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Abstract

Sample efficiency is a crucial problem in deep reinforcement learning. Recent
algorithms, such as REDQ and DroQ, found a way to improve the sample efficiency
by increasing the update-to-data (UTD) ratio to 20 gradient update steps on the
critic per environment sample. However, this comes at the expense of a greatly
increased computational cost. To reduce this computational burden, we introduce
CrossQ: A lightweight algorithm for continuous control tasks that makes careful
use of Batch Normalization and removes target networks to surpass the current
state-of-the-art in sample efficiency while maintaining a low UTD ratio of 1.
Notably, CrossQ does not rely on advanced bias-reduction schemes used in current
methods. CrossQ’s contributions are threefold: (1) it matches or surpasses current
state-of-the-art methods in terms of sample efficiency, (2) it substantially reduces
the computational cost compared to REDQ and DroQ, (3) it is easy to implement,
requiring just a few lines of code on top of SAC.

1 Introduction

Sample efficiency is a crucial concern when applying Deep Reinforcement Learning (Deep RL)
methods on real physical systems. One of the first successful applications of Deep RL to a challenging
problem of quadruped locomotion was achieved using Soft Actor-Critic (SAC, Haarnoja et al.
(2018a)), allowing a robot dog to learn to walk within 2h of experience (Haarnoja et al., 2018b).
Subsequently, it was noted that the critic in SAC may be underfitted, as only a single gradient update
step on the network parameters is performed for each environment step. Therefore, Randomized
Ensembled Double Q-Learning (REDQ, Chen et al. (2021)) was proposed, which increased this
number of gradient steps, termed update-to-data (UTD) ratio. In addition, Dropout Q functions
(DroQ, Hiraoka et al. (2021)) improved the computational efficiency of REDQ while maintaining
the same sample efficiency by replacing its ensemble of critics with dropout. This enabled learning
quadruped locomotion in a mere 20min (Smith et al., 2022). Thus, REDQ and DroQ represent the
state-of-the-art in terms of sample efficiency in Deep RL for continuous control.

Importantly, both REDQ and DroQ showed that naively increasing the UTD ratio of SAC does not
perform well due to the critic networks’ Q value estimation bias. Therefore, ensembling techniques
were introduced for bias reduction (explicit ensemble in REDQ and implicit ensemble via dropout
in DroQ), which allowed increasing the UTD to 20 critic updates per environment step. Higher
UTD ratios improve sample efficiency by paying the price of increased computational cost, which
manifests in higher wallclock time and energy consumption. It is, therefore, desirable to seek
alternative methods that achieve the same or better sample efficiency at a lower computational cost,
e.g., by using lower UTDs.
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Figure 1: CrossQ training performance
aggregated over environments. CrossQ
is more sample efficient (top) while be-
ing significantly more computationally ef-
ficient (bottom) in terms of the gradient
steps, thanks to a low UTD = 1. Follow-
ing Agarwal et al. (2021), we normalize
performance by the maximum of REDQ
in each environment.

It turns out that even UTD = 1 can perform surpris-
ingly well if other algorithmic components are adjusted
appropriately. In this paper, we introduce CrossQ,
a lightweight algorithm that achieves superior perfor-
mance by removing much of the algorithmic design
complexity that was added over the years, culminat-
ing in the current state-of-the-art methods. First, it re-
moves target networks, an ingredient widely believed
to slow down training in exchange for stability (Mnih
et al., 2015; Lillicrap et al., 2016; Kim et al., 2019; Fan
et al., 2020). Second, we find that Batch Normaliza-
tion variants (Ioffe and Szegedy (2015); Ioffe (2017)),
when applied in a particular manner, effectively stabi-
lize training and significantly improve sample efficiency.
This contradicts others’ observations that it hurts the
learning performance in Deep RL, e.g. Hiraoka et al.
(2021). Third, CrossQ uses wider critic layers, moti-
vated by prior research on the ease of optimization of
wider networks (Ota et al., 2021). In addition to the first
two improvements, wider networks enable even higher
returns.

Contributions. (1) We present the CrossQ algorithm,
which matches or surpasses the current state-of-the-art
for model-free off-policy RL for continuous control en-
vironments with state observations in sample efficiency
while being multiple times more computationally effi-
cient; (2) By removing target networks, we are able to
successfully accelerate off-policy Deep RL with BatchNorm; (3) We provide empirical investigations
and hypotheses for CrossQ’s success. CrossQ’s changes mainly pertain to the deep network architec-
ture of SAC; therefore, our study is chiefly empirical: through a series of ablations, we isolate and
study the contributions of each part. We find that CrossQ matches or surpasses the state-of-the-art
algorithms in sample efficiency while being up to 4× faster in terms of wallclock time without
requiring critic ensembles, target networks, or high UTD ratios.

2 Background

2.1 Off-policy Reinforcement Learning and Soft Actor-Critic

We consider a discrete-time Markov Decision Process (MDP, Puterman (2014)), defined by the tuple
⟨S,A,P,R, ρ, γ⟩ with state space S, action space A, transition probability st+1 ∼ P(·|st,at),
reward function rt = R(st,at), initial state distribution s0 ∼ ρ and discount factor γ ∈ [0, 1).
RL describes the problem of an agent learning an optimal policy π for a given MDP. At each time
step t, the agent receives a state st and interacts with the environment according to its policy π.
We focus on the Maximum Entropy RL setting (Ziebart et al., 2008), where the agent’s objective
is to find the optimal policy π∗, which maximizes the expected cumulative reward while keeping
the entropy H high; argmaxπ∗ Es0∼ρ [

∑∞
t=0 γ

t(rt − αH(π( · |st)))] . The action-value function
is defined by Q(s,a) = Eπ,P [

∑∞
t=0 γ

t(rt − α log π(at|st))|s0 = s,a0 = a] and describes the
expected reward when taking action a in state s. Soft Actor-Critic (SAC, (Haarnoja et al., 2018a))
is a popular algorithm that solves the MaxEnt RL problem. SAC parametrizes the Q function and
policy as neural networks and trains two independent versions of the Q function, using the minimum
of their estimates to compute the regression targets for Temporal Difference (TD) learning. This
clipped double-Q trick, originally proposed by Fujimoto et al. (2018) in TD3, helps in reducing the
potentially destabilizing overestimation bias inherent in approximate Q-learning (Hasselt, 2010).

2.2 High update-to-data Ratios, REDQ, and DroQ

Despite its popularity among practitioners and as a foundation for other more complex algorithms,
SAC leaves much room for improvement in terms of sample efficiency. Notably, SAC performs
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1 def critic_loss(Q_params, policy_params, obs, acts, rews, next_obs):
2 next_acts, next_logpi = policy.apply(policy_params, next_obs)
3

4 # Concatenated forward pass
5 all_q, new_Q_params = Q.apply(Q_params,
6 jnp.concatenate([obs, next_obs]),
7 jnp.concatenate([acts, next_acts])
8 )
9 # Split all_q predictions and stop gradient on next_q

10 q, next_q = jnp.split(all_q, 2)
11 next_q = jnp.min(next_q, axis=0) # min over double Q function
12 next_q = jax.lax.stop_gradient(next_q - alpha * next_logpi)
13 return jnp.mean((q - (rews + gamma * next_q))**2), new_Q_params

Figure 2: CrossQ critic loss in JAX. The CrossQ critic loss is easy to implement on top of an
existing SAC implementation. One just adds the batch normalization layers into the critic network
and removes the target network. As we are now left with only the critic network, one can simply
concatenate observations and next observations, as well as actions and next actions along the batch
dimension, perform a joint forward pass, and split up the batches afterward. Combining two forward
passes into one grants a small speed-up thanks to requiring only one CUDA call instead of two.

exactly one gradient-based optimization step per environment interaction. SAC’s UTD = 1 setting is
analogous to simply training for fewer epochs in supervised learning. Therefore, in recent years, gains
in sample efficiency within RL have been achieved through increasing the UTD ratio (Janner et al.,
2019; Chen et al., 2021; Hiraoka et al., 2021; Nikishin et al., 2022). Different algorithms, however,
substantially vary in their approaches to achieving high UTD ratios. Janner et al. (2019) uses a model
to generate synthetic data, which allows for more overall gradient steps. Nikishin et al. (2022) adopt
a simpler approach: they increase the number of gradient steps while periodically resetting the policy
and critic networks to fight premature convergence to local minima. We now briefly outline the two
high-UTD methods to which we compare CrossQ.

REDQ. Chen et al. (2021) find that merely raising SAC’s UTD ratio hurts performance. They
attribute this to the accumulation of the learned Q functions’ estimation bias over multiple update
steps—despite the clipped double-Q trick—which destabilizes learning. To remedy this bias more
strongly, they increase the number of Q networks from two to an ensemble of 10. Their method,
called REDQ, permits stable training at high UTD ratios up to 20.

DroQ. Hiraoka et al. (2021) note that REDQ’s ensemble size, along with its high UTD ratio, makes
training computationally expensive. They instead propose using a smaller ensemble of Q functions
equipped with Dropout (Srivastava et al., 2014), along with Layer Normalization (Ba et al., 2016)
to stabilize training in response to the noise introduced by Dropout. Called DroQ, their method is
computationally cheaper than REDQ, yet still expensive due to its UTD ratio of 20.

3 The CrossQ Algorithm

In this paper, we challenge this current trend of high UTD ratios and demonstrate that we can
achieve competitive sample efficiency at a much lower computational cost with a UTD = 1 method.
CrossQ is our new state-of-the-art off-policy actor-critic algorithm. Based on SAC, it uses purely
network-architectural engineering insights from deep learning to accelerate training. As a result, it
(((((hhhhhcrosses out much of the algorithmic design complexity that was added over the years and which led
to the current state-of-the-art methods. In doing so, we present a much simpler yet more efficient
algorithm. In the following paragraphs, we introduce the three design choices that constitute CrossQ.

3.1 Design Choice 1: Removing Target Networks

Mnih et al. (2015) originally introduced target networks to stabilize the training of value-based
off-policy RL methods, and today, most algorithms require them (Lillicrap et al., 2016; Fujimoto
et al., 2018; Haarnoja et al., 2018a). SAC updates the critics’ target networks with Polyak Averaging

θ◦ ← (1− τ)θ◦ + τθ, (1)

3



SAC: CrossQ (Ours):

Qθ(St,At) = qt
Qθ◦(St+1,At+1) = q◦

t+1

Qθ

([
St

St+1

]
,

[
At

At+1

])
=

[
qt
qt+1

]
Lθ = (qt − rt − γ q◦

t+1)
2 Lθ = (qt − rt − γ |qt+1|sg)2

Figure 3: SAC without BatchNorm in the critic Qθ (left) requires target Q values q◦
t+1 to stabilize

learning. CrossQ with BatchNorm in the critic Qθ (right) removes the need for target networks and
allows for a joint forward pass of both current and future values. Batches are sampled from the replay
buffer B: St,At, rt,St+1 ∼ B and At+1 ∼ πϕ(St+1) from the current policy. | · |sg denotes the
stop-gradient operation.

where θ◦ are the target network parameters, and θ are those of the trained critic. Here τ is the target
network smoothing coefficient; with a high τ = 1 (equivalent to cutting out the target network),
SAC training can diverge, leading to explosive growth in θ and the Q predictions. Target networks
stabilize training by explicitly delaying value function updates, arguably slowing down online
learning (Plappert et al., 2018; Kim et al., 2019; Morales, 2020).

Recently, Yang et al. (2021) found that critics with Random Fourier Features can be trained without
target networks, suggesting that the choice of layer activations affects the stability of training. Our
experiments in Section 4.4 uncover an even simpler possibility: using bounded activation functions or
feature normalizers is sufficient to prevent critic divergence in the absence of target networks, whereas
the common choice of relu without normalization diverges. While others have used normalizers
in Deep RL before, we are the first to identify that they make target networks redundant. Our next
design choice exploits this insight to obtain an even greater boost.

3.2 Design Choice 2: Using Batch Normalization
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Figure 4: Replay buffer
and current policy actions
are distributed differently.
Darker colors denote higher
density. Estimated from
a batch of 104 transitions
(a, s′) ∼ B; a′ ∼ πϕ(s

′),
after 3 × 105 training steps
on Walker2d; a4 and a5 are
random action dimensions.

BatchNorm has not yet seen wide adoption in value-based off-policy
RL methods, despite its success and widespread use in supervised
learning (He et al., 2016; Santurkar et al., 2018), attempts at doing
so have fared poorly. Lillicrap et al. (2016) use BatchNorm layers on
the state-only representation layers in the DDPG critic but find that
it does not help significantly. Others use BatchNorm in decoupled
feature extractors for Deep RL networks (Ota et al., 2020, 2021),
but not in critic networks. Hiraoka et al. (2021) report that using
BatchNorm in critics causes training to fail in DroQ.

We find using BatchNorm carefully, when additionally removing
target networks, performs surprisingly well, trains stably, and
is, in fact, algorithmically simpler than current methods.

First, we explain why BatchNorm needs to be used carefully. Within
the critic loss [Qθ(S,A)− (r + γQθ◦(S′,A′))]2, predictions are
made for two differently distributed batches of state-action pairs;
(S,A) and (S′,A′), where A′ ∼ πϕ(S

′) is sampled from the
current policy, while A originates from old behavior policies.

Just like the target network, the BatchNorm parameters are updated
by Polyak Averaging from the live network (Equation 1). The BatchNorm running statistics of the
live network, which were estimated from batches of (s,a) pairs, will clearly not have seen samples
(s′, πϕ(s

′)) and will further not match their statistics. In other words, the state-action inputs evaluated
by the target network will be out-of-distribution, given its mismatched BatchNorm running statistics.
It is well known that the prediction quality of BatchNorm-equipped networks degrades in the face of
such test-time distribution shifts (Pham et al., 2022; Lim et al., 2023).

Removing the target network provides an elegant solution. With the target network removed, we
can concatenate both batches and feed them through the Q network in a single forward pass, as
illustrated in Figure 3 and shown in code in Figure 2. This simple trick ensures that BatchNorm’s
normalization moments arise from the union of both batches, corresponding to a 50/50 mixture of
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Figure 5: CrossQ sample efficiency. Compared to REDQ and DroQ (UTD = 20) CrossQ (UTD = 1)
performs either comparably, better, or—for the more challenging Humanoid tasks—substantially
better. These results directly transfer to TD3 as the base algorithm in CrossQ (TD3). We plot
interquartile mean (IQM) and 70% quantile interval of the episodic returns over 10 seeds.

their respective distributions. Such normalization layers do not perceive the (s′, πϕ(s
′)) batch as

being out-of-distribution. This small change to SAC allows the safe use of BatchNorm and greatly
accelerates training. We are not the only ones to identify this way of using BatchNorm to tackle the
distribution mismatch; other works in supervised learning, e.g., Test-Time Adaptation (Lim et al.,
2023), EvalNorm (Singh and Shrivastava, 2019), and Four Things Everyone Should Know to Improve
Batch Normalization (Summers and Dinneen, 2020) also use mixed moments to bridge this gap.

In practice, CrossQ’s actor and critic networks use Batch Renormalization (BRN, Ioffe (2017)), an
improved version of the original BN (Ioffe and Szegedy, 2015) that is robust to long-term training
instabilities originating from minibatch noise. BRN performs batch normalization using the less noisy
running statistics after a warm-up period, instead of noisy minibatch estimates as in BN. In the rest
of this paper, all discussions with “BatchNorm” apply equally to both versions unless explicitly
disambiguated by BN or BRN.

3.3 Design Choice 3: Wider Critic Networks

Following Ota et al. (2021), we find that wider critic network layers in CrossQ lead to even faster
learning. As we show in our ablations in Section 4.4, most performance gains originate from the first
two design choices; however, wider critic networks further boost the performance, helping to match
or outperform REDQ and DroQ sample efficiency.

We want to stress again that CrossQ, a UTD = 1 method, does not use bias-reducing ensembles,
high UTD ratios or target networks. Despite this, it achieves its competitive sample efficiency at
a fraction of the compute cost of REDQ and DroQ (see Figures 5 and 6). Note that our proposed
changes can just as well be combined with other off-policy TD-learning methods, such as TD3, as
shown in our experiments in Section 4.1.

4 Experiments and Analysis

We conduct experiments to provide empirical evidence for CrossQ’s performance, and investigate:
1. Sample efficiency of CrossQ compared to REDQ and DroQ;
2. Computational efficiency in terms of wallclock time and performed gradient step;
3. Effects of the proposed design choices on the performance via Q function bias evaluations;

And conduct further ablation studies for the above design choices. We evaluate across a wide
range of continuous-control MuJoCo (Todorov et al., 2012) environments, with 10 random seeds
each. Following Janner et al. (2019); Chen et al. (2021) and Hiraoka et al. (2021), we evaluate on
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Figure 6: Computational efficiency. CrossQ trains an order of magnitude faster, taking only 5% of
the gradient steps, substantially saving on wallclock time. The dashed horizontal lines are visual aids
to better compare the final performance after training for 5× 106 environment steps. We plot IQM
and 70% quantile interval over 10 seeds. Appendix A.3 provides a table of wallclock times.

the same four Hopper, Walker2d, Ant, and Humanoid tasks, as well as two additional tasks:
HalfCheetah and the more challenging HumanoidStandup from Gymnasium (Towers et al.,
2023). We adapted the JAX version of stable-baselines (Raffin et al., 2021) for our experiments.

4.1 Sample Efficiency of CrossQ

Figure 5 compares our proposed CrossQ algorithm with REDQ, DroQ, SAC and TD3 in terms of their
sample efficiency, i.e., average episode return at a given number of environment interactions. As a
proof of concept, we also present CrossQ (TD3), a version of CrossQ which uses TD3 instead of SAC
as the base algorithm. We perform periodic evaluations during training to obtain the episodic reward.
From these, we report the mean and standard deviations over 10 random seeds. All subsequent
experiments in this paper follow the same protocol.

This experiment shows that CrossQ matches or outperforms the best baseline in all the pre-
sented environments except on Ant, where REDQ performs better in the early training stage,
but CrossQ eventually matches it. On Hopper, Walker, and HalfCheetah, the learning curves
of CrossQ and REDQ overlap, and there is no significant difference. On the harder Humanoid and
HumanoidStandup tasks, CrossQ and CrossQ (TD3) both substantially surpass all baselines.

4.2 Computational Efficiency of CrossQ

Figure 6 compares the computational efficiency of CrossQ to the baselines. This metric is where
CrossQ makes the biggest leap forward. CrossQ requires 20× fewer gradient steps than REDQ
and DroQ, which results in roughly 4× faster wallclock speeds (Table 2). Especially on the more
challenging Humanoid and HumanoidStandup tasks the speedup is the most pronounced. In
our view, this is a noteworthy feature. On the one hand, it opens the possibility of training agents in a
truly online and data-efficient manner, such as in real-time robot learning. On the other hand, with
large computing budgets CrossQ can allow the training of even larger models for longer than what is
currently feasible, because of its computational efficiency stemming from its low UTD = 1.

4.3 Evaluating Q Function Estimation Bias

All methods we consider in this paper are based on SAC and, thus, include the clipped double-Q
trick to reduce Q function overestimation bias (Fujimoto et al., 2018). Chen et al. (2021) and
Hiraoka et al. (2021) stress the importance of keeping this bias even lower to achieve their high
performances and intentionally design REDQ and DroQ to additionally reduce bias with explicit and
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Figure 7: Q estimation bias does not reliably influence learning performance. Following the
analysis of Chen et al. (2021), we plot the IQM and 70% quantile interval of the normalized Q
function bias. REDQ generally has the least bias over 10 seeds. CrossQ matches or outperforms
DroQ, REDQ and SAC while showing more Q function bias in all environments. The full set of
environments is shown in Fig. 17 in the Appendix.

implicit ensembling. In contrast, CrossQ outperforms both baselines without any ensembling. Could
CrossQ’s high performance be attributed to implicitly reducing the bias as a side effect of our design
choices? Using the same evaluation protocol as Chen et al. (2021), we compare the normalized Q
prediction biases in Figure 4.3. Due to space constraints, here we show Hopper and Ant and place
the rest of the environments in Figure 17 in the Appendix.

We find that REDQ and DroQ indeed have lower bias than SAC and significantly lower bias than
SAC with UTD = 20. The results for CrossQ are mixed: while its bias trend exhibits a lower mean
and variance than SAC, in some environments, its bias is higher than DroQ, and in others, it is lower
or comparable. REDQ achieves comparable or worse returns than CrossQ while maintaining the
least bias. As CrossQ performs better despite having—perhaps paradoxically—generally higher
Q estimation bias, we conclude that the relationship between performance and estimation bias is
complex, and one does not seem to have clear implications on the other.

4.4 Ablations

We conduct ablation studies to better understand the impact of different design choices in CrossQ.

4.4.1 Disentangling the Effects of Target Networks and BatchNorm

CrossQ changes SAC in three ways; of these, two explicitly aim to accelerate optimization: the
removal of target networks, and the introduction of BatchNorm. Unfortunately, SAC without target
networks diverges; therefore, to study the contribution of the first change, we need a way to compare
SAC—divergence-free—with and without target networks. Fortunately, we find that such a way exists:
according to our supplementary experiments in Appendix A.6, simply using bounded activation
functions in the critic appears to prevent divergence. This is a purely empirical observation and an
in-depth study regarding the influence of activations and normalizers on the stability of Deep RL is
beyond the scope of this paper. In this specific ablation, we use tanh activations instead of relu,
solely as a tool to make the intended comparison possible.

Figure 8 shows the results of our experiment. The performance of SAC without target networks
supports the common intuition that target networks indeed slow down learning to a small extent.
We find that the combination of BatchNorm and Target Networks performs inconsistently, failing
to learn anything in half of the environments. Lastly, the configuration of BatchNorm without
target networks—and the closest to CrossQ—achieves the best aggregate performance, with the
boost being significantly bigger than that from removing target networks alone. In summary, even
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though removing target networks may slightly improve performance in some environments, it is the
combination of removing target networks and adding BatchNorm that accelerates learning the most.

4.4.2 Ablating the Different Design Choices and Hyperparameters
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Figure 9: Ablations on CrossQ and SAC.
Loss in IQM return in percent—relative to
CrossQ—at 1M environment interactions.
Aggregated over all environments and six
seeds each, with 95% bootstrapped confi-
dence intervals (Agarwal et al., 2021). Left
shows CrossQ ablations; Right shows effects
of adding parts on top of SAC. Figure 13 in
Appendix shows individual training curves.

In this subsection, we examine the contributions of
the different CrossQ design choices to show their
importance. Figure 9 shows aggregated ablations
of these components and various hyperparameters,
while Figure 10 ablates the BatchNorm layer itself.

Hyperparameters. CrossQ uses the best hyperpa-
rameters obtained from a series of grid searches. Of
these, only three are different from SAC’s default
values. First, we find that reducing the β1 momentum
for the Adam optimizer (Kingma and Ba, 2015) from
0.9 to 0.5 as well the policy delay of 3 have the small-
est impact on the performance. However, since fewer
actor gradient steps reduce compute, this setting is fa-
vorable. Second, reducing the critic network’s width
to 256—the same small size as SAC—reduces per-
formance and yet still significantly outperforms SAC.
This suggests that practitioners may be able to make
use of a larger compute budget, i.e., train efficiently
across a range of different network sizes, by scaling
up layer widths according to the available hardware
resources. Third, as expected, removing the BRN layers proves to be detrimental and results in the
worst overall performance. A natural question that comes to mind is whether other normalization
strategies in the critic, such as Layer Normalization (LayerNorm, Ba et al. (2016)), would also give the
same results. However, in our ablation, we find that replacing BatchNorm with LayerNorm degrades
CrossQ’s performance significantly, roughly to the level of the SAC baseline. Lastly, SAC does not
benefit from simply widening critic layers to 2048. And naively adding BRN to SAC while keeping
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Figure 10: Comparing BatchNorm hyperparameters. All variants have comparably strong and
stable curves early in the training. Omitting normalization in the actor (BRN critic only) does not
significantly affect CrossQ. Using the original Batch Normalization (BN, with moving-average
momentum 0.99) is prone to sudden performance collapses during longer training runs. Using BRN
permits stabler training, which improves with higher momentums; CrossQ’s default 0.99 (black) and
higher show no collapses. We plot IQM return and 70% quantile intervals over five seeds.

the target networks proves detrimental. This finding is in line with our diagnosis of mismatched
statistics being detrimental to the training.

Batch Normalization Layers. In Figure 10, we ablate the BatchNorm versions (BN (Ioffe and
Szegedy, 2015) and BRN (Ioffe, 2017)) and their internal moving-average momentums. Compared
to CrossQ’s optimal combination—BRN with momentum 0.99—all variants have similar sample
efficiency in the early stages of training (1M steps). When using BN, we sometimes observe sudden
performance collapses later in training; we attribute these to BN’s unique approach of using noisy
minibatch estimates of normalization moments. BRN’s improved approach of using the less noisy
moving-averages makes these collapses less likely; further noise-reduction via higher momentums
eliminates these collapses entirely. Additionally, we find that using BatchNorm only in the critic
(instead of both the actor and the critic) is sufficient to drive the strong performance of CrossQ;
however, including it in both networks performs slightly better.

5 Conclusion & Future Work

We introduced CrossQ, a new off-policy RL algorithm that matches or exceeds the performance
of REDQ and DroQ—the current state-of-the-art on continuous control environments with state
observations—in terms of sample efficiency while being multiple times more computationally
efficient. To the best of our knowledge, CrossQ is the first method to successfully use BatchNorm
to greatly accelerate off-policy actor-critic RL. Through benchmarks and ablations, we confirmed
that target networks do indeed slow down training and showed a way to remove them without
sacrificing training stability. We also showed that BatchNorm has the same accelerating effect
on training in Deep RL as it does in supervised deep learning. The combined effect of removing
target networks and adding BatchNorm is what makes CrossQ so efficient. We investigated the
relationship between the Q estimation bias and the learning performance of CrossQ, but did not
identify a straightforward dependence. This indicates that the relationship between the Q estimation
bias and the agent performance is more complex than previously thought.

In future work, it would be interesting to analyze the Q estimation bias more extensively, similar
to Li et al. (2022). Furthermore, a deeper theoretical analysis of the used BatchNorm approach in
the context of RL would be valuable, akin to the works in supervised learning, e.g., Summers and
Dinneen (2020). Although the wider critic networks do provide an additional performance boost,
they increase the computation cost, which could potentially be reduced. Finally, while our work
focuses on the standard continuous control benchmarking environments, a logical extension would
be applying CrossQ to a real robot system and using visual observations in addition to the robot
state. Techniques from image-based RL, such as state augmentation (Laskin et al., 2020; Yarats et al.,
2021) and auxiliary losses (Schwarzer et al., 2021; He et al., 2022), also aim to learn efficiently from
limited data. We believe some of these ideas could potentially be applied to CrossQ.
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A Appendix

A.1 DeepMind Control Suite Experiments

Figure 11 presents an additional set of experiments performed on the DeepMind Control Suite (Tassa
et al., 2018). The experiments shown here are an extension to the experiments shown in Figure 5 in
the main paper and have been moved to the Appendix due to space constraints. For the presented
tasks, we lowered the learning rate to 8× 10−4 for all algorithms, and set the CrossQ policy delay to
1. All other hyperparameters remained the same as for the main paper.
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Figure 11: Sample efficiency of CrossQ on DeepMind Control. The experiments here were
each performed on 5 different random seeds. CrossQ’s good sample efficiency transfers well to the
presented tasks from the DeepMind Control Suite.
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A.2 Hyperparameters

Experiment hyperparameters, used in the main paper. We adapted most hyperparameters that are
commonly used in other works (Haarnoja et al., 2018b; Chen et al., 2021; Hiraoka et al., 2021).
The Moving-Average Momentum corresponds to 1 minus the Moving-Average Update Rate as defined
in both BatchNorm papers (Ioffe and Szegedy, 2015; Ioffe, 2017).

Table 1: Learning Hyperparameters

Parameter SAC REDQ DroQ CrossQ (ours)

Discount Factor (γ) 0.99

Learning Rate (Actor & Critic) 0.001

Replay Buffer Size 106

Batch Size 256

Activation Function relu

Layer Normalization No Yes No

Dropout Rate N/A 0.01 N/A

BatchNorm / Version N/A BRN

BatchNorm / Moving-Average Momentum N/A 0.99

BatchNorm / BRN Warm-up Steps N/A 105

Critic Width 256 2048

Target Update Rate (τ ) 0.005 N/A

Adam β1 0.9 0.5

Update-To-Data ratio (UTD) 1 20 1

Policy Delay 1 20 3

Number of Critics 2 10 2

A.3 Wallclock Time Measurement

Wallclock times were measured by timing and averaging over four seeds each and represent pure
training times, without the overhead of synchronous evaluation and logging, until reaching 5× 106

environment steps. The times are recorded on an Nvidia RTX 3090 Turbowith an AMD EPYC
7453 CPU.

Table 2: Wallclock times. Evaluated for CrossQ and baselines across environments in hours and
recorded on an RTX 3090, the details of the measurement procedure are described in Appendix 4.2.
Comparing CrossQ with CrossQ (Small) and SAC, it is apparent that using wider critic networks
does come with a performance penalty. However, compared to REDQ and DroQ, one clearly sees the
substantial improvement in Wallclock time of CrossQ over those baselines.

Wallclock Time [hours]
SAC CrossQ (small) CrossQ (ours) REDQ DroQ

HumanoidStandup-v4 1.5 2.1 2.2 8.7 7.5
Walker2d-v4 0.9 0.9 1.1 4.0 4.1
Ant-v4 0.9 1.2 1.5 4.7 4.7
HalfCheetah-v4 0.8 1.2 1.5 4.1 4.4
Hopper-v4 1.0 1.1 1.3 4.1 4.2
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A.4 Evolving Action Distributions
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Figure 12: Replay and policy action distributions are different, and evolve during training.
We train an agent for 300, 000 steps on Walker2d. We take snapshots of the replay buffer B and
policy πϕ every 60, 000 steps. For each snapshot (one column), we sample a large batch of 10, 000
transitions (s,a, s′,a′ = πϕ(s

′)) and use this to compute a visually interpretable 2D kernel density
estimate of the distributions of a (blue) and a′ (red), as seen through the action-space dimensions 4
and 5. The cross denotes the mean, and the dashed ellipse is one standard deviation wide for each of
the two dimensions. We observe that the distributions as well as the means and standard deviations of
the off-policy and on-policy actions are visibly and persistently different throughout the training run,
and keep drifting as the training progresses. This discrepancy implies that BatchNorm must be used
with care in off-policy TD learning.
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A.4.1 Ablating the Different Design Choices and Hyperparameters

Figure 13 depicts in detail the CrossQ and SAC ablations, previously shown in aggregate form by
Figure 9.
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Figure 13: CrossQ ablation study. We ablate across different hyperparameter settings and ar-
chitectural configurations. Using the same network width as SAC, CrossQ (small) shows weaker
performance, yet is still competitive with CrossQ in four out of six environments. At the same time,
SAC with a wider critic does not work better. Using the default Adam momentum β1 = 0.9 instead
of 0.5 degrades performance in some environments. Using a policy delay of 1 instead of 3 has a very
small effect, except on Ant. Using LayerNorm instead of BatchNorm results in slower learning; it
also trains stably without target networks. Removing BatchNorm results in failure of training due to
divergence. Adding BatchNorm to SAC and reusing the live critic’s normalization moments in the
target network fails to train. Training without double Q networks (single critic) harms performance.
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A.5 REDQ and DroQ Ablations

Figures 14 and 15 show REDQ and DroQ ablations on 5 seeds each. They show both baselines with
the CrossQ hyperparameters: wider critic networks as well as β1 = 0.5. Neither baseline benefits
from the added changes. In most cases, the performance is unchanged, while in some cases, it
deteriorates. The dashed black line shows CrossQ as a reference.
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Figure 14: REDQ ablation. Showing performance for different combinations of the CrossQ
hyperparameters. The changes in hyperparameters do not help REDQ to get better performance. In
fact, in some cases, they even hurt the performance.
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Figure 15: DroQ ablation. The changes in hyperparameters do not help DroQ to get better perfor-
mance overall. In Hopper and Ant, performance rises to the CrossQ performance, however, on the
Humanoid, it hurts performance.
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A.6 Effect of Activations and Normalizers on Learning Stability

Figure 8 depicts a small exploratory experiment in which we remove target networks from SAC,
and train it with different activation functions and feature normalizers. We do this only to explore
whether the boundedness of activations has an influence on training stability. We learn from this
experiment that SAC with tanh activations trains without divergence, allowing us to conduct the
study in Section 4.4.1. We also observe that at least two feature normalization schemes (on top of the
unbounded relu activations) permit divergence-free optimization.

For vectors x, relu_over_max(x) denotes a simple normalization scheme using an underlying
unbounded activation: relu(x)/max(x), with the maximum computed over the entire feature vector.
layernormed_relu simply denotes LayerNorm applied after the relu activations. Both of these
schemes prevent divergence. Using LayerNorm before the relu activations also prevent divergence,
and is already explored in the ablations in Figure 13. None of these normalizers perform as strongly
as BatchNorm.

A thorough theoretical or experimental study of how activations and normalizers affect the stability
of Deep RL is beyond the scope of this paper. We hope, however, that our observations help inform
future research directions for those interested in this topic.
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Figure 16: (In)stability of SAC without target networks. Observed through the Q estimation
bias. In this small-scale experiment, we run SAC with unbounded (relu, glu, elu) and bounded
(tanh, relu6, sin) activation functions, as well as “indirectly" bounded activations through the use of
two custom normalizers other than BatchNorm (relu_over_max, layernormed_relu). SAC variants
with unbounded activations appear highly unstable in most environments, whereas the variants with
bounded activations (as well as the normalizers) do not diverge, maintaining relatively low bias.
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A.7 Normalized Q Bias Plots

Figure 17 shows the results of the Q function bias analysis for all environments.
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Figure 17: Q estimation bias. Mean and standard deviation of the normalized Q function bias,
computed as described by Chen et al. (2021). As in the main paper, we do not find a straightforward
connection between normalized Q function bias and learning performance. CrossQ generally shows
the same or larger Q estimation bias compared to REDQ but matches or outperforms REDQ in
learning speed, especially on the challenging Humanoid tasks.
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