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with chairs bolted to the floor.

A luxurious home theater with plush 
velvet seats.

Dual Inner & Outer Prompting for Fine-Grained Layered AppearancesUnified Prompting

Figure 1: We present GOATEX, the first occlusion-aware 3D mesh texturing method designed to
synthesize realistic mesh textures for both exterior and occluded interior regions.

Abstract

We present GOATEX, a diffusion-based method for 3D mesh texturing that gener-
ates high-quality textures for both exterior and interior surfaces. While existing
methods perform well on visible regions, they inherently lack mechanisms to
handle occluded interiors, resulting in incomplete textures and visible seams. To
address this, we introduce an occlusion-aware texturing framework based on the
concept of hit levels, which quantify the relative depth of mesh faces via multi-view
ray casting. This allows us to partition mesh faces into ordered visibility layers,
from outermost to innermost. We then apply a two-stage visibility control strategy
that progressively reveals interior regions with structural coherence, followed by
texturing each layer using a pretrained diffusion model. To seamlessly merge
textures obtained across layers, we propose a soft UV-space blending technique
that weighs each texture’s contribution based on view-dependent visibility con-
fidence. Empirical results demonstrate that GOATEX consistently outperforms
existing methods, producing seamless, high-fidelity textures across both visible
and occluded surfaces. Unlike prior works, GOATEX operates entirely without
costly fine-tuning of a pretrained diffusion model and allows separate prompting
for exterior and interior mesh regions, enabling fine-grained control over layered
appearances. For more qualitative results, please visit our project page in this link.
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1 Introduction

High-quality mesh textures are critical for creating digital assets across a wide range of applications,
including gaming, animation, augmented reality (AR), and virtual reality (VR), as they significantly
enhance the believability of virtual environments and improve both user experience and immersion.
Importantly, the realism isn’t just needed for surfaces that are immediately visible—it also matters for
inner details that users might see as they move around, interact with the environment, or change their
viewpoint. For example, in architectural visualization, it’s not enough to have well-textured house
façades; interior features like walls, doors, and furnitures also need detailed textures, since users may
examine them closely during a VR walkthrough. Similarly, in vehicle simulation, while the exterior
body of a car or bus must appear authentic, interior textures, such as dashboards, seats, and ceiling
panels, must also be rendered with high fidelity to support a seamless and immersive experience.

To address these increasing demands for realistic mesh texturing, recent advancements in text-to-
image (T2I) diffusion models [42, 37, 40, 35, 20, 46, 34, 28, 29, 14, 43, 10, 9, 49] have played a
critical role, advancing image creation by enabling artists and developers to synthesize highly detailed
images directly from textual descriptions. Building upon this progress, text-to-texture generation
approaches [39, 8, 6, 27, 53, 22, 21, 24, 59, 13, 3, 52] based on 2D image diffusion priors have
emerged, aiming to alleviate the labor-intensive process of manual asset creation and make high-
fidelity texture generation more accessible. These methods usually operate by unprojecting multi-view
rendering of the outer surface onto the mesh’s UV map, leveraging 2D diffusion priors to achieve high-
quality texture synthesis. Moreover, techniques such as iterative painting [39, 8, 47, 25, 22, 21] and
multi-view sampling [6, 27] further enhance view alignments, reducing visible seams and artifacts.

However, texturing interior surfaces remains a significant challenge, as existing methods that rely on
multi-view unprojection lack access to occluded or internal geometries, often resulting in untextured
regions. Several methods [8, 27] have attempted to address this gap with Voronoi-based filling
techniques; however, such methods often result in visible seams and inconsistent surface textures.
More recent works [53, 3, 52] have explored UV-space refinement and inpainting by fine-tuning
diffusion models. These approaches are capable of texturing internal surface regions; however, they
often fail to produce high-quality and plausible interior surfaces due to their reliance on UV space
representations, which lack explicit geometric context, and the limited availability of training data
that captures the high variability of UV map structures with high-quality interior surface textures.

To this end, we propose GOATEX, the first occlusion-aware mesh texturing method that explicitly
targets the underexplored challenge of inner surface texturing. Our key idea is to treat the mesh as a
layered structure and progressively reveal surfaces from the outside in, guided by ray-based visibility
analysis. We begin by casting multi-view rays to compute hit levels, which quantify the relative
depth of mesh regions and partition the surface into ordered visibility layers, facilitating a subsequent
process of rendering pipeline that progressively exposes occluded geometry. To preserve the overall
shape and identity of the object throughout the progression, we introduce a two-stage visibility control
strategy that combines residual face clustering with normal flipping and backface culling. This allows
new interior surfaces to be exposed without distorting the mesh’s global structure. Each layer is
then textured independently using MVD module [27] with pretrained depth-conditioned diffusion
model [54]. To merge these textures seamlessly, we propose a UV-space blending scheme based
on view-dependent visibility weights, which avoids seams and style inconsistencies. Experiments
show that GOATEX produces high-quality textures across both visible and occluded regions, while
enabling fine-grained control over layered appearance through separate prompts for exterior and
interior surfaces.

The contributions of this paper are summarized as follows:

1. To the best of our knowledge, we are the first to introduce and address the task of generating real-
istic textures for occluded interior surfaces of 3D meshes alongside exterior regions, a practically
important yet still underexplored challenge in the 3D mesh texturing literature.

2. We propose GOATEX, a ray-based occlusion-aware framework that textures both exterior and
interior regions without requiring tuning of pretrained diffusion models. Our method also supports
dual prompting for inner and outer surfaces, enabling fine-grained control over layered structures.

3. User studies and GPT-based evaluations show that GOATEX is strongly preferred over existing
methods, achieving state-of-the-art texture quality across both visible and occluded surfaces.
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2 Related Work

2.1 Texture Generation via 2D Diffusion Priors

While significant progress has been made in mesh texturing, earlier methods [31, 30, 17, 32, 41, 44,
33, 7, 45, 16, 5] were often limited by their dependence on scarce high-quality 3D datasets. More
recently, the focus has shifted toward zero-shot texture generation using publicly available text-to-
image (T2I) diffusion models [40, 35, 54], enabling effective texture synthesis without extensive 3D
training data. Many current methods employ a project-and-inpaint strategy [39, 8, 47, 25, 22, 21],
synthesizing initial textures from a canonical view and subsequently inpainting missing regions.
For instance, TEXTure [39] and Text2Tex [8] incrementally generate seamless textures using depth-
conditioned diffusion models guided by trimaps. However, such methods often face cross-view
inconsistency due to limited global geometric context. To address this, TexFusion [6] proposes a
Sequential Interlaced Multi-view Sampler (SIMS), integrating multi-view appearance cues during
denoising for improved consistency. Other approaches [24, 59] optimize UV maps directly through
multi-view renderings and score distillation sampling (SDS) [36], although these methods typically
require substantial computational resources. SyncMVD [27] further improves coherence through a
Multi-View Diffusion module employing view synchronization techniques [2, 26, 23, 50]. Similar
to these prior works, our GOATEX leverages powerful 2D diffusion priors but uniquely addresses
occluded interior regions. Our method explicitly identifies and progressively textures internal surfaces
by employing ray-based visibility analysis to systematically expose and handle inner surfaces.

2.2 Geometry-Aware Texture Generation via 3D Mesh-Based Training

Recent advances leverage large-scale 3D datasets, such as Objaverse [12, 11], enabling training
of sophisticated texture generation models directly on textured meshes. FlashTex [13] introduces
LightControlNet to disentangle lighting effects from surface materials, improving relighting capa-
bilities. Paint3D [53] employs a coarse-to-fine generative framework, initially synthesizing textures
with a depth-aware 2D diffusion model and subsequently refining them through dedicated UV In-
painting and UVHD modules. Similarly, TEXGen [52] adopts a hybrid 2D-3D strategy, directly
training a specialized UV-space generative model without a coarse-to-fine approach. Geometry-aware
approaches like Hunyuan3D-Paint [57] and CLAY [55] utilize mesh geometry conditions, such as
normal and position maps, to guide diffusion models that generate multi-view tiled images used for
texturing. Specifically, Hunyuan3D-Paint introduces canonical normal and coordinate maps into
the diffusion process, incorporating reference and multi-view attention mechanisms, while CLAY
synthesizes diffuse, roughness, and metallic maps conditioned on normal maps and reference images.
Meta3DTextureGen [3] builds upon these concepts, initially generating multi-view tiled images
conditioned on geometry, and further enhancing the texture quality through an additional UV space
inpainting network. Despite these advancements, current methods primarily focus on exterior surfaces
or, even when generating interior textures in UV space, face difficulties producing plausible interior
surfaces due to a lack of high-quality interior texture data.

3 GOATEX: Geometry & Occlusion-Aware 3D Mesh Texturing
Texturing the interior surfaces of a 3D mesh poses a unique challenge: these regions are often fully
occluded from external viewpoints and receive little to no coverage in conventional rendering-based
pipelines. To this end, we propose GOATEX, an occlusion-aware framework for texturing of both
exterior and interior mesh regions. A schematic overview of our pipeline is shown in Fig. 2.

3.1 Ray-Based Hit Level Assignment for Layered Geometry Decomposition
Our method begins with estimating the relative visibility depth of different regions of the mesh, which
allows us to progressively expose and render from exterior to interior surfaces during subsequent
texturing stages. This is achieved through two key steps: (1) grouping mesh faces into structurally
coherent regions called superfaces, (2) assigning a hit level to each superface based on ray casting.

Superface Construction. Directly assigning hit levels to individual faces can result in fragmenta-
tion, where adjacent faces belonging to the same planar region are assigned different hit levels due
to the mesh’s composition of numerous small faces (as in top-left pane of Fig. 2), undermining the
generation of semantically consistent and plausible textures in the subsequent stages. To address this,
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Figure 2: Overall Pipeline of GOATEX. (1) Our framework begins with superface construction,
grouping fine-grained faces into coherent regions. (2) We then assign each superface a hit level by
casting rays from multiple viewpoints, indicating its relative depth within the mesh (§3.1). (3) Based
on these hit levels, we apply a visibility control strategy, combining residual face clustering with
normal flipping and backface culling, to progressively reveal interior geometry without disrupting
the object’s structural integrity (§3.2). (4) For each hit level, we synthesize textures using a depth-
conditioned multi-view diffusion (MVD) module [27]. (5) We employ a soft, visibility-weighted UV-
blending strategy to merge textures across levels, ensuring seamless and coherent appearance (§3.3).

we use Xatlas library [51] to oversegment the mesh into connected, low-curvature regions, referred to
as atlases. Each atlas is treated as a superface and serves as the basis for hit level assignment.

Hit Level Assignment. Next, we cast rays from multiple viewpoints, recording both their intersec-
tion order and directional influence on the surface. These information are then aggregated across all
rays to determine the most representative hit level for the superface. Each ray’s influence is weighted
by the cosine similarity between its direction and the face normal, with more direct (i.e., near −1)
intersections given greater importance and having a stronger impact on the hit level assignment.

Formally, the influence weight W (f, k) of a ray r with intersection order k on face f is defined as:

W (f, k) =
∑

r∈Rk(f)

max (−n(f) · d(r), 0), (1)

where Rk(f) is the set of rays intersecting face f with intersection order k, n(f) is the normal vector
of the face f and d(r) is the direction of the ray r. Finally, we aggregate these directional weights to
determine the hit level H(SFi), the most dominant intersection order for the superface SFi:

H(SFi) = argmax
k

∑
f∈SFi

W (f, k). (2)

3.2 Visibility Control for Structurally Coherent Layered Texturing

Once each face has been assigned a unique hit level based on its visibility depth, a straightforward
texturing approach is to render and texture faces independently by hit level, starting from the outermost
faces at the lowest hit level and proceeding inward to those at the highest. That is, at each hit level k,
one could simply construct the set of faces F init

k =
⋃

H(SFi)=k SFi assigned to that level, render their
depth maps, and condition a depth-conditioned 2D diffusion model to generate textures for them.

However, this naive strategy suffers from a critical drawback: as illustrated in Fig. 3, the face clusters
associated with higher hit levels become increasingly sparse and fragmented. This leads to incomplete
and disjointed geometry in the rendered depth maps, which deviate from the coherent structures
typically found in natural objects. As a result, the diffusion model receives out-of-distribution (OOD)
inputs, impairing its ability to generate plausible textures for interior regions.

We address these issues with a two-stage visibility control strategy: (1) residual face clustering to
construct denser, progressively revealed geometry; and (2) normal flipping with backface culling to
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preserve global shape. These components together ensure that each depth map preserves both the
structural fidelity and contextual coherence necessary for robust texture generation.

Residual Face Clustering. To address the sparsity, we redefine the set of faces rendered at each
stage by adopting a residual face clustering strategy. That is, rather than rendering only the faces
uniquely assigned to hit level k, we render the full set of untextured faces remaining from previous
levels. The resulting residual face set F res

k is defined as:

F res
k = F −

k−1⋃
i=1

F init
i , (3)

where F is the complete set of mesh faces. Analogous to peeling layers of an onion, this formulation
enables the progressive exposure of deeper yet untextured geometry for subsequent texturing.

Normal Flipping & Backface Culling. Residual clustering mitigates sparsity but doesn’t prevent
the monotonic drop in visible faces across deeper hit levels (see Fig. 3, middle). This results in
increasingly sparse depth maps that lack structural cues, yielding out-of-distribution inputs for the
diffusion model and degraded texture quality.

To this end, we introduce a technique based on normal flipping and backface culling. At each hit
level k, we keep all mesh faces but flip the normals of those already textured in earlier levels, turning
front-facing surfaces into backfaces relative to current rays, or vice versa. Due to the backface culling,
faces whose normals point within 90◦ of the view direction are removed. Thus, flipped surfaces
that previously faced the camera (e.g., on the near side) become temporally hidden, as if removed
from the scene. Meanwhile, faces once back-facing (e.g., on the far side) may now face the camera
and become visible. As a result, this view-dependent behavior reveals untextured interiors, while
preserving object structure and enhancing per-view visibility. Formally, rendered faces at level k are:

Fk = F res
k ∪

(
F − F res

k

)
, (4)

where F and F res
k denote flipped versions of F and F res

k , respectively.

3.3 Weighted UV-Space Blending for Layered Texture Synthesis

Finally, for each hit level k, we generate one texture by rendering multi-view depth maps using the
visibility-controlled face cluster Fk. These depth maps are then used to condition a pretrained texture
generation module (MVD module [27]), resulting in a distinct texture map UVk for each hit level.

A straightforward way to combine these per-level textures is to simply overwrite or average them
across hit levels. However, as illustrated in Fig. 4, such naïve approaches often result in noticeable
visual artifacts or the loss of clear boundaries between interior and exterior surfaces.

To address this, we introduce a UV-space texture merging scheme. For each view v at hit level k, we
compute a UV-space weight W (v)

k based on the absolute cosine similarity between the view direction
and the face normal, reflecting how much a given view contributes to each texel in the final texture.

The total visibility weight Wk for each hit level k is computed by aggregating contributions across
views and further normalized across the hit levels using a modified softmax function:

Wk =
eWk ⊙Mk∑H
j=1 e

Wj ⊙Mj

, Wk =
∑
v

W
(v)
k , (5)

where Mk is a binary UV mask indicating valid texels at hit level k, and H is the total number of hit
levels. The normalized weight Wk represents the relative influence of hit level k on each texel.

The final merged texture UVF is computed as:

UVF =

H∑
k=1

Wk ⊙ UVk, (6)

where UVk is the texture generated at hit level k. This soft blending method effectively suppresses
artifacts caused by abrupt transitions or simplistic averaging across independently textured regions.
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4 Experiments

4.1 Implementation Details

For all experiments, we use Stable Diffusion 1.5 [40] combined with a depth-based ControlNet [54]
to generate multi-view images from input text prompts, where prompts are augmented with view-
specific cues [39, 27] to match orientations. Each view is rendered at a resolution of 768×768, with a
corresponding latent resolution of 96×96. The latent UV texture map has a resolution of 512×512,
and the final RGB UV texture map is generated at 1024×1024. For visibility and texture synthesis,
the maximum hit level is set to 4; we define 16 hemispherical views (8 equatorial at 45◦, 8 elevated at
45◦); Rendering is done with PyTorch3D [38]. Please find Appendix A1.1 for more details.

4.2 Experiment Setup

Dataset. For evaluation, we curate a diverse set of 139 assets from Objaverse [12] and 87 assets
from Objaverse-XL [11], selecting 226 high-quality meshes with detailed interior geometries to assess
the performance of our method. Each mesh is normalized to a unit bounding box. To provide diverse
and rich prompts that capture both exterior and interior characteristics, we generate mesh captions
using GPT-4o. A detailed description of the captioning process is provided in Appendix A2.1.

Metric. Mesh texturing literature [8, 6, 27, 53, 52] commonly adopt FID [19], KID [4], and CLIP-
based metrics [18, 15], such as CLIP-I and CLIP-T, to evaluate visual quality and text alignment.
However, these metrics are ill-suited to our setting for two main reasons. First, ground-truth textures
are often unavailable—especially in occluded mesh regions—rendering reference-based metrics like
FID/KID and CLIP-I inapplicable. Second, recent work [48, 56, 1] shows that CLIP-based models
are sensitive to rendering artifacts and correlate poorly with human judgment in texture assessment.

Therefore, we adopt both a user study and a GPT-based evaluation [48, 56] to assess text alignment
and perceptual quality. Specifically, we conduct an A/B preference test, in which participants or a
family of GPTs (e.g., GPT-4o-mini, GPT-4o, GPT-4.1, and GPT-o3) view side-by-side renderings of
each method’s textured mesh, including both exterior and interior views, and select the result that
better matches the textual prompt and exhibits higher texture quality. See Appendix A3 for the details.

Baselines. We compare our method against publicly available project-and-inpaint approaches
(TEXTure [39] and SyncMVD [27]) as well as the methods based on UV inpainting (Paint3D [53]
and TEXGen [52]). For TEXGen, since it requires both a mesh and an RGB UV texture map as input,
we unwrap the mesh and initialize the UV texture map using the output generated by SyncMVD. An
analysis of TEXGen with respect to the input UV map is presented in Appendix A1.2.

4.3 Analysis on Visibility Control & UV Texture Merging

Visibility Control To assess the effectiveness of our visibility control strategy (§ 3.2), we conduct
analysis by ablating residual face clustering and normal flipping. As illustrated in Fig. 3, disabling
both components (left pane) results in sparse and fragmented face clusters, particularly evident at hit
levels 2 and 4. Introducing residual face clustering alone (middle pane) mitigates the sparsity but
still exhibits fragmentation, especially at hit level 4. These limitations result in visible seams in the
synthesized textures (e.g., along the edges of a chair) and incomplete reconstruction in occluded areas
(e.g., floor surfaces). In contrast, applying both techniques (right pane) produces coherent clusters
that reveal interior geometry while maintaining overall object structures in the conditioning views.
This reduces artifacts and leads to the generation of semantically meaningful and visually consistent
textures, underscoring the importance of both components for high-quality interior surface synthesis.

UV Texture Blending We further evaluate the effectiveness of our UV texture merging strat-
egy (§ 3.3). In our visibility control scheme, the same mesh region can be textured across multiple
hit levels, each with varying visibility confidence depending on the angle between the viewing ray
and the surface normal. This overlap introduces challenges in merging textures from different levels.
As shown in Fig. 4, naive strategies, such as direct overwriting or uniform averaging, fail to account
for these confidence variations. They either indiscriminately replace textures or blend them without
regard to visibility, leading to noticeable artifacts and loss of structural detail, particularly at inner and
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Figure 3: Analysis on our two visibility control techniques, residual face clustering and normal
flipping. (Left) Removing both leads to sparse, fragmented face clusters and causes visible seams
(e.g., around chair edges). (Middle) Residual clustering improves cluster density but still suffers
from fragmentation at hit level 4, suffering from incomplete textures (e.g., floor regions). (Right) In
contrast, combining both techniques results in improved visibility segmentation, effectively revealing
interior structures while preserving the overall shape and structural coherence of the object.
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Figure 4: Analysis on UV texture merging techniques. Compared to naive approaches, our blending
strategy preserves clear structural boundaries and significantly improves texture quality.

outer boundaries. In contrast, our weighted blending approach leverages hit-level-specific visibility
confidence to guide the merging process. This enables smooth and fine-grained transitions between
layers, significantly reducing artifacts and enhancing overall visual quality.

4.4 Qualitative Comparison with Baselines

We qualitatively compare our method against existing approaches, as shown in Fig. 5. TEXTure and
SyncMVD struggle to synthesize plausible interior textures due to their reliance on view-based gener-
ation followed by unprojection. This paradigm inherently lacks access to occluded geometry, leading
to heuristic-based filling (e.g., Voronoi-based extrapolation) that results in simplistic, inconsistent
textures and visible seams. In contrast, UV-space generation methods such as Paint3D and TEXGen
show improved performance in interior regions by operating directly in UV space. However, they
still exhibit limitations, often producing low-frequency textures like flat colors or repetitive patterns,
because they are unable to differentiate between interior and exterior surfaces within the UV map.
This design limitation reduces semantic richness and structural coherence in occluded areas.

Among all methods, GOATEX produces the most visually appealing and semantically coherent
textures across both exterior and interior regions. This is achieved through its ray-based layered
surface decomposition, which explicitly exposes occluded geometry, followed by visibility control
strategies that progressively reveal hidden surfaces. These components provide precise geometric
context, enabling the diffusion model to generate rich and plausible textures. Unlike baselines that
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Input Mesh OursSyncMVD Paint3D TEXGenTEXTure

A dwarven forge beer mug carved from volcanic stone with a charred wooden handle, and a glowing red rune pattern swirling inside.

A clean beige cowboy hat with a bold autograph printed on the inner crown in black ink.

A lacquered chest with golden hinges and a silk interior embroidered with dragon motifs in gold thread.

A cable car adorned with ornate brass filigree patterns across its panels and rich mahogany wood textures polished to a deep sheen.

A bright red vintage car with weathered tan leather seats and a dashboard featuring brass-accented dials.

Figure 5: Qualitative comparisons. Our GOATEX significantly outperforms all the baselines in
interior surface texturing, while maintaining competitive in texturing exterior regions (boxed area
at the top right of each object). This balanced approach makes GOATEX a robust solution for both
visible exterior and occluded interior surface texturing.
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Figure 6: Preference rates of our method over the baselines, as judged by human raters or GPTs.

rely on heuristics or operate blindly in UV space, GOATEX performs structurally informed texturing
of all surfaces, resulting in consistent and high-quality outputs across the entire mesh.

4.5 Quantitative Comparison with Baselines

Next, we present quantitative comparison results in Fig. 6. GOATex achieves strong and consistent
preference from human raters across all comparisons. On the other hand, GPT-based evaluations rate
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its relative advantage lower when compared to TEXTure and SyncMVD. We speculate that this is
because GPTs tend to favor results with smoother interiors—such as those produced by TEXTure
and SyncMVD, which either leave the interior unpainted or extend exterior textures inward through
texture bleeding or heuristic Voronoi-based filling—over methods that explicitly paint interior regions,
including Paint3D, TEXGen, and our GOATex. This suggests that GPTs may place greater emphasis
on surface smoothness than on interior completeness and consistency.

To further quantify the agreement between human and GPT-based evaluations, we measured two
types of metrics: (1) correlation using Pearson’s r (−1 ≤ r ≤ 1, where r = 1 indicates perfect
correlation), and (2) inter-rater agreement using Cohen’s κ (κ = 1 indicates perfect agreement).
Pearson correlations between GPT-based and human ratings were: GPT-4o-mini: 0.22, GPT-4o: 0.31,
GPT-4.1: 0.43, and GPT-o3: 0.34. Cohen’s κ values (averaged over κ > 0) were: GPT-to-GPT: 0.54,
user-to-user: 0.31, and user-to-GPT: 0.27.

The results reveal two key trends: (1) more advanced GPT models (e.g., GPT-4.1 and GPT-o3) exhibit
stronger alignment with human raters, and (2) GPT models demonstrate higher internal consistency
than human raters themselves. Interestingly, in 17 individual evaluation cases, user-to-GPT agreement
exceeded κ = 0.5, and in two cases, GPT-o3 achieved perfect agreement (κ = 1.0) with a human
rater, indicating that GPT-based judgments can closely reflect human perception in specific contexts.

4.6 Ablation Study

To better assess the contribution of each component in our occlusion-aware texture generation
framework, we conduct an ablation study by progressively adding modules to the baseline texturing
method (SyncMVD [27]). Following the same protocol as the quantitative evaluation in Sec. 4.5, each
ablated variant is compared against SyncMVD via A/B preference tests using GPT-based evaluators.
The overall win rates of the ablated configurations over the baseline are summarized in Tab. 1.

The results show consistent performance gains as the proposed components are progressively incor-
porated. A slight drop is observed when residual face clustering is applied without normal flipping
and backface culling. This behavior is expected, as residual clustering alone cannot fully resolve
occlusions. In certain cases, geometrically adjacent faces may be grouped into the same hit level
even when one fully occludes the other from all external viewpoints. Consequently, the occluded face
cannot be textured during its designated rendering stage and is subsequently excluded once that level
completes, leading to missing interior details. In contrast, incorporating normal flipping and backface
culling effectively suppresses already-textured outer surfaces while exposing previously hidden inner
faces, ensuring that occluded regions become visible and correctly textured in subsequent stages.

Table 1: Ablation study of the proposed framework. Each component is cumulatively added on top
of the baseline (SyncMVD [27]), and evaluated via A/B preference tests using multiple GPT-based
evaluators. Scores denote the win rate (%) over the baseline, showing consistent improvements as
components are integrated.

Method 4o-mini 4o 4.1 o3 Avg.

Baseline (SyncMVD) [27] - - - - -
+ Hit Level Assignment 82.50 66.67 75.00 77.50 75.68
+ Superface Construction 84.62 70.00 75.86 89.74 80.27
+ Soft UV Merging 79.49 82.05 90.00 95.00 86.49
+ Residual Face Clustering 77.50 72.50 88.89 84.84 81.17
+ Normal Flipping & Backface Culling (Ours) 86.84 92.31 86.67 97.50 91.16

4.7 Separate Prompt Conditioning for Inner and Outer Surfaces

A key advantage of GOATEX is its ability to support distinct prompts for exterior and interior mesh
regions: Since textures are synthesized independently for each hit level via our text-guided MVD
module, the textual prompt can be specified separately for each level. We demonstrate this capability
in Fig. 1 and Fig. 7, where we assign one prompt to the outermost layer (hit level 1) to control
the exterior appearance, and another to deeper layers (hit levels ≥ 2) to govern interior textures.
As illustrated, GOATEX produces stylistically distinct and contextually appropriate textures for
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… covered with snow outside. … covered with snow outside.… covered with snow outside.

Exterior Interior

A brass framed lantern …, with candle engraved with 
curling vine patterns.…, with violet candle. …, with stained glass candle.

Exterior Interior

Figure 7: Dual prompting for fine-grained interior regions texturing. Unlike previous work, our
framework naturally supports distinct text prompt conditioning for synthesizing semantically coherent
and stylistically diverse textures across exterior and interior mesh regions.

interior regions, reflecting the semantics of the specified prompt. This feature introduces a new axis
of controllability, empowering users to induce rich stylistic variation across surface layers through
prompt design. It broadens the expressive potential of 3D assets and enables more diverse, imaginative
3D scene generation.

5 Discussion

We introduced GOATEX, a novel diffusion-based framework for 3D mesh texturing that addresses
the challenge of generating high-quality textures for both exterior and occluded interior surfaces.
By leveraging a ray-based visibility analysis to decompose the mesh into ordered layers, GOATEX
enables progressive, occlusion-aware texturing from the outside in. Our two-stage visibility control
mechanism ensures structural consistency during layer exposure, while the use of pretrained diffusion
models ensures both quality and flexibility. A key strength of our approach is its support for separate
prompting of inner and outer surfaces, enabling fine-grained stylistic control and expanding the design
space for 3D content creation. Experimental results demonstrate that GOATEX outperforms existing
methods in both texture fidelity and semantic coherence, particularly in regions that were previously
difficult to access or stylize. We believe that GOATEX opens up new possibilities for controllable,
high-fidelity mesh texturing, especially in applications requiring immersive and detailed environments.
Future work may explore extending our framework to dynamic scenes, integrating material properties
beyond texture, or further improving blending strategies for more complex topologies.

Despite the potential, our method has one primary limitation. Our current hit-level assignment is
determined purely by geometric visibility (i.e., ray-intersection depth) and does not explicitly account
for semantic coherence. Consequently, in complex geometries such as objects with thin openings or
nested cavities, semantically unified regions may be divided across multiple hit levels, which can
in turn cause minor texture discontinuities at their boundaries. In practice, however, our residual
face clustering, view-dependent normal flipping, and soft UV-space blending effectively mitigate
most of these artifacts, producing semantically plausible and visually coherent textures. Nevertheless,
incorporating semantic-aware refinement into the hit-level assignment, e.g., grouping superfaces
belonging to the same semantic volume using pretrained part-segmentation models, could further
improve cross-region consistency. Future work may also explore integrating soft blending directly
into the denoising process to enable simultaneous multi-view and multi-hit-level texturing for tighter
cross-level coherence.
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paper’s contributions and scope?
Answer: [Yes]
Justification: We specify the contributions and scope in the abstract and in the final paragraph
of the Introduction (Sec. 1).
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We state this in the Limitations section (Appendix A6) of the supplementary
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.
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tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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a complete (and correct) proof?
Answer: [NA]
Justification: There is no theoretical result in the paper.
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
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• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide a detailed description of our method (Sec. 3), with Implementation
Details (Sec. 4.2) included in the main paper and the Experimental Setup (Appendix A1.1)
described in the supplementary material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: We use the Objaverse and Objaverse-XL datasets, both of which are open
access. The code will not be made public at the time of submission; its release will be
determined through further discussion at a later stage.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.
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• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The experimental settings and details are described in the Implementation
Details (Sec. 4.2) of the main paper and in the Experimental Setup (Appendix A1.1) of the
supplementary material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Our evaluation is based on A/B testing, which does not allow for the computa-
tion of error bars.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
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Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The compute resources used for the experiments are described in the Experi-
mental Setup section (Appendix A1.1) of the supplementary material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We conducted our research and prepared the paper in compliance with the
NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: This is discussed in the Broader Impacts section (Appendix A7).
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
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Answer: [NA]
Justification: We use publicly released models and datasets without any modifications, and
therefore the work does not pose such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We use only public datasets, Objaverse and Objaverse-XL, both of which are
released under the Apache 2.0 license.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We use only pre-existing datasets (Objaverse and Objaverse-XL).
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [Yes]
Justification: We conducted a user study using Amazon MTurk and used the results as a
quantitative evaluation metric.
Guidelines:
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [No]
Justification: We do not obtain IRB approval.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We use LLM solely for writing and editing purposes which do not impact the
core methodology, and so on.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

In the appendix, we present additional implementation details (Sec. A1), the dataset gathering
(Sec. A2.1) and captioning (Sec. A2.2) process, the evaluation setup (Sec. A3), a more detailed
explanation of our method (Sec. A5), limitations (Sec. A6), broader impacts (Sec. A7), and additional
qualitative results (Sec. A8). For information on the input text prompts not shown in the main paper
and further results not included here, please refer to the project page link.

A1 Additional Implementation Details

A1.1 Detailed Experimental Setup

The experiment was conducted using a single RTX A6000 GPU, requiring 12GB of memory per
inference. The inference time depends on the number of mesh faces and is calculated as (number of
hit levels) × (inference time of the texture synthesis model). For hit level assignment, a total of 17
cameras were used: the original camera views from texture generation plus an additional top-view
camera. Ray casting for hit level assignment was performed at a resolution of 1536×1536 using the
Open3D [58] library. Since we utilize a pretrained Depth ControlNet [54] without additional training,
no further training or training dataset is required.

A1.2 Implementation Details for Baselines

TEXGen [52] need a initial UV map that is completely aligned with input geometry. However,
since the ground-truth UV map is unavailable for the mesh, we performed initialization through the
three methods illustrated in Fig. A8 to execute TEXGen. All experiments were conducted using the
SyncMVD [27] output UV map—which produced the most plausible results—as the input UV map
for TEXGen.

Figure A8: TEXGen input UV map ablation.
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A2 Dataset

A2.1 Dataset Gathering

We curate our dataset from Objaverse [12] and Objaverse-XL [11], selecting 226 high-quality meshes
with detailed interior geometries to evaluate our method. To ensure diversity, we focus on 12 object
categories that are likely to contain interior structures: box, bucket, bus, cabinet, car, drawer, house,
lamp, room, shelf, tent, and truck.

Our primary selection criterion targets objects exhibiting realistic interior geometry at hit levels
above 1. This includes two types of objects: (1) those with partially visible interior geometry due to
occlusions in canonical views but are not fully enclosed (e.g., tents, igloos, half-open boxes), and (2)
topologically closed objects whose interior geometries are entirely enclosed and occluded from all
external views (e.g., houses, cars, buses).

We filter candidate meshes using metadata, searching for relevant keywords in descriptions and
retaining only those with hit levels greater than 4. Each selected mesh is then manually inspected to
ensure it contains realistic and non-trivially simplified interior geometry.

A2.2 Captioning

To generate rich and diverse captions that capture both the exterior and interior features of 3D objects,
we follow a two-step process involving key visual element identification and prompt generation.

Key Visual Elements Identification. We begin by rendering each mesh from a fixed three-quarter
viewpoint at four different hit levels, progressively revealing surfaces from the outermost to the
innermost layers. We then task GPT-4o to analyze these multi-layered renderings to identify salient
visual elements and structural features specific to each depth level. See Figure A9 for the detailed
system prompt for this task.

Prompt Generation. Using the visual features extracted in the previous step, GPT-4o then generates
10 diverse text prompts for each mesh. These captions are crafted to explicitly describe both the
external form and internal structure of the object and are later used as conditioning inputs for
text-to-texture generation. For the system prompts used in this step, refer to Figure A10.
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Prompt Template for Identifying Key Visual Elements and Structures

[System Instruction]
You are given an object mesh file described through two modalities:

1. A caption summarizing the object.
2. Up to four rendering images that sequentially reveal the structure of the mesh.

• The first image shows the outermost surface of the object.
• The following images (image2 to image4) gradually reveal interior details of the mesh.

Your task is to identify only the most prominent, large-scale objects or structures within the mesh, using
both the caption and the rendering images.

• Ignore small or minor details.
• Focus only on components that are visually dominant or structurally significant.
• Include any objects or components mentioned in the caption, but remove descriptive modifiers

(e.g., wooden cabin→ cabin).
Output Format
Your output should be in the following JSON format:

{
"objects": [/* list of object/component names as strings */]

}

Examples
Input:
Caption: Jungle tent
Images: <image1>, <image2>, <image3>, <image4>
Output:
{

"objects": ["tent", "candle", "sofa"]
}

Input:
Caption: Vintage car
Images: <image1>, <image2>, <image3>, <image4>
Output:
{

"objects": ["car", "seats", "handle", "dashboard"]
}

Input:
Caption: A hollow pumpkin head
Images: <image1>, <image2>, <image3>, <image4>
Output:
{

"objects": ["pumpkin head"]
}

[User Prompt]
This is the caption: {caption}.
These are the rendering images: {image1} {image2} {image3} {image4}.
Now, please identify the objects or components in the mesh.

Figure A9: Prompt template used for identifying key visual elements and structures in a mesh.
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Prompt Template for Caption Generation from Object Mesh Files

[System Instruction]
You are given:

• A base caption that describes an object mesh.
• A list of component names (parts of the mesh).

Your task is to generate 10 unique and diverse one-sentence captions that describe both the outer and
inner aspects of the mesh, focusing on the material, texture, style, and pattern of the components.

Requirements:
• Do NOT describe the overall shape or structure of the object or any of its components.
• Do NOT mention colors directly.
• Use ambiguous or stylistic terms that imply visual variety (e.g., “glossy”, “worn”, “textured”,

“transparent”, etc.).
• Captions must reflect different styles, materials, or vibes — avoid repetition.
• Each caption should reference the object’s components, using the provided component list.
• The tone and style of the caption can differ from the original (e.g., modern, fantasy, sci-fi,

surreal, etc.).
• Each caption must be a single sentence.
• Output must be in JSON format with the key "ten_captions".

Example 1:
Input:
{

"caption": "Red retro bus on a sunny day",
"objects": ["bus", "seats", "windows"]

}

Output:
{

"ten_captions": [
"A modern city bus interior filled with molded plastic chairs ...",
"A vintage tour bus with upholstered velvet chairs arranged in ...",
"A futuristic electric bus with sleek metallic chairs glowing ...",
"A school bus interior lined with simple padded chairs and scratched ...",
"A fantasy woodland bus with carved wooden chairs and vines wrapping ...",
"A luxurious travel bus with reclining leather chairs and soft ambient ...",
"A post-apocalyptic bus interior with mismatched salvaged chairs ...",
"A steampunk bus with brass-framed chairs covered in worn leather...",
"A magical flying bus with floating chairs made of translucent crystal",
"A retro sci-fi bus interior with bubble-shaped plastic chairs and ..."

]
}

[User Prompt]
This is the original caption: {caption}.
These are the list of componetns: {components}.
Now, please generate 10 unique and diverse one-sentence captions that describe both the outer and inner
aspects of the mesh, focusing on the material, texture, style, and pattern of the components.

Figure A10: Prompt template for generating stylistic captions from object mesh data.
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A3 Evaluation Setup

As described in Sec. 4.4 of the main paper, we report preference statistics based on responses from
user study and GPTs. Below, we provide additional details about the user study setup and protocol.
Specifically, following the visualization style used on our project page, we rendered for each method:

• one GIF showing the exterior of the object, and
• one GIF showing the interior via a cut-away or sliced view.

These side-by-side visualizations were shown to participants or GPTs, providing one exterior and one
interior view per method per object. We report results from 16 human raters who passed a vigilance
test. The screen example of the user study is illustrated in Fig. A11.

To enable a more scalable preference analysis, we additionally conduct an automated evaluation using
a family of GPTs, including GPT-4o-mini, GPT-4o, GPT-4.1, and GPT-o3. For this study, we sample
a total of 400 tasks. To eliminate potential bias due to ordering, each comparison is evaluated in both
A/B and B/A presentation orders. Moreover, if the two judgments from opposite orders disagree,
the evaluation is repeated up to 10 times until a consistent decision is reached. Tasks that still yield
inconsistent results after 10 repetitions are excluded from the final analysis. The detailed system
prompt used for this evaluation is shown in Fig. A12.

Figure A11: Screen example of user study. The example depicts evaluation guidelines and a
question sample used in the user study.
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Instruction for Evaluating Textured Mesh

[System Instruction]
You are given a text caption and two sets of rendered images generated by two anonymized
text-to-texture models (Model A and Model B). Each model attempts to synthesize realistic textures for
both the exterior and interior of a 3D object based on the given caption.

Each model provides:
• 3 external renderings, showing the textured outer surface of the object from different view-

points.
• 3 internal renderings, showing the textured interior structure, such as cutaways or cross-

sections.
Your task is to:

• Carefully read the text caption, which may describe details about the object’s outer appearance,
its internal textures or structure, or both.

• Evaluate how well each model’s textures match the caption:
– Use the external renderings to judge how well the outer textures reflect the description.
– Use the internal renderings to judge how well the interior textures or structures align

with the caption.
• Compare the two models holistically and determine which model (A or B) better captured the

textures described in the caption, for both external and internal parts of the object.
Important Notes:

• The model names ‘A‘ and ‘B‘ are anonymized. You must avoid any bias based on the label
itself.

• Your judgment should be based only on the alignment between the caption and the textures
shown in the renderings.

Output Format
Return the name of the model that performed better: A or B.

[User Prompt]
This is the prompt: {prompt}.
Here are rendering images for the Model A. Outer: {image1} {image2} {image3}. Inner: {image4}
{image5} {image6}
Here are rendering images for the Model B. Outer: {image1} {image2} {image3}. Inner: {image4}
{image5} {image6}
Now, please choose model A or model B based on the caption and the images provided.

Figure A12: Instruction for evaluating GPT-based A/B test.
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A4 Runtime Analysis

We systematically analyzed the runtime of our pipeline across meshes with increasing face counts
by progressively subdividing mesh faces of five representative assets. For each mesh, we measured
the number of faces and superfaces, time spent on superface construction, hit-level assignment, and
MVD-based rendering & synthesis. The table A2 shows the average runtime across the assets. Note
that hit-level assignment is reusable when generating multiple variants, so we can preprocess the
mesh before texturing.

Table A2: Runtime analysis of each module according to the number of faces.

# Faces # Superfaces Superface
Construction (s)

Hit-Level
Assignment (s) Texturing (s)

5k 196.0 0.23 259.57 117.93
10k 221.2 0.46 295.38 121.80
20k 247.6 0.86 314.16 130.42
40k 433.0 1.87 394.67 146.45
80k 586.0 3.99 539.68 197.29
160k 2033.2 18.59 942.36 549.83
320k 5418.0 57.76 2563.35 2769.22

A5 More Detailed Method Explanation

𝜃 > 90° 𝜃 ≤ 90°

Frontface (Rendered) Backface (Culled)

Figure A13: Rendering with backface culling.

Mesh & Texture Representation. In standard mesh representations, each face is a single-sided
surface that does not distinguish between its front and back; both sides appear visually identical.
This means that any texture or color applied to one side of a face is also visible from the opposite
side. Consequently, a mesh face does not have separate visual properties for the inside and outside;
regardless of the viewing direction, the appearance remains the same.

To allow for different appearances on the two sides of a surface, such as when modeling an object
with distinct exterior and interior textures, it is common to place two faces very close together, back
to back. The outer face, slightly offset toward the exterior, is meant to be visible from outside the
object, while the inner face is offset inward and intended to be seen from the inside. This setup
allows each side to use its own texture and material properties. For example to represent both the
painted exterior of a bus and its interior wall surface, the mesh includes one face for the outer shell
and another for the inner wall. Each face can be textured independently to reflect its visual role.

Rendering with Normal Flipping & Backface Culling. During rendering with backface culling,
faces whose normal vectors point away from the camera are not rendered. More precisely, as
illustrated in Fig A13, when the angle θ between the viewing ray and the face normal falls within the
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Figure A14: Progress of Normal Flipping & Backface Culling. By flipping the normals and
rendering with backface culling, we can successfully view the interior geometry while keeping the
object boundaries visible, thus preserving the overall object identity and structure.

range −90◦ < θ < 90◦, the face is considered a back face and is culled from the rendering process.
As a result, flipping the normal of a face that was previously visible causes it to become hidden,
effectively simulating the removal of the face from view. We use this property to progressively reveal
the internal geometries while preserving the object’s overall shape and structures during subsequent
rendering stages.

We further illustrate this process in Fig. A14, which depicts the current outermost layer of face
clusters at rendering stage for hit level k (i.e., Fk), divided into two regions colored in orange and
green, along with the occluded internal geometry shown in blue. For simplicity, we assume a single
fixed camera viewpoint. Initially, the normals of Fk are oriented outward, making only the orange
region—being front-facing relative to the camera—visible and rendered, while the internal geometry
remains hidden. In the next step, the normals of Fk are flipped inward. As a result, the orange region
becomes back-facing with respect to the camera and is culled during rendering, thereby revealing
portions of the previously hidden internal geometry. Simultaneously, the green region of Fk, which
was initially back-facing and thus invisible, now has its normal oriented toward the camera. This
allows the green region to become visible, unless it remains occluded by inner layers. This progressive
rendering approach preserves the continuity of the overall geometry while revealing deeper layers,
maintaining the object’s global structure, boundary, and identity.

One potential concern arises when some internal mesh faces have normals directed inward, toward
the object center, rather than outward. In such cases, if these inward-facing normals are flipped
outward to make the faces visible from the camera, they can occlude deeper surfaces within the
object, preventing access to further interior geometry (Fig. A15 (1)). However, this issue does not
arise in practice due to the way hit levels are assigned. Specifically, hit levels are computed based on
weights derived from Eq. 1, which use the negative cosine of the angle between face normals and ray
directions (see Fig.A16). As a result, faces that are originally back-facing receive hit levels in the
reverse order of intersection along the ray path, as illustrated in Case 2 of Fig. A15. This property
ensures that when normal flipping is combined with backface culling, a valid hit level always exists
that exposes each layer of interior geometry. Consequently, both exterior and interior surfaces can be
progressively revealed and fully textured (Fig. A15 (2)).
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Figure A15: Visibility According to Face Hit Level Assignment. When face normals are complexly
oriented and hit levels are assigned sequentially from the exterior inward (as in Case 1), applying
normal flipping and backface culling during rendering results in occlusion caused by faces at Hit
Level 2, preventing visibility into interior regions. Conversely, in Case 2, where faces closer to
the camera ray are assigned lower hit levels if they are frontfaces and higher hit levels if they are
backfaces, complete visibility of interior regions can be achieved.
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Figure A16: Hit Level Assignment Based on Normal Direction. For faces close to camera rays
coming from outside the object (left side), backfaces—whose normals align similarly with ray
directions—are assigned a weight of zero, resulting in no hit level assignment. In contrast, rays
approaching from the opposite direction (right side) encounter these same faces as frontfaces, thereby
receiving hit level assignments. However, due to their distance from the camera, these faces are
assigned higher hit levels.
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A6 Limitations

Our approach has a few limitations. While GOATEX is effective at generating high-quality interior
textures, its reliance on the SD 1.5 backbone can occasionally result in suboptimal adherence to input
text prompts. In future work, we plan to integrate more lightweight yet more capable pretrained
diffusion models to enhance prompt fidelity and further improve texture quality.

Our current hit-level assignment is determined purely by geometric visibility (i.e., ray-intersection
depth) and does not explicitly account for semantic coherence. Consequently, in complex geometries
such as objects with thin openings or nested cavities, semantically unified regions may be divided
across multiple hit levels, which can in turn cause minor texture discontinuities at their boundaries.
In practice, however, our residual face clustering, view-dependent normal flipping, and soft UV-
space blending effectively mitigate most of these artifacts, producing semantically plausible and
visually coherent textures. Nevertheless, incorporating semantic-aware refinement into the hit-level
assignment, e.g., grouping superfaces belonging to the same semantic volume using pretrained part-
segmentation models, could further improve cross-region consistency. Future work may also explore
integrating soft blending directly into the denoising process to enable simultaneous multi-view and
multi-hit-level texturing for tighter cross-level coherence.

A7 Broader Impacts

Potential Positive Societal Impacts. It will be possible to further accelerate the existing 3D asset
creation pipeline and generate a wider variety of assets. With these assets, we can expect to build
even more realistic AR/VR environments. As a result, people will be able to enjoy a broader range of
experiences.

Potential Negative Societal Impacts. Texture generation models present potential risks, such as
the synthesis of deepfakes, textures resembling copyrighted content, or biased and discriminatory
textured meshes. Future work should focus on developing robust mechanisms to mitigate these risks
and enforce safeguards that prevent the generation of harmful or unethical outputs.
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A8 Additional Qualitative Results

More qualitative comparisons can be found in Fig. A17, and additional qualitative results are
shown in Fig. A18. For a more detailed presentation—including videos of the results and further
outcomes—please see this link.

A post-apocalyptic rusted bus interior with chairs bolted to the floor.

A dark-stained wooden forest cabin with hand-carved bunk beds under a dim lantern glow inside.

A luxurious desert tent made of flowing cream-colored fabric, with a brass oil lamp in the center and two low sofas with cushions.

A mystic's tent with deep purple silk drapes embroidered in constellations, and a black-lacquered desk topped with glowing runes.

A moss-covered circular stone well with a steep roof, nestled in a quiet forest clearing.

A post-apocalyptic concrete bunker texture with cracks and moss.

A weathered wooden house with rusted nails, cracked siding.

Input Mesh OursSyncMVD Paint3D TEXGenTEXTure

Figure A17: Additional Qualitative Comparison. You can view a video of the results and find
more qualitative outcomes at this link.
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A coral reef house with prismarine walls, 
bubble columns, and glowing sea lanterns.

A lacquered oriental wardrobe with painted cranes
and wave motifs on the inner back panels.

A bohemian artisan’s toolbox painted in
layered mandala motifs and distressed edges.

A painter’s utility chest splattered with layered
pigment stains and lacquered over for texture.

A classic car featuring wire-spoke wheels, quilted
leather interior, and brass instrument dials.

A lamp with stained glass panels arranged in floral
patterns and outlined in dark soldered seams.

A marble-top dresser with polished stone
drawers and gilded trim along every edge.

A gothic wardrobe with matte black wood, 
silver inlaid filigree, and iron claw hinges.

A fantasy-themed home theater with mural-painted walls, 
canopy-covered seats, and carved runes lining the aisles.

A fantasy lantern wrapped in silver branches, 
with a blue-glowing enchanted candle at its core.

Figure A18: Additional Qualitative Results. You can view a video of the results and find more
qualitative outcomes at this link.
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