
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

FORGING BETTER REWARDS: A MULTI-AGENT LLM
FRAMEWORK FOR AUTOMATED REWARD EVOLUTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) have shown increased autonomy in performing
complex tasks, but the inference latency and fine-tuning cost impose significant
limitations for their application in dynamic, real-time environments such as robotics
and gaming. Reinforcement learning (RL), by contrast, offers efficient execution
and has shown strong results in diverse domains. Yet its progress is often bot-
tlenecked by the challenge of designing effective reward functions, which are
typically sparse and require heavy manual effort to engineer. Recent work has
explored LLM-based reward generation, reducing manual effort yet remaining
unstable, unstructured, and opaque. Building on the enhanced reasoning capabili-
ties of modern LLMs, we advance this line of research toward full automation by
introducing structured reward initialization, evolutionary refinement, and explicit
complexity modeling. These innovations reduce reliance on manual trial-and-error
while enabling more stable, interpretable, and scalable reward design. We unify
them into FORGE (Feedback-Optimized Reward Generation and Evolution), a
multi-agent framework that automatically forges increasingly effective reward func-
tions. Extensive experiments across three games and a robotics task demonstrate
the effectiveness of FORGE, achieving up to 38.5% improvement over Eureka
and 19.0% over REvolve in the Humanoid task, while maintaining competitive
token efficiency.

1 INTRODUCTION

Large language models (LLMs) and Vision Language Action (VLA) models have advanced rapidly,
opening unprecedented opportunities for embodied intelligence (Andreas, 2022; Brohan et al., 2022;
Schick et al., 2023; Ma et al., 2024b; Yang et al., 2024). These models excel at high-level reasoning,
planning, and decision-making, enabling agents to interpret complex instructions and adapt to diverse
environments. However, if every low-level action is delegated to LLM outputs, the resulting latency
and inference cost become prohibitively high, rendering such approaches impractical for scalable
deployment (Kaddour et al., 2023; Wang et al., 2024; Zhou et al., 2024). Humans address this
challenge by combining deep, deliberate reasoning with fast, automatic motor execution—leveraging
both reflective cognition and muscle memory in everyday tasks. This analogy suggests a promising
paradigm for embodied AI: integrating the high-level reasoning of foundation models with the
low-level efficiency of reinforcement learning (RL) (Yu et al., 2023; Xie et al., 2024; Sun et al., 2025).

Reinforcement learning (RL) (Sutton & Barto, 2018) naturally fills this role by providing low-level
execution that is both efficient and scalable. RL agents have achieved remarkable performance
in domains such as dexterous robotic control and locomotion, where once-trained policies can be
deployed with negligible inference cost (Brohan et al., 2023; Kwon et al., 2023). Yet, this efficiency
hinges critically on the design of reward functions that guide learning. Constructing such rewards
is notoriously difficult: human designers must translate abstract objectives into precise signals, a
process that often requires extensive trial-and-error and domain expertise (Chentanez et al., 2004;
Yu et al., 2023). A recent survey reports that 92% of RL practitioners rely on manual reward tuning
and 89% acknowledge their designed rewards to be suboptimal, frequently leading to unintended
behaviors (Hadfield-Menell et al., 2020; Booth et al., 2023). Consequently, while RL excels at
execution, the bottleneck of reward design makes the training pipeline costly and limits the broader
adoption of RL in complex, real-world settings.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

To alleviate this bottleneck, recent work has explored using LLMs to automate reward design.
Methods such as Eureka (Ma et al., 2024a) and REvolve (Hazra et al., 2025) reduce manual effort by
prompting LLMs to generate reward functions, lowering the burden of human engineering. While
these approaches mark important progress, they remain far from fully automatic or reliable. Directly
sampling executable functions from LLMs often produces unstable rewards that fail to generalize
across environments. Moreover, the lack of structured mechanisms to organize and refine generated
rewards leads to redundancy and ineffective candidates, wasting both training time and compute.
Finally, without a principled measure of reward complexity, these methods offer little interpretability,
making it difficult to analyze how reward design quality correlates with agent performance. As a
result, existing approaches still suffer from instability, redundancy, and opacity in reward shaping.

We introduce FORGE (Feedback-Optimized Reward GEneration), a multi-agent LLM framework
that incrementally forges better reward functions through structured initialization and evolutionary
refinement. The name reflects its central idea: rewards are not discovered in a single step but are
repeatedly shaped and improved, much like metal forged under heat and pressure. Unlike prior
approaches that directly sample functions from LLMs, FORGE begins with a Planner agent that
reasons over task objectives, environment abstraction, and function interfaces to generate structured
reward specifications. These specifications are then implemented as modular functions, providing
strong zero-shot performance even before any refinement. Building on this foundation, FORGE
applies an evolutionary process where reward functions are iteratively selected and combined under
LLM guidance, enabling exploration beyond fixed encodings. Finally, a reward pool serves as
specialized memory, while a depth measure quantifies structural complexity, ensuring stability and
interpretability throughout the evolution. Together, these components establish a robust pipeline for
automated reward evolution.

We validate FORGE through extensive experiments spanning both discrete and continuous control
domains. Specifically, we evaluate on three classic gaming environments—Tetris, Snake, and Flappy
Bird—as well as the continuous robotics benchmark Humanoid (MuJoCo). Across all tasks, we
compare against strong baselines, including Eureka, REvolve, context-aware LLMs, and native sparse
rewards. The results highlight three consistent trends: (i) the Planner initialization yields strong
zero-shot performance, outperforming direct LLM sampling; (ii) the evolutionary refinement steadily
improves reward quality, driving stable performance gains across environments; and (iii) the reward
pool and depth measure enable interpretable analysis of reward complexity, revealing correlations
between structural depth and agent performance. Importantly, FORGE achieves these gains without
incurring higher token costs, demonstrating strong token efficiency relative to prior multi-agent LLM
frameworks.

In a nutshell, our contribution can be summarized as follows.

• We propose FORGE, a new paradigm for automated reward evolution that combines
planner-based initialization with evolutionary refinement, providing a structured and scalable
framework for reward design.

• We introduce a reward pool and depth measure that jointly ensure stability, interpretability,
and token efficiency, enabling reliable evolution without additional inference cost.

• Extensive experiments across four environments demonstrate the effectiveness of FORGE;
in the challenging Humanoid task, it achieves up to 38.5% improvement over Eureka and
19.0% over REvolve in final rewards, while maintaining competitive token efficiency.

2 RELATED WORKS

Reward Shaping. Reward shaping is a persistent challenge in RL that traditionally requires significant
domain expertise to craft precise reward. Algorithmic approaches that design intrinsic rewards with
bonus-driven exploration emerges as potential solutions (Bellemare et al., 2016; Tang et al., 2017;
Devidze et al., 2022), but are not easily generalizable to new environments. Inverse reinforcement
learning approaches infer reward functions from demonstration but require human expertise and
extensive data collection (Abbeel & Ng, 2004; Hadfield-Menell et al., 2020; Snoswell et al., 2020).
Recent works that utilize LLM as reward designer, leveraging its reasoning ability and parametric
knowledge to automate reward shaping over complex tasks (Yu et al., 2023; Ma et al., 2024a; Xie
et al., 2024). Although they have achieved significant success, incorporating LLM as a primary

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Figure 1: Pipeline of FORGE. The Planner agent reasons over the environment’s objective, dynamics, and
interface to produce textual reward specifications, which are converted into executable functions and stored in the
Reward Pool. The Engineer agent then iteratively samples from the pool, trains policies, evaluates outcomes,
and invokes the language model to refine reward functions, forming a continual loop of generation and selection.

decision-maker can produce unstable result and lead to performance degradation. In contrast, FORGE
aims to automatically generate consistently improving reward functions in different environments.

LLM-Based Autonomous Agents. Autonomous agents powered by LLMs have demonstrated
capabilities beyond textual conversation (Luo et al., 2025). Large collaborative agentic frameworks
can deliver end-to-end products and conduct independent research without human intervention (Hong
et al., 2024; Qian et al., 2024; Schmidgall et al., 2025; Singh et al., 2025). Yet the absences of
efficient feedback mechanism present difficulty to improving existing solutions. Flexible agents
with the capacity to navigate internet can respond to user request with up-to-date information, but
performs poorly on specialized tasks due to lack of interactions with the environments (Yang et al.,
2023; OpenAI, 2025a; Yang et al., 2025).

3 METHOD

We introduce FORGE, an LLM-based multi-agent framework that automates reward shaping for
reinforcement learning. By iteratively generating and refining surrogate rewards, FORGE enables
effective policy learning in environments where the extrinsic reward R̄ is sparse or delayed.

Preliminaries. The objective of reinforcement learning is to learn a policy π that maximizes the
expected cumulative return

J(π, R̄) = E[J(τ, R̄) | π], (1)

where τ denotes a trajectory and R̄ : S ×A → R is the extrinsic reward provided by the environment.
Since R̄ often provides limited guidance in complex tasks, we introduce surrogate rewards R that
serve as alternative training signals for policies. Each surrogate R is evaluated by the extrinsic return
it induces:

J(πR, R̄) ≈ 1
N

N∑
i=1

H∑
t=0

R̄(s
(i)
t , a

(i)
t), (2)

where πR is the policy optimized under R and N is the number of evaluation episodes. These
surrogate rewards form the basis of our framework and will be iteratively refined through evolution.

Method Roadmap. Our framework, illustrated in Figure 1, proceeds in two stages. First, a planner
agent generates an initial reward population from structured specifications, providing strong zero-shot
performance (subsection 3.1). Second, rewards are iteratively refined through LLM-guided selection
and crossover (subsection 3.2).

3.1 REWARD POPULATION SAMPLING

A central novelty of our approach lies in how the initial rewards are generated. Unlike prior methods
such as Eureka (Ma et al., 2024a) and REvolve (Hazra et al., 2025), which directly prompt LLMs to
output executable reward functions, we employ a planner agent (see Figure 1). The planner explicitly
reasons over task objectives, environment dynamics, and the interaction interface to produce a textual

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

reward specification. This specification is then integrated with environment information and passed
to the language model, which synthesizes modular reward components.

The planner agent then implements these components into executable functions. To standardize the
implementation, we enforce a fixed function interface specifying input arguments and return type,
while the agent completes the function body. The initialized population is as follow,

B = {R(0)
1 , R

(0)
2 , . . . , R

(0)
k }, where R

(0)
i ∼ Pθ(· | pRi

). (3)

This design offers two key advantages. First, the modularized structure enables parallel training
of policies under different reward candidates. Second, adapting to a new environment requires
only editing the prompt pE , without additional coding. Together, these properties ensure that our
framework achieves strong performance even in zero-shot settings, providing a robust initialization
for subsequent evolutionary refinement.

Zero-shot Effectiveness. Thanks to the planner’s structured specification and modularized imple-
mentation, our framework achieves competitive performance even before any evolutionary refinement.
This strong initialization distinguishes it from prior approaches that rely solely on direct LLM
sampling, and serves as the foundation for the evolutionary stage.

Having established the initialization stage, we now describe how these rewards are organized and
further developed.

Reward Function Pool as Specialized Memory. The planner-sampled rewards constitute the zeroth
generation of the population (with depth set to 0). To manage and refine these candidates, FORGE
maintains a reward function pool that serves as a specialized memory. The pool records all generated
rewards together with their scores, preserving strong candidates while discarding weaker ones. Unlike
context-aware LLM approaches that rely on raw history data and repeated inference, this curated pool
allows efficient reuse of high-quality functions at no additional cost, while also providing a structured
basis for subsequent evolution.

Complexity Measure: Depth. Building on the pool structure, we further introduce a measure of
structural complexity to characterize how rewards evolve over generations. Each planner-sampled
reward is initialized with depth d = 0. When a new reward R′ is created by combining two parent
rewards Rdi

i and R
dj

j with depths di and dj respectively , its depth is defined as

Dep(R′) = max
(

Dep(Rdi
i),Dep(Rdj

j)
)
+ 1, (4)

where Dep(Rdi
i) = di and Dep(Rdj

j) = dj . This recursive definition naturally reflects the hierarchical
buildup of reward components as evolution progresses. Intuitively, deeper rewards encode more
subcomponents and thus capture increasingly sophisticated shaping strategies. Compared to iteration
indices, which merely record creation order, Dep provides a principled and fine-grained measure of
complexity. As we will later show, this enables us to analyze how reward complexity correlates with
performance across different environments.

3.2 REWARDS EVOLUTION

With the initial reward population organized in the pool and their structural complexity formally
defined, the next step is to improve these candidates through iterative refinement. To this end, FORGE
employs an evolutionary process that selectively combines high-performing rewards and explores
new ones, progressively increasing both the diversity and the effectiveness of the population.

The classical genetic algorithm (GA) (Holland, 1992) represents candidate solutions (or “chromo-
somes”) as fixed-length bit strings, where each bit encodes a specific feature. New candidates are
then generated through crossover and mutation between two selected parents. While effective in such
discrete settings, this formulation does not directly transfer to reward functions for two main reasons.
First, reward functions vary in length and structure, making it difficult to impose a homogeneous
encoding. Second, naive recombination of code fragments is inefficient and severely limits explo-
ration. For instance, one might attempt to represent each reward component from subsection 3.1 as a
binary feature—“1” for active, “0” for inactive. This rigid representation assigns equal weight to all
components and leads to an intractable search space when extended to real-valued weightings.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

To address these limitations, we generalize the evolutionary process by incorporating LLM inference.
Rather than operating on fixed encodings, our framework leverages the reasoning capability of LLMs
to guide both the selection and crossover of reward functions. The following sections detail these two
mechanisms.

Rewards Selection. We maintain a function pool S that extends the initial reward population R
introduced in subsection 3.1. While R contains only the planner-sampled rewards (depth = 0), S
dynamically grows throughout evolution by incorporating newly generated candidates and discarding
weaker ones. Formally, at iteration t, the pool is represented as

S = {(R1, J
∗
R1

), (R1, J
∗
R1

), . . . , (Rn, J
∗
Rn

)} (5)

where n is the number of functions currently stored and JRi denotes J(πRi , R̄) for brevity. The
asterisked J∗ implies the best return over all evaluation episodes.

In contrast to traditional GA, where a fixed fitness function determines selection, we use the scores
J∗
Ri

not only for evaluation but also as sampling weights. Since each crossover requires two parents,
we define a categorical distribution over all pairs (Ri, Rj) in S:

P((Ri, Rj)) =

{
J∗
Ri

+J∗
Rj

W , if W > 0,
1
K , if W = 0 (uniform sampling).

(6)

where K is the total number of functions in the pool and W =
∑

k J
∗
Rk

is the sum of all scores. To
maintain bounded size, the lowest-scoring functions are pruned from S after each iteration.

This probabilistic selection scheme introduces stochasticity into the process, enabling both exploita-
tion of high-performing rewards and exploration of new combinations, thereby supporting more
effective evolution of the reward population.

Rewards Crossover. Once parent rewards are sampled from the pool S , new candidates are generated
through crossover. Unlike classical GA, which recombines fixed encodings, we adopt a high-level
approach that leverages the reasoning and coding ability of LLMs. Given two parent rewards Ri and
Rj , along with their scores, a coder agent synthesizes an offspring R′ by interpreting their semantic
content:

R′ ∼ Pθ(·|Ri, Rj , J
∗
Ri
, J∗

Rj
). (7)

To ensure compatibility across environments, we standardize the crossover operation through fixed
function interfaces, which specify argument types and return values. This allows the coder agent to
focus solely on implementing the reward logic, without concerns about environment-specific details.
Moreover, the design is memory-less: the current environment states (e.g., observations and actions)
are passed directly as arguments, eliminating dependence on long historical context.

The evolution proceeds iteratively. At iteration t, the coder samples K pairs of rewards from St,
generates new candidates R(t)

1 , R
(t)
2 , . . . , R(t)K, and updates the pool as

St+1 = St ∪ {R(t)
1 , R

(t)
2 , . . . , R

(t)
K }. (8)

The process continues until a predefined number of iterations is reached. Because each generation
relies only on local context (the two parents and their scores), the risk of hallucination or excessive
token usage is minimized. In addition, invalid functions can be safely discarded without disrupting
the population, avoiding the need for explicit error-handling mechanisms.

4 EXPERIMENTS

4.1 ENVIRONMENTS

We evaluate FORGE across four representative environments: three games—Tetris (Weichart &
Hartl, 2024), Snake (Grant, 2023), and Flappy Bird (Kubovčı́k, 2024)—and one simulated robotics
task, the humanoid robot in the Gymnasium (Towers et al., 2024) MuJoCo (Todorov et al., 2012) suite.
These environments are chosen to cover both discrete and continuous control settings, thereby testing
the generality of our approach. Since reward functions are generated with an LLM, we emphasize the

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Summary of the observation space for training RL policy and information received by the reward
functions in addition to the observations.

Environment RL Policy Observation Additional Reward Arguments

Tetris {0, 1}200, flattened game grid past observation and tetromino position
Snake R5, snake and food positions past observation and game states
Flappy Bird R12, player and pipes positions past observation and game states
Humanoid R348, humanoid kinematics past observation, action and external forces

distinction between the observation used as input to the RL policy and the input to the LLM-based
reward function, which includes additional information necessary to construct reward signals.

Table 1 summarizes the input spaces of all environments. For evaluation, we report the mean
cumulative extrinsic reward over N evaluation episodes. In the gaming environments, the extrinsic
rewards correspond directly to the game objectives: the number of lines cleared in Tetris, the snake
length in Snake, and the number of pipes passed in Flappy Bird. In the humanoid environment,
the extrinsic reward is a composite measure consisting of the alive reward, forward-movement
reward, control cost, and contact penalty. We include a video demonstration of FORGE across four
environments in the supplementary material.

4.2 BASELINES

Eureka. Eureka (Ma et al., 2024a) is a self-improving framework to encourage LLM to generate
executable reward functions and iteratively refine their design. In each iteration, Eureka selects the
best-performing reward from the previous round, produces a textual reflection, and queries the LLM
to generate K additional reward functions. For fair comparison, we run Eureka for 10 iterations with
K = 16, and report the highest extrinsic reward achieved as its final score.

REvolve. REvolve (Hazra et al., 2025) incorporates human feedback to quantitatively evaluate
LLM-generated reward functions. Instead of greedily generating new functions, REvolve employs a
strategy that selectively combines or mutates existing functions via the LLM. To ensure comparability,
we replace the human feedback module with the extrinsic reward of the target environment, and run
10 iterations where 16 (i.e., K = 16) reward functions are refined in each iteration.

General Agentic Frameworks. These are the general-purpose agents that have access to resources
online. We include two state-of-the-art frameworks: MetaGPT (Hong et al., 2024) and ChatGPT
Agent (OpenAI, 2025a). With zero-shot prompting, we ask the frameworks to implement a dense
reward function for each environment.

Context-aware LLMs. As recent LLMs are getting larger, they can process much longer prompts.
This capability enables single LLMs to zero-shot generate reward functions, and iteratively improve
the reward functions given feedbacks. We include Claude 4 (Anthropic, 2025), Grok 4 (xAI, 2025),
GPT-5 (OpenAI, 2025b) and o3 (OpenAI, 2025c), and run 10 iterations for each model.

Native. Environment-provided rewards without LLM shaping: sparse, event-driven signals in games
(e.g., lines in Tetris, apples in Snake, pipes in Flappy Bird) with terminal penalties, and dense
composite rewards in Humanoid (alive bonus, velocity, control cost, contact penalty).

4.3 TRAINING DETAILS

Policy Training. All RL policies are trained using the Stable-Baselines3 (Raffin et al., 2021)
implementation of Proximal Policy Optimization (PPO) (Schulman et al., 2017), with a fixed set of
hyperparameters across all environments. While alternative algorithms or tuned hyperparameters
may yield stronger performance, we adopt this unified setting to ensure consistency, fairness, and
reproducibility in our comparisons.

1General agentic frameworks (e.g., ChatGPT Agent, MetaGPT) do not provide reward function self-
improvement mechanisms, and thus only report Initialized results.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Performance comparisons across four environments. “Zero-shot” refers to policies trained with
LLM-generated rewards without refinement, while “Evolved” denotes performance after iterative evolutionary
updates. Scores are reported as the mean extrinsic rewards obtained by trained policies. Forge consistently
outperforms all baselines, achieving the best results in the evolved settings.1

Environment Tetris Snake Flappy Bird Humanoid

mode Zero-shot Evolved Zero-shot Evolved Zero-shot Evolved Zero-shot Evolved

Native 4.2 - 17.0 - 36.8 - 696.7 -

Claude Sonnet 4 0.0 2.6 12.0 15.4 15.8 59.6 642.6 775.1

Grok 4 0.0 7.6 10.2 15.6 51.6 7.8 621.2 671.5

o3 0.0 3.8 14.0 14.8 9.2 4.4 680.7 699.5

GPT-5 0.0 5.0 14.8 17.4 10.8 90.8 645.4 716.0

ChatGPT Agent 0.0 - 16.0 - 68.0 - 579.0 -

MetaGPT 0.0 - 14.0 - 5.2 - 651.2 -

Eureka 0.0 6.8 10.2 19.2 49.0 114.8 105.8 756.7

REvolve 1.2 9.4 14.0 17.2 32.4 129.2 686.7 880.7

Forge (Ours) 8.8 11.2 6.0 19.8 86.0 254.8 815.2 1048.0

Self-Improvement. For frameworks with self-improving mechanisms (AgentRF, Eureka, REvolve,
and Context-aware LLMs), we run each method for 10 iterations. In population-based sampling,
K = 16 candidate reward functions are generated at each iteration, from which the selection or
evolution process is applied.

Foundation Models. To ensure fair comparison, we reproduce all baseline methods and run them un-
der the same setting, using the CLAUDE-SONNET-4-20250514 variant of Claude Sonnet 4 (Anthropic,
2025) as the foundation model for both our framework and the baselines.

4.4 RESULTS

Performance Comparisons. We report the main experimental results across four environments in
Table 2. FORGE achieves the strongest performance overall, outperforming both general-purpose
LLMs (Claude Sonnet 4, Grok 4, o3, GPT-5) and specialized frameworks (Eureka (Ma et al., 2024a),
REvolve (Hazra et al., 2025)) in refining rewards. In the gaming environments, FORGE demonstrates
significant improvements over the zero-shot baselines, particularly in Flappy Bird, where iterative
refinement yields more than a 3× increase compared to the strongest baseline. In the humanoid
task, FORGE not only surpasses the native environment reward but also consistently outperforms
self-improving baselines such as Eureka and REvolve. These results highlight Forge’s ability to
generate high-quality reward functions at initialization and further enhance them through iterative
refinement.

FORGE steadily refines reward quality. While Table 2 reports the final evolved rewards across
environments, Figure 2 illustrates the intermediate refinement process. FORGE consistently produces
higher-quality reward populations than baseline methods and maintains stable improvements over
iterations. A key observation from Figure 2 is that population-based approaches, such as REvolve and
Eureka, do not, on average, surpass naive LLM-based methods by a large margin, except in isolated
cases such as Tetris. Although these methods can eventually discover reward functions that maximize
returns (as shown in Table 2), the process is costly and unstable, and in many cases context-aware
LLMs perform at a comparable average level. In contrast, FORGE exhibits stronger adaptability and
demonstrates consistent refinement, achieving at least the average level of all tested baselines while
steadily improving reward quality across iterations.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 2: Means of the reward function scores over the evolution process. Each data point represents the mean
of all reward function scores at the corresponding round index. The scores are normalized across all evaluated
methods for the corresponding environment. For clarity, we show only the data for Claude Sonnet 4 from all
context-aware LLMs.

4.5 DISCUSSION

Ablation Study. FORGE is designed as a compact framework without clearly separated modules,
which makes ablation less straightforward than in modular systems. To better understand the
contribution of its core components, we perform two ablation studies by selectively removing key
design choices. Specifically, we analyze the effect of removing the selective evolution and rewards
initialization planning modules, which correspond to disabling the Engineer agent and the Planner
agent, respectively. Table 3 reports the ablation study results across four environments. We observe
that removing either component leads to noticeable drops in performance. Without selective evolution,
FORGE struggles to maintain high scores in Snake and Humanoid, highlighting the importance of
guided refinement. Without rewards initialization planning, performance degrades substantially in
Flappy Bird and Humanoid, showing that sampling diverse reward components plays a crucial role in
stabilizing long-horizon optimization. The full FORGE framework, with both components enabled,
consistently achieves the best results across all environments, confirming that each module is essential
for maximizing performance.

Table 3: Ablation study of Forge across four environments. We analyze the contribution of two core modules,
selective evolution (Select. Evolve) and rewards initialization planning (Rewards Init.), by selectively removing
each component. Results show that removing either module leads to noticeable drops in performance. The
details of the two modules are elaborated in the main text.

Ablation Study
Modules Environments

Select. Evolve Rewards Init. Tetris Snake Flappy Bird Humanoid

w/o Select. Evolve ✓ 10.6 13.8 151.4 872.7

w/o Rewards Init. ✓ 10.0 19.6 126.8 635.1

Forge ✓ ✓ 11.2 19.8 254.8 1048.0

Depth analysis of reward functions. As defined in Equation 4, we use depth to measure the
structural complexity of generated reward functions. Figure 3 presents the relationship between depth
and performance. In the gaming environments (Figure 3a), we observe that the best-performing
reward functions consistently occur at depths around 3, despite the evolutionary process continuing
to generate deeper functions. This suggests that simple yet well-structured rewards are sufficient for
these discrete control tasks, and excessive complexity does not yield additional benefits. In contrast,
for the humanoid environment (Figure 3b), the optimal reward functions emerge at depth 7, indicating
that more sophisticated compositions are necessary to capture the continuous and high-dimensional
dynamics. Moreover, the results highlight that FORGE converges stably across diverse levels of
complexity, whereas context-aware LLMs (see Figure 2) exhibit fluctuating performance, particularly
in Tetris and Snake. Finally, the depth metric itself provides a useful signal for efficient search: when
performance stagnates as depth increases, the process can be terminated early, avoiding unnecessary
exploration of overly complex reward functions.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

(a) Reward function scores across depth. (b) Mean Reward functions scores for Humanoid.

Figure 3: Depth analysis of reward functions. (a) Normalized scores across depths for four environments,
showing that optimal depths differ between games and humanoid control. (b) Distribution of mean reward scores
by depth and round in Humanoid.
Performance gain does not come at the expense of computation cost. Recent works on multi-
agents collaborations suggest the trend of increasing token consumption with performance gain (Yuan
et al., 2025; Qian et al., 2025). As shown in Figure 7, our approach consumes more tokens in two
out of four tested environments but achieves consistent gains across all environments. This result
is primarily attributed to the design of the evolution strategy: the LLM is constrained to modify
only a small portion of the population on each iteration, and the context of generating a new reward
is limited to two sampled parent functions. This design also excludes the need for error-checking
mechanisms, as unsuccessful reward functions are simply discarded without affecting the population.
In extreme cases where the LLM generates mostly non-executable functions, our approach falls back
to repetitively sampling responses from the LLM without incurring additional cost, since all stored
functions have chances to be drawn.

Token Efficiency. Prior work on multi-agent collaboration has suggested that performance gains often
come with increased token consumption (Yuan et al., 2025; Qian et al., 2025). Nevertheless, FORGE
attains significant improvements with only a modest increase in token consumption. (Analysis is
detailed in Appendix A). This efficiency arises from the evolution strategy: at each iteration, the LLM
modifies only a small subset of the population, and the context for generating a new reward is limited
to two sampled parent functions. As a result, FORGE requires no additional error-checking—invalid
functions are simply discarded without affecting the population—and can fall back to resampling in
extreme cases where most generations are invalid, without incurring extra cost.

5 CONCLUSION

In this paper, we introduced FORGE, a multi-agent framework for automated reward evolution that
integrates planner-based initialization, evolutionary refinement, and complexity modeling. Experi-
ments across games and robotics show consistent gains over strong baselines, including up to 38.5%
improvement on the Humanoid benchmark, while maintaining token efficiency. Beyond empirical
performance, FORGE highlights how LLMs can be “forged” through feedback: by grounding reward
evolution in numerical returns and structural depth, the framework exploits reasoning abilities that
go beyond natural language and into domains where LLMs have traditionally struggled. This opens
promising directions for reward design in real-world robotics, where scalable, interpretable, and
feedback-driven reasoning will be critical for embodied AI.

Limitations and future work. The main limitation of FORGE is that it has only been evaluated in
simulated environments. Demonstrating success in real-world robotics is essential to establish the
practical effectiveness of automated reward shaping, as physical systems introduce challenges such
as sensor noise, delayed feedback, and strict safety constraints. In the longer term, scaling FORGE
to real-world deployment will likely require LLMs not only to generate and refine reward functions
but also to adapt their own reasoning through fine-tuning on embodied feedback. This suggests a
future trajectory where reward shaping and LLM adaptation co-evolve, ultimately bridging the gap
between simulation-driven design and robust real-world intelligence.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

LARGE LANGUAGE MODELS USAGE STATEMENT

Large Language Models (LLMs) were used solely to assist with the linguistic polishing of this
manuscript, such as improving grammar, clarity, and readability. All conceptual contributions,
technical methods, experimental designs, and analyses were developed entirely by the authors without
the use of LLMs.

ETHICS STATEMENT

This work does not involve human subjects, personally identifiable data, or sensitive information.
All experiments are conducted in simulated environments (video games and robotics benchmarks)
and therefore raise no direct ethical or privacy concerns. The proposed methods aim to improve the
efficiency and interpretability of reinforcement learning without foreseeable harmful applications.
We have carefully adhered to the ICLR Code of Ethics throughout the research and writing process.

REPRODUCIBILITY STATEMENT

We have made significant efforts to ensure the reproducibility of our results. A detailed description of
the algorithm, including mathematical formulations and pseudo-code, is provided in the main paper
and appendix. The prompts used for LLM-based reward generation are included in the supplementary
materials. The full source code, together with configuration files for all experiments, will be released
upon publication of the final version of the paper.

REFERENCES

Pieter Abbeel and Andrew Y. Ng. Apprenticeship learning via inverse reinforcement learning. In
Proceedings of the Twenty-First International Conference on Machine Learning, ICML ’04, pp.
1, 2004. ISBN 1581138385. doi: 10.1145/1015330.1015430. URL https://doi.org/10.
1145/1015330.1015430.

Jacob Andreas. Language models as agent models. In Findings of the Association for Computational
Linguistics: EMNLP 2022, pp. 5769–5779. Association for Computational Linguistics, 2022.
doi: 10.18653/v1/2022.findings-emnlp.423. URL https://aclanthology.org/2022.
findings-emnlp.423/.

Anthropic. Claude sonnet 4 (version 2025-05-14) [large language model]. https://www.
anthropic.com/claude, 2025.

Marc G. Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Rémi
Munos. Unifying count-based exploration and intrinsic motivation. In Proceedings of the 30th
International Conference on Neural Information Processing Systems, NIPS’16, pp. 1479–1487,
2016. ISBN 9781510838819.

Serena Booth, W. Bradley Knox, Julie Shah, Scott Niekum, Peter Stone, and Alessandro Allievi. The
perils of trial-and-error reward design: misdesign through overfitting and invalid task specifications.
In Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence and Thirty-Fifth
Conference on Innovative Applications of Artificial Intelligence and Thirteenth Symposium on
Educational Advances in Artificial Intelligence. AAAI Press, 2023. doi: 10.1609/aaai.v37i5.25733.
URL https://doi.org/10.1609/aaai.v37i5.25733.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,
Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, Julian Ibarz, Brian Ichter,
Alex Irpan, Tomas Jackson, Sally Jesmonth, Nikhil Joshi, Ryan Julian, Dmitry Kalashnikov,
Yuheng Kuang, Isabel Leal, Kuang-Huei Lee, Sergey Levine, Yao Lu, Utsav Malla, Deeksha
Manjunath, Igor Mordatch, Ofir Nachum, Carolina Parada, Jodilyn Peralta, Emily Perez, Karl
Pertsch, Jornell Quiambao, Kanishka Rao, Michael Ryoo, Grecia Salazar, Pannag Sanketi, Kevin
Sayed, Jaspiar Singh, Sumedh Sontakke, Austin Stone, Clayton Tan, Huong Tran, Vincent Van-
houcke, Steve Vega, Quan Vuong, Fei Xia, Ted Xiao, Peng Xu, Sichun Xu, Tianhe Yu, and

10

https://doi.org/10.1145/1015330.1015430
https://doi.org/10.1145/1015330.1015430
https://aclanthology.org/2022.findings-emnlp.423/
https://aclanthology.org/2022.findings-emnlp.423/
https://www.anthropic.com/claude
https://www.anthropic.com/claude
https://doi.org/10.1609/aaai.v37i5.25733

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Brianna Zitkovich. Rt-1: Robotics transformer for real-world control at scale. In arXiv preprint
arXiv:2212.06817, 2022.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen, Krzysztof Choromanski,
Tianli Ding, Danny Driess, Avinava Dubey, Chelsea Finn, Pete Florence, Chuyuan Fu, Montse Gon-
zalez Arenas, Keerthana Gopalakrishnan, Kehang Han, Karol Hausman, Alex Herzog, Jasmine
Hsu, Brian Ichter, Alex Irpan, Nikhil Joshi, Ryan Julian, Dmitry Kalashnikov, Yuheng Kuang,
Isabel Leal, Lisa Lee, Tsang-Wei Edward Lee, Sergey Levine, Yao Lu, Henryk Michalewski,
Igor Mordatch, Karl Pertsch, Kanishka Rao, Krista Reymann, Michael Ryoo, Grecia Salazar,
Pannag Sanketi, Pierre Sermanet, Jaspiar Singh, Anikait Singh, Radu Soricut, Huong Tran, Vincent
Vanhoucke, Quan Vuong, Ayzaan Wahid, Stefan Welker, Paul Wohlhart, Jialin Wu, Fei Xia, Ted
Xiao, Peng Xu, Sichun Xu, Tianhe Yu, and Brianna Zitkovich. Rt-2: Vision-language-action
models transfer web knowledge to robotic control. In arXiv preprint arXiv:2307.15818, 2023.

Nuttapong Chentanez, Andrew Barto, and Satinder Singh. Intrinsically motivated rein-
forcement learning. In Advances in Neural Information Processing Systems, volume 17,
2004. URL https://proceedings.neurips.cc/paper_files/paper/2004/
file/4be5a36cbaca8ab9d2066debfe4e65c1-Paper.pdf.

Rati Devidze, Parameswaran Kamalaruban, and Adish Singla. Exploration-guided re-
ward shaping for reinforcement learning under sparse rewards. In S. Koyejo, S. Mo-
hamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural
Information Processing Systems, volume 35, pp. 5829–5842. Curran Associates, Inc.,
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/266c0f191b04cbbbe529016d0edc847e-Paper-Conference.pdf.

Satchel Grant. Gym-Snake: An openai gym environment for reinforcement learning. https:
//github.com/grantsrb/Gym-Snake, 2023. GitHub repository.

Dylan Hadfield-Menell, Smitha Milli, Pieter Abbeel, Stuart Russell, and Anca Dragan. Inverse
reward design, 2020. URL https://arxiv.org/abs/1711.02827.

Rishi Hazra, Alkis Sygkounas, Andreas Persson, Amy Loutfi, and Pedro Zuidberg Dos Martires.
REvolve: Reward evolution with large language models using human feedback. In The Thirteenth
International Conference on Learning Representations, 2025. URL https://openreview.
net/forum?id=cJPUpL8mOw.

John H. Holland. Adaptation in Natural and Artificial Systems: An Introductory Analysis with
Applications to Biology, Control, and Artificial Intelligence. MIT Press, Cambridge, MA, 1992.
ISBN 9780262082136.

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu Zheng, Yuheng Cheng, Jinlin Wang, Ceyao
Zhang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, Chenyu Ran, Lingfeng
Xiao, Chenglin Wu, and Jürgen Schmidhuber. MetaGPT: Meta programming for a multi-agent
collaborative framework. In The Twelfth International Conference on Learning Representations,
2024.

Jean Kaddour, Joshua Harris, Maximilian Mozes, Herbie Bradley, Roberta Raileanu, and Robert
McHardy. Challenges and applications of large language models, 2023. URL https://arxiv.
org/abs/2307.10169.

Martin Kubovčı́k. flappy-bird-gymnasium: An openai gym/gymnasium environment for the flappy
bird game. https://github.com/markub3327/flappy-bird-gymnasium, 2024.
GitHub repository, Release v0.4.0.

Minae Kwon, Sang Michael Xie, Kalesha Bullard, and Dorsa Sadigh. Reward design with language
models, 2023. URL https://arxiv.org/abs/2303.00001.

Junyu Luo, Weizhi Zhang, Ye Yuan, Yusheng Zhao, Junwei Yang, Yiyang Gu, Bohan Wu, Binqi
Chen, Ziyue Qiao, Qingqing Long, Rongcheng Tu, Xiao Luo, Wei Ju, Zhiping Xiao, Yifan Wang,
Meng Xiao, Chenwu Liu, Jingyang Yuan, Shichang Zhang, Yiqiao Jin, Fan Zhang, Xian Wu,
Hanqing Zhao, Dacheng Tao, Philip S. Yu, and Ming Zhang. Large language model agent: A
survey on methodology, applications and challenges, 2025. URL https://arxiv.org/abs/
2503.21460.

11

https://proceedings.neurips.cc/paper_files/paper/2004/file/4be5a36cbaca8ab9d2066debfe4e65c1-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2004/file/4be5a36cbaca8ab9d2066debfe4e65c1-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/266c0f191b04cbbbe529016d0edc847e-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/266c0f191b04cbbbe529016d0edc847e-Paper-Conference.pdf
https://github.com/grantsrb/Gym-Snake
https://github.com/grantsrb/Gym-Snake
https://arxiv.org/abs/1711.02827
https://openreview.net/forum?id=cJPUpL8mOw
https://openreview.net/forum?id=cJPUpL8mOw
https://arxiv.org/abs/2307.10169
https://arxiv.org/abs/2307.10169
https://github.com/markub3327/flappy-bird-gymnasium
https://arxiv.org/abs/2303.00001
https://arxiv.org/abs/2503.21460
https://arxiv.org/abs/2503.21460

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yecheng Jason Ma, William Liang, Guanzhi Wang, De-An Huang, Osbert Bastani, Dinesh Jayaraman,
Yuke Zhu, Linxi Fan, and Anima Anandkumar. Eureka: Human-level reward design via coding
large language models. In The Twelfth International Conference on Learning Representations,
2024a. URL https://openreview.net/forum?id=IEduRUO55F.

Yueen Ma, Zixing Song, Yuzheng Zhuang, Jianye Hao, and Irwin King. A survey on vision-language-
action models for embodied ai. CoRR, abs/2405.14093, 2024b. URL https://doi.org/10.
48550/arXiv.2405.14093.

OpenAI. Chatgpt agent [large language model agent]. https://openai.com/index/
introducing-chatgpt-agent/, 2025a.

OpenAI. Gpt-5 [large language model]. https://platform.openai.com/docs/models/
gpt-5, 2025b.

OpenAI. Openai o3 [large language model]. https://platform.openai.com/docs/
models/o3, 2025c.

Chen Qian, Wei Liu, Hongzhang Liu, Nuo Chen, Yufan Dang, Jiahao Li, Cheng Yang, Weize
Chen, Yusheng Su, Xin Cong, Juyuan Xu, Dahai Li, Zhiyuan Liu, and Maosong Sun. Chatdev:
Communicative agents for software development, 2024. URL https://arxiv.org/abs/
2307.07924.

Chen Qian, Zihao Xie, YiFei Wang, Wei Liu, Kunlun Zhu, Hanchen Xia, Yufan Dang, Zhuoyun Du,
Weize Chen, Cheng Yang, Zhiyuan Liu, and Maosong Sun. Scaling large language model-based
multi-agent collaboration. In The Thirteenth International Conference on Learning Representations,
2025. URL https://openreview.net/forum?id=K3n5jPkrU6.

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah
Dormann. Stable-baselines3: Reliable reinforcement learning implementations. Journal of
Machine Learning Research, 22(268):1–8, 2021. URL http://jmlr.org/papers/v22/
20-1364.html.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta Raileanu, Maria Lomeli, Eric Hambro, Luke
Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach
themselves to use tools. In Advances in Neural Information Processing Systems, volume 36, pp.
68539–68551. Curran Associates, Inc., 2023.

Samuel Schmidgall, Yusheng Su, Ze Wang, Ximeng Sun, Jialian Wu, Xiaodong Yu, Jiang Liu,
Michael Moor, Zicheng Liu, and Emad Barsoum. Agent laboratory: Using llm agents as research
assistants, 2025. URL https://arxiv.org/abs/2501.04227.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms, 2017. URL https://arxiv.org/abs/1707.06347.

Ramneet Singh, Sathvik Joel, Abhav Mehrotra, Nalin Wadhwa, Ramakrishna B Bairi, Aditya Kanade,
and Nagarajan Natarajan. Code researcher: Deep research agent for large systems code and commit
history, 2025. URL https://arxiv.org/abs/2506.11060.

Aaron J. Snoswell, Surya P. N. Singh, and Nan Ye. Revisiting maximum entropy inverse reinforcement
learning: New perspectives and algorithms. In 2020 IEEE Symposium Series on Computational
Intelligence (SSCI), pp. 241–249, 2020. doi: 10.1109/ssci47803.2020.9308391. URL http:
//dx.doi.org/10.1109/SSCI47803.2020.9308391.

Shengjie Sun, Runze Liu, Jiafei Lyu, Jingwen Yang, Liangpeng Zhang, and Xiu Li. A large language
model-driven reward design framework via dynamic feedback for reinforcement learning. Knowl.
Based Syst., 326:114065, 2025. URL https://doi.org/10.1016/j.knosys.2025.
114065.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. A Bradford
Book, Cambridge, MA, USA, 2018. ISBN 0262039249.

12

https://openreview.net/forum?id=IEduRUO55F
https://doi.org/10.48550/arXiv.2405.14093
https://doi.org/10.48550/arXiv.2405.14093
https://openai.com/index/introducing-chatgpt-agent/
https://openai.com/index/introducing-chatgpt-agent/
https://platform.openai.com/docs/models/gpt-5
https://platform.openai.com/docs/models/gpt-5
https://platform.openai.com/docs/models/o3
https://platform.openai.com/docs/models/o3
https://arxiv.org/abs/2307.07924
https://arxiv.org/abs/2307.07924
https://openreview.net/forum?id=K3n5jPkrU6
http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html
https://arxiv.org/abs/2501.04227
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/2506.11060
http://dx.doi.org/10.1109/SSCI47803.2020.9308391
http://dx.doi.org/10.1109/SSCI47803.2020.9308391
https://doi.org/10.1016/j.knosys.2025.114065
https://doi.org/10.1016/j.knosys.2025.114065

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, Xi Chen, Yan Duan, John Schulman,
Filip De Turck, and Pieter Abbeel. Exploration: a study of count-based exploration for deep
reinforcement learning. In Proceedings of the 31st International Conference on Neural Information
Processing Systems, NIPS’17, pp. 2750–2759, 2017. ISBN 9781510860964.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033,
2012. doi: 10.1109/IROS.2012.6386109.

Mark Towers, Ariel Kwiatkowski, Jordan Terry, John U Balis, Gianluca De Cola, Tristan Deleu,
Manuel Goulão, Andreas Kallinteris, Markus Krimmel, Arjun KG, et al. Gymnasium: A standard
interface for reinforcement learning environments. arXiv preprint arXiv:2407.17032, 2024.

Jiaqi Wang, Zihao Wu, Yiwei Li, Hanqi Jiang, Peng Shu, Enze Shi, Huawen Hu, Chong Ma, Yiheng
Liu, Xuhui Wang, Yincheng Yao, Xuan Liu, Huaqin Zhao, Zhengliang Liu, Haixing Dai, Lin
Zhao, Bao Ge, Xiang Li, Tianming Liu, and Shu Zhang. Large language models for robotics:
Opportunities, challenges, and perspectives, 2024. URL https://arxiv.org/abs/2401.
04334.

Maximilian Weichart and Philipp Hartl. Piece by piece: Assembling a modular reinforcement
learning environment for tetris. EasyChair Preprint 13437, 2024. URL https://github.
com/Max-We/Tetris-Gymnasium.

xAI. Grok-4 (version 2025-07-09) [large language model]. https://docs.x.ai/docs/
models/grok-4-0709, 2025.

Tianbao Xie, Siheng Zhao, Chen Henry Wu, Yitao Liu, Qian Luo, Victor Zhong, Yanchao Yang,
and Tao Yu. Text2reward: Reward shaping with language models for reinforcement learning.
In The Twelfth International Conference on Learning Representations, 2024. URL https:
//openreview.net/forum?id=tUM39YTRxH.

John Yang, Carlos E. Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan,
and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software engineering,
2024. URL https://arxiv.org/abs/2405.15793.

Ke Yang, Yao Liu, Sapana Chaudhary, Rasool Fakoor, Pratik Chaudhari, George Karypis, and
Huzefa Rangwala. Agentoccam: A simple yet strong baseline for LLM-based web agents. In
The Thirteenth International Conference on Learning Representations, 2025. URL https:
//openreview.net/forum?id=oWdzUpOlkX.

Rui Yang, Lin Song, Yanwei Li, Sijie Zhao, Yixiao Ge, Xiu Li, and Ying Shan. Gpt4tools: Teaching
large language model to use tools via self-instruction, 2023.

Wenhao Yu, Nimrod Gileadi, Chuyuan Fu, Sean Kirmani, Kuang-Huei Lee, Montse Gonzalez Arenas,
Hao-Tien Lewis Chiang, Tom Erez, Leonard Hasenclever, Jan Humplik, Brian Ichter, Ted Xiao,
Peng Xu, Andy Zeng, Tingnan Zhang, Nicolas Heess, Dorsa Sadigh, Jie Tan, Yuval Tassa, and Fei
Xia. Language to rewards for robotic skill synthesis, 2023. URL https://arxiv.org/abs/
2306.08647.

Siyu Yuan, Kaitao Song, Jiangjie Chen, Xu Tan, Dongsheng Li, and Deqing Yang. Evoagent:
Towards automatic multi-agent generation via evolutionary algorithms, 2025. URL https:
//arxiv.org/abs/2406.14228.

Zixuan Zhou, Xuefei Ning, Ke Hong, Tianyu Fu, Jiaming Xu, Shiyao Li, Yuming Lou, Luning
Wang, Zhihang Yuan, Xiuhong Li, Shengen Yan, Guohao Dai, Xiao-Ping Zhang, Yuhan Dong,
and Yu Wang. A survey on efficient inference for large language models, 2024. URL https:
//arxiv.org/abs/2404.14294.

13

https://arxiv.org/abs/2401.04334
https://arxiv.org/abs/2401.04334
https://github.com/Max-We/Tetris-Gymnasium
https://github.com/Max-We/Tetris-Gymnasium
https://docs.x.ai/docs/models/grok-4-0709
https://docs.x.ai/docs/models/grok-4-0709
https://openreview.net/forum?id=tUM39YTRxH
https://openreview.net/forum?id=tUM39YTRxH
https://arxiv.org/abs/2405.15793
https://openreview.net/forum?id=oWdzUpOlkX
https://openreview.net/forum?id=oWdzUpOlkX
https://arxiv.org/abs/2306.08647
https://arxiv.org/abs/2306.08647
https://arxiv.org/abs/2406.14228
https://arxiv.org/abs/2406.14228
https://arxiv.org/abs/2404.14294
https://arxiv.org/abs/2404.14294

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A ADDITIONAL ANALYSIS

In this section, we provide analyses of (i) how FORGE obtains the optimal reward through a synthesis
process, (ii) a comparison between the optimal reward generated by FORGE and other methods, and
(iii) complete mean reward function scores and token usage omitted in subsection 4.4.

A.1 REWARD SYNTHESIS

Figure 4: Node topology for Tetris. Each node is a reward function labeled by the LLM generated name, round
index (R) and score (S). Each edge represents a parent-child relation. Due to the crossover operation requires
exactly two parents to create a new child, every node is connected by two edges.

In Figure 4, we show the evolution process that synthesizes the optimal reward function for Tetris.
The reward functions shown are plotted with increasing depth, representing an increasing degree of
complexity but not necessarily better performance. Note that the parent reward functions and their
scores are presented to the agents to create new rewards, so the evolution process is Markovian. For
illustrative purpose, only the topology for the best rewards of Tetris and Humanoid are shown. We
list a sub-path in the following table to demonstrate the synthesis of best reward for Tetris, with a
summary for each generated reward function.

Example Sub-Path in Tetris Topology

Edge Utilization Reward Small reward for effectively using board edges for piece placement.
Encourages strategic use of wall kicks and edge positioning to maximize
placement efficiency.

Surface Smoothness Reward Reward for maintaining relatively flat surfaces with minimal height dif-
ferences between adjacent columns. Promotes board states that provide
flexible placement options for future pieces.

Balanced Placement Strategy
Reward

Combines edge utilization with surface smoothness to encourage strate-
gic piece placement. Primarily rewards edge usage for stability while
penalizing excessive surface roughness when the agent is performing
well, promoting both immediate placement efficiency and long-term
board management.

Combined Compactness Edge
Reward

Combines the successful compactness-stability foundation with strategic
edge utilization. Uses compactness and adaptive stability as the primary
drivers for consistent line clearing performance.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Figure 5: Node topology for Humanoid.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A.2 REWARDS COMPARISON

This section details the difference between the optimal rewards generated for FORGE, REOLVE and
EUREKA using pseudo code. For illustrative purposes, only the summarization for the humanoid
environment is included. As shown in the following pseudo code summarization, a major difference
between FORGE and the other methods is the inclusion of coordination components that facilitate
human-like moving pattern. On the other hand, there are components common to all three method
(e.g. angular momentum penalty and forward moving reward), which semantically align with the
Humanoid objective, i.e. moving forward and not falling. We also present the complete source code
of the Humanoid optimal reward obtained by FORGE.

Algorithm 1 FORGE OPTIMAL REWARD

1: function FORGEREWARD
2: # 1. Collision penalty
3: for each non foot part do
4: if any(contact) then
5: reward← −3.0
6: end if
7: end for
8:
9: # 2. Penalize large angular momentum

10: reward← −0.015 ·
(∑
|ωtorso|+

∑
|ωabdomen|

)
11:
12: # 3. reward bilateral coordination patterns

13: reward← 1.0− |xright hip + xleft hip|
1.0

▷ Legs Coordination

14: reward← max(0, 2− |xright arm + xleft hip|
1.0

− |xleft arm + xright hip|
1.0

)

15: ▷ Synchronous arms and legs

16: reward← 1.0− ||vright hip| − |vleft hip||
5.0

▷ Synchronous hips
17:
18: # 4. Joint velocity smoothness over time
19: for each joint vt, vt−1 do
20: reward← −0.006 ·

∑
(vt − vt−1)

2

21: end for
22:
23: # 5. Alternating foot contact reward
24: if right foot contact or left foot contact then
25: reward += 0.25
26: end if
27:
28: return reward
29: end function

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Algorithm 2 REVOLVE OPTIMAL REWARD

1: function REVOLVEREWARD
2: reward = 0

3: reward←
{
healthy bonus if is healthy

0.0 otherwise
4:
5: # 1. Temperature-scaled action smoothness with velocity dependence
6: velocity scale← 1.0 + 0.4 · |forward velocity|
7: reward← −temp · velocity scale ·

(
1− e−action diff/temp

)
8:
9: # 2. Graduated exponential contact penalties

10: reward← −temp ·
(
1− e−

∑
contact forces

)
11:
12: # 3. orientation stability
13: reward← −temp · (torso orientation+ angular velocity penalty)
14:
15: # 4. Forward reward with tanh transform
16: reward← temp · tanh(vtorsotemp)
17:
18: # 5. efficiency and consistency bonuses
19: reward← REWARDFORWARDLATERALMOVEMENT
20: reward← REWARDGOODPOSTUREWHILEMOVING
21:
22: return reward
23: end function

Algorithm 3 EUREKA Optimal Reward

1: function EUREKAREWARD
2: // 1. Weighted, smooth contact penalties
3: for each non foot part do
4: reward← −weight[body part] · tanh(temp · |Fbody part|2)
5: end for
6:
7: // 2. Angular velocity based stability
8: ωexcess ← max

(
0, |ωtorso|+ |ωabdomen| − threshold

)
9: reward← −temp ·

∑
(ω2

excess)
10:
11: // 3. Forward locomotion
12: reward← tanh(temp · vtorso)
13:
14: // 4. Upright posture
15: reward← temp · exp

(
−(ztorso − 1)2

)
16:
17: return reward
18: end function

FORGE: Humanoid Optimal Reward

def combined_stable_coordination_reward(score_info: dict, action: np.
ndarray, prev_action: np.ndarray, x_coord: float, y_coord: float,
prev_x_coord: float, prev_y_coord: float, distance_from_origin:
float, prev_distance_from_origin: float, healthy_z_range: Tuple,
obs: np.ndarray, prev_obs: np.ndarray, cfrc_ext: dict,
prev_cfrc_ext: dict, terminated: bool, truncated: bool) -> float:
"""Combined stable coordination reward that merges smooth

bilateral locomotion with robust stability control.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

This reward function combines the bilateral coordination patterns
and joint velocity smoothness

from the smooth_bilateral_locomotion_reward with the strong
collision avoidance and angular

stability control from the unified_stable_locomotion_reward. It
promotes natural human-like

gait through coordinated limb movement while maintaining robust
fall prevention and collision

penalties for consistent training progress."""
Base reward from environment
base_reward = (score_info.get(’healthy_reward’, 0.0) +

score_info.get(’forward_reward’, 0.0) +
score_info.get(’ctrl_cost’, 0.0) +
score_info.get(’contact_cost’, 0.0))

Early termination handling with stability penalty
if terminated:

return base_reward - 8.0 # Strong termination penalty

Get torso height for health check
torso_height = obs[0]
is_healthy = healthy_z_range[0] <= torso_height <= healthy_z_range

[1]

if not is_healthy:
return base_reward - 5.0

Component 1: Joint Velocity Smoothness (from
smooth_bilateral_locomotion_reward)

current_joint_velocities = obs[25:45]
prev_joint_velocities = prev_obs[25:45]
velocity_changes = current_joint_velocities -

prev_joint_velocities
velocity_change_magnitudes = np.abs(velocity_changes)
smoothness_penalty = np.sum(velocity_change_magnitudes ** 2)
smoothness_reward = -0.006 * smoothness_penalty # Slightly

reduced weight

Component 2: Bilateral Coordination (from
smooth_bilateral_locomotion_reward)

coordination_reward = 0.0

Extract joint angles and velocities
right_hip_x, right_hip_z, right_hip_y, right_knee = obs[8:12]
left_hip_x, left_hip_z, left_hip_y, left_knee = obs[12:16]
right_arm_1, right_arm_2 = obs[16:18]
left_arm_1, left_arm_2 = obs[19:21]

right_hip_x_vel, right_hip_z_vel, right_hip_y_vel, right_knee_vel
= obs[31:35]

left_hip_x_vel, left_hip_z_vel, left_hip_y_vel, left_knee_vel =
obs[35:39]

Anti-phase leg movement (natural gait)
leg_phase_diff = abs(right_hip_x + left_hip_x)
leg_coordination = max(0, 1.0 - leg_phase_diff / 1.0)
coordination_reward += leg_coordination * 0.2

Arm-leg coordination (arms opposite to legs)
right_arm_left_leg_sync = 1.0 - abs(right_arm_1 - left_hip_x) /

2.0
left_arm_right_leg_sync = 1.0 - abs(left_arm_1 - right_hip_x) /

2.0

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

arm_leg_coordination = max(0, (right_arm_left_leg_sync +
left_arm_right_leg_sync) / 2.0)

coordination_reward += arm_leg_coordination * 0.1

Velocity symmetry between limbs
hip_vel_coordination = max(0, 1.0 - abs(abs(right_hip_x_vel) - abs

(left_hip_x_vel)) / 5.0)
knee_vel_coordination = max(0, 1.0 - abs(abs(right_knee_vel) - abs

(left_knee_vel)) / 5.0)
velocity_coordination = (hip_vel_coordination +

knee_vel_coordination) / 2.0
coordination_reward += velocity_coordination * 0.1

Component 3: Foot Contact Patterns (from
unified_stable_locomotion_reward)

right_foot_force = np.linalg.norm(cfrc_ext[’right_foot’][:3])
left_foot_force = np.linalg.norm(cfrc_ext[’left_foot’][:3])

right_contact = right_foot_force > 0.3
left_contact = left_foot_force > 0.3

Reward single foot contact (natural walking)
if (right_contact and not left_contact) or (not right_contact and

left_contact):
coordination_reward += 0.25

elif right_contact == left_contact:
coordination_reward -= 0.05

Contact force symmetry when both feet in contact
if right_foot_force + left_foot_force > 0.1:

force_asymmetry = abs(right_foot_force - left_foot_force) / (
right_foot_force + left_foot_force + 1e-6)

force_symmetry = max(0, 1.0 - force_asymmetry)
coordination_reward += force_symmetry * 0.08

Component 4: Stability Control (from
unified_stable_locomotion_reward)

stability_reward = 0.0

Strong collision avoidance for non-foot body parts
contact_threshold = 1e-6
collision_penalty = -3.0

non_foot_body_parts = [
’torso’, ’lwaist’, ’pelvis’,
’right_thigh’, ’right_shin’, ’left_thigh’, ’left_shin’,
’right_upper_arm’, ’right_lower_arm’, ’left_upper_arm’, ’

left_lower_arm’
]

for body_part in non_foot_body_parts:
if body_part in cfrc_ext:

contact_force_magnitude = np.linalg.norm(cfrc_ext[
body_part])

if contact_force_magnitude > contact_threshold:
stability_reward += collision_penalty

Angular stability control
torso_angular_vel = obs[25:28]
abdomen_angular_vel = obs[28:31]

torso_momentum = np.sum(np.abs(torso_angular_vel))
abdomen_momentum = np.sum(np.abs(abdomen_angular_vel))

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

stability_reward -= 0.015 * (torso_momentum + 0.8 *
abdomen_momentum)

Postural control
torso_w, torso_x, torso_y, torso_z = obs[1:5]
abdomen_x, abdomen_y = obs[7], obs[6]

Torso pitch control
torso_pitch = 2 * (torso_w * torso_y - torso_z * torso_x)
if abs(torso_pitch) > 0.3:

stability_reward -= 0.2

Spine stability
if abs(abdomen_x) > 0.15 or abs(abdomen_y) > 0.15:

stability_reward -= 0.1

Backward movement penalty
x_velocity = x_coord - prev_x_coord
if x_velocity < 0:

stability_reward -= 2.0 * abs(x_velocity)

Component 5: Forward velocity bonus
forward_velocity = obs[22]
velocity_bonus = 0.1 * min(forward_velocity, 2.0) if

forward_velocity > 0 else 0

Combine all components with balanced weighting
total_reward = base_reward + smoothness_reward +

coordination_reward + stability_reward + velocity_bonus

return total_reward

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

A.3 REWARD FUNCTION SCORES AND TOKEN USAGE.

The mean reward functions scores for the environments omitted in subsection 4.5 are shown in
Figure 6.

(a) Tetris reward functions scores. (b) Snake reward functions scores.

(c) Flappy Bird reward functions scores.

Figure 6: Reward functions scores plotted across depth and round.

It is evident that environments with more complex dynamics have the optimal reward functions
occurred deeper in the evolution process. A notable observation is the Flappy Bird envrionment,
where the optimal reward appears as an outlier that performs surprisingly better than all other rewards.
This sharp local maxima within the solution space might suggests critical reward components that
dramatically improve the policy performance.

Figure 7: Token usage comparison across four environments. Bars are split into input and output tokens for each
method. FORGE consumes more tokens in only two environments, yet achieves consistent performance gains
across all cases, demonstrating its token efficiency relative to Eureka and REvolve.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

B FORGE DETAILS

In the following sections we present the implementation detail of FORGE with i) the detailed algorithm,
ii) environments abstraction, and iii) reward function interfaces.

B.1 FORGE ALGORITHM

Algorithm 4 Forge

Require: Environment definition env, reward function interface I
Hyperparameters: number of initial rewards sampling N , total evolution rounds T , number of new

rewards K
Ensure: Evolved reward function population

1: Initialize AI agents:
2: reward planner P ▷ Sample reward component ideas
3: reward engineer E ▷ Implements functions from specifications
4: # Initialize Reward Population
5: S := {} ▷ Empty reward function pool
6: reward specs := {P (env)i}Ni=1 ▷ Planner brainstorms reward components
7: for spec ∈ reward spec do
8: R := P (spec, I) ▷ Sample initial rewards
9: J∗

R = Train(π, R̄) ▷ Score of R is the maximum native reward R̄

10: S ← S
⋃

(R, J∗
R)

11: end for
12: # Iterative training and evolution
13: for T rounds do
14: for t = start round to T do
15: {(Ri, Rj)}K ∼ Categorical(S, p(J∗

Ri
, J∗

Rj
)) ▷ Sample reward function pairs

16: for (Ri, Rj) ∈ {(Ri, Rj)}K do
17: R′ = E((Ri, Rj)) ▷ Obtain child reward R′

18: J∗
R′ = Train(π, R̄)

19: S ← S
⋃

(R′, J∗
R′)

20: end for
21: end for
22: end for
23: R∗ := argmax

J∗
S ▷ Optimal reward is the reward function with the highest score

24: return S

B.2 ENVIRONMENTS ABSTRACTION

FORGE abstract each environment as simple textual description. This abstraction facilitates explo-
ration in initializing reward population, as the potential rewards are not constrained by the extra
context required to zero-shot generate executable rewards.

Environment: Tetris

The Tetris environment from Gymnasium’s Atari Learning Environment presents the agent with a
grid-based game where tetrominoes fall from the top of the screen. The agent’s objective is to
manipulate and place these tetrominoes to form complete horizontal lines, which are then cleared
from the grid. The environment provides visual observations of the game state and discrete
actions corresponding to tetromino movements and rotations. The primary task is to encourage

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

the agent to maximize the number of lines cleared over an episode. The current reward signal is
sparse, giving positive feedback only when lines are cleared.

Environment: Snake

The Snake environment from the Gym-Snake repository provides a grid-based game where the
agent controls a snake that moves around the screen to consume randomly placed food items.
Each time the snake eats food, it grows in length, increasing the complexity of navigation. The
agent receives visual observations representing the current game grid, including the snake’s
position and the location of the food. The action space is discrete, allowing the agent to choose
directional movements (up, down, left, right). The objective is to maximize the length of the
snake while avoiding collisions with the walls or the snake’s own body. The reward structure is
sparse, giving positive reward when the snake consumes food, and a negative reward is given
when a collision occurs (episode ends).

Environment: Flappy Bird

Flappy Bird is a simple but challenging side-scrolling arcade game in which the player controls a
bird that moves continuously to the right. In the actual implementation, the player’s x position
is fixed while the environment (pipes and background) continuously moves to the left.The only
control is to “flap” (making the bird ascend briefly) or do nothing, allowing gravity to pull it
down. Vertical movement is automatic when no action is taken. The objective is to navigate the
bird through gaps between vertically-aligned pipes without colliding with them or the boundaries
of the screen. Each successful pass through a pair of pipes increments the score by one. Colliding
with a pipe, the ground, or ceiling ends the game.

Environment: Humanoid

The Humanoid environment from Gymnasium’s MuJoCo environments provides a 3D bipedal
robot simulation designed to mimic human locomotion. The agent controls a humanoid robot
with a torso (abdomen), a pair of legs and arms, and tendons connecting the hips to the knees.
Each leg consists of three body parts (thigh, shin, foot), and each arm consists of two body parts
(upper arm, forearm). The agent receives continuous observations representing joint positions,
velocities, center of mass information, inertial data, and external forces. The action space is
continuous, allowing the agent to apply torques at 17 different hinge joints. The primary objective
is to prevent the humanoid from falling while moving forward as much as possible.

B.3 FUNCTION INTERFACE

FORGE isolates the reward planning from reward generation, prompting LLM with a function interface
to generate executable code after a rewards specification is proposed. The function interface is defined
for each environment and is enforced at the source code level. This design promotes automatic
error-detection and excludes the need for extensive adaptation of the environment source code.

Interface: Tetris

Args:
- ‘action‘ (int):

The action taken by the agent.
For each column on the board, the agent can rotate the

tetromino counter-clockwise for 0, 1, 2, or 3 times. This
results in a total of board_width*4 possible actions.

Therefore, the action space is a Discrete space with
board_width*4 possible actions. The value is interpreted as
column index + number of rotations.

So the actions [0, 1, 2, 3] correspond to the first column and
the tetromino rotated 0, 1, 2, 3 times respectively.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

The actions [4, 5, 6, 7] correspond to the second column and
the tetromino rotated 0, 1, 2, 3 times respectively, and so
on.

Action not within the action space is invalid and will result
in a reward of -1.

- ‘curr_board‘ (2D numpy array): A binary array representation of
the game board after the ‘action‘ is taken, where ‘1‘ indicates
a filled cell and ‘0‘ indicates an empty cell. This
representation also includes the newly apperaed tetromino to be
placed.

- ‘curr_active_tetromino‘ (2D numpy array): A binary array of the
same shape as ‘curr_board‘, containing ONLY the tetromino to be
placed for the NEXT step. Therefore, current board without
active tetromino is curr_board - curr_active_tetromino.

- ‘prev_board‘ (2D numpy array): A binary array of the same shape
as ‘curr_board‘, representing the game board of previous step.

- ‘prev_active_tetromino‘ (2D numpy array): A binary array of the
same shape as ‘prev_board‘. Previous board without active
tetromino is prev_board - prev_active_tetromino.

- ‘lines_cleared‘ (int): The number of lines cleared resulted from
the ‘action‘ taken in the current step.

Example:
Consider a 7x5 board at a given point during gameplay, where the

following inputs are given:
- action: 9 (column index 2, rotates counter-clockwise for 1 time)
- curr_board:

[
[0, 0, 1, 1, 0],
[0, 0, 1, 1, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 1, 1, 0],
[0, 0, 0, 1, 1]

]
- curr_active_tetromino:

[
[0, 0, 1, 1, 0],
[0, 0, 1, 1, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0]

]
- prev_board:

[
[0, 0, 0, 1, 0],
[0, 0, 1, 1, 0],
[0, 0, 1, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0]

]
- prev_active_tetromino:

[
[0, 0, 0, 1, 0],
[0, 0, 1, 1, 0],
[0, 0, 1, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0]

]
- lines_cleared: 0

This example shows that by taking action=9, the game board
transitions from prev_board to curr_board by placing a z-shape
tetromino to the lower right corner of the board.

Additionally, a new tetromino appears at the top of the curr_board
.

Since no lines are cleared, the number of lines cleared is 0.
The example is simplified for clarity. The actual dimension of the

board is 20x10.

Returns:
You need to return the reward signal (float) based on the given

inputs.

Interface: Snake

Args:
- ‘game_grid‘ (2D numpy array): An array representation of the

current game grid, where ‘0‘ indicates an empty cell, ‘1‘
indicates a food item, ‘2‘ indicates a snake body, and ‘3‘
indicates a snake head.
The grid follows typical numpy array indexing, i.e. [0,0] is

located at the upper left most pixel, [0, 1] is the pixel to
the right of [0,0], [1, 0] is the pixel below [0,0].

- ‘prev_game_grid‘ (2D numpy array): An array representation of
the game grid on the previous step. prev_game_grid has the same
shape as ‘game_grid‘.

- ‘action‘ (int): The action taken by the snake that led to the
current game grid. The action space is discrete, with the
following possible values: 0-Move up, 1-Move right, 2-Move down
, 3-Move left.

- ‘food_eaten‘ (bool): Whether the snake has eaten food in the
current step.

- ‘snake_death‘ (bool): Whether the snake has died in the current
step.

- ‘snake_steps‘ (int): The number of steps the snake has taken
since the start of the episode.

Example:
Consider a 5x5 game grid where the snake has moved only once since

the start of the episode, the current arguments are:
- game_grid:

[
[0, 0, 0, 0, 0],
[0, 2, 0, 0, 0],
[0, 2, 3, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 1, 0]

]
- prev_game_grid:

[
[0, 2, 0, 0, 0],
[0, 2, 0, 0, 0],
[0, 3, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 1, 0]

]
- action: 1

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

- food_eaten: False
- snake_death: False
- snake_steps: 1

This example shows a snake of length 3, whose body is currently at
position (1, 1), (2, 1), and the head is at position (2, 2).
The food is located at position (4, 3).

The snake took action 1 (move right) from the previous step where
the snake was at position (0, 1), (1, 1), and the head was at
position (2, 1).

Since the snake has not eaten food in the current step, ‘
food_eaten‘ is False.

Since the snake has not died in the current step, ‘snake_death‘ is
False.

Since the snake has moved only once since the start of the episode
, ‘snake_steps‘ is 1.

Returns:
You need to return the reward signal for the current step.

Interface: Flappy Bird

Args:
- ‘last_pipe_x‘ (float): The horizontal position of the last pipe.
- ‘last_top_pipe_y‘ (float): The vertical position of the last top

pipe.
- ‘last_bottom_pipe_y‘ (float): The vertical position of the last

bottom pipe.
- ‘next_pipe_x‘ (float): The horizontal position of the next pipe.
- ‘next_top_pipe_y‘ (float): The vertical position of the next top

pipe.
- ‘next_bottom_pipe_y‘ (float): The vertical position of the next

bottom pipe.
- ‘next_next_pipe_x‘ (float): The horizontal position of the next

next pipe.
- ‘next_next_top_pipe_y‘ (float): The vertical position of the

next next top pipe.
- ‘next_next_bottom_pipe_y‘ (float): The vertical position of the

next next bottom pipe.
- ‘player_y‘ (float): The vertical position of the player.
- ‘player_y_velocity‘ (float): The vertical velocity of the player

.
- ‘player_rotation‘ (float): The rotation of the player.
- ‘player_x‘ (float): The horizontal position of the player.
- ‘player_width‘ (float): The width of the player.
- ‘player_height‘ (float): The height of the player.
- ‘screen_width‘ (float): The width of the screen.
- ‘screen_height‘ (float): The height of the screen.

NOTE: All the above arguments are un-normalized. The observation that
the policy network will receive is normalized.

The normalization is done as follows:
- for all x values, normalized_x = x / screen_width
- for all y values, normalized_y = y / screen_height
- ‘player_y_velocity‘ is normalized as ‘player_y_velocity‘ /=

PLAYER_MAX_VEL_Y, where PLAYER_MAX_VEL_Y=10.
- ‘player_rotation‘ is normalized as ‘player_rotation‘ /= 90.

This note is only for your information. You do not need to
compute normalized values as it will be done automatically.

Returns:

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

You need to return the reward signal for the current step.

Interface: Humanoid

Objective: Obtain the highest score possible, where the exact score
composition is defined in the ‘score_info‘ dictionary.

Args:
- ‘score_info‘ (dict): Dictionary containing the score components:
- ‘healthy_reward‘ (float): A reward is given if the Humanoid is

alive (Humanoid is alive if the z-coordinate of the torso (the
height) is in the closed interval given by the healthy_z_range)
.

- ‘forward_reward‘ (float): A reward for moving forward, this
reward would be positive if the Humanoid moves forward (in the
positive x direction / in the right direction).

- ‘ctrl_cost‘ (float): A negative reward to penalize the Humanoid
for taking actions that are too large.

- ‘contact_cost‘ (float): A negative reward to penalize the
Humanoid if the external contact forces are too large.

- ‘action‘ (np.ndarray): Action vector of shape (17,) containing
torques applied to each joint with values constrained to [-0.4,
0.4]. Actions correspond to:

0: Torque applied on the hinge in the y-coordinate of the abdomen
(N m)

1: Torque applied on the hinge in the z-coordinate of the abdomen
(N m)

2: Torque applied on the hinge in the x-coordinate of the abdomen
(N m)

3: Torque applied on the rotor between torso/abdomen and the right
hip (x-coordinate) (N m)

4: Torque applied on the rotor between torso/abdomen and the right
hip (z-coordinate) (N m)

5: Torque applied on the rotor between torso/abdomen and the right
hip (y-coordinate) (N m)

6: Torque applied on the rotor between the right hip/thigh and the
right shin (N m)

7: Torque applied on the rotor between torso/abdomen and the left
hip (x-coordinate) (N m)

8: Torque applied on the rotor between torso/abdomen and the left
hip (z-coordinate) (N m)

9: Torque applied on the rotor between torso/abdomen and the left
hip (y-coordinate) (N m)

10: Torque applied on the rotor between the left hip/thigh and the
left shin (N m)

11: Torque applied on the rotor between the torso and right upper
arm (coordinate -1) (N m)

12: Torque applied on the rotor between the torso and right upper
arm (coordinate -2) (N m)

13: Torque applied on the rotor between the right upper arm and
right lower arm (N m)

14: Torque applied on the rotor between the torso and left upper
arm (coordinate -1) (N m)

15: Torque applied on the rotor between the torso and left upper
arm (coordinate -2) (N m)

16: Torque applied on the rotor between the left upper arm and
left lower arm (N m)

- ‘prev_action‘ (np.ndarray): Action vector of shape (17,)
containing actions on the previous step.

- ‘x_coord‘ (float): The x-coordinate of the torso.
- ‘y_coord‘ (float): The y-coordinate of the torso.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

- ‘prev_x_coord‘ (float): The x-coordinate of the torso on the
previous step.

- ‘prev_y_coord‘ (float): The y-coordinate of the torso on the
previous step.

- ‘distance_from_origin‘ (float): The distance from the origin
- ‘prev_distance_from_origin‘ (float): The distance from the origin

on the previous step.
- ‘healthy_z_range‘ (tuple of 2 floats): The closed interval of the

height that the Humanoid is considered alive.
- ‘obs‘ (np.ndarray): Observation vector of shape (45,), containing

position and velocity information:
0: z-coordinate of the torso (center) (m)
1: w-orientation of the torso (center) (rad)
2: x-orientation of the torso (center) (rad)
3: y-orientation of the torso (center) (rad)
4: z-orientation of the torso (center) (rad)
5: z-angle of the abdomen (in lower_waist) (rad)
6: y-angle of the abdomen (in lower_waist) (rad)
7: x-angle of the abdomen (in pelvis) (rad)
8: x-coordinate of angle between pelvis and right hip (in

right_thigh) (rad)
9: z-coordinate of angle between pelvis and right hip (in

right_thigh) (rad)
10: y-coordinate of angle between pelvis and right hip (in

right_thigh) (rad)
11: angle between right hip and the right shin (in right_knee) (

rad)
12: x-coordinate of angle between pelvis and left hip (in

left_thigh) (rad)
13: z-coordinate of angle between pelvis and left hip (in

left_thigh) (rad)
14: y-coordinate of angle between pelvis and left hip (in

left_thigh) (rad)
15: angle between left hip and the left shin (in left_knee) (rad)
16: coordinate-1 (multi-axis) angle between torso and right arm (

in right_upper_arm) (rad)
17: coordinate-2 (multi-axis) angle between torso and right arm (

in right_upper_arm) (rad)
18: angle between right upper arm and right_lower_arm (rad)
19: coordinate-1 (multi-axis) angle between torso and left arm (in

left_upper_arm) (rad)
20: coordinate-2 (multi-axis) angle between torso and left arm (in

left_upper_arm) (rad)
21: angle between left upper arm and left_lower_arm (rad)
22: x-coordinate velocity of the torso (centre) (m/s)
23: y-coordinate velocity of the torso (centre) (m/s)
24: z-coordinate velocity of the torso (centre) (m/s)
25: x-coordinate angular velocity of the torso (centre) (rad/s)
26: y-coordinate angular velocity of the torso (centre) (rad/s)
27: z-coordinate angular velocity of the torso (centre) (rad/s)
28: z-coordinate of angular velocity of the abdomen (in

lower_waist) (rad/s)
29: y-coordinate of angular velocity of the abdomen (in

lower_waist) (rad/s)
30: x-coordinate of angular velocity of the abdomen (in pelvis) (

rad/s)
31: x-coordinate of the angular velocity of the angle between

pelvis and right hip (in right_thigh) (rad/s)
32: z-coordinate of the angular velocity of the angle between

pelvis and right hip (in right_thigh) (rad/s)
33: y-coordinate of the angular velocity of the angle between

pelvis and right hip (in right_thigh) (rad/s)

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

34: angular velocity of the angle between right hip and the right
shin (in right_knee) (rad/s)

35: x-coordinate of the angular velocity of the angle between
pelvis and left hip (in left_thigh) (rad/s)

36: z-coordinate of the angular velocity of the angle between
pelvis and left hip (in left_thigh) (rad/s)

37: y-coordinate of the angular velocity of the angle between
pelvis and left hip (in left_thigh) (rad/s)

38: angular velocity of the angle between left hip and the left
shin (in left_knee) (rad/s)

39: coordinate-1 (multi-axis) of the angular velocity of the angle
between torso and right arm (in right_upper_arm) (rad/s)

40: coordinate-2 (multi-axis) of the angular velocity of the angle
between torso and right arm (in right_upper_arm) (rad/s)

41: angular velocity of the angle between right upper arm and
right_lower_arm (rad/s)

42: coordinate-1 (multi-axis) of the angular velocity of the angle
between torso and left arm (in left_upper_arm) (rad/s)

43: coordinate-2 (multi-axis) of the angular velocity of the angle
between torso and left arm (in left_upper_arm) (rad/s)

44: angular velocity of the angle between left upper arm and
left_lower_arm (rad/s)

- ‘prev_obs‘ (np.ndarray): Observation vector of shape (45,),
containing position and velocity information on the previous step
.

- ‘cfrc_ext‘ (dict): Dictionary containing the external contact
forces on the body parts. Each body part is a vector that
specifies force x,y,z and torque x,y,z.

- ‘torso‘ (np.ndarray): External contact forces on the torso.
- ‘lwaist‘ (np.ndarray): External contact forces on the lwaist.
- ‘pelvis‘ (np.ndarray): External contact forces on the pelvis.
- ‘right_thigh‘ (np.ndarray): External contact forces on the right

thigh.
- ‘right_shin‘ (np.ndarray): External contact forces on the right

shin.
- ‘right_foot‘ (np.ndarray): External contact forces on the right

foot.
- ‘left_thigh‘ (np.ndarray): External contact forces on the left

thigh.
- ‘left_shin‘ (np.ndarray): External contact forces on the left

shin.
- ‘left_foot‘ (np.ndarray): External contact forces on the left

foot.
- ‘right_upper_arm‘ (np.ndarray): External contact forces on the

right upper arm.
- ‘right_lower_arm‘ (np.ndarray): External contact forces on the

right lower arm.
- ‘left_upper_arm‘ (np.ndarray): External contact forces on the

left upper arm.
- ‘left_lower_arm‘ (np.ndarray): External contact forces on the

left lower arm.
- ‘prev_cfrc_ext‘ (dict): Dictionary containing the external contact

forces on the body parts on the previous step.
- ‘terminated‘ (bool): Whether the episode has terminated due to the

humanoid falling.
- ‘truncated‘ (bool): Whether the episode was truncated due to

reaching the maximum timestep limit.

Returns:
A float representing the custom reward signal for the current step.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

C PROMPTS

This section presents the prompts used in FORGE, in the following order:

1. Reward Planner System Prompt
2. Reward Engineer System Prompt
3. Reward Planner Reward Initialization Planning Prompt
4. Reward Engineer Reward Crossover Prompt

Planner System Prompt

You are an experienced AI researcher. You need to design the reward
strucuture for training reinforcement learning agents.

Return a list of individual reward components that could be included
in a dense reward structure. Consider both diversity and clarity in
your design. For each component, you should:

- Be specific and detailed, describing exactly what behavior it
encourages.
- Be suitable for generating a real-time reward signal at every
time step.
- Do not assume the actual setup of the environment. This will be
provided when implementing the reward.

When implementing the reward function, you should:
- Adhere exactly to the given function header without changing its
name, parameters, or structure.

- Only implement the functionality specified in the docstring. Do
not modify the docstring.
- If the function header lacks necessary information to implement
the reward function (e.g., missing state details, actions, or
environmental context), clearly state why the implementation
cannot proceed and abort the task.
- If implementation is possible, return the complete code wrapped
in markdown-style Python code block (‘‘‘python and ‘‘‘).
- You can define helper functions inside the main function, but
your final code should include only one function overall.

Engineer System Prompt

You are a code generation assistant specialized in reinforcement
learning (RL). Your task is to generate a Python function that
implements reward function for training an RL agent.

You must follow the rules below:
- Return the complete code wrapped in markdown-style Python code
block (‘‘‘python and ‘‘‘).
- You can define helper functions inside the main function, but
your final code should include only one function overall.
- Write out the code explicitly if using given functions.

Reward Initialization Planning Prompt

Design the reward structure for training an reinforcement learning
agent based on the environment specification:

<Environment>{env_description}</Environment>

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Format your response as a list and return as many reward components as
possible to facilitate agent exploration.

Reward Crossover Prompt

Consider the reinforcement learning environment:

<Environment>{env_description}</Environment>

Carefully examine the following reward components ({reward1} and {
reward2}) and their respective training results:

<Result1>{result1}</Result1>

<Result2>{result2}</Result2>

Please design a new reward component that is a combination of the two
given components, taking into account their respective training
results. The new function should have a clear and concise docstring
that explains what the new reward component will do. Additionally,
make sure to keep the implementation self-contained without adding any
extra or redundant functionality. Do not change the function

arguments. If the implementation is not possible, explain the reason.
Return the complete code wrapped in markdown-style Python code block
(‘‘‘python and ‘‘‘).

31

	Introduction
	Related Works
	Method
	Reward Population Sampling
	Rewards Evolution

	Experiments
	Environments
	Baselines
	Training Details
	Results
	Discussion

	Conclusion
	Additional Analysis
	Reward Synthesis
	Rewards Comparison
	Reward Function Scores and Token Usage.

	Forge Details
	Forge Algorithm
	Environments Abstraction
	Function Interface

	Prompts

