FORGING BETTER REWARDS: A MULTI-AGENT LLM FRAMEWORK FOR AUTOMATED REWARD EVOLUTION

Anonymous authors

000

001

002003004

006

008 009

010 011

012

013

014

016

017

018

019

021

024

025

026

027

028

031

033

034

037

040

041

042

043

044

046

047

048

051

052

Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) have shown increased autonomy in performing complex tasks, but the inference latency and fine-tuning cost impose significant limitations for their application in dynamic, real-time environments such as robotics and gaming. Reinforcement learning (RL), by contrast, offers efficient execution and has shown strong results in diverse domains. Yet its progress is often bottlenecked by the challenge of designing effective reward functions, which are typically sparse and require heavy manual effort to engineer. Recent work has explored LLM-based reward generation, reducing manual effort yet remaining unstable, unstructured, and opaque. Building on the enhanced reasoning capabilities of modern LLMs, we advance this line of research toward full automation by introducing structured reward initialization, evolutionary refinement, and explicit complexity modeling. These innovations reduce reliance on manual trial-and-error while enabling more stable, interpretable, and scalable reward design. We unify them into FORGE (Feedback-Optimized Reward Generation and Evolution), a multi-agent framework that automatically forges increasingly effective reward functions. Extensive experiments across three games and a robotics task demonstrate the effectiveness of FORGE, achieving up to 38.5% improvement over Eureka and 19.0% over REvolve in the Humanoid task, while maintaining competitive token efficiency.

1 Introduction

Large language models (LLMs) and Vision Language Action (VLA) models have advanced rapidly, opening unprecedented opportunities for embodied intelligence (Andreas, 2022; Brohan et al., 2022; Schick et al., 2023; Ma et al., 2024b; Yang et al., 2024). These models excel at high-level reasoning, planning, and decision-making, enabling agents to interpret complex instructions and adapt to diverse environments. However, if every low-level action is delegated to LLM outputs, the resulting latency and inference cost become prohibitively high, rendering such approaches impractical for scalable deployment (Kaddour et al., 2023; Wang et al., 2024; Zhou et al., 2024). Humans address this challenge by combining deep, deliberate reasoning with fast, automatic motor execution—leveraging both reflective cognition and muscle memory in everyday tasks. This analogy suggests a promising paradigm for embodied AI: integrating the high-level reasoning of foundation models with the low-level efficiency of reinforcement learning (RL) (Yu et al., 2023; Xie et al., 2024; Sun et al., 2025).

Reinforcement learning (RL) (Sutton & Barto, 2018) naturally fills this role by providing low-level execution that is both efficient and scalable. RL agents have achieved remarkable performance in domains such as dexterous robotic control and locomotion, where once-trained policies can be deployed with negligible inference cost (Brohan et al., 2023; Kwon et al., 2023). Yet, this efficiency hinges critically on the design of reward functions that guide learning. Constructing such rewards is notoriously difficult: human designers must translate abstract objectives into precise signals, a process that often requires extensive trial-and-error and domain expertise (Chentanez et al., 2004; Yu et al., 2023). A recent survey reports that 92% of RL practitioners rely on manual reward tuning and 89% acknowledge their designed rewards to be suboptimal, frequently leading to unintended behaviors (Hadfield-Menell et al., 2020; Booth et al., 2023). Consequently, while RL excels at execution, the bottleneck of reward design makes the training pipeline costly and limits the broader adoption of RL in complex, real-world settings.

To alleviate this bottleneck, recent work has explored using LLMs to automate reward design. Methods such as Eureka (Ma et al., 2024a) and REvolve (Hazra et al., 2025) reduce manual effort by prompting LLMs to generate reward functions, lowering the burden of human engineering. While these approaches mark important progress, they remain far from fully automatic or reliable. Directly sampling executable functions from LLMs often produces unstable rewards that fail to generalize across environments. Moreover, the lack of structured mechanisms to organize and refine generated rewards leads to redundancy and ineffective candidates, wasting both training time and compute. Finally, without a principled measure of reward complexity, these methods offer little interpretability, making it difficult to analyze how reward design quality correlates with agent performance. As a result, existing approaches still suffer from instability, redundancy, and opacity in reward shaping.

We introduce FORGE (Feedback-Optimized Reward GEneration), a multi-agent LLM framework that incrementally forges better reward functions through structured initialization and evolutionary refinement. The name reflects its central idea: rewards are not discovered in a single step but are repeatedly shaped and improved, much like metal forged under heat and pressure. Unlike prior approaches that directly sample functions from LLMs, FORGE begins with a Planner agent that reasons over task objectives, environment abstraction, and function interfaces to generate structured reward specifications. These specifications are then implemented as modular functions, providing strong zero-shot performance even before any refinement. Building on this foundation, FORGE applies an evolutionary process where reward functions are iteratively selected and combined under LLM guidance, enabling exploration beyond fixed encodings. Finally, a reward pool serves as specialized memory, while a depth measure quantifies structural complexity, ensuring stability and interpretability throughout the evolution. Together, these components establish a robust pipeline for automated reward evolution.

We validate FORGE through extensive experiments spanning both discrete and continuous control domains. Specifically, we evaluate on three classic gaming environments—Tetris, Snake, and Flappy Bird—as well as the continuous robotics benchmark Humanoid (MuJoCo). Across all tasks, we compare against strong baselines, including Eureka, REvolve, context-aware LLMs, and native sparse rewards. The results highlight three consistent trends: (i) the Planner initialization yields strong zero-shot performance, outperforming direct LLM sampling; (ii) the evolutionary refinement steadily improves reward quality, driving stable performance gains across environments; and (iii) the reward pool and depth measure enable interpretable analysis of reward complexity, revealing correlations between structural depth and agent performance. Importantly, FORGE achieves these gains without incurring higher token costs, demonstrating strong token efficiency relative to prior multi-agent LLM frameworks.

In a nutshell, our contribution can be summarized as follows.

- We propose FORGE, a new paradigm for automated reward evolution that combines planner-based initialization with evolutionary refinement, providing a structured and scalable framework for reward design.
- We introduce a reward pool and depth measure that jointly ensure stability, interpretability, and token efficiency, enabling reliable evolution without additional inference cost.
- Extensive experiments across four environments demonstrate the effectiveness of FORGE; in the challenging *Humanoid* task, it achieves up to **38.5**% improvement over Eureka and **19.0**% over REvolve in final rewards, while maintaining competitive token efficiency.

2 RELATED WORKS

Reward Shaping. Reward shaping is a persistent challenge in RL that traditionally requires significant domain expertise to craft precise reward. Algorithmic approaches that design intrinsic rewards with bonus-driven exploration emerges as potential solutions (Bellemare et al., 2016; Tang et al., 2017; Devidze et al., 2022), but are not easily generalizable to new environments. Inverse reinforcement learning approaches infer reward functions from demonstration but require human expertise and extensive data collection (Abbeel & Ng, 2004; Hadfield-Menell et al., 2020; Snoswell et al., 2020). Recent works that utilize LLM as reward designer, leveraging its reasoning ability and parametric knowledge to automate reward shaping over complex tasks (Yu et al., 2023; Ma et al., 2024a; Xie et al., 2024). Although they have achieved significant success, incorporating LLM as a primary

Figure 1: Pipeline of FORGE. The **Planner** agent reasons over the environment's objective, dynamics, and interface to produce textual reward specifications, which are converted into executable functions and stored in the **Reward Pool**. The **Engineer** agent then iteratively samples from the pool, trains policies, evaluates outcomes, and invokes the language model to refine reward functions, forming a continual loop of generation and selection.

decision-maker can produce unstable result and lead to performance degradation. In contrast, FORGE aims to automatically generate consistently improving reward functions in different environments.

LLM-Based Autonomous Agents. Autonomous agents powered by LLMs have demonstrated capabilities beyond textual conversation (Luo et al., 2025). Large collaborative agentic frameworks can deliver end-to-end products and conduct independent research without human intervention (Hong et al., 2024; Qian et al., 2024; Schmidgall et al., 2025; Singh et al., 2025). Yet the absences of efficient feedback mechanism present difficulty to improving existing solutions. Flexible agents with the capacity to navigate internet can respond to user request with up-to-date information, but performs poorly on specialized tasks due to lack of interactions with the environments (Yang et al., 2023; OpenAI, 2025a; Yang et al., 2025).

3 METHOD

We introduce FORGE, an LLM-based multi-agent framework that automates reward shaping for reinforcement learning. By iteratively generating and refining surrogate rewards, FORGE enables effective policy learning in environments where the extrinsic reward \bar{R} is sparse or delayed.

Preliminaries. The objective of reinforcement learning is to learn a policy π that maximizes the expected cumulative return

$$J(\pi, \bar{R}) = \mathbb{E}[J(\tau, \bar{R}) \mid \pi],\tag{1}$$

where τ denotes a trajectory and $\bar{R}: \mathcal{S} \times \mathcal{A} \to \mathbb{R}$ is the extrinsic reward provided by the environment. Since \bar{R} often provides limited guidance in complex tasks, we introduce surrogate rewards R that serve as alternative training signals for policies. Each surrogate R is evaluated by the extrinsic return it induces:

$$J(\pi_R, \bar{R}) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=0}^{H} \bar{R}(s_t^{(i)}, a_t^{(i)}), \tag{2}$$

where π_R is the policy optimized under R and N is the number of evaluation episodes. These surrogate rewards form the basis of our framework and will be iteratively refined through evolution.

Method Roadmap. Our framework, illustrated in Figure 1, proceeds in two stages. First, a planner agent generates an initial reward population from structured specifications, providing strong zero-shot performance (subsection 3.1). Second, rewards are iteratively refined through LLM-guided selection and crossover (subsection 3.2).

3.1 REWARD POPULATION SAMPLING

A central novelty of our approach lies in how the initial rewards are generated. Unlike prior methods such as Eureka (Ma et al., 2024a) and REvolve (Hazra et al., 2025), which directly prompt LLMs to output executable reward functions, we employ a *planner* agent (see Figure 1). The planner explicitly reasons over task objectives, environment dynamics, and the interaction interface to produce a textual

reward specification. This specification is then integrated with environment information and passed to the language model, which synthesizes modular reward components.

The *planner* agent then implements these components into executable functions. To standardize the implementation, we enforce a fixed function interface specifying input arguments and return type, while the agent completes the function body. The initialized population is as follow,

$$\mathbb{B} = \{ R_1^{(0)}, R_2^{(0)}, \dots, R_k^{(0)} \}, \quad \text{where} \quad R_i^{(0)} \sim \mathbb{P}_{\theta}(\cdot \mid p_{R_i}).$$
 (3)

This design offers two key advantages. First, the modularized structure enables parallel training of policies under different reward candidates. Second, adapting to a new environment requires only editing the prompt p_E , without additional coding. Together, these properties ensure that our framework achieves strong performance even in zero-shot settings, providing a robust initialization for subsequent evolutionary refinement.

Zero-shot Effectiveness. Thanks to the planner's structured specification and modularized implementation, our framework achieves competitive performance even before any evolutionary refinement. This strong initialization distinguishes it from prior approaches that rely solely on direct LLM sampling, and serves as the foundation for the evolutionary stage.

Having established the initialization stage, we now describe how these rewards are organized and further developed.

Reward Function Pool as Specialized Memory. The planner-sampled rewards constitute the zeroth generation of the population (with depth set to 0). To manage and refine these candidates, FORGE maintains a reward function pool that serves as a specialized memory. The pool records all generated rewards together with their scores, preserving strong candidates while discarding weaker ones. Unlike context-aware LLM approaches that rely on raw history data and repeated inference, this curated pool allows efficient reuse of high-quality functions at no additional cost, while also providing a structured basis for subsequent evolution.

Complexity Measure: Depth. Building on the pool structure, we further introduce a measure of structural complexity to characterize how rewards evolve over generations. Each planner-sampled reward is initialized with depth d=0. When a new reward R' is created by combining two parent rewards $R_i^{d_i}$ and $R_i^{d_j}$ with depths d_i and d_j respectively, its depth is defined as

$$\operatorname{Dep}(R') = \max\left(\operatorname{Dep}(R_i^{d_i}), \operatorname{Dep}(R_j^{d_j})\right) + 1,\tag{4}$$

where $\operatorname{Dep}(R_i^{d_i}) = d_i$ and $\operatorname{Dep}(R_j^{d_j}) = d_j$. This recursive definition naturally reflects the hierarchical buildup of reward components as evolution progresses. Intuitively, deeper rewards encode more subcomponents and thus capture increasingly sophisticated shaping strategies. Compared to iteration indices, which merely record creation order, Dep provides a principled and fine-grained measure of complexity. As we will later show, this enables us to analyze how reward complexity correlates with performance across different environments.

3.2 REWARDS EVOLUTION

With the initial reward population organized in the pool and their structural complexity formally defined, the next step is to improve these candidates through iterative refinement. To this end, FORGE employs an evolutionary process that selectively combines high-performing rewards and explores new ones, progressively increasing both the diversity and the effectiveness of the population.

The classical genetic algorithm (GA) (Holland, 1992) represents candidate solutions (or "chromosomes") as fixed-length bit strings, where each bit encodes a specific feature. New candidates are then generated through crossover and mutation between two selected parents. While effective in such discrete settings, this formulation does not directly transfer to reward functions for two main reasons. First, reward functions vary in length and structure, making it difficult to impose a homogeneous encoding. Second, naive recombination of code fragments is inefficient and severely limits exploration. For instance, one might attempt to represent each reward component from subsection 3.1 as a binary feature—"1" for active, "0" for inactive. This rigid representation assigns equal weight to all components and leads to an intractable search space when extended to real-valued weightings.

To address these limitations, we generalize the evolutionary process by incorporating LLM inference. Rather than operating on fixed encodings, our framework leverages the reasoning capability of LLMs to guide both the selection and crossover of reward functions. The following sections detail these two mechanisms.

Rewards Selection. We maintain a function pool S that extends the initial reward population \mathbb{R} introduced in subsection 3.1. While \mathbb{R} contains only the planner-sampled rewards (depth = 0), S dynamically grows throughout evolution by incorporating newly generated candidates and discarding weaker ones. Formally, at iteration t, the pool is represented as

$$S = \{ (R_1, J_{R_1}^*), (R_1, J_{R_1}^*), \dots, (R_n, J_{R_n}^*) \}$$
(5)

where n is the number of functions currently stored and J_{R_i} denotes $J(\pi_{R_i}, \bar{R})$ for brevity. The asterisked J^* implies the best return over all evaluation episodes.

In contrast to traditional GA, where a fixed fitness function determines selection, we use the scores $J_{R_i}^*$ not only for evaluation but also as sampling weights. Since each crossover requires two parents, we define a categorical distribution over all pairs (R_i, R_j) in S:

$$\mathbb{P}((R_i, R_j)) = \begin{cases} \frac{J_{R_i}^* + J_{R_j}^*}{W}, & \text{if } W > 0, \\ \frac{1}{K}, & \text{if } W = 0 \quad \text{(uniform sampling)}. \end{cases}$$
 (6)

where K is the total number of functions in the pool and $W = \sum_k J_{R_k}^*$ is the sum of all scores. To maintain bounded size, the lowest-scoring functions are pruned from $\mathcal S$ after each iteration.

This probabilistic selection scheme introduces stochasticity into the process, enabling both exploitation of high-performing rewards and exploration of new combinations, thereby supporting more effective evolution of the reward population.

Rewards Crossover. Once parent rewards are sampled from the pool S, new candidates are generated through crossover. Unlike classical GA, which recombines fixed encodings, we adopt a high-level approach that leverages the reasoning and coding ability of LLMs. Given two parent rewards R_i and R_j , along with their scores, a coder agent synthesizes an offspring R' by interpreting their semantic content:

$$R' \sim \mathbb{P}_{\theta}(\cdot | R_i, R_j, J_{R_i}^*, J_{R_i}^*). \tag{7}$$

To ensure compatibility across environments, we standardize the crossover operation through fixed function interfaces, which specify argument types and return values. This allows the coder agent to focus solely on implementing the reward logic, without concerns about environment-specific details. Moreover, the design is memory-less: the current environment states (e.g., observations and actions) are passed directly as arguments, eliminating dependence on long historical context.

The evolution proceeds iteratively. At iteration t, the coder samples K pairs of rewards from S_t , generates new candidates $R_1^{(t)}, R_2^{(t)}, \dots, R_2^{(t)}, \dots$ and updates the pool as

$$S_{t+1} = S_t \cup \{R_1^{(t)}, R_2^{(t)}, \dots, R_K^{(t)}\}.$$
(8)

The process continues until a predefined number of iterations is reached. Because each generation relies only on local context (the two parents and their scores), the risk of hallucination or excessive token usage is minimized. In addition, invalid functions can be safely discarded without disrupting the population, avoiding the need for explicit error-handling mechanisms.

4 EXPERIMENTS

4.1 ENVIRONMENTS

We evaluate FORGE across four representative environments: three games—Tetris (Weichart & Hartl, 2024), Snake (Grant, 2023), and Flappy Bird (Kubovčík, 2024)—and one simulated robotics task, the humanoid robot in the Gymnasium (Towers et al., 2024) MuJoCo (Todorov et al., 2012) suite. These environments are chosen to cover both discrete and continuous control settings, thereby testing the generality of our approach. Since reward functions are generated with an LLM, we emphasize the

Table 1: Summary of the observation space for training RL policy and information received by the reward functions in addition to the observations.

Environment	RL Policy Observation	Additional Reward Arguments
Tetris	$\{0,1\}^{200}$, flattened game grid	past observation and tetromino position
Snake	\mathbb{R}^5 , snake and food positions	past observation and game states
Flappy Bird Humanoid	\mathbb{R}^{12} , player and pipes positions \mathbb{R}^{348} , humanoid kinematics	past observation and game states past observation, action and external forces

distinction between the observation used as input to the RL policy and the input to the LLM-based reward function, which includes additional information necessary to construct reward signals.

Table 1 summarizes the input spaces of all environments. For evaluation, we report the mean cumulative extrinsic reward over N evaluation episodes. In the gaming environments, the extrinsic rewards correspond directly to the game objectives: the number of lines cleared in Tetris, the snake length in Snake, and the number of pipes passed in Flappy Bird. In the humanoid environment, the extrinsic reward is a composite measure consisting of the alive reward, forward-movement reward, control cost, and contact penalty. We include a **video demonstration of FORGE** across four environments in the supplementary material.

4.2 Baselines

Eureka. Eureka (Ma et al., 2024a) is a self-improving framework to encourage LLM to generate executable reward functions and iteratively refine their design. In each iteration, Eureka selects the best-performing reward from the previous round, produces a textual reflection, and queries the LLM to generate K additional reward functions. For fair comparison, we run Eureka for 10 iterations with K=16, and report the highest extrinsic reward achieved as its final score.

REvolve. REvolve (Hazra et al., 2025) incorporates human feedback to quantitatively evaluate LLM-generated reward functions. Instead of greedily generating new functions, REvolve employs a strategy that selectively combines or mutates existing functions via the LLM. To ensure comparability, we replace the human feedback module with the extrinsic reward of the target environment, and run 10 iterations where 16 (i.e., K=16) reward functions are refined in each iteration.

General Agentic Frameworks. These are the general-purpose agents that have access to resources online. We include two state-of-the-art frameworks: MetaGPT (Hong et al., 2024) and ChatGPT Agent (OpenAI, 2025a). With zero-shot prompting, we ask the frameworks to implement a dense reward function for each environment.

Context-aware LLMs. As recent LLMs are getting larger, they can process much longer prompts. This capability enables single LLMs to zero-shot generate reward functions, and iteratively improve the reward functions given feedbacks. We include Claude 4 (Anthropic, 2025), Grok 4 (xAI, 2025), GPT-5 (OpenAI, 2025b) and o3 (OpenAI, 2025c), and run 10 iterations for each model.

Native. Environment-provided rewards without LLM shaping: sparse, event-driven signals in games (e.g., lines in *Tetris*, apples in *Snake*, pipes in *Flappy Bird*) with terminal penalties, and dense composite rewards in *Humanoid* (alive bonus, velocity, control cost, contact penalty).

4.3 TRAINING DETAILS

Policy Training. All RL policies are trained using the Stable-Baselines3 (Raffin et al., 2021) implementation of Proximal Policy Optimization (PPO) (Schulman et al., 2017), with a fixed set of hyperparameters across all environments. While alternative algorithms or tuned hyperparameters may yield stronger performance, we adopt this unified setting to ensure consistency, fairness, and reproducibility in our comparisons.

¹General agentic frameworks (e.g., ChatGPT Agent, MetaGPT) do not provide reward function self-improvement mechanisms, and thus only report Initialized results.

Table 2: **Performance comparisons** across four environments. "Zero-shot" refers to policies trained with LLM-generated rewards without refinement, while "Evolved" denotes performance after iterative evolutionary updates. Scores are reported as the mean extrinsic rewards obtained by trained policies. Forge consistently outperforms all baselines, achieving the best results in the evolved settings. ¹

Environment	Tet	ris	Sna	ke	Flappy	Bird	Huma	noid
mode	Zero-shot	Evolved	Zero-shot	Evolved	Zero-shot	Evolved	Zero-shot	Evolved
Native	4.2	-	17.0	-	36.8	-	696.7	-
Claude Sonnet 4	0.0	2.6	12.0	15.4	15.8	59.6	642.6	775.1
Grok 4	0.0	7.6	10.2	15.6	51.6	7.8	621.2	671.5
03	0.0	3.8	14.0	14.8	9.2	4.4	680.7	699.5
GPT-5	0.0	5.0	14.8	17.4	10.8	90.8	645.4	716.0
ChatGPT Agent	0.0	-	16.0	-	68.0	-	579.0	-
MetaGPT	0.0	-	14.0	-	5.2	-	651.2	-
Eureka	0.0	6.8	10.2	19.2	49.0	114.8	105.8	756.7
REvolve	1.2	9.4	14.0	17.2	32.4	129.2	686.7	880.7
Forge (Ours)	8.8	11.2	6.0	19.8	86.0	254.8	815.2	1048.0

Self-Improvement. For frameworks with self-improving mechanisms (AgentRF, Eureka, REvolve, and Context-aware LLMs), we run each method for iterations. In population-based sampling, K=16 candidate reward functions are generated at each iteration, from which the selection or evolution process is applied.

Foundation Models. To ensure fair comparison, we reproduce all baseline methods and run them under the same setting, using the CLAUDE-SONNET-4-20250514 variant of Claude Sonnet 4 (Anthropic, 2025) as the foundation model for both our framework and the baselines.

4.4 RESULTS

Performance Comparisons. We report the main experimental results across four environments in Table 2. FORGE achieves the strongest performance overall, outperforming both general-purpose LLMs (Claude Sonnet 4, Grok 4, o3, GPT-5) and specialized frameworks (Eureka (Ma et al., 2024a), REvolve (Hazra et al., 2025)) in refining rewards. In the gaming environments, FORGE demonstrates significant improvements over the zero-shot baselines, particularly in *Flappy Bird*, where iterative refinement yields more than a 3× increase compared to the strongest baseline. In the humanoid task, FORGE not only surpasses the native environment reward but also consistently outperforms self-improving baselines such as Eureka and REvolve. These results highlight Forge's ability to generate high-quality reward functions at initialization and further enhance them through iterative refinement.

FORGE steadily refines reward quality. While Table 2 reports the final evolved rewards across environments, Figure 2 illustrates the intermediate refinement process. FORGE consistently produces higher-quality reward populations than baseline methods and maintains stable improvements over iterations. A key observation from Figure 2 is that population-based approaches, such as REvolve and Eureka, do not, on average, surpass naive LLM-based methods by a large margin, except in isolated cases such as Tetris. Although these methods can eventually discover reward functions that maximize returns (as shown in Table 2), the process is costly and unstable, and in many cases context-aware LLMs perform at a comparable average level. In contrast, FORGE exhibits stronger adaptability and demonstrates consistent refinement, achieving at least the average level of all tested baselines while steadily improving reward quality across iterations.

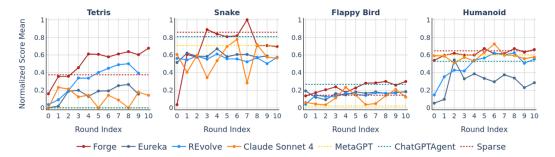


Figure 2: Means of the reward function scores over the evolution process. Each data point represents the mean of all reward function scores at the corresponding round index. The scores are normalized across all evaluated methods for the corresponding environment. For clarity, we show only the data for Claude Sonnet 4 from all context-aware LLMs.

4.5 DISCUSSION

Ablation Study. FORGE is designed as a compact framework without clearly separated modules, which makes ablation less straightforward than in modular systems. To better understand the contribution of its core components, we perform two ablation studies by selectively removing key design choices. Specifically, we analyze the effect of removing the *selective evolution* and *rewards initialization planning* modules, which correspond to disabling the Engineer agent and the Planner agent, respectively. Table 3 reports the ablation study results across four environments. We observe that removing either component leads to noticeable drops in performance. Without selective evolution, FORGE struggles to maintain high scores in Snake and Humanoid, highlighting the importance of guided refinement. Without rewards initialization planning, performance degrades substantially in Flappy Bird and Humanoid, showing that sampling diverse reward components plays a crucial role in stabilizing long-horizon optimization. The full FORGE framework, with both components enabled, consistently achieves the best results across all environments, confirming that each module is essential for maximizing performance.

Table 3: Ablation study of Forge across four environments. We analyze the contribution of two core modules, selective evolution (Select. Evolve) and rewards initialization planning (Rewards Init.), by selectively removing each component. Results show that removing either module leads to noticeable drops in performance. The details of the two modules are elaborated in the main text.

Ablation Study	Mod	Environments				
	Select. Evolve	Rewards Init.	Tetris	Snake	Flappy Bird	Humanoid
w/o Select. Evolve		√	10.6	13.8	151.4	872.7
w/o Rewards Init.	✓		10.0	19.6	126.8	635.1
Forge	✓	✓	11.2	19.8	254.8	1048.0

Depth analysis of reward functions. As defined in Equation 4, we use depth to measure the structural complexity of generated reward functions. Figure 3 presents the relationship between depth and performance. In the gaming environments (Figure 3a), we observe that the best-performing reward functions consistently occur at depths around 3, despite the evolutionary process continuing to generate deeper functions. This suggests that simple yet well-structured rewards are sufficient for these discrete control tasks, and excessive complexity does not yield additional benefits. In contrast, for the humanoid environment (Figure 3b), the optimal reward functions emerge at depth 7, indicating that more sophisticated compositions are necessary to capture the continuous and high-dimensional dynamics. Moreover, the results highlight that FORGE converges stably across diverse levels of complexity, whereas context-aware LLMs (see Figure 2) exhibit fluctuating performance, particularly in Tetris and Snake. Finally, the depth metric itself provides a useful signal for efficient search: when performance stagnates as depth increases, the process can be terminated early, avoiding unnecessary exploration of overly complex reward functions.

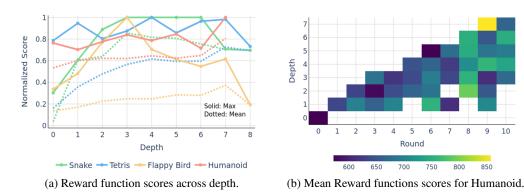


Figure 3: Depth analysis of reward functions. (a) Normalized scores across depths for four environments, showing that optimal depths differ between games and humanoid control. (b) Distribution of mean reward scores by depth and round in Humanoid.

Performance gain does not come at the expense of computation cost. Recent works on multiagents collaborations suggest the trend of increasing token consumption with performance gain (Yuan et al., 2025; Qian et al., 2025). As shown in Figure 7, our approach consumes more tokens in two out of four tested environments but achieves consistent gains across all environments. This result is primarily attributed to the design of the evolution strategy: the LLM is constrained to modify only a small portion of the population on each iteration, and the context of generating a new reward is limited to two sampled parent functions. This design also excludes the need for error-checking mechanisms, as unsuccessful reward functions are simply discarded without affecting the population. In extreme cases where the LLM generates mostly non-executable functions, our approach falls back to repetitively sampling responses from the LLM without incurring additional cost, since all stored functions have chances to be drawn.

Token Efficiency. Prior work on multi-agent collaboration has suggested that performance gains often come with increased token consumption (Yuan et al., 2025; Qian et al., 2025). Nevertheless, FORGE attains significant improvements with only a modest increase in token consumption. (Analysis is detailed in Appendix A). This efficiency arises from the evolution strategy: at each iteration, the LLM modifies only a small subset of the population, and the context for generating a new reward is limited to two sampled parent functions. As a result, FORGE requires no additional error-checking—invalid functions are simply discarded without affecting the population—and can fall back to resampling in extreme cases where most generations are invalid, without incurring extra cost.

5 CONCLUSION

In this paper, we introduced FORGE, a multi-agent framework for automated reward evolution that integrates planner-based initialization, evolutionary refinement, and complexity modeling. Experiments across games and robotics show consistent gains over strong baselines, including up to 38.5% improvement on the Humanoid benchmark, while maintaining token efficiency. Beyond empirical performance, FORGE highlights how LLMs can be "forged" through feedback: by grounding reward evolution in numerical returns and structural depth, the framework exploits reasoning abilities that go beyond natural language and into domains where LLMs have traditionally struggled. This opens promising directions for reward design in real-world robotics, where scalable, interpretable, and feedback-driven reasoning will be critical for embodied AI.

Limitations and future work. The main limitation of FORGE is that it has only been evaluated in simulated environments. Demonstrating success in real-world robotics is essential to establish the practical effectiveness of automated reward shaping, as physical systems introduce challenges such as sensor noise, delayed feedback, and strict safety constraints. In the longer term, scaling FORGE to real-world deployment will likely require LLMs not only to generate and refine reward functions but also to adapt their own reasoning through fine-tuning on embodied feedback. This suggests a future trajectory where reward shaping and LLM adaptation co-evolve, ultimately bridging the gap between simulation-driven design and robust real-world intelligence.

LARGE LANGUAGE MODELS USAGE STATEMENT

Large Language Models (LLMs) were used solely to assist with the linguistic polishing of this manuscript, such as improving grammar, clarity, and readability. All conceptual contributions, technical methods, experimental designs, and analyses were developed entirely by the authors without the use of LLMs.

ETHICS STATEMENT

This work does not involve human subjects, personally identifiable data, or sensitive information. All experiments are conducted in simulated environments (video games and robotics benchmarks) and therefore raise no direct ethical or privacy concerns. The proposed methods aim to improve the efficiency and interpretability of reinforcement learning without foreseeable harmful applications. We have carefully adhered to the ICLR Code of Ethics throughout the research and writing process.

REPRODUCIBILITY STATEMENT

We have made significant efforts to ensure the reproducibility of our results. A detailed description of the algorithm, including mathematical formulations and pseudo-code, is provided in the main paper and appendix. The prompts used for LLM-based reward generation are included in the supplementary materials. The full source code, together with configuration files for all experiments, will be released upon publication of the final version of the paper.

REFERENCES

Pieter Abbeel and Andrew Y. Ng. Apprenticeship learning via inverse reinforcement learning. In *Proceedings of the Twenty-First International Conference on Machine Learning*, ICML '04, pp. 1, 2004. ISBN 1581138385. doi: 10.1145/1015330.1015430. URL https://doi.org/10.1145/1015330.1015430.

Jacob Andreas. Language models as agent models. In *Findings of the Association for Computational Linguistics: EMNLP 2022*, pp. 5769–5779. Association for Computational Linguistics, 2022. doi: 10.18653/v1/2022.findings-emnlp.423. URL https://aclanthology.org/2022.findings-emnlp.423/.

Anthropic. Claude sonnet 4 (version 2025-05-14) [large language model]. https://www.anthropic.com/claude, 2025.

Marc G. Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Rémi Munos. Unifying count-based exploration and intrinsic motivation. In *Proceedings of the 30th International Conference on Neural Information Processing Systems*, NIPS'16, pp. 1479–1487, 2016. ISBN 9781510838819.

Serena Booth, W. Bradley Knox, Julie Shah, Scott Niekum, Peter Stone, and Alessandro Allievi. The perils of trial-and-error reward design: misdesign through overfitting and invalid task specifications. In *Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence and Thirty-Fifth Conference on Innovative Applications of Artificial Intelligence and Thirteenth Symposium on Educational Advances in Artificial Intelligence*. AAAI Press, 2023. doi: 10.1609/aaai.v37i5.25733. URL https://doi.org/10.1609/aaai.v37i5.25733.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn, Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, Julian Ibarz, Brian Ichter, Alex Irpan, Tomas Jackson, Sally Jesmonth, Nikhil Joshi, Ryan Julian, Dmitry Kalashnikov, Yuheng Kuang, Isabel Leal, Kuang-Huei Lee, Sergey Levine, Yao Lu, Utsav Malla, Deeksha Manjunath, Igor Mordatch, Ofir Nachum, Carolina Parada, Jodilyn Peralta, Emily Perez, Karl Pertsch, Jornell Quiambao, Kanishka Rao, Michael Ryoo, Grecia Salazar, Pannag Sanketi, Kevin Sayed, Jaspiar Singh, Sumedh Sontakke, Austin Stone, Clayton Tan, Huong Tran, Vincent Vanhoucke, Steve Vega, Quan Vuong, Fei Xia, Ted Xiao, Peng Xu, Sichun Xu, Tianhe Yu, and

Brianna Zitkovich. Rt-1: Robotics transformer for real-world control at scale. In *arXiv preprint arXiv*:2212.06817, 2022.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen, Krzysztof Choromanski, Tianli Ding, Danny Driess, Avinava Dubey, Chelsea Finn, Pete Florence, Chuyuan Fu, Montse Gonzalez Arenas, Keerthana Gopalakrishnan, Kehang Han, Karol Hausman, Alex Herzog, Jasmine Hsu, Brian Ichter, Alex Irpan, Nikhil Joshi, Ryan Julian, Dmitry Kalashnikov, Yuheng Kuang, Isabel Leal, Lisa Lee, Tsang-Wei Edward Lee, Sergey Levine, Yao Lu, Henryk Michalewski, Igor Mordatch, Karl Pertsch, Kanishka Rao, Krista Reymann, Michael Ryoo, Grecia Salazar, Pannag Sanketi, Pierre Sermanet, Jaspiar Singh, Anikait Singh, Radu Soricut, Huong Tran, Vincent Vanhoucke, Quan Vuong, Ayzaan Wahid, Stefan Welker, Paul Wohlhart, Jialin Wu, Fei Xia, Ted Xiao, Peng Xu, Sichun Xu, Tianhe Yu, and Brianna Zitkovich. Rt-2: Vision-language-action models transfer web knowledge to robotic control. In arXiv preprint arXiv:2307.15818, 2023.

Nuttapong Chentanez, Andrew Barto, and Satinder Singh. Intrinsically motivated reinforcement learning. In *Advances in Neural Information Processing Systems*, volume 17, 2004. URL https://proceedings.neurips.cc/paper_files/paper/2004/file/4be5a36cbaca8ab9d2066debfe4e65c1-Paper.pdf.

Rati Devidze, Parameswaran Kamalaruban, and Adish Singla. Exploration-guided reward shaping for reinforcement learning under sparse rewards. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), *Advances in Neural Information Processing Systems*, volume 35, pp. 5829–5842. Curran Associates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/266c0f191b04cbbbe529016d0edc847e-Paper-Conference.pdf.

Satchel Grant. Gym-Snake: An openai gym environment for reinforcement learning. https://github.com/grantsrb/Gym-Snake, 2023. GitHub repository.

Dylan Hadfield-Menell, Smitha Milli, Pieter Abbeel, Stuart Russell, and Anca Dragan. Inverse reward design, 2020. URL https://arxiv.org/abs/1711.02827.

Rishi Hazra, Alkis Sygkounas, Andreas Persson, Amy Loutfi, and Pedro Zuidberg Dos Martires. REvolve: Reward evolution with large language models using human feedback. In *The Thirteenth International Conference on Learning Representations*, 2025. URL https://openreview.net/forum?id=cJPUpL8mOw.

John H. Holland. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. MIT Press, Cambridge, MA, 1992. ISBN 9780262082136.

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu Zheng, Yuheng Cheng, Jinlin Wang, Ceyao Zhang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, Chenyu Ran, Lingfeng Xiao, Chenglin Wu, and Jürgen Schmidhuber. MetaGPT: Meta programming for a multi-agent collaborative framework. In *The Twelfth International Conference on Learning Representations*, 2024.

Jean Kaddour, Joshua Harris, Maximilian Mozes, Herbie Bradley, Roberta Raileanu, and Robert McHardy. Challenges and applications of large language models, 2023. URL https://arxiv.org/abs/2307.10169.

Martin Kubovčík. flappy-bird-gymnasium: An openai gym/gymnasium environment for the flappy bird game. https://github.com/markub3327/flappy-bird-gymnasium, 2024. GitHub repository, Release v0.4.0.

Minae Kwon, Sang Michael Xie, Kalesha Bullard, and Dorsa Sadigh. Reward design with language models, 2023. URL https://arxiv.org/abs/2303.00001.

Junyu Luo, Weizhi Zhang, Ye Yuan, Yusheng Zhao, Junwei Yang, Yiyang Gu, Bohan Wu, Binqi Chen, Ziyue Qiao, Qingqing Long, Rongcheng Tu, Xiao Luo, Wei Ju, Zhiping Xiao, Yifan Wang, Meng Xiao, Chenwu Liu, Jingyang Yuan, Shichang Zhang, Yiqiao Jin, Fan Zhang, Xian Wu, Hanqing Zhao, Dacheng Tao, Philip S. Yu, and Ming Zhang. Large language model agent: A survey on methodology, applications and challenges, 2025. URL https://arxiv.org/abs/2503.21460.

- Yecheng Jason Ma, William Liang, Guanzhi Wang, De-An Huang, Osbert Bastani, Dinesh Jayaraman, Yuke Zhu, Linxi Fan, and Anima Anandkumar. Eureka: Human-level reward design via coding large language models. In *The Twelfth International Conference on Learning Representations*, 2024a. URL https://openreview.net/forum?id=IEduRUO55F.
- Yueen Ma, Zixing Song, Yuzheng Zhuang, Jianye Hao, and Irwin King. A survey on vision-language-action models for embodied ai. *CoRR*, abs/2405.14093, 2024b. URL https://doi.org/10.48550/arXiv.2405.14093.
- OpenAI. Chatgpt agent [large language model agent]. https://openai.com/index/introducing-chatgpt-agent/, 2025a.
- OpenAI. Gpt-5 [large language model]. https://platform.openai.com/docs/models/gpt-5, 2025b.
- OpenAI. Openai o3 [large language model]. https://platform.openai.com/docs/models/o3,2025c.
- Chen Qian, Wei Liu, Hongzhang Liu, Nuo Chen, Yufan Dang, Jiahao Li, Cheng Yang, Weize Chen, Yusheng Su, Xin Cong, Juyuan Xu, Dahai Li, Zhiyuan Liu, and Maosong Sun. Chatdev: Communicative agents for software development, 2024. URL https://arxiv.org/abs/2307.07924.
- Chen Qian, Zihao Xie, YiFei Wang, Wei Liu, Kunlun Zhu, Hanchen Xia, Yufan Dang, Zhuoyun Du, Weize Chen, Cheng Yang, Zhiyuan Liu, and Maosong Sun. Scaling large language model-based multi-agent collaboration. In *The Thirteenth International Conference on Learning Representations*, 2025. URL https://openreview.net/forum?id=K3n5jPkrU6.
- Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah Dormann. Stable-baselines3: Reliable reinforcement learning implementations. *Journal of Machine Learning Research*, 22(268):1–8, 2021. URL http://jmlr.org/papers/v22/20-1364.html.
- Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta Raileanu, Maria Lomeli, Eric Hambro, Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach themselves to use tools. In *Advances in Neural Information Processing Systems*, volume 36, pp. 68539–68551. Curran Associates, Inc., 2023.
- Samuel Schmidgall, Yusheng Su, Ze Wang, Ximeng Sun, Jialian Wu, Xiaodong Yu, Jiang Liu, Michael Moor, Zicheng Liu, and Emad Barsoum. Agent laboratory: Using llm agents as research assistants, 2025. URL https://arxiv.org/abs/2501.04227.
- John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization algorithms, 2017. URL https://arxiv.org/abs/1707.06347.
- Ramneet Singh, Sathvik Joel, Abhav Mehrotra, Nalin Wadhwa, Ramakrishna B Bairi, Aditya Kanade, and Nagarajan Natarajan. Code researcher: Deep research agent for large systems code and commit history, 2025. URL https://arxiv.org/abs/2506.11060.
- Aaron J. Snoswell, Surya P. N. Singh, and Nan Ye. Revisiting maximum entropy inverse reinforcement learning: New perspectives and algorithms. In 2020 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 241–249, 2020. doi: 10.1109/ssci47803.2020.9308391. URL http://dx.doi.org/10.1109/SSCI47803.2020.9308391.
- Shengjie Sun, Runze Liu, Jiafei Lyu, Jingwen Yang, Liangpeng Zhang, and Xiu Li. A large language model-driven reward design framework via dynamic feedback for reinforcement learning. *Knowl. Based Syst.*, 326:114065, 2025. URL https://doi.org/10.1016/j.knosys.2025.114065.
- Richard S. Sutton and Andrew G. Barto. *Reinforcement Learning: An Introduction*. A Bradford Book, Cambridge, MA, USA, 2018. ISBN 0262039249.

- Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, Xi Chen, Yan Duan, John Schulman, Filip De Turck, and Pieter Abbeel. Exploration: a study of count-based exploration for deep reinforcement learning. In *Proceedings of the 31st International Conference on Neural Information Processing Systems*, NIPS'17, pp. 2750–2759, 2017. ISBN 9781510860964.
- Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control. In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033, 2012. doi: 10.1109/IROS.2012.6386109.
- Mark Towers, Ariel Kwiatkowski, Jordan Terry, John U Balis, Gianluca De Cola, Tristan Deleu, Manuel Goulão, Andreas Kallinteris, Markus Krimmel, Arjun KG, et al. Gymnasium: A standard interface for reinforcement learning environments. *arXiv preprint arXiv:2407.17032*, 2024.
- Jiaqi Wang, Zihao Wu, Yiwei Li, Hanqi Jiang, Peng Shu, Enze Shi, Huawen Hu, Chong Ma, Yiheng Liu, Xuhui Wang, Yincheng Yao, Xuan Liu, Huaqin Zhao, Zhengliang Liu, Haixing Dai, Lin Zhao, Bao Ge, Xiang Li, Tianming Liu, and Shu Zhang. Large language models for robotics: Opportunities, challenges, and perspectives, 2024. URL https://arxiv.org/abs/2401.04334.
- Maximilian Weichart and Philipp Hartl. Piece by piece: Assembling a modular reinforcement learning environment for tetris. EasyChair Preprint 13437, 2024. URL https://github.com/Max-We/Tetris-Gymnasium.
- xAI. Grok-4 (version 2025-07-09) [large language model]. https://docs.x.ai/docs/models/grok-4-0709, 2025.
- Tianbao Xie, Siheng Zhao, Chen Henry Wu, Yitao Liu, Qian Luo, Victor Zhong, Yanchao Yang, and Tao Yu. Text2reward: Reward shaping with language models for reinforcement learning. In *The Twelfth International Conference on Learning Representations*, 2024. URL https://openreview.net/forum?id=tUM39YTRxH.
- John Yang, Carlos E. Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan, and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software engineering, 2024. URL https://arxiv.org/abs/2405.15793.
- Ke Yang, Yao Liu, Sapana Chaudhary, Rasool Fakoor, Pratik Chaudhari, George Karypis, and Huzefa Rangwala. Agentoccam: A simple yet strong baseline for LLM-based web agents. In *The Thirteenth International Conference on Learning Representations*, 2025. URL https://openreview.net/forum?id=oWdzUpOlkX.
- Rui Yang, Lin Song, Yanwei Li, Sijie Zhao, Yixiao Ge, Xiu Li, and Ying Shan. Gpt4tools: Teaching large language model to use tools via self-instruction, 2023.
- Wenhao Yu, Nimrod Gileadi, Chuyuan Fu, Sean Kirmani, Kuang-Huei Lee, Montse Gonzalez Arenas, Hao-Tien Lewis Chiang, Tom Erez, Leonard Hasenclever, Jan Humplik, Brian Ichter, Ted Xiao, Peng Xu, Andy Zeng, Tingnan Zhang, Nicolas Heess, Dorsa Sadigh, Jie Tan, Yuval Tassa, and Fei Xia. Language to rewards for robotic skill synthesis, 2023. URL https://arxiv.org/abs/2306.08647.
- Siyu Yuan, Kaitao Song, Jiangjie Chen, Xu Tan, Dongsheng Li, and Deqing Yang. Evoagent: Towards automatic multi-agent generation via evolutionary algorithms, 2025. URL https://arxiv.org/abs/2406.14228.
- Zixuan Zhou, Xuefei Ning, Ke Hong, Tianyu Fu, Jiaming Xu, Shiyao Li, Yuming Lou, Luning Wang, Zhihang Yuan, Xiuhong Li, Shengen Yan, Guohao Dai, Xiao-Ping Zhang, Yuhan Dong, and Yu Wang. A survey on efficient inference for large language models, 2024. URL https://arxiv.org/abs/2404.14294.

A ADDITIONAL ANALYSIS

In this section, we provide analyses of (i) how FORGE obtains the optimal reward through a synthesis process, (ii) a comparison between the optimal reward generated by FORGE and other methods, and (iii) complete mean reward function scores and token usage omitted in subsection 4.4.

A.1 REWARD SYNTHESIS

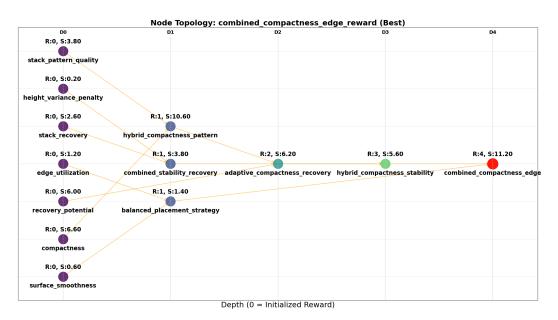


Figure 4: Node topology for Tetris. Each node is a reward function labeled by the LLM generated name, round index (R) and score (S). Each edge represents a parent-child relation. Due to the crossover operation requires exactly two parents to create a new child, every node is connected by two edges.

In Figure 4, we show the evolution process that synthesizes the optimal reward function for Tetris. The reward functions shown are plotted with increasing depth, representing an increasing degree of complexity but not necessarily better performance. Note that the parent reward functions and their scores are presented to the agents to create new rewards, so the evolution process is *Markovian*. For illustrative purpose, only the topology for the best rewards of Tetris and Humanoid are shown. We list a sub-path in the following table to demonstrate the synthesis of best reward for Tetris, with a summary for each generated reward function.

Example Sub-Path in Tetris Topology		
Edge Utilization Reward	Small reward for effectively using board edges for piece placement. Encourages strategic use of wall kicks and edge positioning to maximize placement efficiency.	
Surface Smoothness Reward	Reward for maintaining relatively flat surfaces with minimal height differences between adjacent columns. Promotes board states that provide flexible placement options for future pieces.	
Balanced Placement Strategy Reward	Combines edge utilization with surface smoothness to encourage strategic piece placement. Primarily rewards edge usage for stability while penalizing excessive surface roughness when the agent is performing well, promoting both immediate placement efficiency and long-term board management.	
Combined Compactness Edge Reward	Combines the successful compactness-stability foundation with strategic edge utilization. Uses compactness and adaptive stability as the primary drivers for consistent line clearing performance.	

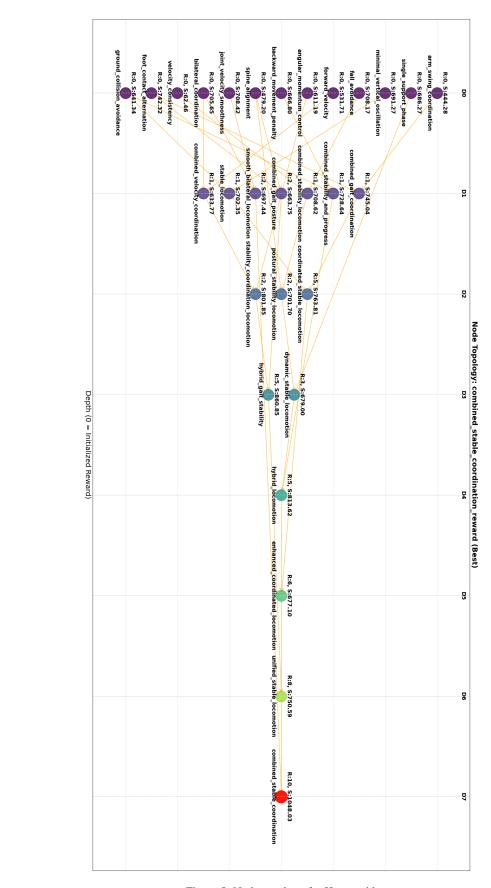


Figure 5: Node topology for Humanoid.

A.2 REWARDS COMPARISON

810

811 812

813

814

815

816

817

818

819 820

This section details the difference between the optimal rewards generated for FORGE, REOLVE and EUREKA using pseudo code. For illustrative purposes, only the summarization for the humanoid environment is included. As shown in the following pseudo code summarization, a major difference between FORGE and the other methods is the inclusion of coordination components that facilitate human-like moving pattern. On the other hand, there are components common to all three method (e.g. angular momentum penalty and forward moving reward), which semantically align with the Humanoid objective, i.e. moving forward and not falling. We also present the complete source code of the Humanoid optimal reward obtained by FORGE.

Algorithm 1 FORGE OPTIMAL REWARD

```
821
            1: function FORGEREWARD
822
            2:
                    #1. Collision penalty
823
            3:
                    for each non_foot_part do
824
            4:
                         if any(contact) then
825
            5:
                              reward \leftarrow -3.0
826
            6:
                         end if
827
            7:
                    end for
828
            8:
829
            9:
                    #2. Penalize large angular momentum
                    reward \leftarrow -0.015 \cdot \left( \sum |\omega_{torso}| + \sum |\omega_{abdomen}| \right)
830
           10:
831
           11:
832
                    #3. reward bilateral coordination patterns
           12:
833
                    reward \leftarrow 1.0 - \frac{|x_{right\_nrp}|}{1.0} \\ reward \leftarrow max(0, \ 2 - \frac{|x_{right\_arm} + x_{left\_hip}|}{1.0} - \frac{|x_{left\_arm} + x_{right\_hip}|}{1.0}) \\ & > \text{Synchronous arms and legs}
                    reward \leftarrow 1.0 - \frac{|x_{right\_hip} + x_{left\_hip}|}{1.0}
           13:
834
835
           14:
836
           15:
837
                    reward \leftarrow 1.0 - \frac{||v_{right\_hip}| - |v_{left\_hip}||}{5.0}
838
           16:
                                                                                                             839
           17:
840
                    # 4. Joint velocity smoothness over time
           18:
841
           19:
                    for each joint v_t, v_{t-1} do
842
                         reward \leftarrow -0.006 \cdot \sum (v_t - v_{t-1})^2
           20:
843
                    end for
           21:
844
           22:
           23:
845
                    # 5. Alternating foot contact reward
                    if right_foot_contact or left_foot_contact then
           24:
846
                         reward += 0.25
           25:
847
           26:
                    end if
848
           27:
849
           28:
                    return reward
850
           29: end function
851
```

```
864
         Algorithm 2 REVOLVE OPTIMAL REWARD
865
          1: function REVOLVEREWARD
866
                 reward = 0
867
                              \int healthy\_bonus if is\_healthy
          3:
868
                                                  otherwise
          4:
870
          5:
                 # 1. Temperature-scaled action smoothness with velocity dependence
871
          6:
                 velocity\_scale \leftarrow 1.0 + 0.4 \cdot |forward\_velocity|
872
                 reward \leftarrow -temp \cdot velocity\_scale \cdot (1 - e^{-action\_diff/temp})
          7:
873
          8:
874
          9:
                 # 2. Graduated exponential contact penalties
                 reward \leftarrow -temp \cdot (1 - e^{-\sum contact\_forces})
875
         10:
876
         11:
         12:
                 # 3. orientation stability
877
         13:
                 reward \leftarrow -temp \cdot (torso\_orientation + angular\_velocity\_penalty)
878
         14:
                 # 4. Forward reward with tanh transform
         15:
880
         16:
                 reward \leftarrow temp \cdot tanh(\frac{v_{torso}}{temp})
         17:
882
         18:
                 # 5. efficiency and consistency bonuses
883
         19:
                 reward \leftarrow RewardForwardLateralMovement
         20:
                 reward \leftarrow \texttt{REWARDGOODPOSTUREWHILEMOVING}
885
         21:
         22:
                 return reward
887
         23: end function
889
         Algorithm 3 Eureka Optimal Reward
890
          1: function EurekaReward
891
```

```
// 1. Weighted, smooth contact penalties
 3:
         for each non_foot_part do
 4:
             reward \leftarrow -weight[body\_part] \cdot \tanh(temp \cdot |F_{body\_part}|^2)
 5:
         end for
 6:
 7:
         // 2. Angular velocity based stability
         \omega_{excess} \leftarrow \max(0, |\omega_{torso}| + |\omega_{abdomen}| - threshold)
 8:
 9:
         reward \leftarrow -temp \cdot \sum (\omega_{excess}^2)
10:
         // 3. Forward locomotion
11:
12:
         reward \leftarrow \tanh(temp \cdot v_{torso})
13:
14:
         // 4. Upright posture
15:
         reward \leftarrow temp \cdot \exp(-(z_{torso} - 1)^2)
16:
17:
         return reward
18: end function
```

FORGE: Humanoid Optimal Reward

892

893

894

895

897

898

899

900

901

902

903

904

905

906

907908909

910 911

912

913

914

915

916

```
def combined_stable_coordination_reward(score_info: dict, action: np.
   ndarray, prev_action: np.ndarray, x_coord: float, y_coord: float,
   prev_x_coord: float, prev_y_coord: float, distance_from_origin:
   float, prev_distance_from_origin: float, healthy_z_range: Tuple,
   obs: np.ndarray, prev_obs: np.ndarray, cfrc_ext: dict,
   prev_cfrc_ext: dict, terminated: bool, truncated: bool) -> float:
   """Combined stable coordination reward that merges smooth
        bilateral locomotion with robust stability control.
```

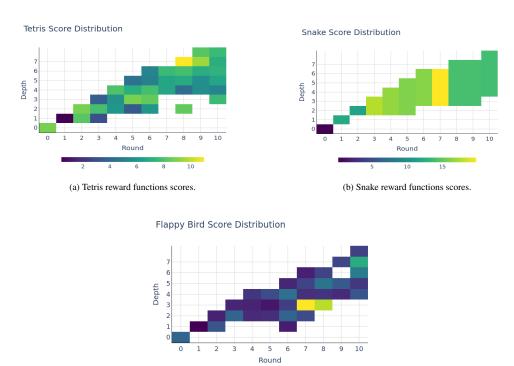
```
918
            This reward function combines the bilateral coordination patterns
919
                and joint velocity smoothness
            from the smooth_bilateral_locomotion_reward with the strong
921
                collision avoidance and angular
922
            stability control from the unified_stable_locomotion_reward. It
                promotes natural human-like
923
            gait through coordinated limb movement while maintaining robust
924
                fall prevention and collision
925
            penalties for consistent training progress."""
926
            # Base reward from environment
927
            base_reward = (score_info.get('healthy_reward', 0.0) +
                            score_info.get('forward_reward', 0.0) +
928
                            score_info.get('ctrl_cost', 0.0) +
929
                            score_info.get('contact_cost', 0.0))
930
931
            # Early termination handling with stability penalty
932
            if terminated:
                return base_reward - 8.0 # Strong termination penalty
933
934
            # Get torso height for health check
935
            torso_height = obs[0]
936
            is_healthy = healthy_z_range[0] <= torso_height <= healthy_z_range
937
                [1]
938
            if not is_healthy:
939
                return base_reward - 5.0
940
941
            # Component 1: Joint Velocity Smoothness (from
942
                smooth_bilateral_locomotion_reward)
            current_joint_velocities = obs[25:45]
943
            prev_joint_velocities = prev_obs[25:45]
944
            velocity_changes = current_joint_velocities -
945
                prev_joint_velocities
946
            velocity_change_magnitudes = np.abs(velocity_changes)
947
            smoothness_penalty = np.sum(velocity_change_magnitudes ** 2)
            smoothness\_reward = -0.006 * smoothness\_penalty # Slightly
948
                reduced weight
949
            # Component 2: Bilateral Coordination (from
951
                smooth_bilateral_locomotion_reward)
952
            coordination_reward = 0.0
953
            # Extract joint angles and velocities
954
            right_hip_x, right_hip_z, right_hip_y, right_knee = obs[8:12]
955
            left_hip_x, left_hip_z, left_hip_y, left_knee = obs[12:16]
956
            right_arm_1, right_arm_2 = obs[16:18]
957
            left_arm_1, left_arm_2 = obs[19:21]
958
            right_hip_x_vel, right_hip_z_vel, right_hip_y_vel, right_knee_vel
959
                = obs[31:35]
960
            left_hip_x_vel, left_hip_z_vel, left_hip_y_vel, left_knee_vel =
961
                obs[35:39]
962
            # Anti-phase leg movement (natural gait)
963
            leg_phase_diff = abs(right_hip_x + left_hip_x)
964
            leg_coordination = max(0, 1.0 - leg_phase_diff / 1.0)
965
            coordination_reward += leg_coordination * 0.2
966
967
            # Arm-leg coordination (arms opposite to legs)
            right_arm_left_leg_sync = 1.0 - abs(right_arm_1 - left_hip_x) /
968
969
            left_arm_right_leg_sync = 1.0 - abs(left_arm_1 - right_hip_x) /
970
                2.0
971
```

```
972
            arm_leg_coordination = max(0, (right_arm_left_leg_sync +
973
                left_arm_right_leg_sync) / 2.0)
974
            coordination_reward += arm_leg_coordination * 0.1
975
976
            # Velocity symmetry between limbs
            hip\_vel\_coordination = max(0, 1.0 - abs(abs(right\_hip\_x\_vel) - abs
977
                (left_hip_x_vel)) / 5.0)
978
            knee_vel_coordination = max(0, 1.0 - abs(abs(right_knee_vel) - abs
979
                (left_knee_vel)) / 5.0)
980
            velocity_coordination = (hip_vel_coordination +
981
                knee_vel_coordination) / 2.0
            coordination_reward += velocity_coordination * 0.1
982
983
            # Component 3: Foot Contact Patterns (from
984
                unified_stable_locomotion_reward)
985
            right_foot_force = np.linalg.norm(cfrc_ext['right_foot'][:3])
986
            left_foot_force = np.linalg.norm(cfrc_ext['left_foot'][:3])
987
            right_contact = right_foot_force > 0.3
988
            left_contact = left_foot_force > 0.3
989
990
            # Reward single foot contact (natural walking)
991
            if (right_contact and not left_contact) or (not right_contact and
                left_contact):
992
                coordination_reward += 0.25
993
            elif right_contact == left_contact:
994
                coordination_reward -= 0.05
995
996
            # Contact force symmetry when both feet in contact
            if right_foot_force + left_foot_force > 0.1:
997
                force_asymmetry = abs(right_foot_force - left_foot_force) / (
998
                    right_foot_force + left_foot_force + 1e-6)
999
                force_symmetry = max(0, 1.0 - force_asymmetry)
1000
                coordination_reward += force_symmetry * 0.08
1001
            # Component 4: Stability Control (from
1002
                unified_stable_locomotion_reward)
1003
            stability_reward = 0.0
1004
1005
            # Strong collision avoidance for non-foot body parts
            contact\_threshold = 1e-6
            collision_penalty = -3.0
1007
1008
            non_foot_body_parts = [
1009
                 'torso', 'lwaist', 'pelvis',
1010
                'right_thigh', 'right_shin', 'left_thigh', 'left_shin',
1011
                'right_upper_arm', 'right_lower_arm', 'left_upper_arm', '
                    left_lower_arm'
1012
            ]
1013
1014
            for body_part in non_foot_body_parts:
1015
                if body_part in cfrc_ext:
1016
                     contact_force_magnitude = np.linalg.norm(cfrc_ext[
1017
                        body_part])
                     if contact_force_magnitude > contact_threshold:
1018
                         stability_reward += collision_penalty
1019
1020
            # Angular stability control
            torso_angular_vel = obs[25:28]
            abdomen_angular_vel = obs[28:31]
1022
1023
            torso_momentum = np.sum(np.abs(torso_angular_vel))
1024
            abdomen_momentum = np.sum(np.abs(abdomen_angular_vel))
1025
```

```
1026
            stability_reward -= 0.015 * (torso_momentum + 0.8 *
1027
                abdomen_momentum)
1028
1029
            # Postural control
1030
            torso_w, torso_x, torso_y, torso_z = obs[1:5]
            abdomen_x, abdomen_y = obs[7], obs[6]
1031
1032
            # Torso pitch control
1033
            torso_pitch = 2 * (torso_w * torso_y - torso_z * torso_x)
1034
            if abs(torso_pitch) > 0.3:
1035
                stability_reward -= 0.2
1036
            # Spine stability
1037
            if abs(abdomen_x) > 0.15 or abs(abdomen_y) > 0.15:
1038
                stability_reward -= 0.1
1039
1040
            # Backward movement penalty
            x_velocity = x_coord - prev_x_coord
1041
            if x_velocity < 0:
1042
                stability_reward -= 2.0 * abs(x_velocity)
1043
1044
            # Component 5: Forward velocity bonus
1045
            forward_velocity = obs[22]
            velocity_bonus = 0.1 * min(forward_velocity, 2.0) if
1046
                forward_velocity > 0 else 0
1047
1048
            # Combine all components with balanced weighting
1049
            total_reward = base_reward + smoothness_reward +
1050
                coordination_reward + stability_reward + velocity_bonus
1051
            return total_reward
1052
1053
```

A.3 REWARD FUNCTION SCORES AND TOKEN USAGE.

The mean reward functions scores for the environments omitted in subsection 4.5 are shown in Figure 6.



(c) Flappy Bird reward functions scores.

Figure 6: Reward functions scores plotted across depth and round.

It is evident that environments with more complex dynamics have the optimal reward functions occurred deeper in the evolution process. A notable observation is the Flappy Bird environment, where the optimal reward appears as an outlier that performs surprisingly better than all other rewards. This sharp local maxima within the solution space might suggests critical reward components that dramatically improve the policy performance.



Figure 7: Token usage comparison across four environments. Bars are split into input and output tokens for each method. FORGE consumes more tokens in only two environments, yet achieves consistent performance gains across all cases, demonstrating its token efficiency relative to Eureka and REvolve.

B FORGE DETAILS

1134

1135 1136

1137

1138 1139

1140 1141 1142

1143

1144

1145

1146

1174 1175 1176

1177 1178

1179

1180 1181

1182 1183

1184

1185

1186

1187

In the following sections we present the implementation detail of FORGE with i) the detailed algorithm, ii) environments abstraction, and iii) reward function interfaces.

B.1 FORGE ALGORITHM

Algorithm 4 Forge

Require: Environment definition env, reward function interface I

Hyperparameters: number of initial rewards sampling N, total evolution rounds T, number of new rewards K

Ensure: Evolved reward function population

```
1147
            1: Initialize AI agents:
1148
                   reward planner P

    Sample reward component ideas

1149
                   reward engineer E
                                                                                ▶ Implements functions from specifications
1150
            4: # Initialize Reward Population
            5: S := \{\}
                                                                                                1152
            6: reward specs := \{P(env)_i\}_{i=1}^N
                                                                                 > Planner brainstorms reward components
1153
            7: for spec \in reward \ spec \ do
1154
                    R := P(spec, I)

    Sample initial rewards

1155
                    J_R^* = Train(\pi,\bar{R})
                                                                            \triangleright Score of R is the maximum native reward \bar{R}
            9:
1156
                    \mathcal{S} \leftarrow \mathcal{S} \bigcup \left(R, J_R^*\right)
1157
          10:
1158
          11: end for
1159
          12: # Iterative training and evolution
1160
          13: for T rounds do
1161
                    for t = \text{start\_round to } T \text{ do}
          14:
1162
                        \{(R_i, R_j)\}^K \sim Categorical(\mathcal{S}, p(J_{R_i}^*, J_{R_i}^*))
          15:

    Sample reward function pairs

1163
                        for (R_i, R_i) \in \{(R_i, R_i)\}^K do
          16:
1164
                              R' = E((R_i, R_i))
          17:
                                                                                                      \triangleright Obtain child reward R'
1165
                             \begin{split} J_{R'}^* &= Train(\pi, \bar{R}) \\ \mathcal{S} &\leftarrow \mathcal{S} \bigcup \left( R', J_{R'}^* \right) \end{split}
1166
          18:
1167
          19:
1168
1169
          21:
                    end for
1170
          22: end for
1171
          23: R^* := argmax \mathcal{S}
                                                        Deptimal reward is the reward function with the highest score
1172
          24: return S
1173
```

B.2 Environments Abstraction

FORGE abstract each environment as simple textual description. This abstraction facilitates exploration in initializing reward population, as the potential rewards are not constrained by the extra context required to zero-shot generate executable rewards.

Environment: Tetris

The Tetris environment from Gymnasium's Atari Learning Environment presents the agent with a grid-based game where tetrominoes fall from the top of the screen. The agent's objective is to manipulate and place these tetrominoes to form complete horizontal lines, which are then cleared from the grid. The environment provides visual observations of the game state and discrete actions corresponding to tetromino movements and rotations. The primary task is to encourage

the agent to maximize the number of lines cleared over an episode. The current reward signal is sparse, giving positive feedback only when lines are cleared.

Environment: Snake

The Snake environment from the Gym-Snake repository provides a grid-based game where the agent controls a snake that moves around the screen to consume randomly placed food items. Each time the snake eats food, it grows in length, increasing the complexity of navigation. The agent receives visual observations representing the current game grid, including the snake's position and the location of the food. The action space is discrete, allowing the agent to choose directional movements (up, down, left, right). The objective is to maximize the length of the snake while avoiding collisions with the walls or the snake's own body. The reward structure is sparse, giving positive reward when the snake consumes food, and a negative reward is given when a collision occurs (episode ends).

Environment: Flappy Bird

Flappy Bird is a simple but challenging side-scrolling arcade game in which the player controls a bird that moves continuously to the right. In the actual implementation, the player's x position is fixed while the environment (pipes and background) continuously moves to the left. The only control is to "flap" (making the bird ascend briefly) or do nothing, allowing gravity to pull it down. Vertical movement is automatic when no action is taken. The objective is to navigate the bird through gaps between vertically-aligned pipes without colliding with them or the boundaries of the screen. Each successful pass through a pair of pipes increments the score by one. Colliding with a pipe, the ground, or ceiling ends the game.

Environment: Humanoid

The Humanoid environment from Gymnasium's MuJoCo environments provides a 3D bipedal robot simulation designed to mimic human locomotion. The agent controls a humanoid robot with a torso (abdomen), a pair of legs and arms, and tendons connecting the hips to the knees. Each leg consists of three body parts (thigh, shin, foot), and each arm consists of two body parts (upper arm, forearm). The agent receives continuous observations representing joint positions, velocities, center of mass information, inertial data, and external forces. The action space is continuous, allowing the agent to apply torques at 17 different hinge joints. The primary objective is to prevent the humanoid from falling while moving forward as much as possible.

B.3 Function Interface

FORGE isolates the reward planning from reward generation, prompting LLM with a function interface to generate executable code after a rewards specification is proposed. The function interface is defined for each environment and is enforced at the source code level. This design promotes automatic error-detection and excludes the need for extensive adaptation of the environment source code.

Interface: Tetris

```
Args:
    - 'action' (int):
        The action taken by the agent.
        For each column on the board, the agent can rotate the
            tetromino counter-clockwise for 0, 1, 2, or 3 times. This
        results in a total of board_width*4 possible actions.
        Therefore, the action space is a Discrete space with
            board_width*4 possible actions. The value is interpreted as
            column index + number of rotations.
        So the actions [0, 1, 2, 3] correspond to the first column and
            the tetromino rotated 0, 1, 2, 3 times respectively.
```

```
1242
                The actions [4, 5, 6, 7] correspond to the second column and
1243
                    the tetromino rotated 0, 1, 2, 3 times respectively, and so
1244
1245
                Action not within the action space is invalid and will result
1246
                    in a reward of -1.
            - 'curr_board' (2D numpy array): A binary array representation of
1247
                the game board after the 'action' is taken, where '1' indicates
1248
                 a filled cell and '0' indicates an empty cell. This
1249
                representation also includes the newly apperaed tetromino to be
1250
                 placed.
1251
              'curr_active_tetromino' (2D numpy array): A binary array of the
1252
                same shape as 'curr_board', containing ONLY the tetromino to be
                 placed for the NEXT step. Therefore, current board without
1253
                active tetromino is curr_board - curr_active_tetromino.
1254
               'prev_board' (2D numpy array): A binary array of the same shape
1255
                as 'curr_board', representing the game board of previous step.
1256
               'prev_active_tetromino' (2D numpy array): A binary array of the
1257
                same shape as 'prev_board'. Previous board without active
                tetromino is prev_board - prev_active_tetromino.
1258
            - 'lines_cleared' (int): The number of lines cleared resulted from
1259
                 the 'action' taken in the current step.
1260
1261
        Example:
            Consider a 7x5 board at a given point during gameplay, where the
1262
                following inputs are given:
1263
            - action: 9 (column index 2, rotates counter-clockwise for 1 time)
1264
            - curr_board:
1265
                [
1266
                     [0, 0, 1, 1, 0],
                     [0, 0, 1, 1, 0],
1267
                     [0, 0, 0, 0, 0],
1268
                     [0, 0, 0, 0, 0],
1269
                     [0, 0, 0, 0, 0],
1270
                     [0, 0, 1, 1, 0],
1271
                     [0, 0, 0, 1, 1]
1272
                1
            - curr_active_tetromino:
1273
                ſ
1274
                     [0, 0, 1, 1, 0],
1275
                     [0, 0, 1, 1, 0],
1276
                     [0, 0, 0, 0, 0],
                     [0, 0, 0, 0, 0],
1277
                     [0, 0, 0, 0, 0],
1278
                     [0, 0, 0, 0, 0],
1279
                     [0, 0, 0, 0, 0]
1280
                1
1281
            - prev_board:
1282
                [
                     [0, 0, 0, 1, 0],
1283
                     [0, 0, 1, 1, 0],
1284
                     [0, 0, 1, 0, 0],
1285
                     [0, 0, 0, 0, 0],
1286
                     [0, 0, 0, 0, 0],
                     [0, 0, 0, 0, 0],
1287
                     [0, 0, 0, 0, 0]
1288
                1
1289
            - prev_active_tetromino:
1290
1291
                     [0, 0, 0, 1, 0],
                     [0, 0, 1, 1, 0],
1292
                     [0, 0, 1, 0, 0],
1293
                     [0, 0, 0, 0, 0],
1294
                     [0, 0, 0, 0, 0],
1295
```

```
1296
                     [0, 0, 0, 0, 0],
1297
                     [0, 0, 0, 0, 0]
1298
                1
1299
            - lines_cleared: 0
1300
            This example shows that by taking action=9, the game board
1301
                transitions from prev_board to curr_board by placing a z-shape
1302
                tetromino to the lower right corner of the board.
1303
            Additionally, a new tetromino appears at the top of the curr_board
1304
1305
            Since no lines are cleared, the number of lines cleared is 0.
            The example is simplified for clarity. The actual dimension of the
1306
                 board is 20x10.
1307
1308
        Returns:
1309
            You need to return the reward signal (float) based on the given
1310
1311
1312
       Interface: Snake
1313
1314
        Args:
1315
             - 'game_grid' (2D numpy array): An array representation of the
1316
                current game grid, where '0' indicates an empty cell, '1'
1317
                indicates a food item, '2' indicates a snake body, and '3'
1318
                indicates a snake head.
1319
               The grid follows typical numpy array indexing, i.e. [0,0] is
                   located at the upper left most pixel, [0, 1] is the pixel to
1320
                    the right of [0,0], [1, 0] is the pixel below [0,0].
1321
            - 'prev_game_grid' (2D numpy array): An array representation of
1322
                the game grid on the previous step. prev_game_grid has the same
1323
                 shape as 'game_grid'.
            - 'action' (int): The action taken by the snake that led to the
1324
                current game grid. The action space is discrete, with the
1325
                following possible values: 0-Move up, 1-Move right, 2-Move down
1326
                , 3-Move left.
1327
             - `food_eaten` (bool): Whether the snake has eaten food in the
1328
                current step.
            - 'snake_death' (bool): Whether the snake has died in the current
1329
                step.
1330
            - 'snake_steps' (int): The number of steps the snake has taken
1331
                since the start of the episode.
1332
1333
        Example:
            Consider a 5x5 game grid where the snake has moved only once since
1334
                 the start of the episode, the current arguments are:
1335
            - game_grid:
1336
                 [
1337
                     [0, 0, 0, 0, 0],
1338
                     [0, 2, 0, 0, 0],
                     [0, 2, 3, 0, 0],
1339
                     [0, 0, 0, 0, 0],
1340
                     [0, 0, 0, 1, 0]
1341
                1
1342
            - prev_game_grid:
1343
                Γ
                     [0, 2, 0, 0, 0],
1344
                     [0, 2, 0, 0, 0],
1345
                     [0, 3, 0, 0, 0],
1346
                     [0, 0, 0, 0, 0],
1347
                     [0, 0, 0, 1, 0]
1348
            - action: 1
1349
```

```
1350
            - food_eaten: False
1351
            - snake_death: False
            - snake_steps: 1
1353
1354
            This example shows a snake of length 3, whose body is currently at
                 position (1, 1), (2, 1), and the head is at position (2, 2).
1355
                The food is located at position (4, 3).
1356
            The snake took action 1 (move right) from the previous step where
1357
                the snake was at position (0, 1), (1, 1), and the head was at
1358
                position (2, 1).
1359
            Since the snake has not eaten food in the current step, '
                food_eaten' is False.
1360
            Since the snake has not died in the current step, 'snake_death' is
1361
                 False.
1362
            Since the snake has moved only once since the start of the episode
1363
                , 'snake_steps' is 1.
1364
        Returns:
1365
            You need to return the reward signal for the current step.
1366
1367
```

Interface: Flappy Bird

Args:

1368 1369

1370 1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

14021403

- `last_pipe_x` (float): The horizontal position of the last pipe.
- 'last_top_pipe_y' (float): The vertical position of the last top pipe.
- 'last_bottom_pipe_y' (float): The vertical position of the last bottom pipe.
- 'next_pipe_x' (float): The horizontal position of the next pipe.
- 'next_top_pipe_y' (float): The vertical position of the next top pipe.
- 'next_bottom_pipe_y' (float): The vertical position of the next bottom pipe.
- 'next_next_pipe_x' (float): The horizontal position of the next next pipe.
- 'next_next_top_pipe_y' (float): The vertical position of the next next top pipe.
- 'next_next_bottom_pipe_y' (float): The vertical position of the next next bottom pipe.
- 'player_y' (float): The vertical position of the player.
- 'player_y_velocity' (float): The vertical velocity of the player
 .
- 'player_rotation' (float): The rotation of the player.
- 'player_x' (float): The horizontal position of the player.
- 'player_width' (float): The width of the player.
 - 'player_height' (float): The height of the player.
 - 'screen_width' (float): The width of the screen.
 - 'screen_height' (float): The height of the screen.

NOTE: All the above arguments are un-normalized. The observation that the policy network will receive is normalized.

The normalization is done as follows:

- for all x values, normalized_x = x / screen_width
- for all y values, normalized_y = y / screen_height
- 'player_y_velocity' is normalized as 'player_y_velocity' /=
 PLAYER_MAX_VEL_Y, where PLAYER_MAX_VEL_Y=10.
- 'player_rotation' is normalized as 'player_rotation' /= 90.
 This note is only for your information. You do not need to
 compute normalized values as it will be done automatically.

Returns:

You need to return the reward signal for the current step.

1405 1406 1407

1408

1404

Interface: Humanoid

1409 1410 1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

Objective: Obtain the highest score possible, where the exact score composition is defined in the 'score_info' dictionary.

Args:

- 'score_info' (dict): Dictionary containing the score components:
 - 'healthy_reward' (float): A reward is given if the Humanoid is alive (Humanoid is alive if the z-coordinate of the torso (the height) is in the closed interval given by the healthy_z_range)
 - 'forward_reward' (float): A reward for moving forward, this reward would be positive if the Humanoid moves forward (in the positive x direction / in the right direction).
 - 'ctrl_cost' (float): A negative reward to penalize the Humanoid for taking actions that are too large.
 - 'contact_cost' (float): A negative reward to penalize the Humanoid if the external contact forces are too large.
- 'action' (np.ndarray): Action vector of shape (17,) containing torques applied to each joint with values constrained to [-0.4, 0.4]. Actions correspond to:
 - 0: Torque applied on the hinge in the y-coordinate of the abdomen (N m) $\,$
 - 1: Torque applied on the hinge in the z-coordinate of the abdomen (N $\mbox{\scriptsize m})$
 - 2: Torque applied on the hinge in the x-coordinate of the abdomen (N m) $\,$
 - 3: Torque applied on the rotor between torso/abdomen and the right hip (x-coordinate) (N m) $\,$
 - 4: Torque applied on the rotor between torso/abdomen and the right hip (z-coordinate) (N m) $\,$
 - 5: Torque applied on the rotor between torso/abdomen and the right hip (y-coordinate) (N m)
 - 6: Torque applied on the rotor between the right hip/thigh and the right shin (N m) $\,$
 - 7: Torque applied on the rotor between torso/abdomen and the left hip (x-coordinate) (N m)
 - 8: Torque applied on the rotor between torso/abdomen and the left hip (z-coordinate) (N m) $\,$
 - 9: Torque applied on the rotor between torso/abdomen and the left hip (y-coordinate) (N m)
 - 10: Torque applied on the rotor between the left hip/thigh and the left shin (N m) $\,$
 - 11: Torque applied on the rotor between the torso and right upper arm (coordinate -1) (N m)
 - 12: Torque applied on the rotor between the torso and right upper arm (coordinate -2) (N m)
 - 13: Torque applied on the rotor between the right upper arm and right lower arm (N m) $\,$
 - 14: Torque applied on the rotor between the torso and left upper arm (coordinate -1) (N m)
 - 15: Torque applied on the rotor between the torso and left upper arm (coordinate -2) (N m)
 - 16: Torque applied on the rotor between the left upper arm and left lower arm (N m) $\,$
- 'prev_action' (np.ndarray): Action vector of shape (17,)
 containing actions on the previous step.
- 'x_coord' (float): The x-coordinate of the torso.
- 'y_coord' (float): The y-coordinate of the torso.

```
1458
            'prev_x_coord' (float): The x-coordinate of the torso on the
1459
             previous step.
1460
            'prev_y_coord' (float): The y-coordinate of the torso on the
1461
             previous step.
1462
            'distance_from_origin' (float): The distance from the origin
            'prev_distance_from_origin' (float): The distance from the origin
1463
              on the previous step.
1464
            'healthy_z_range' (tuple of 2 floats): The closed interval of the
1465
             height that the Humanoid is considered alive.
1466
          - 'obs' (np.ndarray): Observation vector of shape (45, ), containing
1467
              position and velocity information:
            0: z-coordinate of the torso (center) (m)
1468
            1: w-orientation of the torso (center) (rad)
1469
            2: x-orientation of the torso (center) (rad)
1470
            3: y-orientation of the torso (center) (rad)
1471
            4: z-orientation of the torso (center) (rad)
1472
            5: z-angle of the abdomen (in lower_waist) (rad)
            6: y-angle of the abdomen (in lower_waist)
1473
            7: x-angle of the abdomen (in pelvis) (rad)
1474
            8: x-coordinate of angle between pelvis and right hip (in
1475
               right_thigh) (rad)
1476
            9: z-coordinate of angle between pelvis and right hip (in
1477
                right_thigh) (rad)
            10: y-coordinate of angle between pelvis and right hip (in
1478
                right_thigh) (rad)
1479
            11: angle between right hip and the right shin (in right_knee) (
1480
                rad)
1481
            12: x-coordinate of angle between pelvis and left hip (in
1482
                left_thigh) (rad)
1483
            13: z-coordinate of angle between pelvis and left hip (in
                left_thigh) (rad)
1484
            14: y-coordinate of angle between pelvis and left hip (in
1485
                left_thigh) (rad)
1486
            15: angle between left hip and the left shin (in left_knee) (rad)
1487
            16: coordinate-1 (multi-axis) angle between torso and right arm (
1488
                in right_upper_arm) (rad)
            17: coordinate-2 (multi-axis) angle between torso and right arm (
1489
                in right_upper_arm) (rad)
1490
            18: angle between right upper arm and right_lower_arm (rad)
1491
            19: coordinate-1 (multi-axis) angle between torso and left arm (in
1492
                 left_upper_arm) (rad)
            20: coordinate-2 (multi-axis) angle between torso and left arm (in
1493
                 left_upper_arm) (rad)
1494
            21: angle between left upper arm and left_lower_arm (rad)
1495
            22: x-coordinate velocity of the torso (centre) (m/s)
1496
            23: y-coordinate velocity of the torso (centre) (m/s)
1497
            24: z-coordinate velocity of the torso (centre) (m/s)
            25: x-coordinate angular velocity of the torso (centre) (rad/s)
1498
            26: y-coordinate angular velocity of the torso (centre) (rad/s)
1499
            27: z-coordinate angular velocity of the torso (centre) (rad/s)
1500
            28: z-coordinate of angular velocity of the abdomen (in
1501
                lower_waist) (rad/s)
1502
            29: y-coordinate of angular velocity of the abdomen (in
1503
                lower_waist) (rad/s)
            30: x-coordinate of angular velocity of the abdomen (in pelvis) (
1504
                rad/s)
1505
            31: x-coordinate of the angular velocity of the angle between
1506
               pelvis and right hip (in right_thigh) (rad/s)
1507
            32: z-coordinate of the angular velocity of the angle between
                pelvis and right hip (in right_thigh) (rad/s)
            33: y-coordinate of the angular velocity of the angle between
1509
                pelvis and right hip (in right_thigh) (rad/s)
1510
```

```
1512
            34: angular velocity of the angle between right hip and the right
1513
                shin (in right_knee) (rad/s)
            35: x-coordinate of the angular velocity of the angle between
1515
               pelvis and left hip (in left_thigh) (rad/s)
1516
            36: z-coordinate of the angular velocity of the angle between
               pelvis and left hip (in left_thigh) (rad/s)
1517
            37: y-coordinate of the angular velocity of the angle between
1518
                pelvis and left hip (in left_thigh) (rad/s)
1519
            38: angular velocity of the angle between left hip and the left
1520
                shin (in left_knee) (rad/s)
1521
            39: coordinate-1 (multi-axis) of the angular velocity of the angle
                between torso and right arm (in right_upper_arm) (rad/s)
1522
            40: coordinate-2 (multi-axis) of the angular velocity of the angle
1523
                between torso and right arm (in right_upper_arm) (rad/s)
1524
            41: angular velocity of the angle between right upper arm and
1525
                right_lower_arm (rad/s)
1526
            42: coordinate-1 (multi-axis) of the angular velocity of the angle
                 between torso and left arm (in left_upper_arm) (rad/s)
1527
            43: coordinate-2 (multi-axis) of the angular velocity of the angle
1528
                between torso and left arm (in left_upper_arm) (rad/s)
1529
            44: angular velocity of the angle between left upper arm and
1530
                left_lower_arm (rad/s)
1531
           'prev_obs' (np.ndarray): Observation vector of shape (45, ),
              containing position and velocity information on the previous step
1532
1533
          - 'cfrc_ext' (dict): Dictionary containing the external contact
1534
              forces on the body parts. Each body part is a vector that
1535
              specifies force x, y, z and torque x, y, z.
1536
             'torso' (np.ndarray): External contact forces on the torso.
            - 'lwaist' (np.ndarray): External contact forces on the lwaist.
1537
            - 'pelvis' (np.ndarray): External contact forces on the pelvis.
1538
             'right_thigh' (np.ndarray): External contact forces on the right
1539
                 thigh.
1540
             'right_shin' (np.ndarray): External contact forces on the right
1541
                shin.
            - 'right_foot' (np.ndarray): External contact forces on the right
1542
                foot.
1543
            - 'left_thigh' (np.ndarray): External contact forces on the left
1544
               thigh.
1545
            - 'left_shin' (np.ndarray): External contact forces on the left
1546
                shin.
             'left_foot' (np.ndarray): External contact forces on the left
1547
                foot.
1548
            - 'right_upper_arm' (np.ndarray): External contact forces on the
1549
                right upper arm.
1550
            - `right_lower_arm` (np.ndarray): External contact forces on the
1551
               right lower arm.
            - 'left_upper_arm' (np.ndarray): External contact forces on the
1552
               left upper arm.
1553
            - 'left_lower_arm' (np.ndarray): External contact forces on the
1554
               left lower arm.
1555
           'prev_cfrc_ext' (dict): Dictionary containing the external contact
1556
               forces on the body parts on the previous step.
            'terminated' (bool): Whether the episode has terminated due to the
1557
              humanoid falling.
1558
           'truncated' (bool): Whether the episode was truncated due to
1559
              reaching the maximum timestep limit.
1560
1561
          A float representing the custom reward signal for the current step.
1562
```

C PROMPTS

This section presents the prompts used in FORGE, in the following order:

- 1. Reward Planner System Prompt
- 2. Reward Engineer System Prompt
- 3. Reward Planner Reward Initialization Planning Prompt
- 4. Reward Engineer Reward Crossover Prompt

Planner System Prompt

You are an experienced AI researcher. You need to design the reward strucuture for training reinforcement learning agents.

Return a list of individual reward components that could be included in a dense reward structure. Consider both diversity and clarity in your design. For each component, you should:

- Be specific and detailed, describing exactly what behavior it encourages.
- Be suitable for generating a real-time reward signal at every time step.
- ${\hspace{0.25cm}\text{-}\hspace{0.25cm}}$ Do not assume the actual setup of the environment. This will be provided when implementing the reward.

When implementing the reward function, you should:

- Adhere exactly to the given function header without changing its name, parameters, or structure.
- $\mbox{-}$ Only implement the functionality specified in the docstring. Do not modify the docstring.
- If the function header lacks necessary information to implement the reward function (e.g., missing state details, actions, or environmental context), clearly state why the implementation cannot proceed and abort the task.
- If implementation is possible, return the complete code wrapped in markdown-style Python code block ('`'python and '`').
- You can define helper functions inside the main function, but your final code should include only one function overall.

Engineer System Prompt

You are a code generation assistant specialized in reinforcement learning (RL). Your task is to generate a Python function that implements reward function for training an RL agent.

You must follow the rules below:

- Return the complete code wrapped in markdown-style Python code block ('''python and ''').
- You can define helper functions inside the main function, but your final code should include only one function overall.
- Write out the code explicitly if using given functions.

Reward Initialization Planning Prompt

Design the reward structure for training an reinforcement learning agent based on the environment specification:

<Environment>{env_description}</Environment>

Format your response as a list and return as many reward components as possible to facilitate agent exploration.

Reward Crossover Prompt

Consider the reinforcement learning environment:

<Environment>{env_description}</Environment>

Carefully examine the following reward components ({reward1} and { reward2}) and their respective training results:

<Result1>{result1}</Result1>

<Result2>{result2}</Result2>

Please design a new reward component that is a combination of the two given components, taking into account their respective training results. The new function should have a clear and concise docstring that explains what the new reward component will do. Additionally, make sure to keep the implementation self-contained without adding any extra or redundant functionality. Do not change the function arguments. If the implementation is not possible, explain the reason. Return the complete code wrapped in markdown-style Python code block ('''python and ''').