00 07.00 17.00 34.00 22.00 24.00 25.00 01.00 14.00 20.00 13.00 16.00 19.92
LLaMA-Adapter-V2-7B 48.00 05.00 26.00 17.00 19.00 39.00 14.00 09.00 35.00 24.00 10.00 16.00 21.80

LWM-Chat-32k-Jax-7B 42.00 03.00 20.00 12.00 10.00 11.00 20.00 04.00 21.00 27.00 09.00 05.00 15.33
TimeChat-7B 42.00 05.00 15.00 21.00 11.00 23.00 20.00 04.00 20.00 31.00 14.00 14.00 18.33
GroundingGPT-7B 43.00 03.00 20.00 30.00 10.00 23.00 22.00 04.00 32.00 23.00 19.00 14.00 20.25
InternVL2-8B 43.00 16.00 21.00 18.00 20.00 27.00 19.00 04.00 15.00 37.00 17.00 12.00 20.75
InternLM-XComposer2.5-7B 36.00 06.00 24.00 22.00 19.00 34.00 30.00 02.00 30.00 31.00 11.00 12.00 21.42
Video-LLaVA-7B 44.00 08.00 19.00 34.00 15.00 30.00 18.00 03.00 38.00 28.00 11.00 11.00 21.58
PG-Video-LLaVA-7B 49.00 05.00 21.00 15.00 23.00 37.00 25.00 03.00 16.00 35.00 18.00 20.00 22.25
mPLUG-Owl3-7B 32.00 07.00 26.00 13.00 33.00 34.00 18.00 06.00 36.00 37.00 23.00 10.00 22.92
MiniCPM-V-2.6-8B 48.00 12.00 28.00 16.00 25.00 42.00 31.00 11.00 15.00 42.00 23.00 18.00 25.92
Qwen2-VL-7B-Instruct 36.00 19.00 28.00 28.00 28.00 43.00 24.00 09.00 20.00 48.00 24.00 20.00 27.25

Open-Source MLLMs. We consider both image-based and video-based MLLMs. For image-
based MLLMs, we select those that demonstrated strong performance in EgoThink (Cheng et al.,
2024). Additionally, we comprehensively choose the most popular and high-performance video-
based MLLMs, including a series of general models and three grounding-specific models.

5.2 RESULTS

Video Question-Answering. The results of the video question-answering task are shown in Table 1
and Table 2. MLLMs perform poorly, with a best average accuracy of 32.82% across all dimensions
(35.00% for object, 28.33% for action, and 26.33% for scene elements), indicating struggles with
egocentric video question-answering. GPT-4o with 8 frames performs better than with 32 frames but
still underperforms compared to some open-source video MLLMs in certain dimensions. Two prob-
able reasons are: (1) GPT-4o’s sensitivity to privacy policies for indoor videos, causing it to refuse
more questions given more images; (2) insufficient information from extracted keyframes. GPT-4o
with captions sometimes matches or surpasses the 8 or 32-frame setups in scene transitions, but
performs poorly in object interaction and action sequence dimensions, indicating that captions pro-
vide sufficient high-level abstraction but lack detailed low-level action information. We regard the
GPT-4o with only-qa as a baseline to demonstrate state-of-the-art performance using only question-
answering pairs without any vision information. All other MLLMs perform better than the average
accuracy of GPT-4o with only-qa, showing that our benchmark indeed requires vision information
to solve these problems. Open-source video-based MLLMs generally surpass image-based MLLMs,
highlighting the need for full video information, especially in dynamic dimensions. Among these,
Qwen2-VL-7B-Instruct achieves the best performance, even surpassing GPT-4o in two dimensions
and achieving the second-best performance in three dimensions.

Hierarchy Planning. The hierarchy planning results are shown in Table 2, with the average video
duration being 1008.26 seconds. In the High-to-Mid task, GPT-4o series models and image-based
MLLMs, which process multiple or single images, lack sufficient information to determine the en-
tire progress and predict the next step. Hence, increasing the total number of frames significantly
improves performance. For video-based models, the best performance of MiniCPM is comparable
to the state-of-the-art performance of GPT-4o with 32 frames but still performs poorly, indicat-
ing significant room for improvement. For the Mid-to-Low task, the most notable phenomenon
is that GPT-4o series models significantly outperform open-source MLLMs, which achieve about
0.05 accuracy. The main reason behind this phenomenon is the limited long-context capability and
instruction-following capability of open-source MLLMs. We can only provide them with a com-
pressed function document, and they often do not generate answers following the output format.

Visual Grounding. Visual grounding tasks involve identifying specific objects, frames, or tempo-
ral segments within a video. API-based and image-based MLLMs abandon this information after
extracting keyframes, necessitating the use of open-source video-based MLLMs for performance
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Table 2: Experimental results of video question answerng, hierarchy planning, visual grounding, and
reward modeling tasks. The bold font denotes the best performance and the underline font denotes
the second-best performance.

Models Video Question Answering Hierarchy Planning Visual Grounding Reward Modeling
Object Action Scene High-to-Mid Mid-to-Low Object Frame Temporal Critique Feedback

GPT-4o w/ only-qa 14.17 10.33 14.67 08.86 32.56 - - - 48.46 06.81
GPT-4o w/ captions 30.00 20.33 28.67 09.53 33.65 - - - 58.82 14.58
GPT-4o w/ 8 frames 35.00 28.33 30.00 12.04 35.47 - - - 58.74 33.46
GPT-4o w/ 32 frames 34.50 27.67 26.33 14.97 35.08 - - - 59.39 34.64
mPLUG-Owl2-llama2-7B 17.67 21.33 12.00 05.77 00.00 - - - 41.26 01.56
Qwen-VL-7B-Chat 23.00 15.67 13.00 10.79 00.04 - - - 49.19 04.08
LLaVA-1.5-7B 25.00 13.33 16.33 02.59 00.01 - - - 53.72 03.53
LLaMA-Adapter-V2-7B 25.67 19.33 16.67 04.59 00.03 - - - 39.64 02.89

LWM-Chat-32k-Jax-7B 16.33 15.00 13.67 01.33 00.00 00.00 00.00 00.00 22.09 00.00
TimeChat-7B 19.50 14.67 19.67 03.85 00.01 00.00 00.00 14.56 47.25 00.57
GroundingGPT-7B 21.50 19.33 18.66 05.69 00.05 00.76 00.54 00.44 51.13 02.19
InternVL2-8B 24.17 12.67 22.00 03.34 00.05 00.09 00.00 06.87 52.67 00.71
InternLM-XComposer2.5-7B 23.50 20.67 18.00 09.62 00.04 00.00 00.54 03.50 51.41 08.23
PG-Video-LLaVA-7B 25.00 14.67 24.33 05.35 00.00 00.08 00.00 16.18 48.30 06.27
mPLUG-Owl3-7B 24.17 20.00 23.33 12.29 00.03 00.00 00.00 00.00 50.00 09.09
MiniCPM-V-2.6-8B 28.50 19.00 27.67 14.13 00.06 00.35 01.63 11.30 51.54 13.09
Qwen2-VL-7B-Instruct 30.33 16.00 27.67 09.88 00.00 00.00 00.00 00.00 49.03 04.62

assessment. Due to the new design of object and frame grounding tasks, these MLLMs are not yet
optimized for these formats, leading to generally poor performance. It is understandable that object
grounding in a single image remains a challenging task for MLLMs, even more so within a video
context. For temporal grounding, some MLLMs especially trained for this task achieve relatively
high scores, with PG-Video-LLaVA scoring 16.18. Surprisingly, MiniCPM performs well across
all grounding dimensions, despite not being specially trained for these tasks. Although the perfor-
mances of MLLMs are poor, we believe these tasks have a significant impact on downstream tasks
in Embodied AI and deserve more attention.

Reward Modeling. As shown in Table 2, the critique task is a binary classification task with a
random guess baseline of 50%. Therefore, the overall performance of MLLMs is suboptimal, with
the best accuracy reaching only 59.39%, indicating that MLLMs struggle to determine whether a
task has been completed. For the feedback task, GPT-4o with 8 frames (33.46%) and 32 frames
(34.64%) significantly outperforms the best results from other API-based methods (14.58%) and
open-source MLLMs (13.09%). This demonstrates that generating feedback requires more fine-
grained visual information not present in captions and superior reasoning capability.

6 CONCLUSION

In this paper, we introduce VidEgoThink, a comprehensive benchmark designed to evaluate egocen-
tric video understanding across four critical functions in Embodied AI. Our assessment of popular
API-based and open-source MLLMs reveals that these models still face significant challenges in
processing egocentric videos. Although GPT series models perform relatively better, they exhibit
notable deficiencies in certain areas, highlighting the need for further improvements and optimiza-
tions. VidEgoThink underscores the limitations of current MLLMs in handling first-person perspec-
tive data, thereby indicating directions for future research and advancements

Limitations. VidEgoThink is the first to propose four tasks for assessing egocentric video under-
standing in MLLMs for Embodied AI. However, it has limited data diversity and immature evalua-
tion methods, particularly in hierarchy planning and reward modeling. Future work should improve
these aspects and address the high costs of human annotation and API-based evaluations, which
limit the number of question-answer pairs. We plan to expand the benchmark and develop egocen-
tric foundation models for robotics.

Broader Impacts. Two key areas for the future of Embodied AI are egocentric video and multi-
modal large language models On the one hand, our real world cannot be mapped to virtual simu-
lators exactly the same way. Real-world environments cannot be exactly replicated in virtual sim-
ulators, making egocentric video a preferred method for collecting action data, especially with the
rise of smart glasses and humanoid robots. Learning from egocentric video is crucial for future ad-
vancements. Although end-to-end MLLMs for Embodied AI are still an open research question, we
believe a hierarchical system that uses vision-language models for perception and cognition is an
emerging paradigm. Ideal foundation models should function in the real world, capable of thinking,
understanding, and interacting like humans.
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A COMPARISON TO RECENT BENCHMARKS

Table 3: Comparison of recent evaluation benchmarks of multimodal large language models and
our proposed benchmark VidEgoThink. VQA/HP/VG/RM indicate visual question answering, hier-
archy planning, visual grounding, and reward modeling. Existing/Handcraft/Automatic denote the
way of collecting data, including existing dataset, manual annotation, and automatic generation.

Benchmark Comprehensive
Capabilities

View Task Type Data
Source

Average
Length

Total
SizeObserve Interact VQA HP VG RM

ActivityNet-QA % ! % ! % % % Handcraft 180s 58,000
SEED-Bench-2 ! ! % ! % % % Handcraft - 24,000
AutoEval-Video ! ! % ! % % % Handcraft 14.58s 327
Video-Bench ! ! % ! % % % Existing - 15,000
Perception Test % ! % ! % ! % Handcraft 23s 11,600
OpenEQA % ! % ! % % % Handcraft - 1,600
MVBench ! ! ! ! % % % Existing (5s, 35s) 4,000
EgoVQA % ! ! ! % % % Handcraft (20s, 100s) 520
EgoThink ! % ! ! ! % % Handcraft - 700
EgoTaskQA % % ! ! % % % Automatic 25s 40,000
EgoPlan-Bench % % ! % ! % % Automatic - 3,400
EgoSchema % % ! ! % % % Automatic 180s 5,000

VidEgoThink (Ours) ! ! ! ! ! ! ! Automatic 270.74s 4,993

B STATISTICS OF VIDEGOTHINK

In this section, we present detailed statistics of the VidEgoThink benchmark, including information
about videos and question-answering pairs.

• Number of original videos (#Original): The total number of original, entire videos in the Ego4D
dataset.

• Number of clipped videos (#Clipped): The total number of clipped videos of moderate duration
from the original videos.

• Duration: The average duration (in seconds) of the clipped videos.
• Number of instance (#Instance): The total number of video question-answer pairs in each task.
• Question length (LenQ): The average length of the questions, measured in words.
• Answer legnt (LenA): The average length of the answers, measured in words.
• Question Type (TypeQ): The total count of various types of questions.
• Number of Scenes (#Scene): The total number of types of scenes officially annotated by Ego4D.

Table 4: The statistics of videos across different benchmarks. Duration denotes the average time
duration in second of all videos. LenQ and LenA indicate that the average length of questions and
answers in the word level. TypeQ denotes the type of questions.

Benchmark Subtask Video Question-Answering #Scene
#Original #Clipped Duration #Instance LenQ LenA TypeQ

Video Question Answering
Object 29 57 23.71 300 10.88 7.13 5 9
Action 39 78 24.56 150 10.85 4.72 4 9
Scene 45 82 21.91 150 11.46 8.34 4 9

Hierarchy Planning High-to-Mid 76 598 1008.26 598 16.5 5.18 1 9
Mid-to-Low 76 598 1008.26 598 22.12 6.02 1 9

Visual Grounding
Object 41 88 119.05 220 22.60 - 1 25
Frame 65 147 139.57 368 23.01 - 1 25
Temporal 69 416 68.90 735 82.40 - 1 8

Reward Modeling Critique 76 963 16.60 1236 11.21 11.00 1 9
Feedback 74 638 15.08 638 19.24 53.06 1 9
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C MODELS HUB

In this section, we briefly introduce the open-source MLLMs used for evaluation. The important
components of all these open-source MLLMs are shown in Table 5.

C.1 OPEN-SOURCE IMAGE-BASED MLLMS

The brief introduction of all open-source imaged-bsaed MLLMs is listed below:

• LLaVA-1.5 (Liu et al., 2024b) utilizes academic task data and replaces the linear visual language
connector with a two-layer MLP connector.

• LLaMA-Adapter V2 (Gao et al., 2023b) proposes an early fusion strategy that effectively adapts
LLaMA (Touvron et al., 2023) to visual instruction models.

• Qwen-VL-Chat (Bai et al., 2023a) employs a single-layer cross-attention with random initializa-
tion, trained with approximately 1.5 billion image-text pairs, and aligns with human interaction.

• mPLUG-Owl2 (Ye et al., 2024b) integrates shared functional modules to promote modality col-
laboration and includes a modality-adaptive module to preserve modality-specific features.

C.2 OPEN-SOURCE VIDEO-BASED MLLMS

The brief introduction of all open-source video-bsaed MLLMs is listed below:

• InternVL2 (Chen et al., 2023d) builds on InternVL’s QLLaMA progressive alignment strategy. It
optimizes vision-language alignment while scaling up the language model in stages, starting small
and expanding gradually, with data refined from coarse to fine.

• MiniCPM-V-2.6 (Yao et al., 2024) utilizes the adaptive visual encoding mechanism of LLaVA-
UHD (Xu et al., 2024) and various end-side optimizations to compress the multimodal model.

• Qwen2-VL (Bai et al., 2023b; team, 2024) has been upgraded with Naive Dynamic Resolution
and Multimodal Rotary Position Embedding (M-ROPE) technologies, improving its multimodal
data processing and understanding capabilities.

• InternLM-XComposer-2.5 (Zhang et al., 2024) introduces RoPE extrapolation for long-context
handling, ultra-high resolution understanding, fine-grained video comprehension, and multi-turn
multi-image dialogue, and extra LoRA parameters for advanced text-image composition.

• Video-LLaVA (Lin et al., 2023) proposes a unified visual representation method that aligns im-
ages and videos within the language feature space. This approach enhances multimodal interac-
tions and leverages a mixed dataset of images and videos to mutually improve each modality.

• LWM (Liu et al., 2024a) uses Blockwise RingAttention and masked sequence packing to manage
long video and language sequences, enabling training on contexts up to 1 million tokens for better
multimodal understanding.

• mPLUG-Owl3 (Ye et al., 2024a) introduces hyper attention blocks to efficiently integrate vision
and language into a shared semantic space, improving long image sequence processing. video
benchmarks.

• PG-Video-LLaVA (Munasinghe et al., 2023) is a video-based MLLM with pixel-level grounding
capabilities. It can also integrate audio to enhance video understanding. Additionally, its modular
design enhances flexibility.

• GroundingGPT (Li et al., 2024b) effectively enhances the understanding and grounding of fine-
grained image, video, and audio modalities through a three-stage, coarse-to-fine training strategy.

• TimeChat (Ren et al., 2024) is a time-sensitive multimodal large language model that aligns visual
information with specific time frames. It utilizes a sliding video Q-Former to adapt to videos of
varying lengths.

D PROMPT HUBS

To address concerns about potential data breaches through prompts, here we only release the detailed
prompts for each task to facilitate inference and evaluation.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 5: LM, VM, TM, AM refer to the language module, visual module, temporal module, and
alignment module, respectively. CLIP-ViT-L is CLIP module pre-trained on LLaVA, while CLIP-
ViT-G is the CLIP module pre-trained on LAION.

Model LM VM TM AM Model Size Training Data
Image/Video-Text Instruction

API-based Model
GPT-4o Unknown

Image-based MLLMs
mPLUG-Owl2 LLaMA CLIP-ViT-L - Visual Abstractor 7B 1.23M -
Qwen-VL Qwen CLIP-ViT-G - VL Adapter 7B 1.4B 350K
LLaVA 1.5 LLaMA/Vicuna CLIP-ViT-L-3 - Linear 7B 558K 665K
LLaMA-Adapter v2 LLaMA CLIP-ViT-L - Linear 7B 567K 52K

Video-based MLLMs
LWM LLaMA2 VQGAN - - 7B 1.01B 519K
TimeChat LLaMA2 CLIP-ViT-G Time-aware Frame Encoder Sliding Video Q-Former 7B - 177K
GroundingGPT Vicuna-v1.5 CLIP-ViT-L position encoding MLP 7B >1.3M >770K
InternVL2 InternLM2.5 InternViT-300M-448px - QLLaMA 8B 10B -
InternLM-XComposer2.5 InternLM2 CLIP-ViT-L - Partial-LoRA 7B - -
PG-Video-LLaVA Vicuna-v1.5 CLIP-ViT-L-3 Grounding Module MLP 7B - 100K
mPLUG-Owl3 Qwen2 SigLip-400M MI-RoPE Linear 8B >1.7M >1M
MiniCPM-V2.6 Qwen2 SigLip-400M - Adaptive Visual Encoding 8B 570M 3M
Qwen2-VL Qwen2 ViT M-RoPE 3D-conv 8B 1.4Ttokens -

D.1 MODEL INFERENCE PROMPTS

As an example, we list the general prompts for 8 frames, 32 frames and open-source MLLMs. The
inference type of “caption” for GPT series models will add a prompt “Here is the captions of the
video: {caption}.” after the sentence “Imagine you are the camera wearer (I) who recorded the
video”. For the inference type of “only-qa”, we delete the prompt “Imagine you are the camera
wearer (I) who recorded the video”.

• Video Question Answering: Imagine you are the camera wearer (I) who recorded the video.
Please directly answer the question as short as possible. Question: {question} Short answer:

• High-to-Mid in Hierarchy Planning: Imagine you are the camera wearer (I) who recorded the
video. Given the high-level goal (e.g., ’making dumpling’) and the current progress video, you
need to predict the next mid-level step (e.g., fold dumplings on a cutting board) to achieve the
goal. Please directly generate the next one step as short as possible. Question: {question} Short
answer:

• Mid-to-Low in Hierarchy Planning: Imagine you are the camera wearer (I) who recorded the
video. Here are a set of actionable functions below.
[begin of actionable function and documentation]
{‘put’: ‘put(<arg1>, <arg2>) is used to place an object at a specified or default location.
<arg1>refers to the item to be placed, whereas <arg2>is optional and specifies the location
where the item should be placed. If <arg2>is omitted, the item is placed in a generic, predefined
area.’,
‘grab’: ‘grab(<arg1>, <arg2>) is used to simulate the action of grasping or picking up objects,
especially in a kitchen setting. <arg1>refers to the primary object to be grabbed, while <arg2>is
optional and denotes an associated tool or container that aids in handling or processing the pri-
mary object.’,
‘talk’: ‘talk(<arg1>, <arg2>) is used to simulate a conversation scenario with specific enti-
ties. <arg1>is mandatory and specifies the primary entity involved in the conversation, such as
a ’woman’, ’man’, or ’person’. <arg2>is optional and typically represents a secondary entity or
context within the conversation, providing additional detail or focus.’,
‘close’: ‘close(<arg1>, <arg2>) is used to encapsulate or seal an item, either partially or com-
pletely. <arg1>refers to the object to be closed or covered, and <arg2>is optional, describing
the material or object used for closing or covering <arg1>. If <arg2>is omitted, the closing is
done without any specified covering.’,
‘adjust’: ‘adjust(<arg1>, <arg2>) is used to modify the position or settings of objects or items.
<arg1>is mandatory and specifies the primary object to adjust, while <arg2>is optional and
used for adjustments involving a specific secondary object or location relative to the first.’,
‘arrange’: ‘arrange(<arg1>, <arg2>) is used to organize objects systematically within a pre-
defined space. <arg1>refers to the items to be arranged, while <arg2>is optional and specifies
the area or container where these items will be organized. If <arg2>is omitted, the items are
arranged in a default designated space.’,
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‘open’: ‘open(<arg1>, <arg2>) is used to manipulate the state of various containers or cover-
ings by opening them. <arg1>refers to the primary object or container that needs to be opened,
like a ’pot’ or ’drawer’. <arg2>is optional and specifies a secondary descriptor or specific part
of the primary object, like ’top’ or ’front’, indicating a particular method or area of opening.’,
‘walk’: ‘walk(<arg1>, <arg2>) is used to move an entity towards a specified location within
an environment. <arg1>refers to the primary location or object the entity should head towards,
and <arg2>refers to optional additional parameters that provide extra directional or contextual
details to refine the movement.’,
‘empty’: ’empty(<arg1>, <arg2>) is used to transfer a specified item from one holding medium
to another specified container. <arg1>refers to the item being transferred, while <arg2>is the
destination container where the item is moved to.’,
‘move’: ’move(<arg1>, <arg2>) is used to transfer items from one place to another.
<arg1>refers to the item that is being moved. <arg2>is optional and specifies where the item
should be placed; if omitted, it indicates the item is moved without a specific destination in mind,
likely for clearing space or as an intermediate step.’,
‘push’: ’push(<arg1>, <arg2>) is used to initiate a push action on various objects or elements.
<arg1>refers to the main object or element to be pushed, and <arg2>is optional and used to
specify a particular part or aspect of <arg1>for a more precise push action.’,
‘clean’: ’clean(<arg1>, <arg2>) is used to cleanse various items, which may include food or
non-food objects. <arg1>refers to the primary item that requires cleaning, while <arg2>is op-
tional and specifies additional items or the context like the cleaning environment or method. If
<arg2>is omitted, the function adapts its operation to effectively clean <arg1>alone.’,
‘rotate’: ‘rotate(<arg1>, <arg2>) is used to turn or move an item, typically in a culinary con-
text. <arg1>refers to the item that needs to be rotated. <arg2>is optional and describes the
utensil or tool used to facilitate the rotation. If <arg2>is omitted, the item is rotated manually or
with a default method.’,
‘serve’: “serve(<arg1>, <arg2>) is used to manage the distribution or placement of items.
<arg1>refers to the item to be served or used, and <arg2>is optional, indicating the person or
the hand (right or left) that will handle the item. If <arg2>is omitted, the item is handled by
default means.’,
‘shell’: ’shell(<arg1>, <arg2>) is used to remove the outer covering from items, typically food-
related like seeds, vegetables, and fruits. <arg1>is mandatory and specifies the item from which
the shell or outer layer needs removal. <arg2>is optional and indicates any tool that might assist
in the shelling process, such as a knife or fork. If <arg2>is omitted, the item is shelled using
standard methods.’,
‘turn on’: ‘turn on(<arg1>, <arg2>, etc) is used to activate one or multiple household or in-
dustrial appliances. <arg1>is mandatory and refers to the primary appliance that needs to be
activated. <arg2>, etc, represent additional appliances that can be optionally activated simulta-
neously.’,
‘turn off’: ‘turn off(<arg1>) is used to deactivate various devices or utilities. <arg1>refers to
the object or device to be deactivated, such as a ’socket’, ’tap’, or ’blending machine’.’,
‘cut’: ‘cut(<arg1>, <arg2>) is used to perform the action of cutting on various items.
<arg1>refers to the item to be cut, which is mandatory. <arg2>is optional and denotes the
tool used for cutting; if <arg2>is omitted, a standard cutting tool is assumed.’,
‘throw’: ‘throw(<arg1>, <arg2>) is used to dispose of or place an object in a specified or default
location. <arg1>refers to the item to be disposed of or relocated, whereas <arg2>is optional
and designates the location where the item should be placed. If <arg2>is omitted, the function
selects a default disposal method or location based on the item or context.’,
‘mix’: ‘mix(<arg1>, <arg2>) is used to combine or stir ingredients, typically in a cooking con-
text. <arg1>refers to the item or ingredients to be mixed, and <arg2>is optional and denotes the
tool used for mixing, such as a spoon or paddle. When <arg2>is omitted, the method of mixing
is unspecified or assumed to be manual.’,
‘touch’: ‘touch(<arg1>, <arg2>) is used to simulate the action of touching various items or
materials. <arg1>refers to the object or material that is the primary focus of the action, whereas
<arg2>is optional and provides additional detail on a specific part of the item to touch, assuming
a generic aspect if omitted.’,
‘eat’: ‘eat(<arg1>, <arg2>) is used to perform the action of consuming a specified item.
<arg1>refers to the item to be consumed. <arg2>is optional and describes the method by which
the food is to be eaten, for example, ’slowly’.’,
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‘pull’: ‘pull(<arg1>, <arg2>) is used to simulate the action of pulling something within a spe-
cific context. <arg1>refers to the object that is being pulled, such as a drawer or an oven grill.
<arg2>is optional and describes a secondary reference or location, like a pan or a steel cabinet,
which adds context to where the object is located or what it is associated with. If <arg2>is omit-
ted, the action focuses solely on <arg1>.’,
‘unfold’: ‘unfold(<arg1>, <arg2>=None) is used to expand or open various types of items.
<arg1>refers to the item to be unfolded, such as fabric, body parts, or food items. <arg2>is op-
tional and allows for additional specifications on how the unfolding should be performed, tailored
based on the nature of the item. If <arg2>is omitted, basic operations are performed.’,
‘dip’: ‘dip(<arg1>, <arg2>) is used to immerse an item into a container. <arg1>refers to the
item to be dipped, such as ’dough’ or ’hand’, and <arg2>describes the container like ’bowl of
water’ or ’flour’. This function facilitates operations involving coating or soaking an item.’,
‘observe’: ‘observe(<arg1>) is used to examine the specified environment or objects.
<arg1>refers to an array containing one or more strings that describe what should be focused on
during the observation. At least one string is mandatory to define the scope of observation, while
additional strings are optional to provide more detail.’,
‘taste’: ‘taste(<arg1>, <arg2>) is used to simulate the action of tasting a specified item with or
without a utensil. <arg1>refers to what is being tasted, such as food or soup. <arg2>is optional
and specifies the utensil used for tasting, like a spoon. If <arg2>is omitted, the action of tasting
is assumed to be done without any specific utensil.’,
‘apply’: ‘apply(<arg1>, <arg2>) is used to perform operations involving the application or ma-
nipulation of cooking ingredients or tools. <arg1>refers to the primary material or tool being
used, such as ’flour’ or ’oil’. <arg2>is optional and typically refers to the target where <arg1>is
applied, like ’dough’ or ’frying pan’.’,
‘switch’: ‘switch(<arg1>) is used to change or replace the current tool in use within a system or
application. <arg1>corresponds to the name of the tool that the function will switch to.’,
‘roll’: ‘roll(<arg1>, <arg2>) is used to flatten or shape an item using a tool. <arg1>refers to
the item to be rolled, such as dough or foil. <arg2>is optional and indicates the tool used for
rolling, like a ’rolling pin’ or ’rolling board’. If <arg2>is not specified, a default tool or method
is used to roll <arg1>.’,
‘lay’: ‘lay(<arg1>, <arg2>) is used to place objects or substances within a specific environment
or a default setting if not specified. <arg1>refers to what is being placed, and <arg2>is optional
and defines where the item is placed.’,
‘gesture’: ‘gesture(<arg1>, <arg2>, etc) is used to perform low-level actions based on the type
of gesture or action specified. <arg1>is mandatory and refers to the string specifying the type of
gesture or action to be executed. <arg2>is optional and allows for additional details or modifi-
cations to the gesture when necessary.’,
‘steer’: ‘steer(<arg1>, <arg2>, etc) is used to manipulate or interact with an object in a con-
trolled environment. <arg1>refers to any object that requires handling or operation. <arg2>is
optional, enhancing or specifying the nature of the interaction.’,
‘operate’: ‘operate(<arg1>, <arg2>) is used to activate or manage a specified device.
<arg1>refers to the name of the device being operated, while <arg2>is optional and allows
specific operational parameters to be passed, such as temperature, duration, or intensity.’,
‘store’: ‘store(<arg1>, <arg2>) is used to log or record items into a storage system.
<arg1>refers to the list of items to be stored, which can include a single item or multiple items
listed together. <arg2>is optional and specifies where the items are to be stored, indicating the
physical or logical grouping.’,
‘tilt’: ‘tilt(<arg1>, <arg2>) is used to tip or angle an item, often to enable actions like pouring.
<arg1>refers to the item that needs to be tilted. <arg2>is optional and defines the degree or
direction of tilt. If <arg2>is omitted, a default tilt setting is used.’,
‘lift’: ‘lift(<arg1>, <arg2>) is used to simulate the action of picking up or lifting an object or a
group of objects. <arg1>refers to the primary object to be lifted, and <arg2>is optional, indi-
cating an additional item or tool used alongside the primary object during the lifting process.’,
‘scrape’: ‘scrape(<arg1>, <arg2>) is used to perform the action of scraping one item against
another. <arg1>refers to the item to be scraped, which is mandatory, such as ’cabbage’ or ’veg-
etables’. <arg2>is optional and refers to the surface or tool against which the item is scraped,
like ’board’ or ’frying pan’. If <arg2>is omitted, the function defaults to a generic, predefined
scraping context.’,
‘bend’: ‘bend(<arg1>, <arg2>, <arg3>) is used to modify the shape or structure of an object.
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<arg1>refers to the object undergoing the bending. <arg2>and <arg3>are optional and spec-
ify the degree and the direction of the bend, respectively, allowing for precise control over the
bending process.’,
‘hit’: ‘hit(<arg1>, <arg2>) is used to simulate the action of one object striking another.
<arg1>refers to the primary object being hit, while <arg2>is optional and indicates any ad-
ditional object used in the hitting action, such as a tool.’,
‘reduce heat’: ‘reduce heat(<arg1>, <arg2>) is used to lower the temperature or heat output
of a specific device. <arg1>refers to the device on which the heat reduction is to be applied, and
<arg2>is optional and provides an interface or method for achieving the heat reduction, allowing
for precise control when specified.’,
‘rub’: ‘rub(<arg1>, <arg2>) is used to simulate the action of rubbing an object or surface.
<arg1>refers to the primary object that is being rubbed, and <arg2>is optional, referring to a
secondary object or surface involved in the rubbing, which can enhance or alter the rubbing con-
text. If <arg2>is omitted, the rubbing action is considered to be performed solely with <arg1>.’,
‘add’: ‘add(<arg1>, <arg2>) is used to simulate placing an item into a container or context
within a simulated environment. <arg1>refers to the object to be added, which is mandatory.
<arg2>is optional and specifies the location or receptacle for the item. If <arg2>is omitted, the
item is added to a default location or context.’,
‘mould’: ‘mould(<arg1>) is used to shape or form a material into a desired structure.
<arg1>refers to the substance that needs to be shaped, such as clay, dough, or plastic.’,
‘knead’: ‘knead(<arg1>, <arg2>) is used to manipulate and prepare materials. <arg1>refers
to the primary material to be kneaded, such as dough or clay. <arg2>is optional and denotes the
surface or item against which the kneading is performed, like a tray or a rolling board.’,
‘stop’: ‘stop(<arg1>, <arg2>) is used to terminate an ongoing process. <arg1>refers to the
type of process being stopped, such as ’liquid’. <arg2>is optional and specifies the equipment
involved, like ’gas cooker’. If <arg2>is not provided, the function defaults to stopping all pro-
cesses related to <arg1>.’,
‘cook’: ‘cook(<arg1>, <arg2>) is used to simulate the cooking process of a specified ingredient
with or without a utensil. <arg1>refers to the item to be cooked, which is a mandatory argument.
<arg2>is optional and specifies the tool used in the cooking process, defaulting to none if not
provided.’,
‘rest’: ‘rest(<arg1>, <arg2>) is used to model the passive placement of one object against or on
another. <arg1>refers to the primary object that is being supported or placed, while <arg2>is
optional and refers to the object or surface against which <arg1>is resting. If <arg2>is omitted,
the function defaults to a predetermined resting position or surface.’,
‘increase temperature’: ‘increase temperature(<arg1>, <arg2>) is used to raise the tempera-
ture of a device using a control mechanism. <arg1>refers to the device whose temperature needs
to be increased, such as a cooker or heater. <arg2>is optional and refers to the specific method
or interface, like a control knob or button, used to increase the temperature; if not specified, a
default method is used.’,
‘dab’: ‘dab(<arg1>, <arg2>) is used to absorb or blot excess liquid or substances from items.
<arg1>refers to the object that requires dabbing, while <arg2>is optional and specifies the ma-
terial used for dabbing. If <arg2>is omitted, a standard method of dabbing is applied.’,
‘fix’: ‘fix(<arg1>, <arg2>) is used to attach or affix <arg1>to <arg2>. <arg1>refers to the
object or component that needs to be fixed, while <arg2>is optional and identifies the target ob-
ject or location to which <arg1>will be attached. If <arg2>is omitted, <arg1>is attached to a
default object or location.’,
‘dry’: ‘dry(<arg1>, <arg2>) is used to remove moisture from specified items. <arg1>refers to
the item needing drying, like ”hands” or ”mango.” <arg2>is optional and indicates the material
used to aid the drying, such as ”towel” or ”napkin.”’,
‘hang’: ‘hang(<arg1>, <arg2>) is used to place an object onto a specified or default location
for storage or accessibility. <arg1>refers to the object to be hung, and <arg2>is optional and
denotes the location where the object should be placed. If <arg2>is omitted, a default location is
used.’,
‘tie’: ‘tie(<arg1>, <arg2>) is used to wrap or secure items. <arg1>refers to the material used
for tying, such as strings or wraps. <arg2>is optional and indicates additional materials or con-
ditions that might affect the tying process, such as environmental factors or secondary materials.’,
‘sprinkle’: ‘sprinkle(<arg1>, <arg2>) is used to apply a substance over a surface or object.
<arg1>refers to the material to be sprinkled, which is mandatory. <arg2>is optional and de-
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fines the surface or object where <arg1>is to be applied. If <arg2>is omitted, the substance is
applied to a default location.’,
‘swing’: ‘swing(<arg1>) is used to alter or move an object in a predefined manner. <arg1>refers
to the object being manipulated and the specific actions depend on the nature of this object.’,
‘fill’: ‘fill(<arg1>, <arg2>) is used to insert a specified substance into a designated container.
<arg1>refers to the container that will contain the substance, and <arg2>describes the sub-
stance to be filled into the container.’,
‘wear’: ‘wear(<arg1>, <arg2>, <arg3>) is used to simulate the action of dressing a character
or entity with a specific item. <arg1>is mandatory and refers to the item to be worn, described as
a string. <arg2>and <arg3>are optional, allowing for customization of style and size, respec-
tively.’,
‘unsure’: ‘unsure(<arg1>, <arg2>, etc) is used to perform an ambiguous action based on the
provided context or data. <arg1>is a mandatory parameter that provides the necessary context
or data for the operation of the function. <arg2>and other additional arguments are optional
and enhance the function’s flexibility and adaptability to varying use cases.’,
‘sort’: ‘sort(<arg1>, <arg2>) is used to organize or prioritize items based on specific criteria.
<arg1>is mandatory and specifies the operation to be performed, while <arg2>is optional and
includes the items to be sorted. This function can be used with varying numbers of arguments to
adapt to different sorting requirements or settings.’,
‘stretch’: ‘stretch(<arg1>) is used to modify the physical state of a malleable material by elon-
gating or thinning it. <arg1>refers to the malleable material that is altered by the function.’,
‘squeeze’: ‘squeeze(<arg1>, <arg2>, etc) is used to compress or reduce the size of various types
of input objects. <arg1>refers to the object or substance to be compressed. <arg2>and other
optional arguments can be added to modify the function based on the specifics of the compression
or the context in which it is applied.’,
‘flatten’: ‘flatten(<arg1>, <arg2>) is used to press and spread a material into a flatter shape.
<arg1>is mandatory and specifies the material to be flattened, while <arg2>is optional and
represents a tool used to assist in the flattening process. This function is generally used when a
uniform thickness is desired or to prepare the material for further processing.’,
‘climb’: ‘climb(<arg1>) is used to simulate or command an entity to ascend or mount a specified
target. <arg1>refers to the object or location that the entity should climb onto.’,
‘interact’: ‘interact(<arg1>, <arg2>) is used to perform interactions with various entities or
objects. <arg1>refers to the entity or object to interact with, which is mandatory. <arg2>is op-
tional and specifies the method or type of interaction desired; if omitted, it defaults to a standard
interaction mode.’}
[end of actionable function and documentation]
Based on the low-level actionable actions provided, you will need to make one or more function
calls in order to achieve the mid-level step described in the question.
Respond needs to strictly be a list of these actionable functions following this format: “fuc-
tion1(args)”,“fuction2(args)”,“fuction3(args)”, ...
Besides these functions, your response should not contain anything else,these functions should not
be numbered or explained, simply separated by commas and output directly.
For example: “put(jar, cabinet)”,“grab(jar)”,“mix(jar)”,“put(jar, cabinet)”.
You should not include any other text in your response.
Question: {question}
List of actionable functions:

• Object grounding in visual grounding: {question} Please give out the bounding box coordi-
nates of the object.

• Frame grounding in visual grounding: {question} Analyze the provided video and identify the
frame number of the last keyframe that is relevant to the specified query. Please provide only the
frame number as your response.

• Temporal grounding in visual grounding: {question} Please provide the starting and ending
times for that step.

• Critique in reward modeling: Imagine you are the camera wearer (I) who recorded the video.
Please directly answer yes or no to determin whether the task is completed or not. Question:
{question} Short answer:

• Feedback in reward modeling: Imagine you are the camera wearer (I) who recorded the video.
The video contains an uncompleted task. Please identify the essential completion signals in my
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observations that indicate the task is not completed by me. Please directly generate the rationale
as short as possible. Question: {question} Short Answer:

D.2 EVALUATION PROMPTS

Here we list the prompts for API-based models to assess the performance for some tasks.

• Video question answering: [Instruction]\nPlease act as an impartial judge and evaluate the
quality of the response provided by an AI assistant to the user question displayed below. Your
evaluation should consider correctness and helpfulness. You will be given a reference answer and
the assistant’s answer. Begin your evaluation by comparing the assistant’s answer with the refer-
ence answer. Identify and correct any mistakes. The assistant has access to an image alongwith
questions but you will not be given images. Therefore, please consider only how the answer is
close to the reference answer. If the assistant’s answer is not exactly same as or similar to the
answer, then he must be wrong. Be as objective as possible. Discourage uninformative answers.
Also, equally treat short and long answers and focus on the correctness of answers. After pro-
viding your explanation, you must rate the response with either 0, 0.5 or 1 by strictly following
this format:“[[rating]]”, for example: “Rating: [[0.5]]”.\n\n[Question]\n{question}\n\n[The
Start of Reference Answer]\n{ref answer 1}\n[The End of Reference Answer]\n\n[The Start of
Assistant’s Answer]\n{answer}\n[The End of Assistant’s Answer]”

• High-to-mid in hierarchy planning: [Instruction]\nPlease act as an impartial judge and eval-
uate the quality of the response provided by an AI assistant to the user question displayed below.
Your evaluation should consider correctness and helpfulness. You will be given a reference an-
swer and the assistant’s answer. Begin your evaluation by comparing the assistant’s answer with
the reference answer. Identify and correct any mistakes. The assistant has access to an image
alongwith questions but you will not be given images. Therefore, please consider only how the
answer is close to the reference answer. The reference answer and the assistant’s answer both
describe a mid-level step towards completing a high-level goal, you must consider if these two
mid-level steps are similar. If the assistant’s answer is not exactly same as or similar to the an-
swer, then he must be wrong. Be as objective as possible. Discourage uninformative answers.
Also, equally treat short and long answers and focus on the correctness of answers. After pro-
viding your explanation, you must rate the response with either 0, 0.5 or 1 by strictly following
this format: “[[rating]]”, for example: “Rating: [[0.5]]’́.\n\n[Question]\n{question}\n\n[The
Start of Reference Answer]\n{ref answer 1}\n[The End of Reference Answer]\n\n[The Start of
Assistant’s Answer]\n{answer}\n[The End of Assistant’s Answer]

• Mid-to-low in hierarchy planning: [Instruction]\nPlease act as an impartial judge and evalu-
ate the quality of the response provided by an AI assistant to the user question displayed below.
Your evaluation should consider correctness and helpfulness. You will be given a reference an-
swer and the assistant’s answer. Begin your evaluation by comparing the assistant’s answer with
the reference answer. Identify and correct any mistakes. The assistant has access to an image
alongwith questions but you will not be given images. Therefore, please consider only how the
answer is close to the reference answer. The reference answer and the assistant’s answer both
describe a trajectory of low-level automic actions towards completing a mid-level step, you must
consider if these two trajectories of low-level atomic actions are similar, especially the key ac-
tions to achieve the mid-level step. If the assistant’s answer is not exactly same as or similar
to the answer, then he must be wrong. Be as objective as possible. After providing your ex-
planation, you must rate the response on a scale of 0 to 10 by strictly following this format:
“[[rating]]”, for example: “Rating: [[5]]”.\n\n[Question]\n{question}\n\n[The Start of Ref-
erence Answer]\n{ref answer 1}\n[The End of Reference Answer]\n\n[The Start of Assistant’s
Answer]\n{answer}\n[The End of Assistant’s Answer]

• Feedback in reward modeling: [Instruction]\nPlease act as an impartial judge and evaluate
the quality of the response provided by an AI assistant to the user question displayed below. Your
evaluation should consider correctness and helpfulness. You will be given three reference answers
and the assistant’s answer. Begin your evaluation by comparing the assistant’s answer with the
reference answers. Identify and correct any mistakes. The assistant has access to an image along-
with questions but you will not be given images. Therefore, please consider only how the answer
is close to the reference answers. If the assistant’s answer is not exactly same as or similar to all
reference answers, then he must be wrong. If the assistant’s answer is exactly same as or similar to
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any one reference answer, then it is correct. Be as objective as possible. Discourage uninformative
answers. Also, equally treat short and long answers and focus on the correctness of answers. After
providing your explanation, you must rate the response with either 0, 0.5 or 1 by strictly following
this format: “[[rating]]”, for example: “Rating: [[0.5]]”.\n\n[Question]\n{question}\n\n[The
Start of Reference Answer]\n{ref answer 1}\n[The End of Reference Answer]\n\n[The Start of
Assistant’s Answer]\n{answer}\n[The End of Assistant’s Answer]

E CASE STUDIES

GPT-4o w/ 8 Frames: A ladle and a bowl of dough.

Question: What do I hand the lady in the video? 

Answer: An empty plate.

InternVL2-8B: You do not need to hand anything to the lady in the video.

InternLM-XComposer2.5-7B: A plate.

LWM-Chat-32k-Jax-7B: I hand a bucket of popcorn to the lady in the video. 

MiniCPM-V-2.6-8B: You hand over a metallic bowl filled with noodles to the lady in the video.

mPLUG-OWL2-LLaMA2-7B: Bowl </s>.

LLaMA-Adapter-v2-7B: I hand her a bowl of food.

Qwen-VL-7B-Chat: You should hand the lady in the video a rope.

Figure 6: Case of object interaction in video question answering.

GPT-4o w/ Caption: One.  

Question: How many wooden spoon is in the video? 

Answer: One.

GPT-4o w/ 8 Frames: Two hands

mPLUG-Owl2-LLaMA2-7B: 1.

LLaVA-1.5-7B: 1.

LLaMA-Adapter-v2-7B: There are two wooden spoons used in the video.

LWM-Chat-32k-Jax-7B: The video shows a person using a total of 14 wooden spoons.

GroundingGPT-7B: 2.

InternVL2-8B: There are two wooden spoons and spatula.

Figure 7: Case of object count of video question answering.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

GPT-4o w/ 8 Frames: Once.

Question: How many times did I use the knife to cut something in the video? 

Answer: Twice (once to chop off carrot ends and once to cut the carrot into pieces).

GPT-4o w/ 32 Frames: Two times.

GPT-4o w/ Caption: Three times.

LWM-Chat-32k-Jax-7B: I used the knife three times in the video.

MiniCPM-V-2.6-8B: I used the knife to cut something 10 times in the video.

mPLUG-OWL2-LLaMA2-7B: 3.

Video-LLaVA-7B: In the video, the person used the knife to cut something twice.

Qwen-VL-7B-Chat: 3.

Figure 8: Case of action count of video question answering.

GPT-4o w/ Caption:  The stove. 

Question: What is the location where I walk towards after gathering cabbages in the bowl? 

Answer: Towards the gas cooker. 

GPT-4o w/ Frames: Bakery.

mPLUG-OWL2-LLaMA2-7B: Kitchen <\s>.

LLaMA-Adapter-v2-7B: I walk towards the kitchen.

LWM-Chat-32k-Jax-7B: After gathering cabbage in a bowl, I walk toward a stove. 

GroundingGPT-7B: Kitchen.

InternVL2-8B: After you gather cabbage in a bowl, you walk towards a plate sitting on the left side of the stove.

InternLM-XComposer2.5-7B: Towards the stove.

Figure 9: Case of scene transition of video question answering.

GPT-4o w/ Caption: Prepare dumpling fillings. 

Question: My high-level goal is making dumplings. What is the next step to achieve this goal?

Answer: Rolling out dough on the table with a roller.

GPT-4o w/ 8 Frames: Roll out the dough with a rolling pin.

mPLUG-OWL2-LLaMA2-7B: Fold dumplings on a cutting board.

LLaVA-1.5-7B: Next step: Fold the dumplings on a cutting board.

LLaMA-Adapter-v2-7B: The next step to achieve the goal of making dumplings is to fold dumplings on a cutting board.

LWM-Chat-32k-Jax-7B: The next step to achieve the goal is to roll out the dough on a floured surface.

GroundingGPT-7B: Fold dumplings on a cutting board.

InternVL2-8B: Get water from table.

Figure 10: Case of the high-to-mid task in hierarchy planning.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Question: My next step is to pour water into oven furnace. What is the trajectory of low-level atomic 

actions to complete the steps?

Answer: grab(jug), empty(water, oven).

GPT-4o w/ 8 Frames: grab(jug), walk(oven), pour(container, oven)

mPLUG-OWL2-LLaMA2-7B: open: open(<arg1>, <arg2>), turn_on: turn_on(<arg1>, pour: pour(<arg1>, <arg2>), …

LLaVA-1.5-7B: To pour water into the oven furnace, you will need to perform the following low-level atomic actions: 1. Open 

the oven door. 2. Remove the oven rack. 3. …

LLaMA-Adapter-v2-7B: 1. Put the oven door open. 2. Grab the water bottle. 3. Talk to the camera. 4. Close the oven door. 5…

LWM-Chat-32k-Jax-7B: The video shows a person wearing a ghost costume, and they are seen grabbing a piece of paper ….

InternVL2-8B: get_water(tank), open(furnace, front), put(water, furnace), close(furnace, front)

GPT-4o w/ Caption: grab(water), walk(oven), pour(water, oven furnace)

Figure 11: Case of the mid-to-low task in hierarchy planning.

Question: Can you identify and highlight the rectangular container, often used for holding neckwear, that 

I last interacted with in the final frame of the video?

Answer: {"x": 626.18, "y": 561.21, "width": 309.4, "height": 139.83}

LWM-Chat-32k-Jax-7B : The rectangular container is used to hold the neckwear. It is a white plastic tube with a black lid. The 

container is placed on a shelf in the store.

Qwen2-VL-7B-Instruct : rectangular container(250,491),(378,765)

InternLM-XComposer2.5-7B: The rectangular container for holding neckwear, which the mannequin is interacting with in the 

final frame, is not explicitly highlighted in the video. Since I cannot visually perceive the content of the image, I am unable to 

identify and provide the bounding box coordinates of the object in question.

MiniCPM-V-2.6-8B : <box>183 752 403 966</box>

GroundingGPT-7B: [0.28, 0.51, 0.49, 0.78]

InternVL2-8B:Certainly! The rectangular container you interacted with in the final frame can be highlighted. The bounding box 

coordinates of the object are approximately as follows:\n- Top-left corner: [250, 250]\n- Bottom-right corner: [750, 750]

Figure 12: Case of the object grounding in visual grounding. The output of GroundingGPT repre-
sents percentage.

Question: The video contains a total of 8422 frames. Can you identify the keyframe in the video where I 

interact with the roll paper?

Answer: [ 8379, 8385, 8391, 8397, 8403 ]

Qwen2-VL-7B-Instruct : 8422

MiniCPM-V-2.6-8B : 8379

InternLM-XComposer2.5-7B: The keyframe where you interact with the roll paper is the 41st frame

mPLUG-OWL2-LLaMA2-7B : I'm sorry, but I cannot identify the keyframe in the video where you interact with the roll paper 

as there is no mention of any person interacting with the roll paper in the video. Could you please provide more information or 

context about the video?"

GroundingGPT-7B: 1044

InternVL2-8B:The last keyframe relevant to the query of interacting with the roll paper is frame number 7.

Figure 13: Case of frame grounding in visual grounding.
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Question: Can you identify the time segment in the video where I unwrap goat cheese?
Answer: [0.8899700000000053, 13.87478999999999]

MiniCPM-V-2.6-8B: The time segment where you unwrap goat cheese starts at 00:59 and ends at approximately 1 minute into 
the video.

mPLUG-Owl3-7B: The time segment where I unwrap goat cheese is between 00:00 and 00:10.

InternLM-XComposer2.5-7B: The time segment in the video when you unwrap the goat cheese is from about second 3 to 
second 7.

TimeChat-7B: The unrolling of the goat cheese happens in 0 - 10 seconds.

GroundingGPT-7B: In the time range {0.23, 0.45}.

InternVL2-8B: The time segment in the video when you unwrap the goat cheese is from about second 3 to second 7.

Figure 14: Case of temporal grounding in visual grounding.

GPT-4o w/ 8 Frames: No.

Question: Did I complete the task to sprinkle flour on the dough?

Answer: No.

GPT-4o w/ 32 Frames: No,

Qwen2-VL-7B-Instruct : Yes, you completed the task to sprinkle flour on the dough.

MiniCPM-V-2.6-8B: Yes.

InternLM-XComposer2.5-7B: Yes.

LLaVA-1.5-7B: Yes.

GroundingGPT-7B: Yes.

InternVL2-8B:Yes.

Figure 15: Case of the critique task in reward modeling.

Question: Please generate the rationale for determining why I did not complete the task to sprinkle flour 

on the dough.

Answer: 1. The video shows the action of rubbing flour on the dough, not sprinkling it. 

2. The hand is seen directly applying flour to the dough, indicating a rubbing motion rather than a sprinkling motion. 

3. The flour is being spread across the dough surface by hand, which is consistent with rubbing not sprinkling.

Qwen-VL-7B-Chat: I did not complete the task of sprinkle flour on the dough because the flour was already on the counter, and 

I did not need to add more.

LWM-Chat-32k-Jax-7B: The reason that I did not complete the task to sprinkle flour onto the dough is that I was not in the 

mood to bake. The video shows that the person was baking a cake and sprinkling flour on the dough before baking it. The 

caption mentions that the person was not in the mood to bake, but it is possible that they were not in the mood for baking at that 

moment. 

GroundingGPT-7B: The rationale is that the video does not show the completion of the task, so it is not possible to determine 

why it was not complete.

GPT-4o w/ 8 Frames: The table surface is clean and there is no visible flour on it.

GPT-4o w/ 32 Frames: The flour is still in the bag and not on the table.

Figure 16: Case of the feedback task in reward modeling.
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