
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

COFLOWNET: CONSERVATIVE CONSTRAINTS ON
FLOWS ENABLE HIGH-QUALITY CANDIDATE GENERA-
TION

Anonymous authors
Paper under double-blind review

ABSTRACT

Generative flow networks (GFlowNet) have been considered as powerful tools
for generating candidates with desired property. Given that evaluating the prop-
erty of candidates can be complex and time-consuming, existing GFlowNets train
proxy models for efficient online evaluation. However, the performance of proxy
models is heavily dependent on the amount of data and is of considerable uncer-
tainty. Therefore, it is of great interest that how to develop an offline GFlowNet
which does not rely on online evaluating. Under offline setting, the limited data
results in insufficient exploration of state space. The insufficient exploration means
that offline GFlowNets can hardly generate satisfying candidates out of the dis-
tribution of training data. Therefore, it is critical to restrict the offline model to
act in distribution of training data. The distinctive training goal of GFlownets
poses unique challenge for making such restriction. Tackling the challenge, we
proposes Conservative Offline GFlowNet (COFlowNet) in this paper. We define
unsupported flow, edges containing unseen states in training data. Models can
learn extremely few knowledge about unsupported flow from training data. By
constraining the model from exploring unsupported flows, we restrict COFlowNet
to explore as optimal trajectories on the training set as possible, thus generating
better candidates. In order to improve the diversity of candidates, we further in-
troduce quantile version of unsupported flow restriction. Experimental result on
several widely-used datasets validates the effectiveness of COFlowNet on gener-
ating high-scored and diverse candidates. All implementations are available at
https://anonymous.4open.science/r/COFlowNet-2872

1 INTRODUCTION

Reinforcement learning (RL) is typically about finding an optimal solution to a given target Mnih et al.
(2015); Sutton (2018). RL models are required to generate the single highest-reward sequence of
actions. However, it has become increasingly apparent that the ability to produce a variety of candidate
solutions, not just the optimal one, is highly valuable for numerous real-world applications, including
molecule design Huang et al. (2016); Zhang et al. (2021); Bengio et al. (2021) and exploration in
RL Hazan et al. (2019). For example, in the scenario of molecule design, rather than generating a
high-scoring molecule that cannot be synthesized, the model should generate a series of molecules
with suboptimal scores, so that chemists can pick molecules that are easier to synthesize.

Generative Flow Networks (GFlowNets) Bengio et al. (2021); Jain et al. (2022); Bengio et al. (2023);
Gao et al. (2022) have emerged as a potent tool for generating diverse candidates. The key insight of
GFlowNets is to ensure that the probability of generating a candidate is proportional to the positive
reward associated with that candidate. Therefore, GFlowNets is able to sample a series of possible
candidates with the learnt reward distribution. Taking advantage of the ability of generating diverse
candidates, GFlowNets have expressed promising potential in many object generation application
areas. Jain et al. (2022) embeds GFlowNet into an active learning framework for biological sequence
design, which iteratively generate diverse candidates and screen the candidates to enhance the training
of GFlowNet. Deleu et al. (2022); Nishikawa-Toomey et al. (2022) leverage GFlowNets as a general
framework for generative modeling of discrete and composite objects, which approximates the
posterior distribution over the structure of Bayesian networks. Liu et al. (2023) leverages GFlowNets

1

https://anonymous.4open.science/r/COFlowNet-2872

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

for sampling structured sub-network modules, thereby enhancing predictive robustness. Zhang et al.
(2023a;c) apply GFlowNets to address combinatorial optimization challenges. Additionally, Zhou
et al. (2023) explores the use of GFlowNets for phylogenetic inference, demonstrating the model’s
versatility in diverse applications.

In many scenarios, evaluating generated candidates could be expensive and time-consuming, making
it impractical to calculate the accurate score of candidates. For example, in the realm of drug design,
evaluating a potential molecule often requires conducting biological experiments or performing
complex chemical calculations. Given that these assessment procedures can span from several
minutes to multiple days, they are impractical to integrate directly into the training phase of an RL
model. To this point, existing GFlowNets follow the method proposed in Angermueller et al. (2019),
which suggests to train a proxy model based on evaluated candidates to approximate the accurate
scores (rewards) of candidates. Specifically, we have a set of candidates X = {xi} and the a set of
corresponding scores Y = {yi|yi = oracal(xi)}, where oracal denotes the expensive but accurate
evaluation of candidates. Based on the dataset (X,Y), a proxy model f : x → y can be trained to
approximate oracal. The proxy model is then employed to calculate the rewards of online sampled
candidates, with which the GFlowNets can be trained.

While GFlowNets have achieved notable success across various domains of object generation, their
effectiveness is significantly contingent upon the quality of the proxy models they rely on. Typically,
GFlowNets are trained to align with the candidate-reward distribution as estimated by a proxy model.
However, the scarcity of data can introduce considerable variability in the proxy model’s accuracy. If
the proxy model fails to accurately mirror the true quality of the candidates, the resulting performance
of the GFlowNets will be suboptimal. Given that proxy model training requires a comprehensive
dataset of candidates along with their actual scores, an alternative approach involves the development
of offline reinforcement learning methods. These methods could potentially sidestep the pitfalls
associated with proxy model dependency, offering a more reliable framework for GFlowNets training.

Unlike conventional RL models, GFlowNets are trained with the specific objective of generating
candidates with probabilities that are directly proportional to the positive rewards linked to those
candidates. This distinctive training goal presents unique challenges for development of offline
GFlowNets, making existing offline RL technics can not be directly applied. Specifically, the
policy in GFlowNet frameworks is determined by inflows and outflows of states, which complicates
the application of actor-critic methods Nair et al. (2020); Tarasov et al. (2024). In Q-learning
frameworks Kostrikov et al. (2021) , Q-values are maximized iterated by the bellman operation,
which is actually against the flow match constraint in GFlowNet. Policy constraint or matching
methods Wang et al. (2023) may assimilate less desirable state space, such as some low-reward areas,
making them unsuitable for offline GFlowNets. In essence, the distinctive training goal of GFlowNets
calls for the development of new offline techniques not found in traditional RL approaches.

In this paper, we propose a novel offline training strategy for GFlowNets to make fully utilization
of collected data, called Conservative Offline GFlowNet (COFlowNet). To avoid the generation of
highly uncertain candidates, we define unsupported flows and propose to regularize the unsupported
flows, so that the model can learn informative knowledge from training data. To enhance the diversity
of generated candidates, we introduce quantile matching algorithm, and modify the regularization of
unsupported flows into quantile style. We evaluate the proposed offline training strategy following
the experimental setting of Bengio et al. (2021). By applying the proposed training objective, the
offline version of GFlowNet shows great potential at generating diverse and high-score candidates.

The main contributions of this paper are as follows,

• Our research endeavors to adapt GFlowNets for offline scenarios. A pioneering offline
training strategy named Conservative Offline GFlowNet (COFlowNet) is introduced. Central
to our approach is the concept of unsupported flows. By regularizing the unsupported flows,
the model can learn informative knowledge from training data and generate high-score
candidates.

• To enhance the diversity of generated candidates, we introduce quantile matching algorithm.
By modifying the regularization of unsupported flows into quantile style, we achieve the
final training objective of COFlowNet, termed as conservative quantile matching (CQM).

• We evaluate the proposed offline training strategy in alignment with the experimental
setting in Bengio et al. (2021). The proposed COFlowNet, equipped with the novel offline

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

training objective, exhibits significant promise in producing a spectrum of diverse and
high-performing candidates.

2 RELATED WORK

GFlowNet. Since the introduction of GFlowNets by Bengio et al. (2021), there has been a surge
of research in this domain, covering various aspects of the technology. Malkin et al. (2022);
Zimmermann et al. (2022) has explored the relationship with variational methods, demonstrating
that GFlowNets surpass variational inference when utilizing off-policy training data. Pan et al.
(2022; 2023b) has established frameworks to enhance credit assignment efficiency by incorporating
intermediate signals within GFlowNets. Jain et al. (2022) has delved into multi-objective generation
capabilities, while Pan et al. (2023c) integrated world modeling. An unsupervised learning approach
for GFlowNets was suggested by Pan et al. (2023a), and Ma et al. (2024) examined the use of
isomorphism tests to mitigate flow bias in training. From a probabilistic modeling perspective, Zhang
et al. (2022b) has concurrently trained an energy-based model alongside a GFlowNet, validating its
effectiveness on discrete data modeling tasks and proposing a bidirectional proposal mechanism later
adopted by Kim et al. (2023) for local search algorithms. Zhang et al. (2022a); Lahlou et al. (2023);
Zhang et al. (2023b) provided a theoretical analysis and bridged the gap between diffusion modeling
and GFlowNets. GFlowNets have also shown promise in numerous object generation applications,
including biological sequence design by Jain et al. (2022) and causal structure learning by Deleu
et al. (2022). Considering the complexity and time intensity associated with candidate property
evaluation, current GFlowNets utilize proxy models to facilitate efficient online assessments. Yet,
these proxy models’ effectiveness is highly contingent upon data volume, introducing a significant
margin of uncertainty. Hence, there is a considerable interest in developing an offline GFlowNet that
is independent of real-time evaluation mechanisms. However, GFlowNets train to generate candidates
with probabilities proportional to their rewards, presenting challenges for offline adaptation that don’t
align with standard offline RL techniques. In the following, we analyze why existing offline RL
methods are not applicable.

Offline RL. Most existing offline RL methods are based on actor-critic framework or Q-learning
framework. In a flow-based framework, a policy π is directly given by π(a|s) = F (s, a)/F (s),
where s denotes a state with actions a ∈ A(s) and F (s, a) denotes the flow of state s taking action
a. The policy is too fixed, making it difficult to apply techniques of actors from actor-critic based
methods of offline reinforcement learning such as AWAC Nair et al. (2020),ReBRAC Tarasov et al.
(2024). However, Q-learning based frameworks are also not applicable. The concept of flows is
analogous to Q-values in Q-learning and the critic in the actor-critic method. However, there are still
some significant differences between them. Q-values are iterated by the bellman operation, estimating
how good an actions is. But they focus on the maximum value while the values of flows denote the
total sum of rewards passing the state, making it impractical to apply methods such as Kostrikov
et al. (2021) to our flow matching objective. For flow matching objective to learn behavior policy of
offline dataset better, an intuitive way is to use policy constraint methods Wang et al. (2023). Policy
constraint methods will force the behavior strategy to learn the bad parts of the dataset, such as some
low-reward areas, thus it is not ideal for offline GFlowNets. Our proposed method avoid this problem
by not directly forcing trained policy to stay close to behavior policy.

3 METHOD

3.1 PROBLEM FORMULATION

We here describe the problem of interest. We aim at training a policy to generate candidate objects x ∈
X with probability proportional to a reward function R(x) : x → R+. We generate a candidate object
x from an initial state s0, and make a series of actions to transfer the state finally into x. The procedure
can be described by a trajectory of state transformation, denoted as τ = (s0, s1, s2, · · · , sn = x).
We denote the set of states as S, and the set of actions as A = {(s → s′)|s, s′ ∈ S}. Note that we
here assume the relationship between action and future state is a one-to-one correspondence, i.e.,
there is only one action (s → s′) that transfer s to s′. We say s is a parent of s′ and s′ is a child of s
when we have (s → s′) ∈ A. Specially, we have A(s) denoted the set of actions between s and all
its children, and we thus have A(x) = ∅ for any terminal states x.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

𝑠! 𝑠"

𝑠#

𝑠$ 𝑠%

𝑠& 𝑠!'

𝑠(
𝑠)

𝑠!! 𝑠!$

𝑠!*𝑠*
𝑠!&

𝑠!%

𝑠!"
𝑠!#

		𝑠'

Figure 1: Illustration of the flow network. The trian-
gle means initial state, the circles correspond to interior
states and the squares denote the terminal states. At
each interior states, we have the inflow and outflow
matched. And for terminal states, we have the inflow
of a terminal state equal to reward at it.

Generative Flow Networks Bengio et al.
(2021) (GFlowNets) are developed for the
target that generating candidate objects x
with probability proportional to R(x). Such
objective is achieved in GFlowNets by cast-
ing the set of action trajectories as a flow
and convert the flow consistency equations
into a learning objective. As in Fig. 1, the
state transformation can be illustrated as a
directed acyclic graph (DAG). In the flow
network, each node represents a state, and
each edge represents a flow (action and its
corresponding probability). The source (or
root) node only generates outflows. Interior
nodes have both inflows and outflows, with
inflows equal to outflows. Leaf nodes (or
terminal states) only receive inflows and store them as sinks. At a specific state si, we have several
input flows from its prior states and output flows to its successive states. The flow consistency
equations requires the inflow and outflow of an interior state (node) are matched, and the inflow of
a terminal state is the reward of the state. We define F (s, s′) : (s, s′) → R+ as flow between state
s and s′. By setting R(s) = 0 for interior states and A(s) = ∅ for terminal states, the flow match
constraint of state s is given as,

LFM (s) =
∑

s:(s→s′)∈A

F (s, s′)−R(s′)−
∑

s′′:(s′→s′′)∈A

F (s′, s′′) (1)

The above equation constrains that the inflows of a state (left of the equation) is equal to the outflows
of the state plus the reward of the state. Considering a whole trajectory τ , we have,

LFM (τ) =
∑

s∈τ ̸=s0

L2
FM (s) (2)

Note that we square LFM (s) to ensure the value is positive. The training objective of GFlowNets
is to learn F (s, s′) to minimize LFM (τ). Bengio et al. (2021) proves that a global optimum of the
expected loss provides the correct flows. And the training objective can be achieved by setting the
probability of action (s → s′) as,

P ((s → s′)|s) = F (s, s′)∑
s′′:(s→s′′)∈A(s) F (s, s′′)

(3)

This equation suggests that the probability of taking action (s → s′) is ratio of the flow of this action
to the outflow of s.

3.2 CONSERVATIVE GFLOWNET FOR OFFLINE RL

𝑠! 𝑠"

𝑠#

𝑠$

𝑠% 𝑠&

𝑠'

𝑠!(

		𝑠(𝑠) 𝑠*

States and Actions
present in dataset

States and Actions
not present in dataset

Figure 2: Illustration of supported and un-
supported flows. Edges not presenting in
dataset are defined as unsupported flows. Here,
(s2 → s3) and (s3 → s7) are unsupported.

Due to the innovative design of GFlowNets, i.e., the
flow matching, existing offline RL frameworks are
not applicable. To this end, this paper proposes a
conservative offline GFlowNet (COFlowNet), which
learns informative knowledge from training data and
shows the ability of generating diverse candidates.

In the offline setting, the model is constrained from
extensively exploring the state space and must rely
solely on the provided training data. This limitation
can lead to inadequate coverage of the state space
within the data. Consequently, the performance of
candidates whose trajectories include many states
not present in the training data may be highly un-
certain, as limited clues of their performance can be
learnt from training data.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

To avoid the generation of highly uncertain candi-
dates, COFlowNet makes constraints on the flows. The offline dataset D we used is composed by a list
of transitions (st, at, st+1, rt, dt)i , where i indexes a transition sampled from a trajectory τ . Specif-
ically, we call a flow (s → s′) supported if there exists a trajectory (s0 → s1 → s2 → · · · → sn)
in the dataset D such that st = s and st+1 = s′. Otherwise, it is unsupported. These supported
flows compose our action set AD of training data and serve as the basis for imposing node-specific
constraints within the proposed COFlowNet framework.

For inflows in state s, we constrain the unsupported inflows in dataset by adding a regularization term
to constrain them into small values. The unseen actions are thus constrained to help COFlowNet
better learns the behavior policy of training data. The regularization term of unsupported inflows of
state s can be formulated as,

Rin(s) =
∑

s′:(s′→s)∈A

F (s′, s)−
∑

s′D:(s′D→s)∈AD

F (s′D, s) (4)

For outflows in node s ∈ S , our strategy is similar, and the regularization term of outflows is defined
as,

Rout(s) =
∑

s′′:(s→s′′)∈A

F (s, s′′)−
∑

s′′D:(s→s′′D)∈AD

F (s, s′′D) (5)

Let us define two tradeoff factors α1 ≥ 0 and α2 ≥ 0 for Rin(s) and Rout(s). we can turn our
Equation into our constrained flow matching (CFM) objective for interior and terminal states to
optimize the parameter θ.

LCFM (s) = L2
FM (s) + α1R2

in(s) + α2R2
out(s) (6)

We here square Rin and Rout for the same reason as Eq. 2. We next prove that apply the regularization
will exactly decrease the unsupported flow and will not hurt the supported flow.

Theorem 1. Given two flow estimation function, F̂ trained with regularization and F trained without
regularization, we have F̂ (s, s′) ≤ F (s, s′) obtains for unsupported flow (s, s′), i.e., (s, s′) ∈ A and
(s, s′) /∈ AD.

Proof. With trainable parameters in F denoted as θ, the derivative of constrained flow matching
objective to θ is,

∂L̂CFM (s)

∂θ
= 2LFM (s) ·

 ∑
s′:(s′→s)∈A

∂F̂ (s′, s)

∂θ
−

∑
s′′:(s→s′′)∈A

∂F̂ (s, s′′)

∂θ


+ 2α1Rin(s) ·

 ∑
s′:(s′→s)∈A

∂F̂ (s′, s)

∂θ
−

∑
sD:(sD→s)∈AD

∂F̂ (sD, s)

∂θ


+ 2α2Rout(s) ·

 ∑
s′′:(s→s′′)∈A

∂F̂ (s, s′′)

∂θ
−

∑
s′′D:(s→s′′D)∈AD

∂F̂ (s, s′′D)

∂θ


(7)

And we have the derivative of flow matching objective without regularization as,

∂LFM (s)

∂θ
= 2LFM (s) ·

 ∑
s′:(s′→s)∈A

∂F (s′, s)

∂θ
−

∑
s′′:(s→s′′)∈A

∂F (s, s′′)

∂θ

 (8)

The second and third terms of the derivative in Eq. 7 only minimize flows not appeared in the offline
dataset. We get ˆF (s, s′) = F (s, s′) only when α1 = 0 and α2 = 0.

Theorem 2. Given any state, minimizing its inflow from unsupported states will enlarge the inflow
from supported states.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

𝑠!

𝑠"

𝑠# 𝑠$

𝑆%

all children of 𝑠!

Figure 3: Illustration of The-
orem 2. Due to the balance
of inflows and outflows, re-
ducing flow between s3 and
s4 will increase the other two
inflows.

Proof. For any state s, for example, s4 in Figure 3, we have that the
total inflows equal the total outflows:

F (s1, s4) + F (s2, s4) + F (s3, s4) = F (s4, Sc)

where Sc denotes all the children of s4 and F (s4, Sc) is the sum
of outflows from s4 to its children. The total reward (flow) in the
training data is determined, as all terminal states are given by the data,
and the reward can only be obtained at terminal states. Therefore,
the outflow F (s4, Sc) is constant and denoted as Fo. Furthermore,
the inflow from supported states F (s1, s4) + F (s2, s4) is equal to
Fo − F (s3, s4). Since Fo is constant, minimizing the inflow from
unsupported states F (s3, s4) will lead to an increase in the inflow
from supported states F (s1, s4) + F (s2, s4). This reasoning process
can be easily extended to general conditions (with more supported
and unsupported states).

Directly using Eq. 6 will result in large flow at states near to s0. To
solve the numerical issue, we proposed the log sum exp form of our
objective similar to Bengio et al. (2021),

LCFM (s) = (log[ϵ+
∑

s′:(s′→s)∈A

exp(F log
θ (s′, s))]− log[ϵ+R(s) +

∑
s′′:(s→s′′)∈A

exp(F log
θ (s, s′′))])2

+ α1(log[ϵ+
∑

s′:(s′→s)∈A

exp(F log
θ (s′, s))]− log[ϵ+

∑
s′D:(s′D→s)∈AD

exp(F log
θ (s′D, s))])

2

+ α2(log[ϵ+
∑

s′′:(s→s′′)∈A

exp(F log
θ (s, s′′))]− log[ϵ+

∑
s′′D:(s→s′′D)∈AD

exp(F log
θ (s, s′′D))])

2

(9)

3.3 BETTER DIVERSITY WITH QUANTILE MATCHING FLOWS

We here introduce and modify quantile matching algorithm to consider the uncertainty of reward and
thus enhance the diversity of generated candidates of our framework. Quantile matching algorithm
is originally used to handle situations where the reward function is stochastic and outperforms
deterministic flow matching algorithms even on deterministic datasets Zhang et al. (2023d).

Follow the definition in Zhang et al. (2023d), we use Zβ(s, s
′) to represent the quantile flow between

s and s′. And the equality of inflows and outflows is expanded to the distribution between two random
variables, i.e., the quantile flow,

δβ,β̂(s) = log
∑

(s′→s)∈A

exp(Z log
β (s′, s))− log

∑
(s→s′′)∈A

exp(Z log

β̂
(s, s′′)) (10)

We thus have the regularization term of unsupported inflows in Eq. 4 as,

δβin(s) = log
∑

(s′→s)∈A

expZ log
β (s′, s)− log

∑
(s′D→s)∈AD

expZ log
β (s′D, s) (11)

Similarly, the regularization term of unsupported outflows of s is formed as this,

δβ̂out(s) = log
∑

(s→s′′)∈A

expZ log

β̂
(s, s′′)− log

∑
(s→s′′D)∈AD

expZ log

β̂
(s, s′′D) (12)

We deploy the pinball error ρβ(δ) = |β − 1{δ < 0}|ℓ1(δ) to both δβin and δβ̂out, where ℓ1(·) is a
smooth ℓ1 loss:

ℓ1(δ) =

{
1
2δ

2 if |δ| < 1

|δ| − 1
2 otherwise

(13)

Finally, we propose the conservative quantile matching (CQM) objective for COFlowNet,

LCQM (s) =
1

N̂

N∑
i=1

N̂∑
j=1

ρβi
(δβi,β̂j (s)) + α1

1

N
(

N∑
i=1

ρβi
(δβi

in(s))) + α2
1

N̂
(

N̂∑
i=1

ρβ̂i
(δβ̂i

out(s))) (14)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

4 EXPERIMENT

In this section, we evaluate the proposed COFlowNet on two tasks, Hypergrid and molecule design.
During the evaluation, we mainly focus on two research questions: 1) How is the performance
of candidates generated by COFlowNet? 2) How is the diversity of the generated candidates? To
facilitate a more comprehensive evaluation, we select various metrics tailored to different tasks. These
metrics are chosen to better evaluate the performance and diversity. Besides the two questions, we
will also investigate the impact of different components of COFlowNet. Additionally, we deploy the
proposed COFlowNet to additional tasks in B. All the experiments are conducted on an NVIDIA
Tesla A100 80GB. The offline dataset is formatted as D = {s, s′, r|(s, s′) ∈ AD, r = R(s′)}. When
training the model, we sample batched data from D and calculate the loss function. We can thus
align the samples used for training in our offline model with states visited in online models for fair
comparison. We detail the experimental settings and results on specific tasks in the following.

4.1 HYPERGRID

4.1.1 TASK DEFINITION

We first evaluate the proposed COFlowNet on the hypergrid task from Bengio et al. (2021). The
state space is a D-dimensional hypercube grid of size HD, where H represents the dimension of the
grid. The agent is tasked with formulating long-term plans and learning from sparse reward signals.
It begins at origin of the grid, i.e., at coordinate (0, 0, · · · , 0), and must navigate by incrementing one
of the coordinates by 1 with each move. Additionally, the agent has the option to execute a special
termination action from any state. Upon deciding to stop, the agent is awarded a reward as specified
by the following reward function,

R(x) = R0 +R1

D∏
d=1

I(| xd

H − 1
− 0.5| ∈ (0.25, 0.5])) +R2

D∏
d=1

I(| xd

H − 1
− 0.5| ∈ (0.3, 0.4]))

(15)
Where I is the indicator function, which returns 1 when the input condition is true otherwise 0, we
set R0 = 0.001, R1 = 0.5, R2 = 2, H = 8 and D = 4. The formula reveals that there are 2D = 16
distinct modes for this task, where a mode is defined as a local region (potentially encompassing one
or more states) that yields the highest reward value.

4.1.2 OFFLINE DATA CONSTRUCTION

Three strategies are applied to construct the offline dataset for training COFlowNet on Hypergrid:
1) Expert: employ an online GFlowNet to generate an offline dataset with 2 × 104 trajectories.
2) Random: randomly generate an offline dataset with 2 × 104 trajectories. 3) Mixed: take 104

trajectories from Expert and 104 trajectories from Random.

4.1.3 RESULT

We report two metrics of COFlowNet, number of modes and ℓ1 error. Number of modes denotes how
many modes the model finds, which reflects the diversity of the model. As mentioned, the goal of
GFlowNets is to generate candidates with probabilities proportional to their rewards. In this case,
we can enumerate all states and accurately give the ground truth the probability that a candidate is
generated as p(x) = R(x)/

∑
x∈X R(x). And we can approximate the probability of generating

x, denoted as π(x), by repeated sampling and counting frequencies for x. ℓ1 error is defined
as E[|p(x) − π(x)|], which estimates whether the model generates candidates with probabilities
proportional to their rewards.

This task is rather a simple task, we employ the vanilla GFlowNet Bengio et al. (2021) for comparison.
Since the optimal diversity of candidates is rather little, we apply CFM loss in Eq. 9 on this task rather
than CQM loss in Eq. 14. The result on Hypergrid is reported in Fig. 4, where w/o means removing
regularization term from the training loss, i.e., using only flow matching loss and setting αi to 0.

As reported in Fig. 4b, most models find all of the 16 modes within 40000 times state visiting. When
trained on Mixed data, COFlowNet can generate all the modes with the least visit of states. And
applying the proposed regularization method will reduce the number of state visits by 10%. It is

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0.0E+00

1.0E-04

2.0E-04

3.0E-04

4.0E-04

5.0E-04

6.0E-04

0 150000 300000 450000 600000

di
st
rib
ut
io
n
er
ro
r

states visited

(a) ℓ1 error

0
2
4
6
8
10
12
14
16

0 10000 20000 30000 40000 50000

nu
m
of
m
od
es

states visited

Expert

Expert w/o

Mixed

Mixed w/o

Random

Random w/o

GFlowNet

(b) number of modes

Figure 4: Experimental result on Hypergrid. Expert, Random and Mixed correspond to different
settings of constructing offline datasets as described in Sec. 4.1.2. w/o means removing regularization
term from the training loss.

worth noting that the model performs badly on Random dataset no matter regularization is applied or
not. Such result indicates that the performance of offline models relies on the quality of training data.

Fig. 4b reports the ℓ1 error of different models. We can find that vanilla GFlowNet achieve the goal
of generating candidates with probabilities proportional to their rewards with the least times of state
visiting. It can be found that when trained on Expert and Mixed, COFlowNet can also get close to the
goal of GFlowNets, but takes more times of state visiting. Actually, due to the limited coverage of
state space of training data, COFlowNet can hardly really achieve the goal. It is also worth noting that
the ℓ1 error is high when the regularization is removed. The reason can be found in Eq. 7. When the
regularization is removed, the model can not find any clue to reduce the unsupported flow, resulting
in randomly exploring on those flows, which is against the goal. For example, suppose that we have a
supported flow (s1, x) and an unsupported flow (s2, x) flow into the same terminal state x. Then the
reward of x is divided randomly into the two flows (only related to the initialization of F). Without
the regularization, the model will never know whether the flow should be divided into (s2, x). Worse
still, the model even needs to allocate inflow for the state s2 to balance the inflow and outflow of s2.

Overall, through the result on this simple task, we find the potential of COFlowNet and the effec-
tiveness of proposed conservative regularization strategy. Next, we introduce a more complex and
realistic task, molecule design.

Models
Data scarcity Fully trained

avg top 10 avg top 100 avg top 1000 avg top 10 avg top 100 avg top 1000

MARS / / / 8.0778 7.833 7.5992
PPO / / / 8.4249 8.3387 8.2555

GFlowNet 8.4381 8.2909 8.0580 8.5283 8.3539 8.1440
QM-GFlowNet 8.4979 8.3272 8.1014 8.5552 8.4019 8.1886
COFlowNet w/o 8.3400 8.2046 8.0996 8.4859 8.3278 8.1083

COFlowNet 8.4638 8.3034 8.1088 8.5029 8.3730 8.1693

Table 1: The average reward of the top k candidates. Darker blue denotes the best result and
lighter blue denotes the second best.

4.2 MOLECULE DESIGN

4.2.1 TASK DEFINITION

Molecule design is a typically application scenario for GFlowNets, where both the diversity and
quality of candidates are required. In this task, the objective is to design a variety of molecules that
exhibit specific chemical properties. The emphasis on diversity in this task is crucial, as it allows
chemists to discover molecules which are not only characterized by their desired chemical properties
but are also easy to synthesize. In this section, we are interested in designing molecules with large
binding energy to a particular protein target.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

In this task, we have states as molecule graphs or SMILES 1, and actions as adding new component to
a molecule. Therefore, the molecule design task becomes a decision process. We have a vocabulary
of building blocks specified by junction tree modeling Jin et al. (2018), which we inherent from
vanilla GFlowNet Bengio et al. (2021). At each step, the action space is determined by two factors:
selecting an atom to which a building block will be attached, and deciding which block to attach. In
our case, the size of vocabulary of building blocks is 105. Given a molecule, a building block can
be added to the molecule at different positions. And the number of applicable actions of a state is
greater than 105, leading to a larger state space.

4.2.2 DATASET

As computing binding energy is computationally expensive, existing online RL models train proxy
models to approximate it. Interestingly, the proxy models are also employed to evaluate their molecule
models for the computational convenience. If the target of an RL model is to fit the distribution of
reward function, there is nothing wrong with evaluating the model with proxy, in which case the
model is to fit the proxy. But for molecule design, we should not ignore the gap between proxy
model and oracle, i.e., the expensive computation. To this end, we propose two kinds of evaluation.
Specifically, we first construct a dataset DL with 300k molecules as in Bengio et al. (2021). A proxy
model PD is trained on DL to serve as oracle, since we are unable to access the real oracle due to
the expensive computation. We design two settings for evaluation: 1) Fully trained: In this case,
we have DL as offline dataset and train our model on it. Online models are trained with PD. PD is
also employed to evaluate all molecule design models. 2) Data scarcity: In this case, a small dataset
DS containing about 14k molecules is generated by a well-trained generative model. COFlowNet is
trained on the small dataset DS . Also, we have a weak proxy model PW trained on DS and online
models are trained with PW . Similarly, PD is employed to evaluate all molecule design models.

0

5000

10000

15000

20000

0 1 2 3 4 5 6

nu
m
be
r
o
f
m
o
de
s
(R
>
7.
5)

state visited (105)

GFlowNet
FM-COFlowNet
QM-GFlowNet
COFlownet
PPO
MARS

(a) number of modes with reward > 7.5

0
200
400
600
800
1000
1200
1400
1600
1800

0 1 2 3 4 5 6

nu
m
be
r
o
f
m
o
de
s
(R
>
8)

state visited (105)

GFlowNet
FM-COFlowNet
QM-GFlowNet
COFlownet
PPO
MARS

(b) number of modes with reward > 8

Figure 5: Experimental result on Molecule Design with large dataset.

4.2.3 RESULT

We compare COFlowNet with two popular flow-based baselines, vanilla GFlowNet Bengio et al.
(2021) and QM-GFlowNet Zhang et al. (2023d). Two more baselines, MARS Xie et al. (2021)
and PPO Schulman et al. (2017), are involved here to compare COFlowNet with non-flow-based
methods. Noting that MARS and PPO require fully-trained proxy model to provide accurate reward,
we only report their performance under the setting of Fully trained. Additionally, we introduce
COFlowNet w/o as an offline baseline, which removes the proposed conservative regularization term.
COFlowNet w/o is employed to substantiate our assertion that the regularization term enhances our
model’s performance. For the effectiveness comparison, we consider the average reward of the top
k = 10, 100, 1000 candidates. Such metric indicates the ability of models on generating high-score
candidates.

As reported in Table. 1, MARS performs significantly worse than flow-based models, including our
COFlowNet. While PPO generates candidates with scores comparable to those of flow-based models,
its performance in terms of diversity is markedly inferior, which will be shown in the following. the

1https://en.wikipedia.org/wiki/Simplified_Molecular_Input_Line_Entry_
System

9

https://en.wikipedia.org/wiki/Simplified_Molecular_Input_Line_Entry_System
https://en.wikipedia.org/wiki/Simplified_Molecular_Input_Line_Entry_System

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

performance gap between COFlowNet and COFlowNet w/o validates the effectiveness of the proposed
conservative regularization term on unsupported flows. QM-GFlowNet achieves the best performance
on generating high-score candidates. Online models, QM-GFlowNet and GFlowNet, possess better
exploration capabilities through interaction with proxy models, while Offline models can solely learn
from collected data, where the state space is limited. Consequently, given a good proxy model,
offline models can hardly outperform online models. The performance gap between GFlowNet and
COFlowNet w/o also supports the analysis. Surprisingly, COFlowNet can beat vanilla GFlowNet
on most the metrics, especially when data is scarce to train a strong proxy model. Considering the
above analysis between online and offline models, such result futher validates the effectiveness of
proposed method. Meanwhile, as demonstrated in Table. 1, when the proxy model is suboptimal,
with limited available data, the performance of QM-GFlowNet deteriorates more rapidly compared to
COFlowNet.

0
2000
4000
6000
8000
10000
12000
14000
16000
18000

0 1 2 3 4 5 6

nu
m
be
ro
fm
od
es
(R
>7
.5
)

state visited (105)

GFlowNet
FM-COFlowNet
QM-GFlowNet
COFlownet

(a) number of modes with reward > 7.5

0
200
400
600
800
1000
1200
1400
1600

0 1 2 3 4 5 6
nu
m
be
ro
fm
od
es
(R
>8
)

state visited (105)

GFlowNet
FM-COFlowNet
QM-GFlowNet
COFlownet

(b) number of modes with reward > 8

Figure 6: Experimental result on Molecule Design with small dataset.

We further compare the diversity of candidates generated by different models. Considering that
we introduce quantile matching loss for improving diversity, we here replace COFlowNet w/o with
FM-COFlowNet, which utilizes flow matching loss rather than quantile matching loss. Fig. 5 and
Fig. 6 show the result. As shown, COFlowNet achieves the best diversity. MARS and PPO show
poor diversity performance. Notably, COFlowNet generates nearly 20 times as many candidate
modes as MARS, demonstrating its superior ability to explore diverse candidates. The inferior
diversity performance of MARS and PPO denotes that they are generating similar candidates and
overfit the proxy model. The diversity gaps between FM-COFlowNet and COFlowNet, GFlowNet
and QM-GFlowNet indicate the effectiveness of quantile matching loss on improving diversity of
candidates. Specifically, applying quantile matching loss leads to 10% to 20% improvement on
diversity.

5 CONCLUSION

This paper extends GFlowNets to offline scenarios, especially for applications where evaluating a
candidate is quite expensive and historical data has been collected. To take fully utilization of the
offline data, we define unsupported flows. By regularizing the unsupported flows, we prevent the
model from making uncertain exploration of state space thus generating candidates with higher scores.
Additionally, to improve the character of GFlowNet of generating diverse candidates, we introduce
quantile matching algorithm. By modifying the regularization of unsupported flows into quantile
version, we finally propose the conservative offline GFlowNet, called COFlowNet. We evaluate
the ability of COFlowNet to generate high-score and diverse candidates on two popular tasks. The
results indicate that COFlowNet is capable of attaining performance on par with online GFlowNets.
Moreover, COFlowNet exhibits an impressively robust capacity to generate diverse candidates.

Limitations are found during the development of COFlowNet. It is easy to decompose a molecule
into several components so that a trajectory to synthesize the molecule can be obtained. In other
scenarios, it will be with great trouble to construct the trajectories for training COFlowNet, even
when we have many reward-candidate pairs. In this case, it will be better to train a proxy model on
offline data and then train GFlowNets with the proxy model. Another challenge to GFlowNets is
dynamic action space. We find it is hard for GFlowNet to merge several states. The applicable action
set of GFlowNet is rather static. In the future, we will focus on addressing the two limitations.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Christof Angermueller, David Dohan, David Belanger, Ramya Deshpande, Kevin Murphy, and Lucy
Colwell. Model-based reinforcement learning for biological sequence design. In International
conference on learning representations, 2019.

Emmanuel Bengio, Moksh Jain, Maksym Korablyov, Doina Precup, and Yoshua Bengio. Flow
network based generative models for non-iterative diverse candidate generation. Advances in
Neural Information Processing Systems, 34:27381–27394, 2021.

Yoshua Bengio, Salem Lahlou, Tristan Deleu, Edward J Hu, Mo Tiwari, and Emmanuel Bengio.
Gflownet foundations. The Journal of Machine Learning Research, 24(1):10006–10060, 2023.

Tristan Deleu, António Góis, Chris Emezue, Mansi Rankawat, Simon Lacoste-Julien, Stefan Bauer,
and Yoshua Bengio. Bayesian structure learning with generative flow networks. In Uncertainty in
Artificial Intelligence, pp. 518–528. PMLR, 2022.

Wenhao Gao, Tianfan Fu, Jimeng Sun, and Connor Coley. Sample efficiency matters: A
benchmark for practical molecular optimization. In S. Koyejo, S. Mohamed, A. Agar-
wal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural Information Pro-
cessing Systems, volume 35, pp. 21342–21357. Curran Associates, Inc., 2022. URL
https://proceedings.neurips.cc/paper_files/paper/2022/file/
8644353f7d307baaf29bc1e56fe8e0ec-Paper-Datasets_and_Benchmarks.
pdf.

Elad Hazan, Sham Kakade, Karan Singh, and Abby Van Soest. Provably efficient maximum entropy
exploration. In International Conference on Machine Learning, pp. 2681–2691. PMLR, 2019.

Po-Ssu Huang, Scott E Boyken, and David Baker. The coming of age of de novo protein design.
Nature, 537(7620):320–327, 2016.

Moksh Jain, Emmanuel Bengio, Alex Hernandez-Garcia, Jarrid Rector-Brooks, Bonaventure FP
Dossou, Chanakya Ajit Ekbote, Jie Fu, Tianyu Zhang, Michael Kilgour, Dinghuai Zhang, et al.
Biological sequence design with gflownets. In International Conference on Machine Learning, pp.
9786–9801. PMLR, 2022.

Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction tree variational autoencoder for
molecular graph generation. In International conference on machine learning, pp. 2323–2332.
PMLR, 2018.

Minsu Kim, Taeyoung Yun, Emmanuel Bengio, Dinghuai Zhang, Yoshua Bengio, Sungsoo Ahn, and
Jinkyoo Park. Local search gflownets. arXiv preprint arXiv:2310.02710, 2023.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit
q-learning. arXiv preprint arXiv:2110.06169, 2021.

Salem Lahlou, Tristan Deleu, Pablo Lemos, Dinghuai Zhang, Alexandra Volokhova, Alex Hernández-
Garcıa, Léna Néhale Ezzine, Yoshua Bengio, and Nikolay Malkin. A theory of continuous
generative flow networks. In International Conference on Machine Learning, pp. 18269–18300.
PMLR, 2023.

Dianbo Liu, Moksh Jain, Bonaventure FP Dossou, Qianli Shen, Salem Lahlou, Anirudh Goyal,
Nikolay Malkin, Chris Chinenye Emezue, Dinghuai Zhang, Nadhir Hassen, et al. Gflowout:
Dropout with generative flow networks. In International Conference on Machine Learning, pp.
21715–21729. PMLR, 2023.

George Ma, Emmanuel Bengio, Yoshua Bengio, and Dinghuai Zhang. Baking symmetry into
gflownets. arXiv preprint arXiv:2406.05426, 2024.

Nikolay Malkin, Moksh Jain, Emmanuel Bengio, Chen Sun, and Yoshua Bengio. Trajectory balance:
Improved credit assignment in gflownets. Advances in Neural Information Processing Systems, 35:
5955–5967, 2022.

11

https://proceedings.neurips.cc/paper_files/paper/2022/file/8644353f7d307baaf29bc1e56fe8e0ec-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/8644353f7d307baaf29bc1e56fe8e0ec-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/8644353f7d307baaf29bc1e56fe8e0ec-Paper-Datasets_and_Benchmarks.pdf

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. nature, 518(7540):529–533, 2015.

Ashvin Nair, Abhishek Gupta, Murtaza Dalal, and Sergey Levine. Awac: Accelerating online
reinforcement learning with offline datasets. arXiv preprint arXiv:2006.09359, 2020.

Mizu Nishikawa-Toomey, Tristan Deleu, Jithendaraa Subramanian, Yoshua Bengio, and Laurent
Charlin. Bayesian learning of causal structure and mechanisms with gflownets and variational
bayes. arXiv preprint arXiv:2211.02763, 2022.

Ling Pan, Dinghuai Zhang, Aaron Courville, Longbo Huang, and Yoshua Bengio. Generative
augmented flow networks. arXiv preprint arXiv:2210.03308, 2022.

Ling Pan, Moksh Jain, Kanika Madan, and Yoshua Bengio. Pre-training and fine-tuning generative
flow networks. arXiv preprint arXiv:2310.03419, 2023a.

Ling Pan, Nikolay Malkin, Dinghuai Zhang, and Yoshua Bengio. Better training of gflownets with
local credit and incomplete trajectories. In International Conference on Machine Learning, pp.
26878–26890. PMLR, 2023b.

Ling Pan, Dinghuai Zhang, Moksh Jain, Longbo Huang, and Yoshua Bengio. Stochastic generative
flow networks. In Uncertainty in Artificial Intelligence, pp. 1628–1638. PMLR, 2023c.

Malak Pirtskhalava, Anthony A Amstrong, Maia Grigolava, Mindia Chubinidze, Evgenia Alim-
barashvili, Boris Vishnepolsky, Andrei Gabrielian, Alex Rosenthal, Darrell E Hurt, and Michael
Tartakovsky. Dbaasp v3: database of antimicrobial/cytotoxic activity and structure of peptides as a
resource for development of new therapeutics. Nucleic acids research, 49(D1):D288–D297, 2021.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Richard S Sutton. Reinforcement learning: An introduction. A Bradford Book, 2018.

Denis Tarasov, Vladislav Kurenkov, Alexander Nikulin, and Sergey Kolesnikov. Revisiting the
minimalist approach to offline reinforcement learning. Advances in Neural Information Processing
Systems, 36, 2024.

Haozhi Wang, HAO Jianye, Yinchuan Li, et al. Regularized offline gflownets. 2023.

Yutong Xie, Chence Shi, Hao Zhou, Yuwei Yang, Weinan Zhang, Yong Yu, and Lei Li. Mars: Markov
molecular sampling for multi-objective drug discovery. arXiv preprint arXiv:2103.10432, 2021.

David W Zhang, Corrado Rainone, Markus Peschl, and Roberto Bondesan. Robust scheduling with
gflownets. arXiv preprint arXiv:2302.05446, 2023a.

Dinghuai Zhang, Jie Fu, Yoshua Bengio, and Aaron Courville. Unifying likelihood-free inference
with black-box optimization and beyond. arXiv preprint arXiv:2110.03372, 2021.

Dinghuai Zhang, Ricky TQ Chen, Nikolay Malkin, and Yoshua Bengio. Unifying generative models
with gflownets and beyond. arXiv preprint arXiv:2209.02606, 2022a.

Dinghuai Zhang, Nikolay Malkin, Zhen Liu, Alexandra Volokhova, Aaron Courville, and Yoshua
Bengio. Generative flow networks for discrete probabilistic modeling. In International Conference
on Machine Learning, pp. 26412–26428. PMLR, 2022b.

Dinghuai Zhang, Ricky Tian Qi Chen, Cheng-Hao Liu, Aaron Courville, and Yoshua Bengio. Diffu-
sion generative flow samplers: Improving learning signals through partial trajectory optimization.
arXiv preprint arXiv:2310.02679, 2023b.

Dinghuai Zhang, Hanjun Dai, Nikolay Malkin, Aaron C Courville, Yoshua Bengio, and Ling Pan.
Let the flows tell: Solving graph combinatorial problems with gflownets. Advances in neural
information processing systems, 36:11952–11969, 2023c.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Dinghuai Zhang, Ling Pan, Ricky TQ Chen, Aaron Courville, and Yoshua Bengio. Distributional
gflownets with quantile flows. arXiv preprint arXiv:2302.05793, 2023d.

Mingyang Zhou, Zichao Yan, Elliot Layne, Nikolay Malkin, Dinghuai Zhang, Moksh Jain, Mathieu
Blanchette, and Yoshua Bengio. Phylogfn: Phylogenetic inference with generative flow networks.
arXiv preprint arXiv:2310.08774, 2023.

Heiko Zimmermann, Fredrik Lindsten, Jan-Willem van de Meent, and Christian A Naesseth. A
variational perspective on generative flow networks. arXiv preprint arXiv:2210.07992, 2022.

A TIME CONSUMPTION

In this part, we compare the training cost between the proposed method with online baselines.
Compared to online models, COFlowNet is sampling-free during training, resulting in a reduction
in training time. In Table. 2, we report the average training time per epoch for both COFlowNet
and the baseline models. Since online models sample batches during training while offline models
are trained on batched states, we report the time of online and offline models training on the same
number of states (i.e., the number of states in the offline dataset), which we term as an epoch. The
reported times reflect the average duration for 100 epochs. It is worth noting that we exclude the
online evaluation time consumption of the online model (calling oracle or proxy model) and the time
consumption of training proxy models. As shown in Table. 2, the offline version of vanilla GFlowNet,
i.e., FM-COFlowNet, takes approximately 1/3 less time to train than GFlowNet. Even with a more
complex matching method, COFlowNet remains faster than GFlowNet and is approximately twice as
fast as QM-GFlowNet. This demonstrates that COFlowNet offers significant efficiency advantages in
terms of time cost.

Model GFlowNet QM-GFlowNet FM-COFlowNet COFlowNet
Training time (s/epoch) 1.594 2.904 1.055 1.521

Table 2: Comparison of training time consumption. Darker blue denotes the best result and lighter
blue denotes the second best.

B EXPERIMENTS ON MORE TASKS

In Sec. 4, we have evaluated COFlowNet on two distinct tasks: the Hypergrid task and the Molecule
Design task. Furthermore, our method is inherently generalizable to any domain where GFlowNets
are applicable. To further validate the efficiency of COFlowNet beyond these tasks, we have extended
our experiments to other tasks.

B.1 ANTI-MICROBIAL PEPTIDE DESIGN

To further validate the efficiency of COFlowNet beyond these tasks, we have extended our experiments
to include the Anti-Microbial Peptide Design task Pirtskhalava et al. (2021). In this task, the
objective is to generate peptides (short protein sequences) with anti-microbial properties, where
actions involve selecting amino acids from a predefined set with 20 elements and the longest sequence
is with 50 elements. For a given model, we have D denoted the set of generated candidates with top
100 scores, and evaluate the methods using the following three metrics, Performance: The average
score/reward of the top 100 generated candidates.

Performance(D) =

∑
x∈D reward(x)

|D|
(16)

Diversity: The average pairwise distance among the top 100 candidates.

Diversity(D) =

∑
xi,xj∈D d(xi, xj)

|D|(|D| − 1)
(17)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

where d(·, ·) is the Levenshtein distance between two sequences.
Novelty: The average distance between the top 100 candidates and known peptides, indicating the
ability to generate new peptides.

Novelty(D) =

∑
xi∈D minsj∈D0

d(xi, sj)

|D|
(18)

where D0 is the dataset used for training proxy model.

Model Performance Novelty Diversity

QM-GFlowNet 0.895 29.12 12.14
GFlowNet 0.868 15.72 11.32

COFlowNet w/o 0.788 25.68 10.43
FM-COFlowNet 0.853 28.53 13.44

COFlowNet 0.878 28.88 12.45

Table 3: The average reward of the top k candidates. Darker blue denotes the best result and
lighter blue denotes the second best.

The experimental results are summarized in Table. 3, showing that COFlowNet achieves superior
performance across all three metrics, comparable to advanced online models despite being trained
offline. These results further substantiate COFlowNet’s capability to generate high-quality and diverse
candidates across various tasks.
In summary, our COFlowNet demonstrates consistent and significant improvements over other
methods across a diverse range of tasks, highlighting its broad applicability and efficiency.

14

	Introduction
	Related Work
	Method
	Problem formulation
	Conservative GFlowNet for offline RL
	Better diversity with quantile matching flows

	Experiment
	Hypergrid
	Task definition
	Offline data construction
	Result

	Molecule design
	Task definition
	Dataset
	Result

	Conclusion
	Time Consumption
	Experiments on More Tasks
	Anti-Microbial Peptide Design

