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Abstract

Modeling the dynamics from sparsely time-resolved snapshot data is crucial for un-
derstanding complex cellular processes and behavior. Existing methods leverage op-
timal transport, Schrodinger bridge theory, or their variants to simultaneously infer
stochastic, unbalanced dynamics from snapshot data. However, these approaches re-
main limited in their ability to account for cell-cell interactions. This integration is
essential in real-world scenarios since intercellular communications are fundamen-
tal life processes and can influence cell state-transition dynamics. To address this
challenge, we formulate the Unbalanced Mean-Field Schrédinger Bridge (UMFSB)
framework to model unbalanced stochastic interaction dynamics from snapshot
data. Inspired by this framework, we further propose CytoBridge, a deep learning
algorithm designed to approximate the UMFSB problem. By explicitly model-
ing cellular transitions, proliferation, and interactions through neural networks,
CytoBridge offers the flexibility to learn these processes directly from data. The ef-
fectiveness of our method has been extensively validated using both synthetic gene
regulatory data and real scRNA-seq datasets. Compared to existing methods, Cyto-
Bridge identifies growth, transition, and interaction patterns, eliminates false transi-
tions, and reconstructs the developmental landscape with greater accuracy. Code is
available at: https://github.com/zhenyiizhang/CytoBridge-NeurIPS.

1 Introduction

Reconstructing dynamics from high-dimensional distribution samples is a central challenge in science
and machine learning. In generative models, methods such as Variational Autoencoders (VAEs)
(Kingma and Welling 2013), diffusion models (Ho et al. 2020; Sohl-Dickstein et al. 2015; Song et al.
2021), and flow matching (Lipman et al. 2023; Tong et al. 2024a) have achieved success in generating
high-fidelity images by coupling high-dimensional distributions (Liu et al. 2023). Meanwhile, in
biology, inferring dynamics (also known as trajectory inference problem) from several static snapshots
of single-cell RNA sequencing (scRNA-seq) data (Ding et al. 2022) to build the continuous dynamics
of an individual cell and construct the corresponding cell-fate landscapes has also attracted broad
interests (Schiebinger et al. 2019; Klein et al. 2025; Zhang et al. 2025b).

To study the trajectory inference problem, optimal transport (OT) theory serves as a foundational tool
(Bunne et al. 2024; Zhang et al. 2025b; Heitz et al. 2024; Zhang et al. 2025c¢). In particular, several
works propose to infer continuous cellular dynamics over time by employing the Benamou—Brenier
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formulation (Benamou and Brenier 2000). Given that cell growth and death are critical biological
processes, modeling the coupling of underlying unnormalized distributions has led to the development
of unbalanced dynamical OT by introducing Wasserstein—Fisher—Rao metric (Chizat et al. 2018a;
Chizat et al. 2018b). To further account for the prevalent stochastic effects on single-cell level,
methods inspired by the Schrodinger Bridge (SB) problem seek to identify the most likely stochastic
transition path between two arbitrary distributions (Gentil et al. 2017; Léonard 2014). To tackle both
stochastic and unbalanced effects simultaneously, methods have been developed to model unbalanced
stochastic dynamics (Pariset et al. 2023; Lavenant et al. 2024), along with a recent deep learning
method (Zhang et al. 2025a), which leverages the regularized unbalanced optimal transport (RUOT)
framework to infer continuous unbalanced stochastic dynamics from samples without requiring prior
knowledge.

Nevertheless, the majority of existing trajectory inference methods do not account for cell-cell
interactions in cell-state transition dynamics, which involve important biological processes such as
intercellular communications (Almet et al. 2024; Tejada-Lapuerta et al. 2025; Cang et al. 2023).
Developing frameworks to infer unbalanced and stochastic continuous dynamics with particle interac-
tions from multiple snapshot data remains a critical yet underexplored challenge.

To address this challenge, we propose the Unbalanced Mean Field Schrodinger Bridge (UMFSB),
a modeling framework based on the Mean Field Schrodinger Bridge that extends to unnormalized
distributions. We further develop a new deep learning method (CytoBridge) to approximate the
general UMFSB and learn continuous stochastic dynamics with cellular interactions from snapshot
data with unbalanced distributions. Our primary contributions are summarized as follows:

* We formulate the UMFSB problem to model unbalanced stochastic dynamics of interactive
particles from snapshot data. By reformulating UMFSB with a Fisher regularization form, we
transform the original stochastic differential equation (SDE) constraints into computationally
more tractable ordinary differential equation (ODE) constraints.

* We propose CytoBridge, a deep learning algorithm to approximate the UMFSB problem.
By explicitly modeling cellular growth/death and interaction terms via neural networks,
CytoBridge does not need prior knowledge of these functions.

* We validate the effectiveness of CytoBridge extensively on synthetic and real scRNA-seq
datasets, demonstrating promising performance over existing trajectory inference methods.

2 Related Works

Various Dynamical OT Extensions and Deep Learning Solvers Numerous efforts have been
made to learn dynamics from snapshot data. To tackle the dynamical optimal transport problem,
several methods have been proposed by leveraging neural ODEs or flow matching techniques (Tong
et al. 2020; Huguet et al. 2022; Wan et al. 2023; Zhang et al. 2024a; Tong et al. 2024a; Albergo
et al. 2023; Palma et al. 2025; Rohbeck et al. 2025; Petrovic¢ et al. 2025). To account for sink and
source terms in unnormalized distributions, Peng et al. 2024; Sha et al. 2024; Tong et al. 2023;
Eyring et al. 2024 developed the neural ODE-based solver for unbalanced dynamical OT. Wang et al.
2025 developed a flow matching approach to simultaneously learn velocity and growth. For the
Schrodinger Bridge (SB) problem, approaches have been proposed based on its static or dynamic
formulations (Shi et al. 2024; De Bortoli et al. 2021; Gu et al. 2025; Koshizuka and Sato 2023;
Neklyudov et al. 2023; Neklyudov et al. 2024; Zhang et al. 2024b; Bunne et al. 2023; Chen et al.
2022b; Zhou et al. 2024a; Zhu et al. 2024; Yeo et al. 2021; Jiang and Wan 2024), with corresponding
flow matching methods (Tong et al. 2024b). To further incorporate unbalanced effects in the SB
framework, methods utilizing branching SDE theory (Lavenant et al. 2024; Ventre et al. 2023; Chizat
et al. 2022), forward-backward SDE (Pariset et al. 2023), neural ODEs with Fisher information
regularization (Zhang et al. 2025a), or with first-order optimality conditions (Sun et al. 2025) have
been introduced. However, theoretical formulation, along with an effective deep learning solver to
simultaneously account for unbalanced stochastic effects and particle interactions in the dynamical
OT framework, remains largely lacking.

Modeling Cellular Interactions in Trajectory Inference Several studies have explored the incor-
poration of cellular interaction effects into time-series sScCRNA-seq trajectory inference. For instance,
Atanackovic et al. 2025 employs a graph convolutional network within a flow-matching framework



to model the impacts of neighborhood cells within the initial cell population. You et al. 2024 intro-
duced a population-level regularization in the energy form. Yang 2025 formulated the topological
Schrodinger Bridge problem on a discrete graph. Fu et al. 2025 improves the accuracy of pseudotime
inference by integrating cellular communication pattern. However, an explicit quantification of cell
interaction dynamics in scRNA-seq trajectory inference is yet to be explored.

Mean-Field Control Problem Several works have explored mean-field problem (Zhou et al. 2024b;
Ruthotto et al. 2020; Lu et al. 2024; Yang et al. 2024; Huang et al. 2024; Han et al. 2024; Shen
and Wang 2023; Li and Liu 2025; Li et al. 2023; Shen et al. 2022) and its variants, as well as the
incorporation of particle interaction terms in the Schrédinger Bridge Problem. Backhoff et al. 2020;
Herndndez and Tangpi 2025 investigated theoretical properties of the Mean Field Schrédinger Bridge
Problem. Rapakoulias et al. 2025 develop a deep learning solver for the MFSB problem. Liu et al.
2022b; Liu et al. 2024 proposed the generalized formulation of Schrodinger bridges that includes
interacting terms. Yang et al. 2022 formulated the ensemble regression problem and developed a
neural ODE-based approach to learn the dynamics of interacting particle systems from distribution
data. However, these approaches either require prior knowledge to specify the interaction potential
field or do not account for unbalanced stochastic dynamics.

3 Preliminaries and Backgrounds

In this section, we provide an overview of unbalanced stochastic effects and interaction forms within
the dynamical OT framework. By integrating two perspectives of RUOT and MFSB described below,
we motivate the formulation of the Unbalanced Mean Field Schrodinger Bridge (UMFSB) framework.

3.1 Regularized Unbalanced Optimal Transport

The regularized unbalanced optimal transport, also known as the unbalanced Schrédinger Bridge
problem (Chen et al. 2022c), considers both the unbalanced stochastic effects in the dynamical OT
framework (Baradat and Lavenant 2021; Zhang et al. 2025a):

Definition 3.1 (Regularized Unbalanced Optimal Transport). Consider
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where ¥ : R — [0, +00] corresponds to the growth penalty function, and « is the weight of the growth
penalty. The infimum is taken over all pairs (p,b, g) such that p(-,0) = vo, p(-,1) = v1, p(x,1)
absolutely continuous, and

1
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with vanishing boundary condition: lim p(x,t) = 0.
|x|—00

Here b(x, t) is the velocity, g(x,t) is the growth function, and o (¢) is the diffusion rate. Note that
here 1y and 1/, are not necessarily the normalized probability densities, but are generally unnormalized
densities of masses.

3.2 Mean Field Schriodinger Bridge Problem

Schrodinger bridge problem aims to find the most probable path between a given initial distribution
1 and a target distribution vy, relative to a reference process. Formally, it can be stated as:

min Dy (MX I ) )
p¥=vo, u¥=1 ol
where “[)3,1] is the probability measure induced by X; (0 <t < 1) and the reference measure MFo{,1]~

However, the classical Schrodinger bridge problem considers the independent particles. The mean
field extends the SB problem to the interacting particles with given initial and final distributions.
We consider the dY; = a(Y;,t)dW,, where (Y, t) € R¥ is the diffusion rate, W; € R? is



the standard multi-dimensional Brownian motion and it is called the diffusion Schrodinger bridge
problem, where it has a dynamic formulation. So the mean field Schrédinger bridge problem can be
stated through this dynamical formulation (Backhoff et al. 2020; Herndndez and Tangpi 2025):

Definition 3.2 (Mean Field Schrodinger Bridge Problem). Consider
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The infinium is taken over all (b, p) subject to p(x,0) = vo, p(x,1) = v1, and
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where ® is the interaction potential and it is satisfied ®(—x) = ®(x). The k(-,-) : R? x R — R is
the interaction weight function.

4 Unbalanced Mean Field Schrodinger Bridge

In this section, we introduce the unbalanced mean field Schrodinger Bridge problem. Inspired by
regularized unbalanced optimal transport, the dynamical formulation Definition 3.2 suggests a natural
way to relax the mass constraint by introducing a growth/death term gp in (2). Meanwhile, we also
introduce a loss function in (1) which considers both the growth and transition metric.

Definition 4.1 (Unbalanced Mean Field Schrodinger Bridge). Consider
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where U(-) : R — R is the growth cost function. The infinium is taken over all (b, g, p, ®) subject
to p(x,0) = vy, p(x,1) = vy, and
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where ® is the interaction potential and it is satisified ®(—x) = ®(x). The k(-,-) : R x R* — R is
the interaction weight function.

In Definition 4.1, if k(x,y) = 0, which means there is no cell-cell interaction, it degenerates to the
regularized unbalanced optimal transport problem. If the growth penalty is set such that g(x, t)
must be zero (i.e., by setting ¥(g(x,t)) = +oo for g(x,t) = 0 and ¥(0) = 0), the framework
degenerates to simpler forms: if interactions are present (k(x,y) # 0), the formulation reduces to
the Mean Field Schrodinger Bridge problem; if interactions are absent (k(x,y) = 0), it reduces to
the regularized optimal transport problem. It becomes the unbalanced dynamics optimal transport
when k(x,y) = o(t) = 0 and ¥(g) = g*. It becomes the dynamics optimal transport when growth,
interaction and diffusion all goes to zero. We can reformulate Definition 4.1 with the following Fisher
information regularization.

Theorem 4.1. The unbalanced mean field Schrodinger Bridge Definition 4.1 is equivalent to
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where U(-) : R — R is the growth cost function, and « is the weight of the growth cost. The infinium
is taken over all (b, g, p, ®) subject to p(x,0) = vy, p(x,1) = v1, and
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where ® is the interaction potential and it is satisified ®(—x) = ®(x). The k(-,-) : R x R* — R is
the interaction weight function.



Here v(x,t) is a new vector field function. This Fisher information form transforms the original SDE
problem into the ODE problem which is computationally more tractable. Next, we will focus on
solving this problem. The proof is simple and we left it in Appendix D.1 for reference.

Remark 4.1. From the proof of T/wormn 4.1, the relation between the new vector filed v(x,t) and
b(x,t) is v(x,t) = b(x,t) — 0%(t)Vx log p(x, t). The new v(x,t) is also known as probability
flow ODE and V log p(x,t) is the score function. Conversely, if the probability flow ODE v(x,t)
and the score function Vy log p(x,t) are known, then we can recover the original drift term.

5 Learning Cell Dynamics and Interactions through Neural Networks

Assume that we collect scRNA-seq samples from Time 0 birth Time 1_death
unnormalized distributions X; € R"%*4 (¢ = N =y
1,2,.--,T)atT time points, where n; is the number =S

of cells at time ¢ and d is the number of genes, here we b/ I » 40 —

propose the CytoBridge algorithm to approximate (£ /

UMEFSB through neural networks. We parameterize ®_ \5 x_ .\@h
transition velocity v(x,t), cell growth rate g(x,t), 77 noise

Ap(x,t) _

log density function 102 (t) log p(x,t) and cellular o
interaction potential ®(x, ¢) using neural networks
Vg, go, Sp and Py respectively, as shown in Fig. 1.
To effectively approximate the loss function in Theo-
rem 4.1, we model the evolution of the mass densities
through a number of weighted interacting particles,
which is supported by the following proposition.
Proposition 5.1. Consider a system of N weighted
particles in R, where each particle i has a position
X € R and a positive weight w;(t) > 0. The
weight w;(t) evolves according to the ordinary differ- Figure 1: Overview of CytoBridge.
ential equation (ODE) %% = g(Xi, t)w;(t), where

g : R4 x [0,T] — R is a given growth rate function. The position X evolves according to the
stochastic differential equation (SDE)

X} =b(X 1) dt — > k(X XD w; () VL@ (X — X]) dt + ot) AW,
JFi
Under assumptions stated in D.1, in the limit of N — oo, the weighted empirical measure N =
+ Zil w;(t)0x: converges weakly to a deterministic measure p(x,t) dx, where p(x,t) is a weak
solution to the partial differential equation (PDE)
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The derivation is left in Appendix D.2. By combining the results in Proposition 5.1 and Theorem 4.1,
the ODE constraints we simulate is indeed dX} = v(Xi, t)dt — 5 Ej]\;i’jzl ki jw; Vi®(Xi -
X7)dt, where k; ; = k(X{,X7) is the cell-cell interaction strength and w; = w(X7) is the particle
weight.

5.1 Simulating ODEs: Random Batch Methods

In ODE simulation, the computation complexity is O(NN?) due to the cellular interaction term. To
speed up simulation, we adopt the Random Batch Methods (RBMs) (Jin et al. 2020; Jin et al. 2021;
Jin and Li 2022), which transforms the interaction among all particles into interaction with particles
within random grouping only. The algorithm reduces the computational complexity to O((p — 1)N),
where p is the number in the batch C,,. Assuming v(x,¢) and ® satisfy certain conditions, it has the

convergence result such that Wh (ﬁg&) (1), ;&) (t)) < C/7 (Jin et al. 2020; Jin et al. 2021), where 7

is the step size. The u( )( t) is the empirical distribution produced by Algorithm 1 and ug\p (t) is the
distribution by simulating the original ODEs.



Algorithm 1 Simulating ODEs: RBM
1: formel:[T/7]do
andomly divide {1,2,--- , N = np} into n batches
2: for each batch do

N .
Epdate particles with dX§ = v(X{, t)dt — 13 3 kijw; Vx®(X{ — X{)dt

J#4,5€Cp

5.2 Reformulating the Loss with Weighted Particle Simulation

The total loss to solve Theorem 4.1 is composed of three parts, e.g., the energy loss, the reconstruction
loss, and the Fokker-Planck constraint such that £ = Lgpergy + ArLrecons + Ap Lrp. Here Lepergy
loss promotes the least action principle of transition energy, Lrecons promotes the matching loss. i.e.,
p(x,1) = v, and Lgp promotes the three neural networks that satisfy the Fokker-Planck equation
constraint. We reformulate the loss terms through weighted particle representation and an RBM-based
Neural ODE solver.

Energy Loss Generalizing the idea in (Sha et al. 2024), the energy loss in CytoBridge is
equivalent 10 Exgrpy f; [3 [Vo(x(t), )3 + 3 [Vsesoll3 + (o ox(t), ), 50) + 0¥ (g0) | wolt)d,
where wg(t) = exp (fot gg(x(t),s)ds) and x(t) satisfies dx‘/dt = v(x',t) —
> ki k(x?,x7)w;V,: ®(x" — x7). However, direct optimization of this term is challenging
due to the involvement of the inner product (vg(x(¢), ), sg) which introduces mutual dependencies

between the optimization of v and sg. To address this issue and simplify the computation, we adopt
an upper bound of the energy for training purposes (Appendix A.5).

Reconstruction Loss The reconstruction loss aims to align the final generated density to the
true data density. Here we need to consider the unbalanced effect, so we use the unbalanced
optimal transport to align it. Lrecons = AmLmass + AdLor. The Ly is used to obtain the cell
weights and align the cell number/ mass in the datasets. We then use the weights to normalize
the distribution and apply Lor to match the distribution. In this work, we employ the local mass
matching strategy from (Zhang et al. 2025a). Specifically, the trajectory mapping function ¢y

predicts particle coordinates Ay, ..., Ap_; from an initial set Ay over time indices T, governed
by dx/dt = vy if no interaction is considered, or with a modified velocity v incorporating the
interaction potential ®: v(x’,t) = v(x',t) — 715 > i B(x', X))V ®(x" — x7). Additionally,
a weight mapping function ¢§ models particle weights via dlogw;(t)/dt = gg(x;(t),t), starting
from initial weights w;(0) = 1/N where N represents batch size. Mathematically, we use the
empirical measure ) = % Zf\il 0, to approximate the true distribution 11, hence the uniform
weights. This convergence to the true distribution is guaranteed when N — oo. The mass matching
loss Lyass is composed of two terms. The first term is defined as the local mass matching loss

Ll ocal Mass = Z;ll My, where M}, quantifies the error between predicted weights w;(ty) and
target weights based on the cardinality of mapped points. As detailed in Appendix A.4, the target
weights, derived from the number of closest real data points, encourages the growth network to
assign higher weights to particles moving into denser state space regions, thus provides fine-grained
guidance on the growth network. Besides, the second term is defined as the global mass matching
1088 LGlobal Mass = Zz:ll G, where Gy, is used to align the change of weights in total. An optimal

transport loss Lor = Zg;ll Wa(WF, w(ty)) further aligns the predicted and observed distributions.
Details can be found in Appendix A.4.

Fokker-Planck Constraint To enforce the physical relationships among the four neural networks,
it is essential to introduce a physics-informed loss (PINN-loss), which incorporates the Fokker-Planck
constraint as a guiding principle. Lrp = ||0:p9 + Vx - (p0Ve) — gopoll+Aw ||po(x,0) — pol| , where
Po = €XP = Sg.

Training CytoBridge aims to train four neural networks to model cell dynamics and interactions.
To stabilize the training procedure, we leverage a two-phase training strategy. In the pre-training



phase, we seek to provide a suitable initialization of these four neural networks. We first initialize
go and vy without the interaction term to provide an approximated matching. Then we train ®g
with fixed gg, leading to refined dynamics. The score network sy is trained based on conditional
flow matching. In the training phase, these initialized networks are further refined by minimizing
the proposed total loss. We summarize the training procedure in Algorithm 2 and Appendix A. We
conduct ablation studies on different components of our training procedure in Appendix B.7. The
selection of loss weighting is discussed in Appendix C.2.

Algorithm 2 Training CytoBridge

Require: Datasets Ay, ..., A7_1, batch size IV, ODE iteration noq., log density iteration nigg.-density
Ensure: Trained neural ODE vy, growth function gy, score network sg and interaction ®g.

1: Pre-Training Phase:

2: for i = 1to ngge do > 1. Initialize growth gg and velocity vg
3: fort =0toT —2do . .

4: L At+1 (*sz(At,t%’l),’w(At_’_l) < ¢g(w(At),t+ 1)

5 LRecons < Am My + AgWa (W, w(t)); update vy, gg W.r.t. Lrecons

6: for i = 1 to nyge do > 2. Initialize interaction potential Py
7: fort =0toT —2do . .

8: L Ap1 ¢y (Ap,t + 1), w(Agy1) < ¢ (w(Ay), T +1)

9 LRecons <— )/\ig(v:vt7 wi(t)); update Vg, g W.r.t. Lrecons
10: fort =0to T —2do Ay + ¢ (A, t +1) > Generate datasets A;.
11: for i = 1 to Njog-density O > 4. Initialize the score network sg

12: L (Xo,Xl) ~ q(Xo,Xl), t~ Z/{(O, 1), X ~ p(X,t | X(),Xl) using Ao, . aAT—l
Lscore < | Xs Vxsg(x,t) + €1]|3; update sp w.r.t. Lycore

14: Training Phase:
15: Estimate initial distribution po(x) from A using Gaussian Mixture Model (GMM).
16: for i = 1 to nyqe do

17: fort =0toT —2do . .
18: At+1 — @;(At,t—i-l),w(AHl) — ¢>g(w(At),t+ 1)
19: Lonrey — Exmp, [12 [5Iv0l3+ 3 Vx50l + Iollallsollz + @ (g0) ] wo(r)ar
20: Lrecons < Am(My + Gy) + XaWa (W', w(t))
21 Lrp < [|07pg(x,7) + Vi - (po(x, T)Vo(x,T)) — go(T)po(x, 7)|| +
)\w HpH(X7 0) - pU(X) ||
22: | | Lol EEnergy + ArLrecons + Lrp; update v, gg, sg, Py W.r.t. Lo
6 Results

Next, we evaluate CytoBridge’s ability to simultaneously learn cell dynamics and cell-cell interactions.
In computations below, we take ¥(g(x,t)) = g?(x,t) and o(t) is constant. We also assume the
interaction term is dependent on the distance between cells in gene expression space and we use
radial basis functions (RBFs) to approximate it (Appendix A.3).

Synthetic Gene Regulatory Network In order to examine CytoBridge’s capabilities of learning
cell dynamics as well as their underlying interactions simultaneously, we conducted experiments on
the three-gene simulation model following (Zhang et al. 2025a). The dynamics of the original three-
gene model are governed by stochastic ordinary differential equations, incorporating self-activation,
mutual inhibition, and external activation (Appendix B.1), as shown in Fig. 2 (a). Additionally, we
incorporated interactions into the simulation process. We consider the following types of interactions:
(1) attractive interactions. (2) Lennard-Jones-like potential (both attractive and repulsive) (3) no
interactions. We aim to test whether CytoBridge can recover interaction in each case. For attractive
interactions, the cells with similar gene expressions tend to converge toward similar levels. The

interaction potential ® is defined as: ®(x —y) = ||x — y||* As shown in Fig. 2(b), the dynamics
of the three-gene model exhibit a quiescent area as well as an area with notable transition and



increasing cell numbers. Moreover, the attractive potential results in the reduction in variance of the
observed data at different time points. We compared CytoBridge with other methods across all time
points using the Wasserstein distance (JV;) and the Total Mass Variation (TMV) metric, defined in
Appendix C. We summarized the results in Table 1. It is shown that CytoBridge achieves the best
performance in both distribution matching and mass matching. Balanced Schrodinger bridge (e.g.,
(Tong et al. 2024b)), which neglects both growth and interaction terms, results in false transition and
variance patterns (Fig. 2(c)). DeepRUOT (Zhang et al. 2025a), which is an unbalanced Schrodinger
Bridge solver, exhibits correct transition patterns but fails to capture the reduction in variance as
it neglects the cell-cell interactions (Fig. 2(d)). By leveraging the UMFSB framework, as shown
in Fig. 2(e), CytoBridge correctly models both the transition patterns and the reduction in variance
as the correct interaction potential (Fig. 2(f)) and growth rate (Fig. 2(g)) can be directly learned
by CytoBridge. Also, CytoBridge is capable of constructing the underlying Waddington landscape
(Fig. 2(h)). The low-lying regions on this landscape correspond to areas of high probability density,
representing stable states. Other than the attractive interaction potential, we also incorporated the
Lennard-Jones-like potential, and no interaction case. Results can be found in Appendix B.1, Figs. 4
and 5 and we find CytoBridge can correctly identify both the LJ potential and no interaction in these
cases. Overall, both quantitative results and qualitative analysis indicate the necessity of incorporating
both growth and interaction terms.

(a) Transition (b) True dynamics (c) Balanced SB (d) DeepRUOT (no interaction)
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Figure 2: (a) Illustration of the synthetic gene regulatory dynamics. (b) The ground truth cellular
dynamics project on (X7, X5). The red lines indicate the ground truth trajectories of cells in (b), or
inferred trajectories of cells in (c) to (e). (c) The dynamics learned by balanced Schrodinger bridge
SF2M (Tong et al. 2024b). (d) The dynamics learned by DeepRUOT. (e) The dynamics learned by
CytoBridge. (f) The learned interaction potential. (g) The growth rates inferred by CytoBridge. (h)
The constructed landscape at t = 4. The z-axis represents the density of cells.

Table 1: Wasserstein distance (VV;) and Total Mass Variation (TMV) of predictions at different time
points across five runs on synthetic gene regulatory data with attractive interactions (¢ = 0.05). We
show the mean value with one standard deviation, where bold indicates the best among all algorithms.

t=1 t=2 t=3 t=4

Model Wr ™V Whr ™™V W ™V Wr T™MV

SF2M (Tong et al. 2024b) 0.146x0002  0.080x0000 0.320x0004 0.250x0000 0.447x000s 0.515x0000 0.55420005 0.930x0.000
Meta FM (Atanackovic et al. 2025) ~ 0.149+0000  0.080+0000  0.241+0000  0.250+0000  0.288+0000 0.515+0000 0.404+0000 0.930+0000
MMEM (Rohbeck et al. 2025) 0.101+0000  0.080+0000 0.223+0000 0.250+0000 0.438+0000 0.515+0000 0.366+0000 0.930+0.000
Metric FM (Kapusniak et al. 2024)  0.319+0000  0.080+0000  0.751z0000  0.250+0000  0.690x0000 0.515+0000 0.614+0000 0.930+0.000
UOT-FM (Eyring et al. 2024) 0.051+0000 0.010+0000 0.058+0000 0.036+0000 0.060:0000 0.04410000 0.054:+0000 0.095+0.000
MIOFlow (Huguet et al. 2022) 0.315x0000  0.080+0000 0.387x0000 0.250+£0000 0.483+0000 0.515x0000 0.518x0000 0.930x0.000
uAM (Neklyudov et al. 2023) 0.489+0000 0.081x0000 0.995+0000 0.033+0000 1.402+0000 0.459+0000 1.655+0000 1.516+0000
UDSB (Pariset et al. 2023) 1.131+0000  0.018+0006 1.489+0018  0.135+0014 1.455+0022 0.447+001  0.543+0015  1.018+0035
TIGON (Sha et al. 2024) 0.169+0000 0.097+0000 0.184+0000 0.165+0000 0.167+0000 0.210+0000 0.179+0000  0.384+0.000
DeepRUOT (Zhang et al. 2025a) 0.044x0002  0.01410007  0.045x0002  0.02610018  0.053+0002  0.059+0032  0.057+0003  0.075+0044
CytoBridge (Ours) 0.015+0001  0.013+0000  0.014:0001  0.021+0024  0.018+0002  0.043:+0041  0.038:£0.003  0.058=0.061




Mouse Blood Hematopoiesis To demonstrate the scalability of CytoBridge to high-dimensional
data, we adopt the mouse hematopoiesis dataset (Weinreb et al. 2020) which includes 49,302 cells
with lineage tracing data collected at three time points. We use PCA to reduce the dimensions to 50
and serve as the input of CytoBridge. The dataset comprises diverse cell states and demonstrates
pronounced cell division. Consequently, accurately modeling both cellular dynamics and growth
rates is critical for reliable inference of cell fate. As shown in Table 2, CytoBridge outperforms other
state-of-the-art methods in distribution matching, highlighting CytoBridge’s capabilities of capturing
transition patterns (Fig. 3(a)). Besides, evidenced by the TMV metric, CytoBridge is able to recover
the increase in cell numbers by learning the growth rate (Fig. 3(b)). The regions with high learned
growth rates correspond to the hematopoietic stem cell populations. This is biologically consistent
with the lineage tracing barcode results (Sha et al. 2024). The score function learned by CytoBridge
indicates the existence of multiple attractors, which may lead to different cell fates (Fig. 3(c)). To
further demonstrate the impact of cell-cell interactions on the transition of cells, we computed the
correlation of each cell’s drift and interacting force. As shown in Fig. 3(d), the learned cell-cell
interactions may promote early-stage cell differentiation and inhibit later-stage cell differentiation.
Some additional results can be found in Appendix B.2.
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Figure 3: Application in mouse blood hematopoiesis data (o = 0.1), visualized in UMAP space. (a)
The overall velocity learned by CytoBridge. (b) The growth rates learned by CytoBridge. (c) The
score function learned by CytoBridge at t = 2. (d) The correlation of velocity and interacting forces.

Embryoid Body, Pancreatic 3-cell differentiation and A549 EMT We further evaluated Cyto-
Bridge on the Embryoid Body single-cell data which consists of 16,819 cells collected at five time
points (Moon et al. 2019). We used PCA to reduce the dimensions to 50 and serve as the input of
CytoBridge. As shown in Table 9, CytoBridge generally outperforms other methods in distribution
matching and maintains mass-matching results comparable to other unbalanced algorithms. We plot-
ted the learned velocity and score in Fig. 6, indicating the different cell fates learned by CytoBridge.
The correlation of each cell’s drift and interacting force is shown in Fig. 6(d) indicates that the learned
cell-cell interactions may promote cell differentiation while inhibiting cell differentiation of some
outliers. We also consider the 3D-cultured in vitro pancreatic 5-cell differentiation dataset (Veres
et al. 2019) and A549 lung cancer cell line epithelial-mesenchymal transition (EMT) dataset induced
by TGFBI1 (Cook and Vanderhyden 2020). Interestingly, we find that the interaction in the A549 cell
line EMT process may be very weak. The detailed results can be found in Appendices B.3 to B.5.



Table 2: Wasserstein distance (V) and Total Mass Variation (TMV) of predictions at different time
points across five runs on mouse hematopoiesis data (c = 0.1). We show the mean value with one
standard deviation, where bold indicates our algorithm as the best among all algorithms.

t=1 t=2

Model Wi TMV Wh TMV

SF2M (Tong et al. 2024b) 8.217x0001  2.231x0000 11.086 +0002  5.39910.000
Meta FM (Atanackovic et al. 2025)  8.545 0000  2.23140000  10.313+0000  5.399-0.000
MMFM (Rohbeck et al. 2025) 7.647 0000  2.231x0000  10.156x0000  5.399+0.000
Metric FM (Kapusniak et al. 2024)  7.788+0000  2.231+0000  11.449+0000  5.399+0.000
UOT-FM (Eyring et al. 2024) 8.1141+0000  0.100x+0000  9.170x0000  0.118x0.000
MIOFlow (Huguet et al. 2022) 6.313+0000  2.231+0000  6.74640000  5.399-+0.000
uAM (Neklyudov et al. 2023) 7.537+x0000  2.875+0000  9.762+0000  5.670x0.000
UDSB (Pariset et al. 2023) 10.687+00ss  0.282+0.146  13.477+00s3  3.010+0225
TIGON (Sha et al. 2024) 6.140+0000  1.23440000  6.97320000  2.083+0.000
DeepRUQOT (Zhang et al. 2025a) 6.052+0002  0.200+0001  6.757x0006  0.260-0.007
CytoBridge (Ours) 6.013+0002  0.208+0001  6.644+0011  0.078+0013

Extension to Spatiotemporal Transcriptomics To demonstrate CytoBridge’s applicability in
modeling cellular interactions with explicit physical proximity, we applied CytoBridge to a zebrafish
spatiotemporal transcriptomics dataset (Liu et al. 2022a), using slices from 5.25 hpf and 10 hpf as
input. We evaluated the performance of CytoBridge on the task of reconstructing the dynamics of cell
spatial migration, as well as gene expression, with a separate velocity and interactions for physical
space and gene expression space respectively. As shown in Table 13, CytoBridge outperforms other
methods in both tasks. The results are visualized in Fig. 9. Furthermore, downstream interpretability
analysis of the learned interactions identified biologically relevant pathways crucial for zebrafish
development. Detailed results can be found in Appendix B.6. The preliminary application of
CytoBridge to spatiotemporal transcriptomics demonstrates our framework’s potential in modeling
spatially resolved data.

7 Conclusion

We have introduced CytoBridge for learning unbalanced stochastic mean-field dynamics from time-
series snapshot data. To tackle the interacting particle system inference from temporal snapshots,
CytoBridge transforms the SDE constraints into ODE leveraging Fisher regularization for more effi-
cient simulation in training. We have demonstrated the effectiveness of our method on both synthetic
gene regulatory networks and single-cell RNA-seq data, showing its promising performance. Overall,
CytoBridge provides a unified framework for generative modeling of time-series transcriptomics data,
enabling more robust and realistic inference of underlying biological dynamics.

Limitations and Further Directions While CytoBridge offers valuable insights into incorporating
cell-cell interaction with unbalanced stochastic dynamics, several aspects could benefit from further
exploration. Firstly, CytoBridge minimizes the upper bound of the energy term in the UMFSB
problem. Directly optimizing the original UMFSB formulation remains an important question.
Potential solutions may involve leveraging neural SDEs or the integration-by-parts strategy proposed
by (Zhang et al. 2025a) as viable approaches. Secondly, the current neural network parameterization
of cellular interaction terms is based on techniques used to reduce degrees of freedom, such as RBF
expansion. Future work could explore sparse representation methods to replace it for improved
expressive power. Thirdly, the training of CytoBridge involves multiple stages. Simplifying the
training process by incorporating optimality conditions (e.g., HIB equations) presents a promising
research direction (Sun et al. 2025). Furthermore, the current modeling of cellular interactions have
not incorporated certain biological priors such as ligand-receptor information. We plan to explore
this direction in future work to further refine our approach. Finally, extending the concept of flow
matching to this context and developing simulation-free training methods for stochastic, growth/death,
and interaction dynamics could also advance the CytoBridge’s applicability.
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A Training Details
A.1 Training CytoBridge

The training of CytoBridge involved training vy, gg, Sp and ®y. These networks were initialized after
the pre-traing phase, and the overall training process involved minimizing the following loss:

L= [,Energy + /\rACRecons + )\fﬁpp.

The calculation of each loss component involved the numerical solution of temporal integrals and
ODEs, which was performed using the Neural ODE solver (Chen et al. 2018). The gradients of the
loss function with respect to the parameters for vy, gg, s9 and ®y were derived through neural ODE
computations, and these networks were optimized using Pytorch (Paszke et al. 2017). To calculate the
reconstruction loss during training, we utilized the implementation of Sinkhorn algorithm provided
by (Feydy et al. 2019).

A.2 Training Initial Log Density Function through Score Matching

Conditional Flow Matching (CFM) is used to learn an initial log density. First, sample pairs (xq, X1 )
are chosen from an optimal transport plan ¢(xg, X1 ), and Brownian bridges are constructed between
them. We initially assume o (¢) to be constant.

The log density is matched with these bridges, where p(x,t | (x0,%x1)) = N(x;tx1 + (1 —
t)xo, 0%t(1 — t)) and its gradient is Vx log p(x, t | (X0,%1)) = % fort € [0, 1]. The
neural network s¢(x, t) is used to approximate 102 log p(x, t) with a weighting function A,. The
unsupervised loss Ly is:

1
Lys = )‘gHvxsﬁ(Xat) - 502vx Ing(x7t)||§'
The corresponding CFM loss, Lgcore, 1S:
1
£score = ]EQ')\§||Vx59(Xa t) - §UQVX Ing(Xat | (X07 X1))||§,

where Q' = (t ~U(0,1)) ® ¢(xo0,%x1) ® p(X,t | (X0,%1)). By taking the weighting function as:

24/t(1 —1t)
As(t) = -
The CFM loss can be converted to:

£score = H)\s(t)vxse(x’ t) + € ||§ )

where €; ~ A(0,1I). This formulation is computationally more tractable.

A.3 Modeling Interaction Potential

Inspired by the design of machine learning force fields in physics (Schiitt et al. 2017; Batzner et al.
2022; Wang et al. 2024), we model the cell interaction network by expanding distances d;; between
cells ¢ and j using radial basis functions (RBFs). An exponential transformation is first applied to the
raw distance d;;. A set of K RBF features, ej(d;;), are then computed based on this exponentially

scaled distance:
ex(dij) = exp(—Br(exp(—dij) — pux)?)

The RBF centers 1, are initialized by uniformly discretizing the exponentially transformed distance
interval that corresponds to original distances from 0 to a predefined cutoff d.yo¢. The width
parameters Jj are initialized as the inverse square of a term proportional to the average spread of
these centers in the transformed exponential scale. The RBF expansion allows our model to learn
interactions between different cells by encoding interaction distances across multiple scales, rather
than enforcing interactions only between similar cells.

These expanded features, forming a vector e(d;;) = [e1(d;;), - . ., ex (di;)]T, are subsequently fed
into a multi-layer neural network (NN) with its own set of trainable parameters, 6y, to predict the
interaction potential ®. This relationship can be expressed as:

(I)(Xi,Xj) = NN(e(dij); GNN)
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The interaction weight function k(x;,x;) is defined as:

1 ifd;; < deuofr
. i N ij cuto
(X 7X]) {0 if d” Z dculoff

A.4 Reconstruction Loss Function

The local mass matching 10ss Ly ocal Mass 1S designed to ensure that the distribution of weights among
the sampled particles at each time step aligns with the local density of the real data. Suppose we
sample particles at different time points with batch size IV, which is denoted as A;. At a given time
step tx, the local mass matching error M}, is computed for the N sampled particles. This error is
defined as:

N

M=

i=1

w; () — %card (hi (% (1)) %’;

2

Here, w;(t1) is the weight of the i-th sampled particle at time ¢, ny, denotes the number of cells in
the original dataset at time .. The term card (h;, ' (x;(t4))) represents the number of sampled data
points from Ay, that are mapped to the i-th sampled particle x; (1) via the mapping hy. This mapping
hy assigns each real data point in Ay, to its closest sampled particle in Ay. Essentially, the formula
measures the squared difference between the particle’s current weight and the proportion of real data
points it represents. Thus, it provides a fine-grained guidance on the weights of particles. Moreover,
under the condition that My, = 0, it follows that 317 w;(t) = & SN card (hy, ' (xi(tr))) & =

no
ng /no. Therefore the local matching loss also encourages the alignment of the total mass. The local

mass matching 108 £y ocal Mass 18 then calculated by summing these errors over all time steps from
T-1
k=1toT — 1: Liocal Mass = =1 M;..

Besides, a global mass matching loss is further adopted to align the total number of cells at different
time points during the training phase. Specifically, the global mass error term Gy, is defined as:

2
Gy =

b

S -2

3

Here, The global mass matching loss Lgiobal Mass 1S then calculated by summing these errors over all
time steps from k = 1to T — 1: Lgiobal Mass = Zf:_ll Gp..

The optimal transport loss is computed as Lor = Y.r_, Wa(W* w(t)). Here wF =
(1/N,1/N,...,1/N) denotes the uniform distribution of sampled points Ay, at time ¢;, with batch

size N, w(ty) = (w1 (tx), wa(tr), ..., wn(tk))/ Zf\; w; (tr,) denotes the predicted weight distri-
bution of particles at time ¢j.

A.5 Energy Loss Function

To simplify the computation, we adopt an upper bound of the energy for training purposes:

T
1 2 1 2
Loy B [ [ IVa0). 013 + 5 ¥l + Vol 0ol + ¥ (an) | ol

B Additional Results

B.1 Synthetic Gene Regulatory Network

Dynamics By combining these interactions with the three-gene regulatory network, the system
dynamics is defined as follows:
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. , N
dx; al (X)) + 5 , 1
- : _ _ X mE - Y kijw Vi,
dt T+ (X1 +aa(X5P7 +a(XiP 1 e N1 = PTE
B . N
d.X; az(X3)* + 8 ; 1
= ; - , — 0o Xi & — ——— > kijw;Va®ij,
dt T+ (XD + (X3P +a(Xi2 1 22t N1, 4= T

dX5  as(X5)?
dt 1+ as(X3)?

N
i 1
—03X35 + 38 — N_1 7&2 1 ki jw;V3®; ;.
J#ij=

Here, X'(t) denotes the gene expressions of the ¢ th cell at time ¢, ®; ; represents ® (X' — X7), while
oy, v; and [ represent the strengths of self-activation, inhibition, and external stimulus respectively.
The interaction weight function is defined based on a pre-defined threshold deyoir, Where &; ; is set
to 1 if d; ; is within the threshold, otherwise k; ; = 0. The parameters §; describe the rates of gene
degradation, and 7;§; represents stochastic influences via additive white noise. The probability of
cell division is associated with X, expression, given by the formula g = ag%. When a cell
divides, new cells are generated with independent random perturbations 14N (0, 1) for each gene
around the gene expression profile (X1(t), X2(t), X3(t)) of the parent cell. Hyper-parameters are
detailed in Table 3. The initial cell population is drawn independently from two normal distributions,
N(]2,0.2,0],0.1) and N([0, 0, 2],0.1). At each time step, any negative expression values are set to
0.

Table 3: Simulation parameters on gene regulatory network.

Parameter Value Description
oy 0.5 Strength of self-activation for X;
Y1 0.5 Strength of inhibition by X3 on X
o) 1 Strength of self-activation for X
Y2 1 Strength of inhibition by X3 on X
as 1 Strength of self-activation for X3
Y3 10 Half-saturation constant for inhibition terms
61 04 Degradation rate for X7
02 04 Degradation rate for Xo
03 0.4 Degradation rate for X3
m 0.05 Noise intensity for X
2 0.05 Noise intensity for Xo
N3 0.01 Noise intensity for X3
Nd 0.014 Noise intensity for cell perturbations
B 1 External signal activating X; and X5
deutoff 0.5 Threshold of interaction weight function
de 0.1 Equilibrium distance of the Lennard-Jones potential
Frax 100 The upper bound of the magnitude of forces
dt 1 Time step size

Time Points [0, 8, 16, 24, 32] Time points at which data is recorded

Hold-one-out Evaluations To evaluate CytoBridge’s capability of recovering distributions at
unseen time points, we conducted hold-one-out experiments on synthetic gene regulatory data with
attractive interactions. Specifically, intermediate time points were individually left out during training
and subsequently recovered during evaluation. Note that the default setting of UDSB only supports
data with three time points as inputs, we only compare with the performance of other methods. As
shown in Table 4, CytoBridge performed best on all held-out time points, indicating its ability to infer
reasonable trajectories from snapshots.

Lennard-Jones Interaction Potential The Lennard-Jones-like interaction potential lets cells tend
to prevent others from being too similar while attracting cells with distinct gene expressions. The ®
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Table 4: Wasserstein distance (V;) of predictions at held-out time points across five runs on synthetic
gene regulatory data with attractive interactions (¢ = 0.05). We show the mean value with one
standard deviation, where bold indicates the best among all algorithms.

t=1 t=2 t=3

Model Wy Wy Wi

SF2M (Tong et al. 2024b) 0.184+0002  0.241+0010  0.507+0.007
Meta FM (Atanackovic et al. 2025)  0.272+0000  0.293+0000  0.344+0.000
MMFM (Rohbeck et al. 2025) 0.47620000 0.466+0000 1.215x0.000
Metric FM (Kapusniak et al. 2024)  0.188+0000 0.498+0000  0.630=0.000
UOT-FM (Eyring et al. 2024) 0.204+0000  0.155+0000  0.136-0.000
MIOFlow (Huguet et al. 2022) 0.225+0000  0.27040000  0.234+0.000
uAM (Neklyudov et al. 2023) 0.600+0000 0.975+0000 1.243+0.000
TIGON (Sha et al. 2024) 0.25410000 0.21420000 0.178+0.000
DeepRUOT (Zhang et al. 2025a) 0.184+0001  0.086+0.004 0.079+0.003
CytoBridge (Ours) 0.182+0001  0.064+0004  0.043-£0.002

is defined as:

O(x—y)=4 [(nxdeyn)m_ <ledylﬂ

where d. represents the distance at which the repulsive and attractive forces balance each other.
Moreover, to avoid the singularity of the potential function, we clipped the magnitude of forces to
a pre-defined value F,,,,,. As shown in Fig. 4, CytoBridge is able to reproduce the Lennard-Jones
interaction potential with only information from snapshots provided, leading to correct transition
and change of variance. We also conducted quantitative evaluations compared with DeepRUOT,
in which the cellular interactions are neglected. As shown in Table 5, CytoBridge consistently
outperforms DeepRUQOT across all time points, underscoring the importance of explicitly modeling
cellular interactions.

Table 5: Wasserstein distance (V) ) of predictions for DeepRUOT and CytoBridge (Ours) on synthetic
gene regulatory data with Lennard-Jones Interaction Potential (o = 0.05).

Model Wi Wi Wi Wi

DeepRUOT 0.036+0000  0.042+0001  0.049+0002  0.054-+0.002
CytoBridge (Ours)  0.030-+0001  0.030-t0001  0.027-+0001  0.031-+0.003

Interaction Potential ®(r)
(b) —

* Minima

o)

Distance (1)

Figure 4: Results of synthetic gene regulatory data with Lennard-Jones Interaction Potential. (a) The
dynamics learned by CytoBridge. (b) The learned interaction potential.

No Interaction Despite the good performance of CytoBridge on the synthetic gene model with
different types of interactions, it yet remains unknown whether our method can help identify the

20



cases where the ground truth dynamics itself does not involve cellular interactions. Therefore, we
further conduct experiments on the synthetic gene model without interactions involved by setting
®(x —y) = 0. As shown in Table 6, explicitly incorporating cellular interactions does not result
in the improvement of performance in distribution matching at most time points. The main reason
for this phenomenon is that it may be hard for a neural network to directly infer all-zero outputs.
The numerical error resulting from our interaction network may lead to perturbations at certain time
points and thereby exhibit poorer performance than methods that neglect the interaction term. We
further analyze the learned interaction forces acting on each cell. As shown in Fig. 5, compared with
forces learned from the dynamics with explicit interactions, forces learned from dynamics with no
interaction exhibit notably smaller magnitudes. We compute the correlation of learned velocity and
forces of each cell to examine whether the learned forces from data without interaction may exhibit
certain patterns related to the transitions of cells. Moran’s I, which is a statistic that measures spatial
autocorrelation, indicating the degree to which nearby locations have similar values, is utilized to
identify whether these patterns exist. Moran’s I calculated from data with ground truth interactions
is 0.514, while that calculated from data without interactions is 0.281, which is notably smaller.
This may indicate that instead of explainable correlated patterns between transition and interaction,
interacting forces learned from data without interaction exhibit random patterns to some extent.
Biologically, it remains challenging to precisely know whether and how cells interact with each other.
Based on this difficulty, we hope that our preceding observations can help explain the performance of
our method when applied to real-world biological datasets. Furthermore, we aim for this analysis to
provide valuable biological insight into the presence and nature of cell-cell interactions.

Table 6: Wasserstein distance ()} ) of predictions for DeepRUOT and CytoBridge (Ours) on synthetic
gene regulatory data without interaction potential (o = 0.05).

Model Wh Wh Wy Wi

DeepRUOT 0.035+0001  0.054+0001  0.042+0001  0.046-:0.002
CytoBridge (Ours)  0.036+0001  0.053+0001  0.044+0001  0.052+0.003

(a) (b) 40
35
30

25

Figure 5: Comparasions of interacting forces learned from (a) dynamics with Lennard-Jones interac-
tion potential, (b) dynamics without interaction potential.

B.2 Mouse Blood Hematopoiesis

We obtained the dataset from (Weinreb et al. 2020). We used the cells profiled from in vitro cultured
mouse hematopoietic progenitors, grown in conditions supporting multi-lineage differentiation.
While not transplanted, the system retains extensive intercellular signaling, making it suitable for
studying interaction-driven transition dynamics. The original gene expression space was projected
to a 50-dimensional subspace using PCA. We summarized the results of hold-one-out evaluations
in Table 7. The improvements observed in both Table 2 and Table 7 indicate that incorporating
interaction terms indeed helps to recover the trajectories of cells. Moreover, the learned interacting
forces exhibit significant correlation with the learned velocity, as quantified by a Moran’s I of
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0.757. Based on our preceding analysis, this observed pattern and the improvement in performance
strongly suggest the presence of genuine interaction forces within this realworld data. To enhance
interpretability, we identified top 200 genes influenced most significantly by cell-cell interactions.
Subsequent enrichment analysis of these genes revealed key pathways associated with the biological
processes, as shown in Table 8. Applying this to the mouse hematopoiesis dataset, we identified
pathways related to positive regulation of leukocyte activation and cell-cell adhesion which are
closely linked to hematopoiesis, interactions, and differentiation. We also incorporated Trajectory
Inference with Cell-Cell Interactions (TICCI) (Fu et al. 2025) as a reference method. By applying
TICCI to the mouse hematopoietic dataset, it identified ligand-recptor pair Lgals9-Cd45, which is
closely related to the regulation of T cell activation, further provides biological interpretation for
enriched pathways. Moreover, we calculated the gradients of growth network with respect to genes to
identify key genes that contribute to growth dynamics, including Meis1, Nfkb1, and Rap1b. Meisl
regulates hematopoietic stem cell proliferation and self-renewal, Nfkb1 promotes cell cycle entry
and survival as a signaling hub, and Rap1b drives cell division via pathways like MAPK, consistent
with established biological knowledge. These findings demonstrate CytoBridge’s ability to uncover
biologically relevant mechanisms.

Table 7: Wasserstein distance (JV;) of predictions at held-out time point across five runs on mouse
hematopoiesis data (o = 0.1). We show the mean value with one standard deviation, where bold
indicates the best among all algorithms.

Model Wi

SF2M (Tong et al. 2024b) 8.646-+0.001
Meta FM (Atanackovic et al. 2025)  10.821+0.000
MMFM (Rohbeck et al. 2025) 8.263+0.000
Metric FM (Kapusniak et al. 2024)  7.753+0.000
UOT-FM (Eyring et al. 2024) 9.332+0.000
MIOFlow (Huguet et al. 2022) 7.779+0.000
uAM (Neklyudov et al. 2023) 9.157 +0.000
TIGON (Sha et al. 2024) 8.402+0.000
DeepRUOT (Zhang et al. 2025a) 6.868+0.003
CytoBridge (Ours) 6.847 +0.003

Table 8: Enriched pathways from interactions of mouse hematopoiesis data, showing the adjusted
p-value and gene count for each term.

Pathway p-adjust Count
regulation of T cell activation 3.38x 10712 23
positive regulation of cell activation 1.42 x 10~ 23
positive regulation of cell-cell adhesion 5.81 x 1011 20
positive regulation of leukocyte activation  1.90 x 10710 21
leukocyte cell-cell adhesion 3.18 x 10719 21
lymphocyte differentiation 1.04 x 1079 21

B.3 Embryoid Body

We use the same dataset in (Moon et al. 2019; Tong et al. 2020), which consists of 16,819 cells
collected at five time points. The cells are from human embryoid bodies (EBs), formed in 3D
culture by spontaneous aggregation of stem cells over a 27-day differentiation time course. The
experimental setup mimics early developmental conditions, where diverse cell types emerge and
are expected to interact through signaling and spatial organization. We projected the original gene
expression space to 50 dimensions using PCA. Hold-out evaluations were performed at four distinct
time points, and our method consistently yielded the best results in these tests (Table 10). However,
the observed performance gain, while positive, was less pronounced compared to the results on the
mouse hematopoiesis data. Correspondingly, the learned interacting forces for this dataset exhibit
a correlation pattern in the cell-state landscape with a Moran’s I of 0.450. This moderate positive
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Moran’s I suggests the presence of cell-state transition-related interaction effects within this data,
though potentially weaker or less organized than those inferred for the lineage-constrained systems
such as mouse hematopoiesis data.

Table 9: Wasserstein distance (V) and Total Mass Variation (TMV) of predictions at different time
points across five runs on embryoid body data (¢ = 0.1). We show the mean value with one standard
deviation, where bold indicates the best among all algorithms.

t=1 t=2 t=3 t=4

Model Wi ™V W, T™V Wi ™V Wiy T™V

SF2M (Tong et al. 2024b) 9.146+0001  0.748+0000  10.882+0002  0.377+0000  11.650+0004 0.539+0000 12.154+0007  0.399-+0.000
Meta FM (Atanackovic et al. 2025)  9.497+0000  0.748+0000  11.054+0000 0.377+0000 11.567+0000 0.539+0000 11.487+0000 0.399-+0.000
MMFM (Rohbeck et al. 2025) 9.124+0000  0.748+0000 10.474+0000 0.377+0000 11.022+0000 0.539+0000 11.480+0000 0.399-+0.000
Metric FM (Kapusniak et al. 2024) ~ 8.506+0000 ~ 0.748+0000  9.795+0000  0.377+0000 10.621+0000 0.539+0000 12.042:0000  0.399=+0.000
UOT-FM (Eyring et al. 2024) 9.0000000  0.054+0000 10.982+0000 0.078+0000 11.584+0000 0.014+0000 12.824+0000 0.092:+0.000
MIOFlow (Huguet et al. 2022) 8.447+0000  0.748+0000  9.229+0000  0.377+0000  9.436+0000  0.539+0000  10.123+0000  0.399-+0.000
uAM (Neklyudov et al. 2023) 12.315+0000  1.486+0000 14.996+0000 1.323+0000 15.685+0000 1.526+0000 18.407+0000  1.396+0.000
UDSB (Bunne et al. 2023) 11.983+0022  0.429+0008  14.009+0011  0.005+000s 14.656+0018  0.166+0006  15.884+0012  0.029+0.007
TIGON (Sha et al. 2024) 8.433+0000  0.118+0000  9.275+0000  0.030+0000  9.802+0000 0.276+0000 10.148+0000  0.141+0.000
DeepRUOT (Zhang et al. 2025a) 8.159+0002  0.050+0001  9.034+0003  0.161+0002  9.369+0003  0.005+£000s  9.773+0007  0.262+0.007
CytoBridge (Ours) 8.159+0002  0.002+0000  9.027+0003  0.057+0002  9.351+000s  0.175+0007  9.750+0006  0.022-+0.006

Table 10: Wasserstein distance (W;) of predictions at held-out time points across five runs on
embryoid body data (0 = 0.1). We show the mean value with one standard deviation, where bold
indicates the best among all algorithms.

t=1 t=2 t=3

Model W1 W1 W1

SF2M (Tong et al. 2024b) 10.3024+0001  11.276+0002  11.3800.001
Meta FM (Atanackovic et al. 2025)  10.504+0000  11.478+0.000  11.660+0.000
MMFM (Rohbeck et al. 2025) 10.23940000  11.469+0000  11.9300.000
Metric FM (Kapusniak et al. 2024)  9.672+0000  11.041+0000 11.466:0.000
UOT-FM (Eyring et al. 2024) 10.36640000  13.583+0000 15.858+0.000
MIOFlow (Huguet et al. 2022) 10.684 0000  11.755+0000  10.440+0.000
uAM (Neklyudov et al. 2023) 12.857+0000  15.743+0000  17.433+0.000
TIGON (Sha et al. 2024) 11.199+0000  11.207+0.000  10.833+0.000
DeepRUOT (Zhang et al. 2025a) 9.628+0001  10.382+0.004  10.215-+0.007
CytoBridge (Ours) 9.626+0001  10.333+0004  10.201+0.007

B.4 Pancreatic 5-cell Differentiation Data

We evaluated our method on the dataset from (Veres et al. 2019), which contains 51,274 cells collected
across eight time points from human pluripotent stem cells differentiating toward pancreatic [3-like
cells in 3D suspension culture. The original gene expression space was projected to 30 dimensions
using PCA. As shown in Fig. 7, CytoBridge is able to infer the velocity and growth rate, while
identifying attractors. When comparing our approach, which explicitly models cellular interactions,
to DeepRUQT, an algorithm that does not, we observed improved performance in 5 out of the 7
tested time points. Furthermore, the learned interacting forces for this dataset exhibited a moderate
correlation distribution pattern with inferred state-transition velocity, quantified by a Moran’s I of
0.590. Overall, the performance gains across most tested time points, coupled with the observed
moderate patterns in the inferred forces, may suggest the presence of interaction forces within this
dataset. The correlation between forces and velocities indicates that cells may tend to prevent others
from differentiation at early stages while promoting differentiation at later time points.

B.S EMT Data

We use the dataset from (Sha et al. 2024; Cook and Vanderhyden 2020), derived from A549 cancer
cells undergoing TGFB 1-induced epithelial-mesenchymal transition (EMT). This dataset comprises
four distinct time points. The cells were cultured in standard 2D monolayers and treated with
TGFB1 over several days. Although EMT is a coordinated process in vivo involving paracrine and
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Figure 6: Application in embryoid body data (o = 0.1), visualized in PHATE space. (a) The overall
velocity learned by CytoBridge. (b) The growth rates learned by CytoBridge. (c) The score function
learned by CytoBridge at ¢ = 4. (d) The correlation of velocity and interacting forces.
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Figure 7: Application in pancreatic §-cell differentiation data (¢ = 0.1), visualized in UMAP space.

(a) The overall velocity learned by CytoBridge. (b) The growth rates learned by CytoBridge. (c) The
score function learned by CytoBridge at ¢ = 7. (d) The correlation of velocity and interacting forces.
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Table 11: Wasserstein distance (W) of predictions for DeepRUOT and CytoBridge (Ours) at different
time points on pancreatic 5-cell differentiation data (¢ = 0.1).

Model W1 Wl W1 Wl Wl Wl Wl

DeepRUOT 8.0447 00005  8.0773+00021  7.6301+00032  8.0064+00042  7.9018+00117  8.3977+o00102  7.8346+0.0100
CytoBridge (Ours)  8.0448+0000s  8.0771+00021  7.6299+00032  8.0066+00043  7.9018+00117  8.3974+00102  7.8343 00109

contact-dependent signaling, this in vitro system mimics EMT as a largely cell-autonomous response
to an external stimulus. Despite the fact that CytoBridge still is able to infer the velocities, the
growth of cells, and different cell fates (Fig. 8). When comparing our method, which explicitly
models interaction terms, to approaches like DeepRUOT that do not, we observed no improvement in
performance on this dataset. Furthermore, the distribution pattern of the learned interacting forces for
this dataset was very disorganized, yielding a Moran’s I of 0.040. This indicates that the inferred
forces are largely random compared to the transition velocity direction, suggesting a lack of significant
or organized intercellular interactions for state-transition. The absence of both performance gain and
significant correlation in inferred forces suggests that transitions in this setting are primarily driven
by direct transcriptional responses rather than intercellular signaling, which is consistent with the
biological experiment setup.

Table 12: Wasserstein distance (JV;) of predictions for DeepRUOT and CytoBridge (Ours) at different
time points on EMT data (o = 0.05).

Model Wy Wi Wi

DeepRUOT 0.239 0.253 0.261
CytoBridge (Ours) 0.240 0.259 0.269

(a) Learnt Velocity (b) Learnt Growth Rate

high

low

Figure 8: Application in EMT data (0 = 0.05), visualized in PCA space. (a) The overall velocity
learned by CytoBridge. (b) The growth rates learned by CytoBridge. (c) The score function learned
by CytoBridge at t = 4. (d) The correlation of velocity and interacting forces.
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B.6 Zebrafish Spatiotemporal Data

We adopt the Zebrafish Embryogenesis Spatiotemporal Transcriptomic Atlas (ZESTA) (Liu et al.
2022a), created using the Stereo-seq spatial transcriptomics technology (Chen et al. 2022a). The
dataset provides a high-resolution map of gene expression in zebrafish embryos across six critical time
points within the first 24 hours of development. Among the six time points, we selected 5.25 hpf and
10 hpf as input. To align spatial coordinates between these two time points, we adopt the rigid body
transformation invariant optimal transport. Then, we projected the original gene expression space to
50 dimensions using PCA. To model cellular interactions in both physical space and gene expression
space, we transformed both the distances in physical and gene expression space into separate RBF
features, and concatenated them as inputs to the interaction potential. Thus, the effects of cellular
interactions are achieved by calculating the gradients of interaction potential with respect to distances
in physical and gene expression space respectively. The reconstruction loss is calculated in both
physical space and gene expression space. We compared the WV, distances in the physical space and
gene expression space between CytoBridge and other methods. As shown in Table 13, CytoBridge
achieves better performance over other methods in both physical space and gene expression space.
We also visualize the predicted cell states in physical space and gene expression space in Fig. 9. To
further interpret the biological effects of learned cellular interactions on the development process of
zebrafish, we identified top 200 genes influenced most significantly by interactions. We identified
pathways related to somite development which are critical to zebrafish embryonic development
based on the enrichment analysis, as shown in Table 14. These findings align with known biological
processes, showing the framework’s potential in spatially resolved data.

Table 13: Wasserstein distance (W) of predictions on zebrafish embryogenesis data. We report
metrics in physical space (denoted as *Space’) and gene expression space (denoted as *Gene’). Bold
indicates the best result.

Model Space  Gene
SF2M (Tong et al. 2024b) 0.265 5.423
Meta FM (Atanackovic et al. 2025) 0.268 5.413
MMFM (Rohbeck et al. 2025) 0.247 5.208
Metric FM (Kapusniak et al. 2024)  0.273  5.366
UOT-FM (Eyring et al. 2024) 0.227 5.173
MIOflow (Huguet et al. 2022) 0.263 4.720
uAM (Neklyudov et al. 2023) 0.177 6.499
TIGON (Sha et al. 2024) 0.352 4979
DeepRUOT (Zhang et al. 2025a) 0.261 4.745
CytoBridge (Ours) 0.035 4.712

Table 14: Enriched pathways from zebrafish embryogenesis data, showing the adjusted p-value and
gene count for each term.

Pathway p-adjust Count
nucleolus 5.76 x 10~° 12
somite development 1.82 x 104 10
lipid transport 1.82 x 1074 12
gastrulation 4.15 x 1074 12
somitogenesis 4.15 x 1074 8

B.7 Ablation Studies

We conducted ablation studies on the synthetic gene regulatory data with attractive interactions to
demonstrate the effectiveness of CytoBridge’s different components. We first note that without the
interaction term, our method reduces to the framework of DeepRUOT. Compared with DeepRUOT,
CytoBridge performs better in all these metrics, underscoring the effectiveness of explicitly consider-
ing cell-cell interactions. We then examine the impact of growth term on our algorithm. First, we set
the growth term g to zero, and observe that omitting the growth term will lead to poorer performance
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Figure 9: Application in zebrafish embryogenesis data (o = 0.05). (a) The spatial coordinates of
cells sampled at 7' = 0. (b) The predicted spatial coordinates of cells at T' = 1 by CytoBridge (c)
The predicted gene expression by CytoBridge in the PCA space. (d) The overall velocity learned by
CytoBridge in gene expression space.

in distribution matching, which may result from the false transition of balanced Schrédinger Bridge
solvers. We then evaluate the impact of Lyp,ss. By setting the weight of mass loss to zero, we observe
that although taking the growth term into account indeed helps eliminate the false transition compared
to the results without growth, it still falls short in capturing the changes in total mass, evidenced by
the TMV metric. Therefore, it is important to incorporate the Lyj,ss term to match the mass changes.
Furthermore, we examine the impact of Fokker-Planck Constraint. By setting the weight of Lgp to
zero, we also observed an overall drop in performance. As the Fokker-Planck constraint is necessary
to restrain the relationship of our different networks, omitting it will prevent the score function from
correctly reflecting the distributions of cells.

Next, we investigate the role of pretraining. Without the pretraining phase, CytoBridge exhibits a
significant drop in performance across all time points, with considerably higher distribution matching
metrics and less accurate mass matching at later time points. This indicates that pretraining is crucial
for initializing the networks effectively and achieving stable overall training. Omitting the score
matching phase used to initialize the score function also leads to poorer performance in distribution
matching. This suggests that the score matching phase is vital for effectively training the score
network. Finally, analyzing the model without the main end-to-end training (relying solely on
pretraining, denoted as "w/o training"), we observe performance drop in distribution matching across
all time points compared to the full CytoBridge model, and large discrepancies in TMV at later
stages. This confirms that while the pretraining phase provides a beneficial initialization, the complete
end-to-end training procedure is indispensable for achieving CytoBridge’s superior results.

Table 15: Wasserstein distance (VV;) and Total Mass Variation (TMV) of predictions with different
settings at different time points across five runs on synthetic gene regulatory data with attractive
interactions (o = 0.05). We show the mean value with one standard deviation.

t=1 t=2 t=3 t=4

Model Wy T™V Wiy T™MV Wi ™V Wi T™MV

CytoBridge w/o interaction (DeepRUOT)  0.044+0002  0.014+0007  0.045+0002  0.026+0018  0.053+0002  0.059+0032  0.057+0003  0.075+0044
CytoBridge w/o growth 0.068+0001  0.080+0000 0.175+0003  0.250+0000 0.343x0010  0.515+0000 0.480+0018  0.930=0000
CytoBridge wW/0 Ly 0.016+0001  0.042+0014  0.037+0004  0.165+0030 0.046+0007  0.352+00a1  0.047+000s  0.689-+0046
CytoBridge w/o Lgp 0.014-0000 0.013x0012  0.016+0000  0.030+0019  0.022+0003  0.048+0038  0.039+0004  0.063x0.058
CytoBridge w/o pretraining 0.426+0003  0.016+0013  0.915+0003  0.035+0016  1.19520003  0.044+0040  1.451+0004  0.168x0081
CytoBridge w/o score matching 0.025+0001  0.011+0011  0.025+0002  0.024+0028  0.03410003  0.049+0030  0.039+0003  0.084-0.051
CytoBridge w/o training 0.036+0002  0.012+0006  0.029+0003  0.021+0025  0.067x0003  0.050+0025  0.1080002  0.174x0076
CytoBridge (Ours) 0.015+0001  0.013+0000 0.014:£0000  0.021+0024  0.018+0002  0.043+0041  0.038£0003  0.058--0.061
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C Experimental Details

C.1 Evaluation Metrics

We evaluate the 1-Wasserstein distance (JV;), which is used to evaluate the similarity between
inferred distributions and true distributions, and Total Mass Variation (TMV), which is used to
evaluate whether the inferred dynamics is able to reflect the growth of cells, on the synthetic gene
data and real-world single-cell data. The metrics are defined as follows:

Wia) = (_min [ lo = yladnton)).

m€I(p,q)

where p and ¢ represent empirical distributions. The W is calculated using the Python Optimal
Transport library (POT) (Flamary et al. 2021).

TMV (t;) =

Zwi(tk) — %z

i

where w; (1) represents the weight of particle ¢ at time ¢, and nj denotes the number of cells in the
original dataset at time ¢.

For all datasets, models were trained using all available time points and were evaluated using VV; and
TMV. For synthetic gene regulatory networks with attractive interactions, mouse hematopoiesis, and
embryoid body dataset, additional experiments with one-time point held out were conducted. W is
used to evaluate the performance at held-out time points. We evaluate our method by applying the
learned dynamics to all initial data points to generate trajectory and their weights for subsequent time
points starting from initial weights w;(0) = 1/ng. Next, we compute the weighted W, and TMV
between the generated data and the real data based on the inferred weights. We ran the simulation
five times to calculate the mean value and the standard deviation. To evaluate the performance of
DeepRUOT (Zhang et al. 2025a), we deploy the same procedure as ours but without interaction.
To evaluate the performance of TIGON (Sha et al. 2024), we reimplemented their method to avoid
certain instabilities. As for uAM (Neklyudov et al. 2023), we deploy its default parameter settings.
TIGON and uAM are evaluated by simulating the dynamics of weighted particles.

To ensure a fair comparison with other methods, we used their default settings for datasets featured
in their original papers. For all other datasets, we adjusted the models’ network sizes to ensure
comparable parameter counts and tuned their training epochs and learning rates accordingly. To
evaluate the performance of SF2M (Tong et al. 2024b), we keep the diffusion coefficient o the same
as ours while maintaining other parameters as defaults for fair comparison. The weights of the
inferred particles are set to uniform distribution to evaluate as the growth term is not considered. To
evaluate the performance of UDSB (Pariset et al. 2023), as its default setting only involves three-time
points, we use samples at ¢ = 0, 2,4 from synthetic gene data and embryoid body data as inputs.

C.2 Hyperparameters Selection and Loss Weighting

The experiments were performed on a shared high-performance computing cluster with NVIDIA
A100 GPU and 128 CPU cores. As we aim to make our algorithm universally applicable to different
types of biological data, most of the hyperparameters are kept identical across different datasets,
while those varying are mainly related to the scale of datasets. Specifically, for the modeling of
interaction potential, we set the number of RBF kernels to 8 across different datasets. For real-world
scRNA-seq data, the threshold d, . is set no lower than the largest distance between cells in specific
datasets so that all pairs of cells are involved in interacting with each other. For the zebrafish data, we
set the threshold d, . in the physical space, where cells interact with neighboring cells in physical
space. We conducted experiments on the effect of different values of dy in Table 16.

As shown, we found that the performance was quite robust with respect to different choices of dcyof
unless the cutoff is set too small, which may potentially lead to inadequate modeling of cellular
interactions. To simulate ODEs with random batch methods, we also examined the choices of number
of particles p within one group in Table 17. Generally, increasing p slightly improves performance on
evaluation metrics by providing a more accurate approximation of the interaction term. However,
gains diminish at higher p values, while computational costs increase. Thus, we selected p = 16 as
the default, balancing robust performance with computational efficiency.
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Table 16: Wasserstein distance (JV;) and Total Mass Variation (TMYV) of predictions with different
deuotr Values at different time points. The table shows the mean value with one standard deviation.

dculoff t=1 t=2 t=3 t=4
Wi T™MV Wi T™MV Wy ™V Wy ™V

0.1 0.080+0001  0.010+0008  0.119+0003 0.032+0016 0.141+0003 0.050+0042 0.167x0003 0.077+0.043
0.3 0.015+0001  0.013x0011  0.016+0001  0.024+0023 0.026+0003 0.038+0.044  0.042+0004  0.052+0.063
0.5 0.015+0001  0.013+0000 0.014+0001  0.021+0024  0.018+0002 0.043+0041  0.038+0003 0.058+0.061
0.7 0.013x0001  0.013x0007  0.013x0001  0.024+0023 0.024+0003 0.047 0031  0.037x0003  0.069+0.046
1.0 0.014+0001  0.012+0000  0.014x0001  0.025+0023 0.026+0004  0.039+0.041  0.043+0004  0.057+0.056
2.0 0.018+0001  0.014+0011  0.025+0002  0.023+0021  0.042+0003 0.046+0031  0.049+000s 0.072+0037

Table 17: Wasserstein distance (VV;) across different time points for varying values of parameter p.

t=1 t=2 t=3 t=4

0.025 0.033 0.048 0.094
0.017 0.023 0.025 0.043
0.016 0.019 0.022 0.035
0.015 0.014 0.018 0.038
0.015 0.016 0.020 0.030
64 0.014 0.014 0.024 0.030

BN

Moreover, we also compared the results with and without the random batch method in Table 18.
Results show that the full model (without RBM) and the RBM model yield comparable performance,
with the full model slightly better at certain time points. However, RBM significantly enhances
computational efficiency, reducing the interaction term’s complexity from O(N?) to O(pN). The
tables demonstrate substantial reductions in memory and inference time with RBM. Given its
comparable accuracy and scalability for large-scale single-cell datasets, RBM is a justified and
essential component of our framework.

Table 18: Performance comparison on simulation data with and without RBM.

t=1 t=2 t=3 t=4 Time(s) Memory (GB)
Method Wi Wy Wy Wr

w/oRBM 0.015 0.013 0.023 0.029  0.568 22.1
p=16 0.015 0.014 0.018 0.038  0.115 1.7

For our training procedure, the parameters differ only in the number of training epochs. As real-world
scRNA-seq data mainly involves large numbers of cells, it typically will require more iterations for
our model to converge. Increasing the number of training epochs has few adverse effect, allowing
users to use a default of (500, 100, 500) epochs for larger datasets. For other hyper-parameters, we
will then provide a guideline on their choices. In the pre-training phase, we first need to provide a
suitable initialization for the velocity network and the growth network, which involves selecting the
parameters A, and A\g in Lrecons = AmLMass + AdLor- We set Ay to 1 and A\, to 0.01 in order to
encourage the transition to match the observed distribution while maintaining the unbalanced effect.
We empirically found that lowering the mass loss weighting during pre-training improves distribution
matching performance. Here we only adopt the local mass matching loss without restricting the exact
number of cells in order to learn general growth patterns. Subsequently, we set \,, to zero to initialize
the interaction network. By doing so, the interaction network can be stably trained in order to refine
the variance of distributions. The parameter selections of pre-training procedure is summarized in
Table 19, where the arrow notation (—) represents the adjustment of hyperparameters during two
stages of our pre-training phase.

During the training phase, as the four networks have been reasonably initialized, these networks
can be trained together stably. We set \,,, and A4 to 1, while adding the global mass matching term
to encourage our growth network to match the exact number of cells at different time points. A,
in £ = Lgnergy + ArLRecons + Ay Lpp is set to better match the distributions. Ay and A, in Lpp are
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set to align the score network to match the density. The specific choices of these parameters are
summarized in Table 19. We utilize the set of parameters consistently across different datasets.

Table 19: Parameter Settings for Different Datasets Across Two Training Stages (Synthetic gene,
mouse hematopoiesis, embryoid body, pancreatic 3-cell differentiation, EMT, Zebrafish).

Parameter Synthetic gene  mouse hematopoiesis  embryoid body  pancreatic 3-cell differentiation EMT Zebrafish

Pre-Training Phase

(Ams Aa, Epochs) (0.01, 1, 200) (0.01, 1, 500) (0.01, 1, 500) (0.01, 1, 500) (0.01, 1, 100) (0.01, 1, 500)
ms Ady EP — (0.0, 1, 100) — (0.0, 1, 100) — (0.0, 1, 100) — (0.0, 1, 100) — (0.0, 1, 100) — (0.0, 1, 100)

Training Phase

Am 1 1 1 1 1 1

Ad 1 1 1 1 1 1

Ar 1x 103 1x 103 1x 103 1x 103 1x 103 1x10%

Ap 1x10* 1 x 104 1 x 10* 1x10* 1x10* 1x10*

Aw 10 10 10 10 10 10

deutoft 0.5 300 100 100 2 0.3

Epochs 200 1000 500 500 200 500

C.3 Scalability and Computational Efficiency

We conducted an evaluation of the scalability and computational efficiency of CytoBridge on the
embryoid body data by extending the input from 50 to 100 PCs. As shown in Table 20, CytoBridge
achieves the lowest W; distance across all time points, demonstrating that CytoBridge remains
effective at higher dimensionality. Regarding the computational efficiency, CytoBridge maintains
comparable to other neural ODE-based methods with a training time of 11 minutes and a peak GPU
memory usage of 6.3 GB.

Table 20: Performance on 100D embryoid body data. We show the Wasserstein distance (W) at four
time points, alongside total runtime and peak memory usage. Bold indicates the best result.

t=1 t=2 t=3 t=4 Time Memory (GB)

Model Wi Wy Wy Wi

SF2M (Tong et al. 2024b) 11.333 12982 13.718 14945 4min 43s 0.7
Meta FM (Atanackovic et al. 2025) 11.699 13.398 14.037 14.727  S5min 50s 2.2
MMEM (Rohbeck et al. 2025) 13.150 14.135 14.441 14907 4min 38s 0.6
Metric FM (Kapusniak et al. 2024)  10.806 12.348 13.622 16.801  2min 16s 4.2
UOT-FM (Eyring et al. 2024) 10.757 12799 13.761 15.657 3min 27s 0.6
uAM (Neklyudov et al. 2023) 13.628 18.315 20.309 22.973 38s 1.5
MIOflow (Huguet et al. 2022) 11.387 12331 11.905 12908  6min 19s 0.7
TIGON (Sha et al. 2024) 10.547 12926 13.897 14.535 7min 33s 0.7
DeepRUOT (Zhang et al. 2025a) 10.226  11.110 11.544 12.424 10min 17s 3.7
CytoBridge (Ours) 10.217 11.070 11.505 12.368 11min 26s 6.3

C.4 Visualization

For the Mouse hematopoiesis and pancreatic 3-cell differentiation data, we project them to 2 di-
mension using UMAP (Mclnnes et al. 2018) for visualization. For embryoid body data, we project
them to 2 dimension using PHATE (Moon et al. 2019). For EMT data, we use the first two PCs for
visualization. The learned velocity, score and interaction are visualized using scVelo (Bergen et al.
2020). Here, the velocity stands for the combination of the drift b(x, t) of corresponding SDE and
interacting forces, which drives the process of the transition of cells. Specifically, scVelo projects
high-dimensional vectors into a lower-dimensional space by first computing a transition matrix
reflecting cell-to-cell transition probabilities; these probabilities are based on the cosine similarity
between the target high-dimensional vector and the displacement vector to its neighbors. Using this
matrix and the cells’ positions in a chosen embedding, scVelo then estimates the embedded vector for
each cell as the expected displacement, effectively summarizing the likely future state of the cell in
the low-dimensional representation.
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D Mathematical Details

D.1 Proof of Theorem 4.1

Proof. From Definition 4.1 we obtain

% _

5 = Ve Kb(x,t) —Adk(x,y)vx¢(x_y)p(y7t) dy> p(XJ)} N a(t)

2

Ap(x,t) + gp,

_—— ((b - 30O xlogplx,t) — [ k6ey) V0~ y)nly. ) dy) olx, t)) T 9p.

Using the change of variable v(x,t) = b(x, t) — £0%(t)Vx log p(x, t), we see that it is equivalent to
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Correspondingly, the integrand in the objective functional becomes
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D.2 Derivation of Proposition 5.1

We assume the following conditions hold.

Assumption D.1. The initial positions X}, are independently and identically distributed (i.i.d.) with
a common density po(x) € L*(R%) N L>(RY), and the initial weights are set as w;(0) = 1 for all
i=1,...,N. The functions b, g, ¢, and ® are Lipschitz continuous and bounded: specifically, b
and g are Lipschitz in x uniformly in t, k(x,y) is Lipschitz in both arguments and bounded, and
V. ® is Lipschitz continuous and bounded. The diffusion coefficient o(t) is continuous and bounded

on [0, T). The empirical measure py’ = + Zfil w;(t)dx: converges to a deterministic limit ‘p(X, t).
The system in Proposition 5.1 satisfies argument as N — oo, i.e., w7 >z wi() (X, 1) —
Jga F(x,0)p(x,1), where f is an arbitrary test function.

Remark D.1. The argument we assume here is related to the notions of “chaos” and “propagation
of chaos” and it has a rich theory in mathematics (Jabin and Wang 2017; Chaintron and Diez 2021).
To rigorously prove such an argument, we refer to some related works (Fournier et al. 2014; Feng
and Wang 2024; Duteil 2022; Ben-Porat et al. 2024, Ayi and Duteil 2021).

We derive the macroscopic continuity equation from the microscopic particle dynamics using the
weak formulation, employing test functions and taking the mean-field limit.

Define the weighted empirical measure as
T
py = N Zwi(t)5x§-
i=1

This measure encapsulates the distribution of particles along with their weights. Our goal is to show
that, as N — oo, ul¥ converges weakly to p(x, t) dx, where p satisfies the stated PDE.

Consider a smooth test function ¢ : R? — R in C2°(R9) (i.e., infinitely differentiable with compact
support). We examine the time evolution of the pairing

N
1 ,
N i
dx) = — (1) p(X3).
e @ = 53 wi02x)
To handle the stochasticity, we take the expectation and compute

d_[1 & .
&E N;wi(t)‘p(xt)]a
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and then pass to the limit as N — oo to recover the weak form of the PDE.

For each particle 4, the quantity w; (¢)(X}) evolves due to both the deterministic weight dynamics
and the stochastic position dynamics. Since w;(t) follows an ODE and X} follows an SDE, we apply
1td’s product rule:

d [wi (1) p(X)] = o(X}) dw; (t) + w;(t) dp(X}) + dw; (t) - dp(X).
The weight evolution term is given by
dw;(t) = g(X¢, t)w;(t) dt,

p(X) dw;(t) = g(XG, hwi(t)p(X}) dt.
For the position evolution, apply Itd’s formula to go(XZ)'

SO

dp(Xi) = Vp(Xi) - dX! + Z (o(t))? dt,
where the diffusion term arises from the Wiener process (w1th variance 0(t)). Substituting the SDE

. , 1 ; j )

J#i
we obtain
o2
) ) t .
de(X}) = Ve(X}) |b— —— Zk 4w (6 Vg (ID(XZ XJ) dt+o(t )V(p(X’) dWiJr 2( )Aga(Xi)dt.
J#z
Thus,

i i 1 i j a?(t) i
wilt) do(X}) = wi(t) § VoXi) - b= g S ki (07, 8(X} — X)) S A(Xi) di
J#i
+wi(t)o () Ve(X;) - dW5.
Since dw; (t) = g(X{, t)w;(t) dt is deterministic (with no stochastic component), the cross variation
dw;(t) - dp(X?) = 0. Combining these, the total differential is

@ [wst)p(X)] = 9K, (e (Xt + wi(()To(XE) - | b 0 3 ooy (67, 8(X — X]) |
J#i

)T Ap(X0)d + i (D)o (T (XS) - AW

Summing over all N particles and dividing by /N, we have
d[1& . e oy .
o (N Zw(ﬂw(ﬁ)) =+ 29X wi(t)p(X})
i=1 i=1

i 1 i j
+wi () Ve(XE) - | b— N1 Z ki jw;(t) VL @(X; — X7)
J#i
AW

2
+ w;(t )U (t)Ago X sz (t)V(X) - AT

Taking the expectation, the stochastic term vanishes since E[V@(X@) -dW{] = 0, yielding

d 1 = i 1 ol % 7
E ldt (N ;wi(t)@(xt)ﬂ =E [N > (g(Xt, Hwi (t)p(X1)

i=1

i 1 i j
+w; () Ve(X) - |b - N_-1 Z ki jw;i () V2 (XG — X7)
J#i
a?(t)
2

T3 apx) )|

32



As N — oo, we invoke the assumption. The empirical measure ¥ converges to p(x,t) dx. The
interaction sum

1 p ;
N_1 D ki () Vo @(XG - X)
i
approximates the mean-field interaction

[ X0 — 3ol ).

]R L

By the regularity of ¢ and V,®, this approximation holds in expectation as N — oo. Thus, in the

limit,
d

at o(x)p(x,t)dx = /Rd I:gp(p + p(x, ) Vep(x) - (b _

o?(t)
2

k%, Y)Va(x — y)p(y. 1) dy)
Rd

+

p(x, t)Ago(x)} dx.

Rewrite the right-hand side using integration by parts, noting that ¢ has compact support (so boundary
terms vanish). The drift term becomes

/deVgo-bdx:—/ oV - (bp) dx.

R4

The interaction term is
—/ PV - (/ k(x,y)Va®(x —y)p(y, ) dy) dx
Rd Rd

- /Rd oV [p /Rd k(x,y)Va®(x = y)p(y, t) dy} dx.

The diffusion term is

/ pApdx :/ pApdx,
Ra Rd

/ gpp dx.
Rd

and the growth term is

Thus,
d o(t)
& ppdx = ¢ =V (bp)+V-|{p y k(x,y)Va®(x —y)p(y,t)dy | + ——=Ap + gp| dx.

Since this equality holds for all ¢ € C2°(R?), the fundamental lemma of calculus of variations
implies

op

o =Y [bp ~p [ Hoxy) V0= ¥)ply. dy} 420

A
5 A+ gp,

ot

which is the desired continuity equation.

E More Background on Trajectory Inference

In this section, we provide more background on the trajectory inference task. In single-cell transcrip-
tomics, methods vary depending on the data type:

Single Time-Point Snapshot Data: In this context, trajectory inference methods are broadly catego-
rized into two groups. The first type is pseudotime-based methods (Trapnell et al. 2017; Street et al.
2018; Wolf et al. 2019), which infer trajectories by ordering cells along a pseudotime axis but often
require specifying a starting point, limiting their flexibility. The second type is RNA velocity-based
methods (Bergen et al. 2020; Qiao and Huang 2021; Gayoso et al. 2024), which leverage spliced and
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unspliced counts to estimate dynamics but are constrained by the need for such data. Both approaches
infer dynamics from existing data without generating new cell states.

Multi Time-Point Snapshot Data: Our work addresses a distinct scenario involving single-cell
sequencing data across multiple time points. Due to the destructive nature of technology, this can be
framed as a generative modeling task, where dynamics are inferred from distributions at different
time points and could be interpolated at unseen time points. Once learned, these dynamics enable the
generation of intermediate cell states. Methods like optimal transport, which have gained significant
attention in computational systems biology and machine learning, are well-suited for this task (Zhang
et al. 2025¢).

Regarding evaluation and comparability, our generative approach, unlike pseudotime or RNA velocity
methods, evaluates performance using metrics for generated distributions, which traditional methods
cannot produce. This fundamental difference in data and modeling objectives, along with our hold-out
experiments, renders direct comparisons with traditional trajectory inference methods infeasible.
Zhang et al. 2025b discusses modeling approaches for different data types. We summarizes these
distinctions in Table 21.

Table 21: Comparison of Trajectory Inference Methodologies

Data Evaluation

Single snapshot

Method Generative

Pseudotime

Key

Infers trajecto- No Pseudotime ac-

or merged snap-
shots without us-
ing time labels

ries by ordering
cells; requires
starting point

curacy with true
time labels

RNA Velocity Single snap- Estimates dy- No Velocity consis-
shots with namics  using tency
spliced/unspliced RNA  splicing
counts kinetics

Optimal Transport Multi-time- Infers dynamics  Yes Generated distri-

point snapshots

and generates

bution metrics

new cell states

F Broader Impacts

Our work presents a new step forward in data-driven modeling of complex, dynamic biological
systems by introducing the UMFSB framework and an associated deep learning methodology Cyto-
Bridge, capable of explicitly accounting for cell-cell interactions alongside stochastic and unbalanced
population effects. The enhanced ability to dissect intercellular communication within evolving
cellular landscapes offers the potential for deeper mechanistic insights into fundamental biological
processes such as organismal development, disease pathogenesis, and tissue regeneration. Moreover,
our approach could enable more accurate predictions of individual therapeutic responses, aid in the
design of optimized combination therapies or cell-based treatments. By providing a more accurate
representation of these systems, our approach may accelerate the discovery of novel therapeutic
targets, helpful for more effective healthcare interventions.

Although the prospective benefits for scientific understanding and biomedical application are consider-
able, the use of such predictive models also requires careful consideration of potential social impacts
and risks. As with any data-driven approach, biases present in training datasets could be amplified by
the model, potentially leading to biased outcomes if applied without a rigorous check. Consequently,
a thorough validation across diverse conditions and a systematic assessment of potential biases are
needed.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the claim. The theoretical portions
and the algorithm of the claim are supported in Section 4 and Section 5; the claims on its
performance are supported by Section 6 of the main text.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of the work in section Section 7.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: Proofs and assumptions are included in the main text and Appendix D.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Reproducibility is accomplished by providing the full description of the
algorithm in the main text in addition to providing available code in a public repository
https://github.com/zhenyiizhang/CytoBridge-NeurIPS.

Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Code and data is available in a public repository https://github.com/
zhenyiizhang/CytoBridge-NeurIPS.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We specify the process of training and testing for all methods presented in the
paper. See Appendix C.
Guidelines:
» The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: The paper includes a standard deviation (std) of the mean for all the results.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the description of the compute resources utilized with available
computing clusters detailed in Appendix C.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have all reviewed and confirmed this research conforms with the NeurIPS
Code of Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Broader impacts are discussed in Appendix F.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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11.

12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All the datasets used for analysis in this study are publicly available from the
original source. They are properly credited, respected, mentioned and used. See Appendix B.

Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new datasets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The method development does not involve LLMs as any important, original,
or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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