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ABSTRACT

Understanding social interaction in video requires reasoning over a dynamic in-
terplay of verbal and non-verbal cues: who is speaking, to whom, and with what
gaze or gestures. While Multimodal Large Language Models (MLLMs) are natu-
ral candidates, simply adding visual inputs yields surprisingly inconsistent gains
on social tasks. Our quantitative analysis of cross-modal attention inside state-of-
the-art MLLMs reveals a core failure mode: in multi-speaker scenes, visual and
textual tokens lack speaker-consistent alignment, exhibiting substantially weaker
cross-modal attention than in object-centric images. To address this, we propose a
multimodal multi-speaker attention alignment method that can be integrated into
existing MLLMs. First, we introduce dynamic cross-modal head selection to iden-
tify attention heads most responsible for grounding. Then, an adaptive social-
aware attention bias, computed from existing attention patterns and speaker lo-
cations, is injected into the attention mechanism. This bias reinforces alignment
between a speaker’s visual representation and their utterances without introduc-
ing trainable parameters or architectural changes. Experiments on three datasets
(TVQA+, MMSI, and OnlineMMSI) across four social tasks demonstrate that our
approach improves the ability of MLLMs and achieves state-of-the-art results on
multiple tasks. Attention visualizations confirm our method successfully focuses
the model on speaker-relevant regions, enabling more robust multi-party social
reasoning.

1 INTRODUCTION

Understanding social interaction requires modeling multi-party human behaviors through both ver-
bal and non-verbal cues, including dialogue, gestures (Cao et al., 2025)), gaze (Zhou et al., 2024),
and facial expressions (Hyun et al., 2024). To study these interactions, prior works have proposed
a variety of tasks and benchmarks, such as video question answering (VQA), speaking target detec-
tion, mentioned player prediction, and pronoun coreference resolution (Lei et al., [2020; |Lee et al.,
2024a)). Beyond serving as evaluation platforms, these tasks underpin socially intelligent Al agents
that operate in real-world multi-party scenarios like board games, daily conversations, and meetings.

Given their ability to comprehend both verbal and non-verbal information, multimodal large lan-
guage models (MLLMs) are natural candidates for these tasks (Lee et al., 2024a; |Li et al., |2025a;
Park et al., 2025b). However, our analysis reveals a critical limitation: the addition of visual in-
formation does not consistently improve, and can even degrade their performance in multi-person
settings. For example, on OnlineMMSI (Li et al., [2025a), supplying video frames to Qwen2.5-VL
(Bai et al., 2025) input yields no gain on the mentioned player prediction task, while LLaMA-3.2-
Vision (Dubey et al., 2024) sees its performance drop on the pronoun coreference resolution task
(L1 et al., 2025a). These observations suggest that current MLLMs struggle to effectively exploit
multimodal cues in complex multi-person social settings.

To better understand why MLLMs fail to leverage multimodal cues, we conduct a systematic quan-
titative analysis of cross-modal attention weights inside state-of-the-art MLLMs (Bai et al., [2025).
By measuring the attention weights between a speaker’s textual tokens and their corresponding vi-
sual region (i.e., their bounding box), we uncover a stark deficiency. We find that the cross-modal
alignment in multi-person videos is significantly weaker and less focused compared to the alignment
observed in general object-centric datasets like COCO (Lin et al.,2014). This limitation results in
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Figure 1: We propose a multimodal multi-speaker attention alignment method for MLLMs to un-
derstand social interactions in videos. Visualization of cross-attention weights in transformer layers
confirms that our approach strengthens the model’s focus on areas relevant to the active speaker.

inconsistent alignment between visual and textual modalities, thereby constraining the effectiveness
of MLLMs in multi-person social tasks.

To address this misalignment problem, we propose a multimodal multi-speaker attention alignment
method. Our approach intervenes directly within the transformer’s cross-attention layers. We first
propose a dynamic cross-modal head selection strategy that identifies attention heads most re-
sponsible for visual-text grounding. We then apply an adaptive social-aware attention bias to
these heads, which amplifies the attention scores between the visual and textual tokens belonging
to the same speaker. As illustrated in fig. [I] this mechanism explicitly guides the model to asso-
ciate the correct visual features with the corresponding dialogue. Crucially, our method requires no
additional trainable parameters or architectural changes in models.

We evaluate our method on three multimodal social interaction benchmarks (TVQA+ (Lei et al.)

[2020), MMSI 2024a)), and OnlineMMSI 2025a))) across four representative
tasks. Integrated into Qwen2.5-VL 2025)), our method consistently outperforms strong
baselines, yielding an average accuracy improvement of 3.5%. It achieves state-of-the-art perfor-
mance on three task settings and remains highly competitive on the remaining one. Attention visual-
izations further confirm that our approach successfully guides the model to focus on speaker-relevant
regions in videos.

Our main contributions are summarized as follows:

* We are the first to systematically quantify and identify the cross-modal attention misalignment in
MLLMs as a key bottleneck for understanding multi-party social interactions.

* We propose a novel attention alignment method that dynamically reinforces the association be-
tween speakers’ visual and textual representations without additional trainable parameters.

 Extensive experiments demonstrate that our method effectively guides model attention to speaker-
relevant regions, thereby improving performance in diverse multimodal social interaction tasks.

2 RELATED WORKS

2.1 MULTIMODAL SOCIAL INTERACTION

Multimodal social interaction refers to human communication across multiple modalities, including

spoken language, facial expressions (Hyun et all, [2024)), gaze (Zhou et al), [2024), gestures
2025), and body movements (Balazia et al.| 2022). Prior research has proposed a variety of
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related tasks and benchmarks, such as video question answering (VQA) (Lei et al., |2018; [Zadeh
et al., [2019; [Hyun et al., [2024} [Mathur et al., [2025} [Kong et al.| 2025), conversational modeling
(Ryan et al., 2023} |Lee et al., {20244} Jia et al.,2024; \Chang et al., [2025)), speaker prediction (North-
cutt et al., [2020; Miiller et al., 2021)), and social behavior classification (Lai et al., 2023 |Cao et al.,
20235)). These tasks hold strong potential for enabling Al agents to operate in multi-party social sce-
narios, including board games (Lai et al., 2023 |Grauman et al., 2022), daily conversations (North-
cutt et al. [2020), and multi-person meetings (Miiller et al., 2018} [Kraaij et al., |2005). Leveraging
MLLMs for such social interaction tasks has recently become an emerging trend (Lee et al., [2024b;
Mathur et al., 2024; Mou et al., 2024). This work is the first to introduce a multimodal attention
alignment method for multi-person conversations, evaluated across three datasets and four social in-
teraction tasks, showing its capacity to generalize across diverse multimodal social interaction tasks
and benchmarks.

2.2 MULTIMODAL BIAS AND ALIGNMENT IN MLLMSs

In multimodal learning, diverse modalities have been incorporated into MLLMs (Liu et al., 2023
Yan et al., [2024), where one fundamental challenge is achieving effective cross-modal alignment
(Radford et al., 20215 |Girdhar et al., 2023 |Chen et al., [2024c; [Amirloo et al., 2024; L1 et al., [2025Db).
Recent studies (Wu et al.l [2024b} |Amirloo et al.| 2024} Xiao et al., 2024} |Zheng et al., 2025}, [Park
et al., 2025bj Zhang et al., [2025d) have highlighted that MLLMs are deeply affected by modality
bias, where the models’ understanding and reasoning capabilities rely heavily on the textual modality
while underutilizing other modalities. To mitigate this bias and align modalities, some approaches
have focused on collecting additional datasets (Chen et al.,|2024a; Wu et al.|[2024c} Yue et al.,2024;
Chen et al., [2024b), reinforcement learning (P1 et al., 2024; Sun et al., 2024; Zhang et al., 2025bjc),
while other methods have sought to adjust the model’s attention toward non-text modalities (Xing
et al.|[2024} Zhang et al.,|2024; Tong et al.||2024;|Song et al., 2025 |An et al.,|2025; |Tang et al., 2025;
Wang et al.l 2025 |Zhang et al., |2025a)). These methods have demonstrated effectiveness on tasks
such as VQA, but they lack evaluation and exploration in multi-speaker social interaction scenarios.

Existing work on multimodal social interaction has proposed several strategies for aligning visual
and textual modalities across multiple speakers. (Lee et al.,|2024a) uses speaker embeddings (De-
vlin et al., 2019)), (L1 et al., [2025a) leverages visual prompts (Shtedritski et al.| |2023), (Park et al.,
2025a)) introduces Chain-of-Thought, and (Agrawal et al.,2024) incorporates the audio modality for
alignment. Compared to these works on social interactions, our study is the first to systematically
and quantitatively investigate this misalignment in social benchmarks. We are also the first to utilize
the cross-attention map within transformer layers for multi-person social interaction tasks.

3 ANALYSIS OF CROSS-MODAL ALIGNMENT IN MULTI-SPEAKER SETTINGS

Alignment between modalities is a fundamental challenge in vision-language models (VLMs) and
multimodal large language models (MLLMs), and a large body of work has focused on learning
aligned representations between visual and textual encoders (Radford et al.,2021). This alignment
can be quantitatively assessed via the cross-modal attention weights between textual and visual fea-
tures (Alayrac et al. [2022). When the visual tokens V and textual tokens U/ are concatenated and
processed by a transformer, the self-attention mechanism (Vaswani et al., |2017) enables interac-
tions across modalities. Formally, let X = [V;U] € RITAWHK)xd denote the concatenated token
sequence. The attention weights are computed as

, W) T
Attn(i, j) = softmax; <(x1WQ)(xJ Wk) ) ’

Nz 1
where x;,z; € X are token embeddings and W, Wi are projection matrices. In the cross-modal
case, we specifically focus on the sub-matrix of Attn(i, j) where 7 indexes text tokens and j indexes
visual tokens. This sub-matrix, denoted as the cross-modal attention weights, captures the seman-
tic grounding between textual and visual modalities. High attention weights in this matrix indicate
that tokens from text effectively attend to semantically corresponding visual tokens. For example, as
illustrated in fig.[2](a), tokens representing “cat”, “car”, and “flower” attend strongly to visual tokens
corresponding to object regions. Such interpretable cross-modal attention maps have been widely
utilized in multimodal tasks, including MLLMs for visual grounding (Wu et al.,2024a};[Zhang et al.,
2025a)) and text-to-image generation models (Chefer et al., {2023} |Hertz et al., 2023)).
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Figure 2: Cross attention weights in Qwen2.5-VL layer 16. Compared to general images, cross-
modal alignment in multi-speaker images is weak and inconsistent. Image resolution is 2000x2000.

In multi-speaker social interaction scenarios, challenges arise due to the presence of multiple indi-
viduals in the visual scene and ambiguous textual references in conversations. For example, speakers
are often mentioned by names or anonymized labels such as “speaker 2”, which do not clearly cor-
respond to visual regions. As illustrated in fig. 2] (b), the attention weights of speakers’ textual
tokens are highly scattered, preventing the model from effectively leveraging the corresponding vi-
sual information. One attempt to mitigate this issue is shown in fig. 2] (¢), where bounding box
coordinates are prompted into the text input. However, we observe that the resulting cross-modal
attention remains weak, and the model still struggles to establish clear correspondences. Previous
works (Li et al., 20254 [Shtedritski et al.,[2023)) have also proposed introducing visual prompts, such
as adding highlighted bounding boxes or keypoints in the image (fig. [2] (d)). This strategy indeed
helps speakers’ textual tokens attend to the correct region, but the attention tends to concentrate
along the bounding box boundaries rather than the interior. Moreover, we find that the attention map
of speaker 3 becomes misaligned, incorrectly overlapping with the region of speaker 2.

To investigate how well MLLMs align textual references with visual evidence in multi-speaker
images, we quantitatively analyze cross-modal attention through controlled experiments with

Qwen2.5-VL (Bai et all [2025). Specifically, given a text token u; € U and its corresponding
visual tokens Vs C V, we define the alignment score as

1

AttnMax(u;, Vs) = m?}xAttn(ui,v), AttnMean(u;, Vs) = m
vEVs s

> Aun(ui,v)  (2)
vEV,

We compute such statistics across different datasets and compare under various alignment strategies.
COCO (Lin et al.| [2014). We sample 1,110 images from the COCO object detection validation set,
and compute attention with text queries such as “{class 1}, {class 2}, ...”.

MMSI (Lee et al.,[2024a). We use 1,921 images with queries “{speaker 1}, {speaker 2}, ...".
MMSI + Box Prompt (Bai et al., |2025). The text input is augmented with bounding box coordi-
nates, e.g., “{speaker 1} in [x,y,z,t], {speaker 2} in [a,b,c,d], ...”.

MMSI + Visual Prompt (Li et al.| [2025a). Bounding boxes are drawn in distinct colors on the
image, and the query takes the form “{speaker 1} in red box, {speaker 2} in blue box, ...".



Under review as a conference paper at ICLR 2026

QOurs. We apply our proposed multi-speaker alignment method, which explicitly enhances attention
weights in speaker-specific regions. See section 4| for details.

Table 1: Cross attention weights in COCO and MMSI images.

Image Source Alignment Method AttnMazx  19-2 AttnMean o 1g-4
COCO / 9.23 15.56
/ 4.54 3.26
MMSI box prompt 4.49 3.93
visual prompt 6.29 5.29
Ours 17.09 26.20

We report the quantitative results in table[T} Compared to general objects in COCO detection dataset,
the attention between images and speaker tokens in MMSI is substantially lower, highlighting the
difficulty of aligning speaker references in multi-person contexts. We further observe that introduc-
ing visual prompts indeed improves attention weights, but the gains remain limited. This reveals a
fundamental challenge for MLLMs: cross-modal alignment for multi-speaker scenarios is weak and
inconsistent, as the model struggles to establish clear correspondences between textual references to
speakers and their visual representations.

4 PROPOSED METHOD

To address the problem of weak and inconsistent cross-modal alignment in social tasks, we propose
a multimodal multi-speaker attention alignment method. Our approach consists of two key com-
ponents: (1) a dynamic cross-modal head selection mechanism that identifies attention heads most
relevant for multimodal grounding, and (2) an adaptive social-aware attention bias that reinforces
cross-modal token alignment. An overview of the method is illustrated in fig. 3]

Input for MLLMs. Let the social interaction video be mapped into a set of visual tokens }V =
{vihw €ERY |t €[1,T],h €[1,H],w € [1, W]} by the patch embedder and visual encoder, where
each token corresponds to a spatio-temporal patch indexed by (¢, h,w). The transcripts consist
of speakers’ utterances, which are tokenized and encoded into U = {uy € R? | k € [1,K]},
where each token wuy, is associated with a speaker label s and a timestamp ¢. In general, the speaker
label s is determined by who speaks the utterance, except for certain special tokens that explicitly
refer to speakers (e.g., “Mitchell” or “speaker 2”’), which are consistently assigned the label of the
person they denote. Note that textual contents unrelated to speaker utterances, such as the system
prompt and task instructions, are not included in /. In addition, the dataset provides a set of speaker
bounding boxes B = {b, ; }, where each box b ; specifies the spatial location of speaker s at frame
t. By mapping box coordinates to the grid of visual tokens, we obtain subset V, ; associated with
each speaker label.

4.1 DYNAMIC CROSS-MODAL HEAD SELECTION

Modern MLLMs employ multi-head attention, with different heads capturing complementary facets
of token interactions (Vaswani et al., 2017 |Voita et al., |2019). Previous studies (B1 et al., |2025)
in MLLMs have identified that specific transformer layers contain specialized “visual heads” that
reliably focus on image tokens during task-solving. The presence and focus of such heads vary
across models and training strategies, indicating that visual heads are dynamic rather than fixed.

To preserve the pretrained capabilities of MLLMs while improving their cross-modal grounding, we
propose a dynamic cross-modal head selection mechanism that identifies the subset of heads with
strong cross-modal interactions. Concretely, let V,;; = USe g UteT V¢ denote the set of visual
tokens inside bounding boxes for all speakers in the video. We define a threshold A to classify
each attention head, based on the cross-modal attention sub-matrix Attn(U/, V,;;) that represents the
attention from utterance tokens to all speaker regions:

1
active, _— Z Z Attnpeqa(u, v) > A
|u| |Va”| ueEU vEV, (3)

inactive, otherwise.

head is
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Figure 3: Overview of proposed method.

As illustrated in fig. 3] an active head is characterized by having distinctly high attention weights
concentrated in one or more speaker regions, whereas an inactive head exhibits weak cross-modal
attention across all regions. Only active heads are selected for applying the subsequent social-aware
attention bias.

4.2 ADAPTIVE SOCIAL-AWARE ATTENTION BIAS

In attention computation, adding a bias term to attention weights is a common strategy to control
token interactions. For example, language models introduce padding masks or causal masks to
prevent tokens from attending to irrelevant or future positions (Devlin et al., 2019; Radford et al.,
2019). In the context of social interaction, to strengthen the attention between visual and textual
tokens belonging to the same speaker s in frame ¢, we introduce a social-aware bias W}, applied
within the active heads. Specifically, for a text token u; associated with speaker s, we assign the
bias value for each visual token v; as

w;Wo) (W) T
Wb(uivvj) = - ’Urélgjfl (Q)\/(al(),

where « is a scaling factor controlling the bias strength, and max,ey,,, Attn(u;,v) captures the
strongest cross-modal interaction that u; originally attends to among all speakers’ visual tokens.

U € Ust, V5 € Vs, 4

The motivation of using adaptive weights for different tokens is that certain tokens (e.g., “speaker”,
“Sheldon”, or object mentions) naturally exhibit stronger semantic interactions with visual content,
while others (e.g., discourse fillers such as “yeah”, “then”) are much weaker. By assigning the
maximum attention value to speaker-associated regions, we softly shift the distribution of attention
towards the visual area of the current speaker, without suppressing the token’s original attention
pattern. This design ensures that attention alignment is enhanced in a smooth and adaptive way
rather than enforced rigidly. Finally, the adjusted attention is computed as:

(uiWo)(v; W) "
Vd

Our method requires no additional trainable parameters. Moreover, by leveraging dynamic head

selection, it introduces only minimal computational overhead while effectively utilizing speaker

bounding box annotations to enhance cross-modal alignment in multi-speaker videos.

Attn(i, ) = softmax;( + Wa(us, v5)). (5)
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5 EXPERIMENTS

5.1 DATASETS

We conduct experiments on three publicly available datasets under four social task settings. These
datasets contain videos, timestamped transcripts, and speaker bounding box annotations, which are
utilized in both training and evaluation. The datasets statistics are described below:

TVQA+ (Lei et al.,2020; [2018)) is a multi-party video question answering dataset with rich dynam-
ics and realistic social interactions built on TV series. The QA-pairs are diverse, covering dialogue
understanding, reasoning, and speaker relations modeling. In our experiments, we select samples
containing at least one annotated speaker bounding box, resulting in 17,306 training samples and
2,211 test samples. On average, each sample involves 1.9 speakers, 23.8 words and 7.8 seconds.

MMSI (Lee et al., 2024a) is a recent social interaction benchmark built from multi-party board
game videos (Lai et al.,2023) collected from YouTube and Ego4D (Grauman et al.;,2022). It defines
three challenging tasks to capture fine-grained interaction dynamics: speaking target identification,
pronoun coreference resolution, and mentioned player prediction. Following their split and prepro-
cessing, we use the YouTube subset, which contains 7,111 training samples and 1,921 test samples.
On average, each sample involves 4.1 speakers, 85.2 words, and 3.0 seconds of video.

OnlineMMSI (L1 et al., 2025a) is an extension of MMSI that reformulates three tasks under an
online setting, where only preceding context of a conversation is available, without access to future
dialogue. This design increases task difficulty and enhances practical applicability. The data split
and statistics is identical to MMSI, with a forward-shifted historical window applied to each sample.

5.2 IMPLEMENTATION DETAILS

We adopt Qwen2.5-VL-Instruct-7B (Bai et al.| [2025) as the base MLLM in all experiments. Fol-
lowing dataset annotations (Lei et al., [2020; |Lee et al.,[20244a)), videos are processed at resolution of
640x360 and uniformly sampled into 8 frames. During training, we fine-tune the model using LoRA
(Hu et al.| 2022)) applied to all projection layers. Following (Li et al.,[2025a)), we set the LoRA rank
to 512, the learning rate to 1e-4, the batch size to 4, and train for 5 epochs. All experiments are con-
ducted on a single NVIDIA A100 GPU, with the implementation built on LLaMA-Factory (Zheng
et al.} 2024) and pytorch (Paszke et al.,|2019). We set A = 5e — 5 and o = 1.0 in our method. The
prompts used for MLLM instructions are provided in appendix

5.3 RESULTS

Table 2: Accuracy on TVQA+, MMSI and OnlineMMSI. T for speaking target identification, P
for pronoun coreference resolution, M for mentioned speaker prediction. * TLNet/ST-VLM results

are taken from their paper, which may adopt a different split from ours. More descriptions of the
baselines are provided in appendix

Method TYQA+ MMSI OnlineMMSI
VideoQA T P M T P

Random 20.0 21.0 23.2 23.7 21.0 23.2 23.7
ST-VLM-7B* (Ko et al.{[2025) 68.1

TLNet* (Liang et al.|[2024a) 75.5

MMSI (Lee et al.|[2024a) 74.5 73.0 62.5 59.1 63.4 47.3
OnlineMMSI (Li et al.|[2025a) 86.1 66.5 76.2 63.5 64.8 72.9 49.4
Qwen2.5-Text (Bai et al.|[2025) 78.0 66.3 77.0 61.7 59.3 74.4 49.0
Qwen2.5-VL (Bai et al.|[2025) 85.1 63.3 77.2 58.3 59.6 75.1 50.2
Qwen2.5-VL+Ours 87.3 68.5 78.6 66.0 62.4 78.2 531

Comparison with baselines table [2| presents the accuracy on TVQA+, MMSI, and OnlineMMSI.
On TVQA+, our method improves Video Multiple-Choice QA accuracy by 2.1% over Qwen2.5-
VL, achieving a new state-of-the-art result. On MMSI and OnlineMMSI, our approach yields gains
of 4.0%, 2.5%, and 5.3% across three social tasks, demonstrating that our method significantly
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enhances MLLMs’ ability to understand social interaction. We observe that the improvements on
MMSI are higher than on TVQA+. This is because MMSI videos involve more participants, high-
lighting the advantage of our approach in handling multi-speaker alignment under more complex
scenarios. In addition, TVQA+ videos are drawn from scripted TV shows, where speaker charac-
ters are fixed and the model may learn name-token associations during finetuning. Compared to
baselines that rely on injecting box coordinates, speaker names, or color cues into the text input
to associate modalities, our method requires no such auxiliary prompts. While their improvements
are often unstable across tasks (boosting performance on some tasks while degrading others), our
method modifies attention distributions in a natural and direct manner, achieving stable and gener-
alizable cross-modal alignment for social interaction tasks.

On the other hand, our method does not surpass the current state-of-the-art on the speaking target
identification task, likely because this task requires more balancing attention between both the cur-
rent speaker and the his speaking target. However, we still achieves the second-best accuracy with
competitive performance, and on pronoun coreference resolution and mentioned speaker prediction,
our approach significantly outperforms prior methods on MMSI and OnlineMMSI.

Visualizations We present visualizations of Qwen2.5-VL’s cross-attention maps before and after
applying our social-aware bias in fig.[4} As shown in example (a), when asked about the behavior of
the character Penny, Qwen2.5-VL incorrectly predicted “raise hand”, which is actually the action of
another character, Beverley. The attention map reveals that a considerable portion of Penny’s atten-
tion was misaligned to Beverley’s region. After adding our bias, the attention naturally concentrates
on Penny, leading to the correct answer “tap the bar”.

In the case (b), the question concerns the emotion of Sheldon when switching beds (third image, cor-
responding to Sheldon’s second utterance). We visualize the attention maps of the second “Sheldon”
token across frames. Without our bias, Qwen2.5-VL assigns attention uniformly across Sheldon’s
visual tokens over all frames. By adding our bias, the model clearly emphasizes the third frame over
the first, achieving more accurate spatial-temporal-speaker alignment between text and video, and
producing the correct answer. Similarly, in two examples (c)(d) from MMSI, our bias enables precise
modeling of current speaker in videos, further enhancing the understanding of social interactions.

(a)

Q: What did Penny do
when she told the
bartender to hit them?
A1: She raised her hands.
A2: She tapped the bar. ~ Penny: Hit us again. Yes.Beverley: If little is good, more must be better. Haha.

(c)

o
. is Mi 2 A s
Q: Who is Mitchell? A

Ph “ L o .
S4: If you telling truth... ~ S1:We have 15 seconds.
If you're telling a lie... $2: | think it’s Mitchell, ...

Qwen2.5-VL: A1 X

Wrong answer’s
Attnmap[‘Penny’]

| Qwen2.5-VL: S3 X
: Wrong answer’s

| Attnmap[‘S2’]

1
: Ours: S4

I Correct answer’s

1 qo?
| Attnmap[‘$2°]

Ours: A2

Correct answer’s
Attnmap[‘Penny’]

(b)

=

Q: How did Sheldon feel
when he switching beds?
Al: sleepy. A2: irritated.
A3: relieved. Ad: tired.

Q: Who is S1 speakingto? M

1
1
1
1
1
- I
1
Sheldon: | 'm comfortable Howard : We 're switching. Just get in the bed. | S4:Insomniac? S3: A drunk is not boring.
sleeping on a bouncy castle.  Sheldon: Only if you want to. 1 It's exciting. $1: Boring for me. Who were you?
1
1
1
1
1
I
1
1

Qwen2.5-VL: A2 X
Wrong answer’s
Attnmap[‘Sheldon’]

Qwen2.5-VL: 54 X
Wrong answer’s

Attnmap[‘S1’]
Ours: A3 | Ours: S2
Correct answer’s : Correct answer’s
Attnmap[‘Sheldon’] 1 Attnmap[‘S1’]

Figure 4: Attention maps in Qwen2.5-VL layer 16 before and after adding social-aware bias. Our
bias enables more accurate spatial-temporal-speaker alignment. Video resolution is 640x360.
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5.4 ABLATIONS

To examine the effectiveness of different components of our method, we conduct ablations on active
head selection and social-aware bias.

Transformer Layers We investigate the effect of applying bias at different layers of the transformer,
including all layers (0-27), as well as subsets of early, middle, and late layers. As shown in table [3]
the best performance is achieved when the bias is applied to middle layers (10-19), followed by all
layers. This finding suggests that middle layers may play a more crucial role in cross-modal feature
fusion. This observation is consistent with prior studies (Zhang et al., [2025a} [Liang et al.| [2024b;
Chen et al., [2025} |Bi et al., [2025)), as well as with our visualization analysis conducted on layer 16.

Active Head Threshold We vary the cross-attention strength threshold A and report the results with
the ratio of active heads in table f] Note that we only apply the bias to middle layers, thus the
maximum ratio is 35.7%. We find that the best performance is achieved at a small threshold of
5e — 5. Compared to the original Qwen2.5-VL, even activating only 9% of heads yields an average
improvement of about 3% across tasks, while activating 25% achieves a 4% gain. This demonstrates
the importance of our bias in facilitating multi-speaker multimodal understanding. In contrast, ac-
tivating all heads leads to a drop in performance, likely because some heads are responsible for
attending positional encoding or text modality, while adding bias on them disrupts their stability.

Table 3: Effect of transformer layers. Table 4: Effect of the number of active heads.
TVQA+ MMSI Active | TVQA+ MMSI
Layers | .. QA | T P M heads(%)| VideoQA | T P M

0 357 856 | 654 778 612
0-27 85.6 669 791 632 Se5 246 73 685 786 660
0-9 86.0 | 66.9 76.7 64.4 24 158 868 | 679 782 66.0
10-19 87.3 68.5 78.6 66.0 8e-4 9.0 86.5 | 683 788 649
20-27 86.2 664 784 644 inf 0.0 85.1 633 772 583

Bias Strength We evaluate different strategies for set- .
ting the bias strength, with results shown in table [3} Table 5: Effect of bias strength.
Compared to the fixed-value strategy, our adaptive W}

in eq. consistently achieves better performance. A . TVQA+ MMSI
fixed large bias forces the model to over-focus on the Bias VideoQA | T P M
guided regions while ignoring global visual informa- fixed

tion, which in turn leads to a performance drop. This 0 85.1 633 772 583
indicates that our adaptive social-aware biasing mecha- 10 86.4 | 657 1753 635
nism is highly natural: it enhances attention toward the 100 844 | 642 725 538
current speaker’s region without disrupting the model’s adaptive

inherent attention patterns, thereby improving cross- 0.5-max | 868 | 668 772 637
modal alignment and yielding stronger performance 1-max 873 | 685 78.6 66.0
across social interaction tasks. 2 max 86.0 | 667 774 64.1

6 CONCLUSION

This paper presents a method to help multimodal large language models better understand multi-
modal multi-speaker social interactions. Building on a systematic analysis of cross-modal attention,
the proposed method strengthens the alignment between visual and textual tokens belonging to the
same speaker. Experiments across multiple datasets and tasks validate its effectiveness in improving
multi-speaker reasoning. Future research directions include further investigating the role of attention
heads in cross-modal alignment, exploring ways to leverage inherent grounding abilities of MLLMs
to guide alignment without relying on bounding box annotations, thereby reducing annotation costs
and enhancing efficiency for social Al

LLM Usage In this work, a large language model (ChatGPT) was employed solely for language
polishing and writing refinement. Its role was limited to improving clarity and readability of the
manuscript. LLM was not involved in the design of the methodology, data processing, or analysis.
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A APPENDIX

A.1 TASKS INSTRUCTIONS

We evaluate our method on four types of social interaction tasks. Each task takes as input the
video frames, transcripts, and speaker bounding boxes. We describe the tasks and prompts used for
MLLMs below:

Video Question Answering. This task requires answering questions grounded in multi-party
dialogue videos. In TVQA+ (Lei et al.l [2020), each question is accompanied by five candidate
choices. Instruction prompt: <video>\nWatch this video of speakers social
interaction, read their conversation, question and choose the
correct answer. {Conversation}. Q: How does Sheldon feel? aO0:
tired, ..., a4: angry.

Speaking Target Identification. This task identifies the addressee (speaking target) of
the current speaker in the dialogue. Instruction prompt: <video>\nWatch this
video of {N} speakers social interaction, be aware of their
non-verbal behaviours. Read the conversation. {Conversation}.
Predict the speaking target (speaking to whom) of this sentence:
Speaker 0: Who were you?

Pronoun Coreference Resolution. This task aims to resolve pronouns in the dialogue transcripts
to their corresponding speakers. Instruction prompt: <video>\nWatch this video
of {N} speakers social interaction, be aware of their non-verbal
behaviours. Read the conversation. {Conversation}. Predict
which speaker should be the 'he’ in this sentence: Speaker 1:
Did he not say that?

Mentioned Player Prediction. This task requires linking a dialogue mentioned name to
the correct participant appearing in the video. Instruction prompt: <video>\nWatch
this video of {N} speakers social interaction, be aware of their
non-verbal behaviours. Read the conversation. {Conversation}.
Predict which speaker should be the "Mitchell’ in this sentence:
Speaker 3: I think it’s Mitchell.

A.2 BASELINE METHODS

We compare our method against several baseline approaches in table[2} described as follows:

Random. For the VQA task, the model randomly selects one answer from five candidates. For
MMSI tasks, it randomly selects one speaker among N candidates.

ST-VLM-7B (Ko et al.,|2025) and TLNet (Liang et al.,[2024a)) are highly competitive models on
TVQA+. However, since our setting requires at least one speaker with bounding box annotations,
our training and test sets differ from theirs. Despite this difference, our method substantially
outperforms these baselines.

MMSI (Lee et al., 2024a) employs a transformer to align and fuse text features from language
models with visual interaction features derived from bounding boxes and keypoints. Classification
tasks are then performed via a masked modeling objective to solve three social interaction tasks.
We report their best-performing result, i.e., the ROBERTa-based baseline, for comparison.

OnlineMMSI (Li et al., |2025a) leverages bounding boxes and keypoints as visual prompts to
align multiple speakers for MLLMs. Since the implementation was not publicly released, we
re-implemented it based on Qwen2.5-VL, using only bounding box annotations for a fair compar-
ison. Notably, our reproduced results are even higher than original reported numbers, which may
be due to preprocessing differences, but this does not affect the fairness of comparison.

Qwen2.5-Text (Bai et al., 2025) is a text-only baseline where Qwen2.5-VL is given only the
dialogue transcripts without any video input.

Qwen2.5-VL (Bai et al., [2025) is a strong MLLM baseline. We use the instruction prompt
described in appendix [A.I] but additionally append bounding box coordinates as text prompts,
e.g., Speaker 1 [100,100,300,4007.
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