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Abstract

This paper introduces MutualNeRF, a framework
enhancing Neural Radiance Field (NeRF) perfor-
mance under limited samples using Mutual Infor-
mation Theory. While NeRF excels in 3D scene
synthesis, challenges arise with limited data and
existing methods that aim to introduce prior knowl-
edge lack theoretical support in a unified frame-
work. We introduce a simple but theoretically ro-
bust concept, Mutual Information, as a metric to
uniformly measure the correlation between im-
ages, considering both macro (semantic) and mi-
cro (pixel) levels. For sparse view sampling, we
strategically select additional viewpoints contain-
ing more non-overlapping scene information by
minimizing mutual information without know-
ing ground truth images beforehand. Our frame-
work employs a greedy algorithm, offering a near-
optimal solution. For few-shot view synthesis, we
maximize the mutual information between inferred
images and ground truth, expecting inferred im-
ages to gain more relevant information from known
images. This is achieved by incorporating efficient,
plug-and-play regularization terms. Experiments
under limited samples show consistent improve-
ment over state-of-the-art baselines in different
settings, affirming the efficacy of our framework.

1 INTRODUCTION

NeRF [Mildenhall et al., 2020] (Neural Radiance Fields) is
an advanced technique in computer graphics and computer
vision that enables highly detailed and photorealistic 3D
reconstructions of scenes from 2D images [Zhang et al.,
2020, Park et al., 2021, Pumarola et al., 2021]. It represents
a scene as a 3D volume, where each point in the volume
corresponds to a 3D location and is associated with a color

and opacity. The key idea behind NeRF is to learn a deep
neural network that can implicitly represent this volumetric
function, allowing the synthesis of novel views of the scene
from arbitrary viewpoints.

Although NeRF can synthesize high-quality images, it often
relies on a large amount of high-quality training data [Yu
et al., 2021b]. The performance of NeRF drastically de-
creases when the number of training data is reduced. To
mitigate this, existing strategies include adding new sam-
ples to the dataset and integrating regularization terms to
introduce prior knowledge. For adding new samples, Ac-
tiveNeRF [Pan et al., 2022] aims to supplement the existing
training set with newly captured samples based on an active
learning scheme. It incorporates uncertainty estimation into
a NeRF model and selects the samples that bring the most
information gain. However, its reliance on the variance shift
between prior and posterior distributions as a metric for
information gain is somewhat speculative and can lead to
unreliable outcomes. Regarding regularization, a plethora
of studies [Niemeyer et al., 2022, Yang et al., 2023, Yu
et al., 2021b, Jain et al., 2021] have explored the integration
of prior or domain-specific knowledge to facilitate high-
quality novel view synthesis and enhance generalization
capabilities, even with limited training data. However, many
of these methods lack theoretical support, hindering their
explanation and optimization within a unified framework.

Confronting challenges in the few-shot scenarios, we in-
troduce a theoretically robust and computationally efficient
strategy addressing two pivotal tasks: sparse view sampling
and few-shot view synthesis. Sparse view sampling targets
acquiring training images from a selection of candidate
views without knowing their ground truth images. Our strat-
egy intuitively emphasizes minimizing the correlation be-
tween training images for more unique information. Tran-
sitioning to few-shot view synthesis, our strategy involves
training a NeRF model on a predetermined training set, aim-
ing to maximize the correlation between inferred images
and ground truth in the view synthesis process.
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Figure 1: The overview of MutualNeRF. We introduce a
novel and generic NeRF framework, comprehensively in-
tegrating mutual information from macro (semantic space)
and micro perspectives (pixel space). This dual-perspective
framework adeptly addresses challenges in sparse view sam-
pling and few-shot view synthesis.

In this work, we introduce the concept of Mutual Informa-
tion as an interpretable metric to model correlation. This
concept is inspired by TupleInfoNCE [Liu et al., 2021],
which effectively models mutual information across dif-
ferent modalities to enhance multi-modal fusion. Mutual
information serves as a metric for quantifying the uncer-
tainty between variables, especially pertinent in the NeRF
context. On the one hand, it can guide us in selecting inputs
to encapsulate maximal information with fewer images. On
the other hand, it assesses the uncertainty of unknown view
synthesis given known views.

We approach mutual information from both macro and mi-
cro perspectives. The macro perspective focuses on the cor-
relation in semantic features, particularly employing the
CLIP [Radford et al., 2021] method for semantic space dis-
tance, while the micro perspective in pixel space deals with
the decomposition of relative information between images
based on ray differences. To ensure feasibility and compu-
tational efficiency, pixel space distance is correlated with
the Euclidean distance between camera positions and RGB
color differences. Furthermore, we take into account mul-
tiple training set images for unknown scenes, introducing
mutual information for multiple images.

Leveraging mutual information as the metric, our novel al-
gorithmic framework can tackle board challenges in sparse
view sampling by introducing new samples with less mu-
tual information, and few-shot view synthesis by adding
new regularization terms to increase the mutual information
between the inferred images and the ground truth.

In sparse view sampling, the task is to select a subset of
images from a candidate view set with unknown ground
truth to supplement the training process. Ground truth is
revealed only after selection, following the active learning
framework. Our strategy focuses on minimizing redundancy
in the selected views to maximize information gain. We
introduce a computationally efficient greedy algorithm with

a look-ahead strategy, which functions as a near-optimal
solution. This algorithm iteratively selects images based
on their contribution to unexplored information. The selec-
tion criteria combine semantic space distances, as derived
from CLIP, with pixel space distance, calculated using the
Euclidean distance between camera positions.

For few-shot view synthesis, the task is to directly train a
NeRF model with limited and fixed training samples. we
aim to develop efficient, plug-and-play regularization terms
for the training procedure. The objective is to maximize the
mutual information between training images and randomly
rendered images, expecting inferred images to gain more rel-
evant information from known images. We assess semantic
space distance by CLIP as the macro regularization term. As
camera position is invariant to the parameter of the NeRF,
we utilize a computationally efficient metric dependent on
both camera positioning and network parameters. It serves
as the micro regularization term and assesses pixel-wise dis-
tribution differences between known and unknown views.

Finally, we have experimentally validated our conclusions.
In sparse view sampling, following the ActiveNeRF proto-
col, we start with several initial images and supplement new
viewpoints to evaluate the information gain brought by our
sampling strategy. The experiments demonstrate that our
strategy achieves the best performance with the introduction
of the same number of new viewpoints. For few-shot novel
view synthesis, we compare our designed regularization
terms with state-of-the-art baselines, showing consistent im-
provements across three datasets. An ablation study further
analyzes the contribution of each term. Remarkably, the
mutual information metric, intuitive and straightforward yet
theoretically robust, proves to efficiently guide the NeRF
process at both input and output stages with simple quanti-
tative computation in our framework.

2 RELATED WORK

Mutual Information Mutual information is a basic con-
cept in information theory and it has many applications in
machine learning. Oord et al. [2018] starts the research for
unsupervised representation learning train feature extractors
by maximizing an estimate of the mutual information (MI)
between different views of the data. This work has been
expanded in various directions, including the explanation
of this principle [Tschannen et al., 2019], the experiments
improvement in more datasets [Henaff, 2020], and the appli-
cation of contrastive learning to the multiview setting [Tian
et al., 2020]. While their work primarily focuses on unsuper-
vised learning tasks, we center on supervised learning with
sparse samples. However, the concept of leveraging infor-
mation from unlabeled data is also adopted in our approach.

Active Learning Active learning [Settles, 2009] allows a
learning algorithm to actively query a user or information



source for labeling new data points. It has been widely ap-
plied in computer vision tasks Yi et al. [2016], Sener and
Savarese [2017], Fu et al. [2018], Zolfaghari Bengar et al.
[2019]. ActiveNeRF [Pan et al., 2022] was the first to inte-
grate active learning into NeRF optimization. We adopt it for
sparse view sampling. Unlike ActiveNeRF, which focuses
on uncertainty reduction, our approach explores mutual in-
formation from both macro and micro perspectives.

Few-shot Novel View Synthesis NeRF [Mildenhall et al.,
2020] has become one of the most important methods for
synthesizing new viewpoints in 3D scenes [Xiangli et al.,
2021, Fridovich-Keil et al., 2022, Takikawa et al., 2021,
Yu et al., 2021a, Tancik et al., 2022, Hedman et al., 2021].
A growing number of recent works have studied few-shot
novel view synthesis via NeRF [Wang et al., 2021, Martin-
Brualla et al., 2021, Meng et al., 2021, Kim et al., 2022,
Deng et al., 2022, Wang et al., 2023]. First, diffusion-model-
based methods use generative inference as supplementary in-
formation. SparseFusion [Zhou and Tulsiani, 2022] distills a
3D consistent scene representation from a view-conditioned
latent diffusion model. Second, some methods additionally
extrapolate the scene’s geometry and appearance to a new
viewpoint. DietNeRF [Jain et al., 2021] introduces seman-
tic consistency loss between observed and unseen views.
Third, some methods use regularization to mitigate overfit-
ting and incorporate prior knowledge. RegNeRF [Niemeyer
et al., 2022] regularizes geometry and appearance from un-
observed viewpoints, while FreeNeRF [Yang et al., 2023]
constrains the input frequency range. However, the lack of
a unified theoretical foundation hinders comprehensive ex-
planation and optimization. We aim to propose a generic
framework with interpretable metrics to address this gap.

3 SETUP

First, we briefly overview the Neural Radiance Fields
(NeRF) framework with key implementation details. NeRF
models the 3D scene as a continuous function Fθ, which is
discerned through a multi-layer perceptron (MLP).

Specifically, given a spatial coordinate x ∈ R3 in the scene,
and a specific observation direction d ∈ R2, NeRF is ca-
pable of inferring the corresponding RGB color c and a
discrete volume density σ:

Fθ : (x,d) 7→ (c, σ).

NeRF models are trained based on a classic differentiable
volume rendering operation, which establishes the resulting
color of any ray passing through the scene volume and
projected onto a camera system. Each ray r(t) = o+td with
t ∈ R+, determined by the position of camera o ∈ R3 and
the direction of ray d. Note that for each t, r(t) represents a
position in R3. The value of σ defines the geometry of the
scene and is learned exclusively from this position. However,

the value of c is also dependent on the viewing direction
d. Therefore, we have the volume rendering equation as
follows to represent the color on the ray C(r):

C(r) =

∫ tf

tn

T (t)σ(r(t))c(r(t),d)dt ,

T (t) = exp

(
−
∫ t

tn

σ(r(s))ds

)
.

Given some images with observing direction d and cam-
era position o, we can get the ground truth color C(r) on
the ray. To estimate it, we can use the NeRF and volume
rendering equation to calculate Ĉ(r). To bypass the chal-
lenge of computing the continuous integral, it is common to
employ a discretization method: randomly sample N time
{t1, t2, . . . , tN} and get the position {x1,x2, . . . ,xN} on
the ray with xi = o+ tid. Then we can estimate the color
by the following equation, where we denote the sampling in-
terval δi = ti+1− ti and the constant αi = 1−exp(−σiδi):

Ĉ(r) =

N∑
i=1

Tiαici, Ti = exp(−
i−1∑
j=1

σjδj) .

Following this volume rendering logic, the NeRF function
F is optimized by minimizing the squared error between
the estimated color and the real colors of a batch of rays R
that project onto a set of training views of the scene taken
from different viewpoints:

LNeRF =
∑
r∈R

∥∥∥Ĉ(r)− C(r)
∥∥∥2 .

While NeRF achieves outstanding results in view synthesis,
it traditionally demands a substantial collection of densely
captured, camera-calibrated images. Addressing the difficul-
ties of such extensive data collection, we will introduce a
more efficient framework in the next section.

4 FRAMEWORK

In this section, we outline our principal framework for
the algorithm’s design. As we need to choose training im-
ages instead of rays, we denote R as the set of images in
this section. Given the limited number of training samples,
it’s essential to select a sparse but information-rich subset,
Rs ⊂ R, to capture various details of scenes and generaliza-
tion well in other views of the scenes or object. Therefore, to
establish a criterion for assessing the adequacy of an image
in capturing scene information, we draw upon principles
from information theory to devise an appropriate metric.
In information theory, mutual information quantifies the
reduction in uncertainty of one variable given the knowledge
of another. This concept aligns with our objectives in the
context of NeRF. Specifically, we utilize the information
from a known image, R, which includes a subset of views,
to infer properties about an unknown image, R.



Figure 2: The overview of our framework. First, we leverage mutual information and relative information to quantify
the uncertainty in inferring unknown images conditioned on known ones. This involves decomposing the uncertainty into
semantic space distance (macro) and pixel space distance (micro). These distances are converted into specific types tailored
for quantifying mutual information in different scenarios. In sparse view sampling, a greedy algorithm minimizes mutual
information via a near-optimal solution. We use Euclidean distance of camera positions to represent pixel space distance and
propose a sequential method that prioritizes either semantics or pixels. For few-shot view synthesis, we use color distance to
represent pixel space distance and maximize mutual information as efficient plug-and-play regularization terms.

Definition 1 (Mutual Information). Mutual information
measures dependencies between random variables. Given
two random variables R and R, it can be understood as how
much knowing R reduces the uncertainty in R or vice versa.
Formally, the mutual information between R and R is:

I(R,R) = H(R)−H(R|R) = H(R)−H(R|R).

where H(R) represents the information of the random vari-
ables R, H(R|R) represents the relative uncertainty to infer
R if we know R.

In the context of NeRF, H(R) represents the information
of the image R, and H(R|R) represents the relative un-
certainty to infer unknown R based on known image R.
Our objective is to quantify the mutual information I(R,R)
and deduce information about one image from another to a
certain degree. Assuming symmetry among all images and
an equal number of rays, we reasonably hypothesize that
the inherent information content of each image H(R) is
equal. Consequently, we aim to maximize the conditional
information H(R|R) and H(R|R).

We then adopt both macro and micro perspectives to de-
scribe the conditional information H(R|R).

From the macro perspective, the semantic features of the
entire image serve as indicators of the uncertainty in the
relative information. To gauge the similarity between two
images, we consider employing the CLIP method, as pro-
posed by Radford et al. [2021] to extract semantic features.

Definition 2 (Semantic Space Distance). Suppose we have
a clip function f , we define the semantic space distance
between images R and R as the 1 - cosine similarity:

s(R,R) = 1− f(R)f(R)

∥f(R)∥∥f(R)∥
.

From the micro perspective, we know that we can decom-
pose the relative information between images into the rel-
ative difference of the rays. Suppose the rays in the two
images can be described as r(t) = o + td and r(t) =
o+ td. The direction can be represent as d : (θ1, ϕ1) and
d : (θ2, ϕ2), θ1, θ2 ∈ U(θ, θ) and ϕ1, ϕ2 ∈ U(0, 2π) are
sampled from uniform distribution where θ and θ are fixed
parameter. We assume the distance moving in direction d
of two rays are T1 and T2. Then we define the distance be-
tween two rays as the combination of Euclidean distance in
expectation between the combination of points in these two
rays:

Definition 3 (Pixel Space Distance). We define the distance
between images in pixel space as the distance between any
two points of rays in these images in expectation:

d(R,R) = Er∈R,r∈R

[∫ T1

0

∫ T2

0

∥r(t1)− r(t2)∥22dt2dt1

]
.

Note that measuring the distance between images aligns
with measuring the distance between camera positions ∥o−
o∥22 corresponding to these images by the following lemma:

Lemma 1. Then the distance between two images can be
represented by the Euclidean distance of two positions of
cameras, ∥o− o∥22, by the following equation:

d(R,R) = T1T2∥o− o∥22 + C ,

where C is a constant independent of o and o. Therefore,
we use the measure d(R,R) and s(R,R) to represent the
relative information H(R|R) in the following assumption:

Assumption 1. We assume the relative information of two
images H(R|R) is proportional to the similarity measure
and distance measure between two images, that is,

H(R|R) ∝ s(R,R), H(R|R) ∝ d(R,R) .



Note that when we are predicting the information of an
uncaptured image R, we are not limited to using informa-
tion from a single image in the training set. Rather, we can
harness the collective information from multiple images,
denoted R1, R2, . . . Rm. it becomes necessary to extend
the definition of mutual information to encompass multiple
variables, capturing the interdependencies among more than
two variables. Drawing on insights from [Williams and Beer,
2010], we understand that the mutual information across
multiple images can be broken down into the maximal mu-
tual information observed between any two images. The
formulation is as detailed below:

Definition 4 (Mutual Information for multiple images). Sup-
pose we have several images R1, R2, . . . Rm in the training
set. Then we want to infer the information of an unknown
image R, the mutual information of this image correspond-
ing to other images is defined as:

I(R1, R2, . . . Rm;R) = max
i=1,2,...m

I(Ri, R) .

After presenting the framework, we will illustrate our al-
gorithm’s efficacy in addressing two critical tasks which
detailed in the subsequent sections: sparse view sampling
and few-shot view synthesis.

5 SPARSE VIEW SAMPLING

Sparse view sampling, proposed by ActiveNeRF [Pan et al.,
2022], is an active learning scheme designed to enhance
the quality of NeRF by strategically selecting additional
viewpoints. In this setting, we begin with a limited number
of training images, and a candidate set of viewpoints for
which we do not possess the corresponding ground truth
images. It is only after a viewpoint is selected that we
acquire its ground truth image, subsequently transferring
it from the candidate to the training set. By analyzing the
shortcomings of initial images, we strategically select addi-
tional viewpoints and then get the corresponding images to
improve the NeRF model’s synthesis quality. For instance, if
constrained to capture only three images of the Eiffel Tower,
we are presented with various potential viewpoints from the
sky or ground. Sparse view sampling involves selecting the
most informative viewpoints based on the initial images.

Our framework selects an informative subset of views by
minimizing mutual information without knowing the
ground truth images beforehand. It stems from the observa-
tion that lower mutual information reflects reduced redun-
dancy between views. For example, highly similar images
exhibit high mutual information, indicating redundancy if
both are selected. We aim to design an algorithm that intelli-
gently chooses images based solely on the existing images
and the candidate view positions.

First, let’s consider a global optimization problem. Suppose
the whole set of images is R and we need to choose the

subset of images Rs. We represent Ri ̸=j as all the images
in R without the image Rj , then our goal can be formally
described as minimizing the mutual information for Ri ̸=j

and Rj . By Definition 4, it can be represent as the maximal
mutual information between Ri and Rj :

min
Rs⊂R

max
Rj∈Rs

I(Ri ̸=j ;Rj) = min
Rs⊂R

max
Ri,Rj∈Rs

I(Ri, Rj) .

Given N figures in the subset Rs, we can reformulate the
goal from minimizing mutual information to maximizing
relative information between images by Definition 1. Thus,
the problem becomes:

max
Rs⊂R

δ s.t. H(Ri|Rj) ≥ δ, ∀i, j ∈ {1, 2, . . . N}, i ̸= j .

Then we use the solution as the training images to construct
an informative NeRF.

5.1 GREEDY ALGORITHM

Solving this problem is challenging without initial ground
truth images for all candidate viewpoints and involves bal-
ancing O(N2) constraints. Thus, we adopt a near-optimal
approximation algorithm that is both tractable and computa-
tionally efficient. We use a look-ahead strategy and greedy
method to select views. Over N iterations, we choose an
image in each iteration that has minimal information overlap
with the already selected images. In the i-th iteration, we
solve the following problem:

max
Ri∈R

δi s.t. H(Ri|Rj) ≥ δi,∀1 ≤ j < i .

Then the mutual information of N images we choose is
δ̃ = min{δ1, δ2, . . . , δN}. Although this algorithm can not
achieve the global minimum point of the primal problem, it
is a 2-approximation based on the following lemma:

Lemma 2. Assume the optimal value of the primal problem
is δ, the value we achieved by the greedy algorithm is δ̃,
then we have δ̃ ≥ 1

2δ.

This lemma ensures that our greedy algorithm provides a
good approximation to the optimal solution. Additionally,
our algorithm substantially reduces the computational cost
of the problem, as we only have O(N) constraints in each in-
stance, as opposed to O(N2). We will subsequently employ
this iterative strategy for image selection in our experiments.

5.2 EXPERIMENTS

Setup Our greedy algorithm in Section 5.1 follows a ’train-
render-evaluate-pick’ scheme similar to that in Active Learn-
ing [Pan et al., 2022]: 1) start by training a NeRF model
with initial observations, 2) render images from candidate
views and evaluate them to select valuable ones, 3) train
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Figure 3: Quantitative comparison in Active Learning
settings on Blender. Given limited input views, our strat-
egy can select better candidate views. Our rendered images
without excessively blurry boundaries exhibit greater clarity
compared to those rendered by ActiveNeRF.

the NeRF model with the newly acquired ground-truth im-
ages corresponding to these selected views, then repeat to
step 2. Compared to ActiveNeRF, we modify the evaluation
metric in step 2 as minimizing mutual information, consid-
ering both semantic space distance and pixel space distance
discussed in Section 4.

Design By Assumption 1 and Lemma 1, we identify a view-
point that exhibits both low semantic similarity measured by
CLIP [Radford et al., 2021] (large semantic space distance)
and a considerable distance in camera positions (large pixel
space distance). If we consider only camera pose, furthest
view sampling (FVS) is optimal. However, incorporating se-
mantic constraints necessitates balancing these two criteria.
We propose a sequential approach: first prioritize semantics
to select a subset from candidates, then evaluate based on
camera pose (S→P), or vice versa (P→S). This strategy nav-
igates the tradeoff without a tricky balance hyperparameter.
The technical appendix provides more discussions.

Dataset Dataset and Metric We extensively evaluate our
approach on the Blender [Mildenhall et al., 2020] dataset,
which contains 8 synthetic objects with complex geome-
try and realistic materials and is classical in the NeRF re-
search. We report the image quality metrics PSNR, SSIM,
and LPIPS for evaluations. SSIM measures differences in
luminance, contrast, and structure, focusing on perceptual
properties. PSNR assesses the absolute error between pixels,
emphasizing pixel-wise comparison in a micro way. LPIPS
quantifies perceptual similarity, capturing more global vi-
sual differences in a macro way.

Results We demonstrate the performance of our sampling
strategy on the Blender dataset compared to baseline ap-
proaches in Table 1 and Figure 3. Our strategy outperforms
baselines in view synthesis quality. Our method, which
considers both the semantic space distance between visi-
ble and invisible views and a tendency towards uniform
sampling, provides better sampling guidance under a lim-
ited input budget. When prioritizing semantic space dis-
tance before pixel space distance (Ours (S→P)), we observe
lower LPIPS scores (-17.6%/-9.2%) and higher SSIM scores
(+2.4%/+2.3%), aligning more closely with human percep-
tion. Conversely, prioritizing pixel space distance first (Ours
(P→S)) yields higher PSNR scores (+7.3%/+5.9%), reflect-

ing differences in raw pixel values. In addition, as shown in
Table 2, our sequential method can get better results than
simultaneous method.

Ablation We conduct ablation studies using only semantic
space distance or only pixel distance. As shown by NeRF +
FVS(Pixel) and NeRF + Semantic in Table 1, considering
either factor improves performance compared to the naive
method. However, combining both metrics yields even better
results, as seen in Ours (S→P) and Ours (P→S).

6 FEW-SHOT VIEW SYNTHESIS

In this section, we address the challenge of few-shot view
synthesis, which is more prevalent in NeRF research: op-
timizing the NeRF model with limited and fixed training
images. The key is to extract valuable information from the
training set while maintaining generalization capabilities.

A natural approach involves randomly rendering images
from NeRF that lack ground truth and leveraging the infor-
mation extracted from them. Based on this, our objective
is to maximize mutual information between visible train-
ing images and invisible inferred images, expecting that
inferred images without ground truth can gain more relevant
information from known images.

To tackle this, we introduce two regularization terms to train
a generalizable NeRF model.

6.1 THE DESIGN OF REGULARIZATION TERM

In our framework, maximizing the mutual information be-
tween images involves minimizing both semantic space
distance and pixel space distance. For the former, we can
use CLIP [Radford et al., 2021] as a macro regularization.
However, camera position cannot be used to analyze pixel
space distance as in Section 5 because it is independent
of NeRF parameters and cannot be optimized. Thus, we
need a new metric that depends on both camera position and
network parameters to serve as the micro regularization.

To fully utilize simple pixel-wise information, we establish
a close relationship between RGB color differences and
camera position distance detailed in the following lemma:

Lemma 3. Assume we have two rays r(t) = o + td and
r(t) = o+ td. Assume the function σ(r(t)) and c(r(t),d)
learned by MLP is L-Lipschitz of r(t) and d(We usually
use Relu activation in MLP and it is a Lipschitz function).
Then the distance between RGB colors of two rays can be
upper bounded by the Euclidean distance of two positions
of cameras, ∥o− o∥, and it can be represented as

∥Ĉ(r)− Ĉ(r)∥ ≤ 3L∥o− o∥+ C .

where C is a constant independent of the distance ∥o− o∥.



Sampling Strategies Setting I, 20 observations: Setting II, 10 observations:
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

NeRF + Rand 16.626 0.822 0.186 15.111 0.779 0.256
NeRF + FVS(Pixel) 17.832 0.819 0.186 15.723 0.787 0.227
NeRF + Semantic 17.334 0.833 0.171 15.472 0.795 0.219

ActiveNeRF 18.732 0.826 0.181 16.353 0.792 0.226
Ours (S→P) 18.930 0.846 0.149 16.718 0.810 0.205
Ours (P→S) 20.093 0.841 0.162 17.314 0.801 0.209

Table 1: Quantitative comparison in Active Learning settings on Blender. NeRF + Rand: Randomly capture new views
in the candidates. NeRF + FVS(Pixel): Capture new views using furthest view sampling to maximize pixel space distance.
NeRF + Semantic: Capture new views using CLIP to maximize semantic space distance. ActiveNeRF: Capture new views
using the ActiveNeRF scheme. Ours (S→P): First choose 20 views with the highest semantic space distance, then capture
views within them based on the highest pixel space distance (camera pose). Ours (P→S): First capture 20 views with
the highest pixel space distance, then capture views within them based on semantic space distance. Setting I: 4 initial
observations and 4 extra observations obtained at 40K,80K,120K and 160K iterations. Setting II: 2 initial observations and
2 extra observations obtained at 40K,80K,120K and 160K iterations. 200K iterations for training in total. All results are
produced using the ActiveNeRF codebase.

Sampling Strategies Setting I, 20 observations:
PSNR ↑ SSIM ↑ LPIPS ↓

semantic distance + 0.1 ∗ pixel distance 18.781 0.833 0.153
semantic distance + pixel distance 19.266 0.837 0.159

semantic distance + 10 ∗ pixel distance 18.345 0.821 0.187
Ours (S→P) 18.930 0.846 0.149
Ours (P→S) 20.093 0.841 0.162

Table 2: Ablations on balancing two metrics. We use hyperparameters for pixel and semantic space distances, considering
both factors simultaneously. Our sequential approaches (Ours (S→P) and Ours (P→S)) outperform the alternatives.

From Lemma 3, we know that the difference in RGB color
serves as a lower bound for the difference in camera posi-
tion. According to Lemma 1, it also acts as a lower bound
for pixel space distance. Therefore, to reduce pixel space
distance, we aim to minimize the color difference (like color
variance or KL divergence) between training ground truth
images and randomly rendered images.

Then we can define our two plug-and-play regularization
terms added to the loss function:

Lmacro(R,R) = s(R,R) = 1− f(R)f(R)

∥f(R)∥∥f(R)∥
,

Lmicro(R,R) =
∑

r∈R,r∈R

∥Ĉ(r)− Ĉ(r)∥.

6.2 EXPERIMENTS

Setup To demonstrate the effectiveness of our method,
we evaluate it on three datasets under few-shot settings:
Blender [Mildenhall et al., 2020], DTU [Jensen et al., 2014],
and LLFF [Mildenhall et al., 2019]. We compare our method
against classical NeRF and state-of-the-art baselines such
as FreeNeRF [Yang et al., 2023].

Design We add our regularization terms Lmacro and Lmicro
to maximize mutual information. Specifically, Lmicro is the

variance of the mean color value between training images
and randomly rendered images, ensuring that the color dif-
ference is constrained to some degree.

Comparison with baseline methods. Table 3 and Figure 4
present the quantitative and qualitative results of the DTU
dataset and the LLFF dataset under a 3-view setting. Table 4
also presents the improvements on the blender dataset un-
der an 8-view setting. Incorporating Lmacro and Lmicro, our
method builds on the RegNeRF/FreeNeRF framework, in-
troducing additional regularization terms. These constraints
enhance the consistency of unobservable views from both se-
mantic and color perspectives. The improvements in results
validate the effectiveness of our approach. Our framework
facilitates the design and application of various regulariza-
tion terms, leading to improved outcomes. While we focused
on Lmacro and Lmicro, our framework is not limited to these
specific terms. It allows for the exploration of various regu-
larization methods, providing flexibility to experiment with
and integrate different approaches. Detailed explanations
are provided in the appendix.

Ablations. In Table 4, we decompose two regularization
terms to prove the effectiveness of each. For clearer compar-
ison, we compare with classical NeRF, as many methods,
such as DietNeRF with semantic consistency loss or FreeN-



Method DTU(Object) DTU(Full image) LLFF
PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ LPIPS ↓

Mip-NeRF 9.10 0.578 7.94 0.235 16.11 0.401 0.460
DiffusioNeRF 16.20 0.698 / / 19.79 0.568 0.338

DietNeRF 11.85 0.633 10.01 0.354 14.94 0.370 0.496
DietNeRF+Ours 13.04 0.711 11.95 0.410 16.01 0.433 0.443

RegNeRF 18.50 0.744 15.00 0.606 18.84 0.573 0.345
RegNeRF+Ours 19.78 0.791 15.79 0.634 19.44 0.611 0.322

FreeNeRF 19.92 0.787 18.02 0.680 19.63 0.612 0.308

FreeNeRF+Ours 20.42 0.814 18.63 0.712 20.17 0.634 0.274
(+0.50) (+0.027) (+0.61) (+0.032) (+0.54) (+0.022) (-0.034)

Table 3: Quantitative comparison on LLFF and DTU. There are 3 input views for training, consistent with FreeNeRF. On
DTU, we use objects’ masks to remove the background when computing metrics, as full-image evaluation is biased towards
the background, as reported by [Yu et al., 2021b, Niemeyer et al., 2022].

Method PSNR ↑ SSIM ↑ LPIPS ↓
NeRF 14.934 0.687 0.318
NV 17.859 0.741 0.245

Simplified NeRF 20.092 0.822 0.179
NeRF + Lmicro 20.101 (+5.167) 0.799(+0.112) 0.151(-0.167)

NeRF + Lmacro (DietNeRF) 22.503 (+7.569) 0.823 (+0.136) 0.124(-0.194)
NeRF + Lmicro + Lmacro (Ours) 23.394 (+8.460) 0.859 (+0.172) 0.103 (-0.215)

FreeNeRF 24.259 0.883 0.098
FreeNeRF+Ours 24.896 (+0.637) 0.904 (+0.021) 0.086 (-0.012)

Table 4: Quantitative comparison on Blender. There are 8 input views for training, consistent with FreeNeRF. For
DietNeRF, the consistency loss actually belongs to the Lmacro, so DietNeRF is a degradation of our framework.

     FreeNeRF                      Ours                Ground Truth                            FreeNeRF                     Ours                 Ground Truth                         

Figure 4: Qualitative comparison on LLFF. Given 3 input views, we show novel views rendered by FreeNeRF and ours
Compared with FreeNeRF. FreeNeRF fails to render sharp outlines in some places, but our additional losses can gain a more
detailed skeleton structure and better geometry for the observed objects.

eRF with free frequency regularizations, include various
regularization terms that may overlap with ours to some
extent. If we normalize the improvements in PSNR, SSIM,
and LPIPS with both regularization terms to 1, the improve-
ments with only Lmicro are 0.61, 0.65, and 0.78, respectively.
With only Lmacro, the improvements are 0.89, 0.79, and 0.90.
While Lmacro has a slightly more significant impact, using
both terms together yields the best results.

7 CONCLUSION, LIMITATIONS AND
FUTURE DIRECTIONS

This paper presents a novel NeRF framework under limited
samples using Mutual Information Theory. We introduce

mutual information from both macro (semantic space) and
micro (pixel space) perspectives in different settings. In
sparse view sampling, we employ a greedy algorithm to
minimize mutual information. In few-shot view synthesis,
we utilize plug-and-play regularization terms to maximize it.
Experiments across different settings validate the robustness
of our framework.

Our framework has some limitations, particularly in terms
of comparisons with the diffusion-based methods. We were
unable to include these comparisons due to the lack of open-
source code or differing dataset settings, which are detailed
in the appendix. Future work should aim to incorporate
more methods and explore additional variations within our
framework.
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A PROOF

In this section, we mainly prove the lemmas used in our paper.

A.1 PROOF OF LEMMA 1

Lemma 1. Then the distance between two images can be represented by the Euclidean distance of two positions of cameras,
∥o− o∥22, by the following equation:

d(R,R) = T1T2∥o− o∥22 + C ,

Proof. Denote o = (o1, o2, o3), o = (o1, o2, o3). Using the property of uniform distribution and the spherical polar
coordinates, we have

d(R,R) = Er∈R,r∈R

[∫ T1

0

∫ T2

0

∥r(t1)− r(t2)∥22dt2dt1

]

=

∫ T1

0

∫ T2

0

Eθ,ϕ[(o1 − o1 + t1 cos θ1 cosϕ1 − t2 cos θ2 cosϕ2)
2

+ (o2 − o2 + t1 cos θ1 sinϕ1 − t2 cos θ2 sinϕ2)
2 + (o3 − o3 + t1 sin θ1 − t2 sin θ2)

2]dt2dt1

=

∫ T1

0

∫ T2

0

[∥o− o∥22 + C1(o,o, t1, t2) + C2(t1, t2)]dt2dt1

= T1T2∥o− o∥22 + C +

∫ T1

0

∫ T2

0

C1(o,o, t1, t2)dt2dt1 .

where we represent

C1(o,o, t1, t2) = 2(o1 − o1)Eθ,ϕ[t1 cos θ1 cosϕ1 − t2 cos θ2 cosϕ2]

+ 2(o2 − o2)Eθ,ϕ[t1 cos θ1 sinϕ1 − t2 cos θ2 sinϕ2] + 2(o3 − o3)Eθ,ϕ[t1 sin θ1 − t2 sin θ2] .

and let C2(t1, t2) include all items that are not related to o and o.

By the symmetry property of ϕ ∈ U(0, 2π), we know that the Eθ,ϕ[sinϕ] = Eθ,ϕ[cosϕ] = 0. Furthermore, by the i.i.d
property of θ1 and θ2, we have Eθ,ϕ[sin θ1] = Eθ,ϕ[sin θ2]. Observing that the integration over t1 and t2 is also symmetrical,
we can deduce that

∫ T1

0

∫ T2

0
C1(o,o, t1, t2)dt2dt1 = 0. Therefore, we finally get

d(R,R) = T1T2∥o− o∥22 + C .

where C =
∫ T1

0

∫ T2

0
C2(t1, t2)dt2dt1 represent a constant independent of the camera position o and o.



A.2 PROOF OF LEMMA 2

Lemma 2. Assume the optimal value of the primal problem is δ, the value we achieved by the greedy algorithm is δ̃, then
we have δ̃ ≥ 1

2δ.

Proof. Suppose the optimal solution in the primal problem is R1, R2, . . . , RN , the optimal solution obtained by our greedy
algorithm is R̃1, R̃2, . . . , R̃N .

We first prove that the optimal value in the i+ 1-th iteration of our method is not larger than the optimal value in the i-th
iteration. Assume not, δi+1 > δi, then we can find the image R̃i+1 satisfy H(R̃i+1|Rj) ≥ δi+1 for all j ≤ i. Because in the
i-th iteration we only have the constraints H(R̃|R̃j) ≥ δi for all j ≤ i− 1, therefore, we take R̃ = R̃i+1 will satisfy this
constraints, with the value δi+1 > δi, contradict with the property that δi is the optimal solution in the i-th iteration. So the
optimal value in the i+ 1-th iteration of our method is not larger than the optimal value in the i-th iteration.

Then we can assume the optimal value we find in each iteration as δ1 ≥ δ2 ≥ . . . ≥ δN . So we have δ̃ =
min{δ1, δ2, . . . , δN} = δN .

Then we prove the conclusion by contradiction. Suppose we have δ̃ < 1
2δ. Assume we have n common images of the

solution of the primal problem and the solution obtained by our greedy algorithm. By the solution δ̃ < 1
2δ we know that

n <= N − 1. So there are N − n images in the primal solution that do not appear in our solution. Suppose the different
images of primal solution are Ri1 , Ri2 , . . . , RiN−n

and the different images in our solution are R̃i1 , R̃i2 , . . . , R̃iN−n
. Then

we consider the optimization problem in the iteration that we choose the last different image. Then we consider the last
iteration of our algorithm:

max
R∈R

δN s.t. H(R|R̃j) ≥ δN ,∀1 ≤ j ≤ N − 1 .

Then for the different images, Ri1 , Ri2 , . . . , RiN−n
appear in primal solution but do not appear in our solution, we have

that taking these images in the solution will incur a smaller solution. That is, for each R in Ri1 , Ri2 , . . . , RiN−n
, we have a

corresponding image R̃ in R̃1, . . . , R̃N−1, incur the relative difference H(R|R̃) ≤ δN = δ̃. By the definition of δ, we know
that R̃ can only choose in the difference set R̃i1 , R̃i2 , . . . , R̃iN−n

. Then we consider two cases:

• Case 1. The optimal solution of the last iteration R̃N is not in the set of common image. In this case, Be-
cause we have not selected it in the first n − 1 iterations, we only have N − n − 1 images to choose for
the corresponding images selected in our algorithm which satisfy H(R|R̃) ≤ δN = δ̃. However, we have
Ri1 , Ri2 , . . . , RiN−n

in optimal solution of primal set, there are N − n images satisfy this inequality. Therefore,
by the Pigeonhole Principle, there exists two images in Ri1 , Ri2 , . . . , RiN−n

corresponding to the same image R̃ik

in R̃i1 , R̃i2 , . . . , R̃iN−n
that incur H(R|R̃) ≤ δ̃. By Assumption 1 we know that H(R|R) ∝ d(R,R). By the def-

inition of d(R,R) = Er∈R,r∈R

[∫ T1

0

∫ T2

0
∥r(t1)− r(t2)∥22dt2dt1

]
we know that it satisfy the triangle inequality:

d(Ri1 , Ri2) ≤ d(Ri1 , R̃ik) + d(Ri2 , R̃ik). Therefore we can get the triangle inequality of H:

H(Ri1 |Ri2) ≤ H(Ri1 |R̃ik) +H(Ri2 |R̃ik) <
δ

2
+

δ

2
= δ .

This is contradictory to the fact that these two images are in the solution of the primal problem with distance
H(Ri1 |Ri2) ≥ δ.

• Case 2. The optimal solution of the last iteration R̃N is in the set of common image. In this case, we have N − n
images to choose for the corresponding images selected in our algorithm which satisfy H(R|R̃) ≤ δN = δ̃. Note that
we have Ri1 , Ri2 , . . . , RiN−n

in optimal solution of primal set, there are N − n images satisfy this inequality. If there
are two images in the primal set corresponding to the same image selected by our algorithm, using the analysis of case
1 will get a contradiction. Therefore, we only need to consider the case they are all corresponding to different images
in our set, that is, each image R̃ik in our set has a unique corresponding image Ril in the primal set. However, note
that the last iteration solution R̃N is in the set of common images and it also satisfies the constraint, that is, it also
corresponds to an image R, satisfy the inequality H(R̃N |R) = δN < δ

2 . By the definition of δ, we know that R must
be in the different sets in our solution, not the common set. But we have proved that each image in R̃i1 , R̃i2 , . . . , R̃iN−n

corresponds to an image in primal set satisfies the inequality. Suppose H(R|Rik) <
δ
2 . By Assumption 1 we know that



the relative difference is proportional to the distance metric so it also satisfies the triangle inequality. So we have:

H(R̃N |Rik) ≤ H(R̃N |R) +H(R|Rik) <
δ

2
+

δ

2
= δ .

This is contradictory to the fact that these two images R̃N and Rik are in the solution of the primal problem with
distance H(R̃N |Rik) ≥ δ.

Therefore, we have proved this lemma by contradiction and show that δ̃ ≥ 1
2δ.

A.3 PROOF OF LEMMA 3

Lemma 3. Assume we have two rays r(t) = o+ td and r(t) = o+ td. Assume the function σ(r(t)) and c(r(t),d) learned
by MLP is L-Lipschitz of r(t) and d(We usually use Relu activation in MLP and it is a Lipschitz function). Then the distance
between RGB colors of two rays can be upper bounded by the Euclidean distance of two positions of cameras, ∥o− o∥, and
it can be represented as

∥Ĉ(r)− Ĉ(r)∥ ≤ 3L∥o− o∥+ C .

where C is a constant independent of the distance ∥o− o∥.

Proof. By the definition of Ĉ(r), we have

∥Ĉ(r)− Ĉ(r)∥ ≤
N∑
i=1

∥Tiαici − T iαici∥ .

Then we analysis |Ti − T i|, |αi − αi|, ∥ci − ci∥ separately. We have

|Ti − T i| = | exp(−
i−1∑
j=1

σjδj)− exp(−
i−1∑
j=1

σjδj)|

= | exp(−
i−1∑
j=1

σ(o+ tjd)δj)− exp(−
i−1∑
j=1

σ(o+ tjd)δj)|

≤ | −
i−1∑
j=1

σ(o+ tjd)δj +

i−1∑
j=1

σ(o+ tjd)δj |

≤
i−1∑
j=1

|σ(o+ tjd)− σ(o+ tjd)|δj

≤
i−1∑
j=1

L∥o+ tjd− o+ tjd∥δj

≤ (

i−1∑
j=1

δjL)∥o− o∥+ (

i−1∑
j=1

δjtjL)∥d− d∥

= tiL∥o− o∥+ (

i−1∑
j=1

δjtjL)∥d− d∥ .

where the first inequality is because |e−x − e−y| ≤ |x− y|, the second inequality is by the lipschitz property of σ, the final
equality is because δi = ti+1 − ti and t1 = 0. We also have

|αi − αi| = | exp(−σiδi)− exp(−σiδi)|
≤ |σ(o+ tid)− σ(o+ tid)|δi
≤ L∥o+ tid− o+ tid∥δi
≤ δiL∥o− o∥+ tiδiL∥d− d∥ .



Finally, we have

∥ci − ci∥ = ∥c(o+ tid,d)− c(o+ tid,d)∥
≤ ∥c(o+ tid,d)− c(o+ tid,d)∥+ ∥c(o+ tid,d)− c(o+ tid,d)∥
≤ L∥o− o+ ti(d− d)∥+ L∥d− d∥
≤ L∥o− o∥+ L(ti + 1)∥d− d∥ .

By the expression of Ti and αi, we know Ti ≤ 1, αi ≤ δi. As ci represents the RGB color, the norm of ci is also bounded
by 1. Furthermore, the difference of viewing direction ∥d− d∥ is bounded. Therefore, we finally have the following upper
bound:

∥Ĉ(r)− Ĉ(r)∥ ≤
N∑
i=1

∥Tiαici − T iαici∥

≤
N∑
i=1

|Ti − T i||αi|∥ci∥+ |T i||αi − αi|∥ci∥+ |T iαi|∥ci − ci∥

≤
N∑
i=1

(tiδiL+ 2δiL)∥o− o∥+ C

≤ 3(

N∑
i=1

δi)L∥o− o∥+ C

= 3L∥o− o∥+ C .

The first inequality is by definition, the second inequality is by triangle inequality, the third inequality is by the conclusion
we have proved and the bounding property of Ti, αi and ci, the final inequality is by ti ≤ 1 and the final equality is by
δi = ti+1 − ti and t1 = 0, tN+1 = 1. C represents a bounding constant of ∥d− d∥, independent of ∥o− o∥.

B EXPERIMENT DETAILS

B.1 SPARSE VIEW SAMPLING

We conduct experiments in Active Learning settings using the ActiveNeRF [Pan et al., 2022] codebase. In traditional
NeRF [Mildenhall et al., 2020], we obtain a volume parameter σ and color values c = (r, g, b) for a specific position
and direction. In ActiveNeRF, it simultaneously outputs both mean and variance, following a Gaussian distribution. For
simplicity, we adopt the ActiveNeRF version and apply its pipeline to our baseline methods (NeRF+Random, NeRF+FVS)
as well as our proposed strategy. The primary modification we make is in the evaluation step, which is central to this active
learning setting.

Its original codebase only provides training configuration files for a portion of the LLFF dataset and the Blender dataset.
We observe that for the Blender dataset, the codebase used a fixed number (20) of initial training samples so we cannot
decide the initial training set size. We then modify it to allow the selection of the initial training set size, with the remaining
images serving as a holdout set. For instance, in Setting I, for each object in the Blender dataset with 100 ordered images,
we choose the first 4 images as the initial set and use the remaining 96 images as the holdout set. Due to excessive memory
requirements, training on the LLFF dataset is not feasible even on a 48GB A40 GPU, so we temporarily refrain from
conducting experiments on it. However, we believe that the results on the Blender dataset sufficiently validate our claims.

Due to the randomness of the strategy and potential variations in the training process, we conducted three experiments for
each result and selected the average outcome. In Table 5, We provide a detailed breakdown of the specific results for each
object on Blender in Setting I.



PSNR↑ hotdog lego chair drums ficus materials mic ship Avg.
NeRF + Rand 22.19 19.85 19.99 10.93 18.13 8.73 17.85 15.31 16.62
NeRF + FVS 23.87 17.83 20.06 15.38 17.91 13.76 17.91 15.94 17.83
ActiveNeRF 17.87 18.96 20.20 14.82 22.55 18.19 17.92 19.34 18.73
Ours (S→P) 24.01 20.48 26.21 16.78 18.49 13.95 17.57 13.95 18.93
Ours (P→S) 23.14 22.90 20.08 17.96 20.99 15.16 24.01 16.50 20.09

SSIM↑ hotdog lego chair drums ficus materials mic ship Avg.
NeRF + Rand 0.919 0.838 0.848 0.793 0.845 0.762 0.881 0.689 0.822
NeRF + FVS 0.922 0.798 0.853 0.776 0.838 0.776 0.879 0.706 0.819
ActiveNeRF 0.860 0.829 0.858 0.768 0.886 0.813 0.876 0.716 0.826
Ours (S→P) 0.918 0.852 0.898 0.793 0.848 0.789 0.883 0.789 0.846
Ours (P→S) 0.916 0.851 0.849 0.814 0.859 0.812 0.924 0.704 0.841

LPIPS↓ hotdog lego chair drums ficus materials mic ship Avg.
NeRF + Rand 0.089 0.152 0.165 0.231 0.152 0.241 0.138 0.317 0.186
NeRF + FVS 0.082 0.197 0.158 0.239 0.167 0.205 0.140 0.304 0.186
ActiveNeRF 0.172 0.150 0.149 0.253 0.116 0.145 0.142 0.319 0.181
Ours (S→P) 0.089 0.135 0.109 0.218 0.152 0.177 0.139 0.177 0.149
Ours (P→S) 0.099 0.153 0.165 0.183 0.136 0.159 0.093 0.306 0.162

Table 5: Quantitative comparison on Blender in Setting I. We provide a detailed listing of the metric values for each
object on Blender, which is the same in Table 1 in the manuscript.

B.2 FEW-SHOT VIEW SYNTHESIS

B.2.1 Dataset

We conduct our experiments in the few-shot setting across three datasets: the Blender dataset [Mildenhall et al., 2020], the
DTU dataset [Jensen et al., 2014], and the LLFF dataset [Mildenhall et al., 2019]. Many works focus on the few-shot setting
using different benchmarks, making it challenging to compare all of them uniformly. To ensure a fair and comprehensive
comparison, we adopt the settings from FreeNeRF [Yang et al., 2023]. We conduct the experiments on a 48GB A40 GPU.

Blender Dataset: The Blender dataset [Mildenhall et al., 2020] comprises eight synthetic scenes. We follow the data split
used in DietNeRF [Jain et al., 2021] to simulate a few-shot neural rendering scenario. For each scene, the training images
with IDs (counting from “0”) 26, 86, 2, 55, 75, 93, 16, 73, and 8 are used as the input views, and 25 images are sampled
evenly from the testing images for evaluation.

DTU Dataset: The DTU dataset [Jensen et al., 2014] is a large-scale multiview dataset consisting of 124 different scenes.
PixelNeRF [Yu et al., 2021b] uses a split of 88 training scenes and 15 test scenes to study the pre-training or per-scene fine-
tuning setting in a few-shot neural rendering scenario. Unlike FreeNeRF, we do not require pre-training. We follow [Niemeyer
et al., 2022] to optimize NeRF models directly on the 15 test scenes. The test scan IDs are 8, 21, 30, 31, 34, 38, 40, 41, 45,
55, 63, 82, 103, 110, and 114. In each scan, the images with the following IDs (counting from “0”) are used as the input
views: 25, 22, 28. The images with IDs in [1, 2, 9, 10, 11, 12, 14, 15, 23, 24, 26, 27, 29, 30, 31, 32, 33, 34, 35, 41, 42, 43, 45,
46, 47] serve as the novel views for evaluation. According to the FreeNeRF, masks of the DTU dataset do not always help
improve PSNR and SSIM and sometimes the PSNR score in a specific scene drops a lot. For a fair comparison, we train one
model for one scene to produce the results in the object and full-image setting at the same time.

LLFF Dataset: The LLFF dataset [Mildenhall et al., 2019] is a forward-facing dataset containing eight scenes. Adhering
to [Mildenhall et al., 2020, Niemeyer et al., 2022], we use every 8th image as the novel views for evaluation and evenly
sample the input views from the remaining views.

B.2.2 Experiment Results

Figures 5 and 6 present qualitative results on the DTU and LLFF datasets, respectively, corresponding to the quantitative
results in Table 3.



In our experiments, Lmicro represents the variance of the mean color value between training images and randomly rendered
images, ensuring that the color difference is constrained within a certain range. This is based on Lemma 3, where we
emphasize the color difference between images.Lmicro is not limited to this form and can be interpreted using other measures
like KL-divergence in color, which can also achieve similar performance.

Similarly, Lmacro is not restricted to using CLIP. Other models such as DINO Caron et al. [2021] or BLIP Li et al. [2022] can
also extract semantic features for our framework.

Our framework is flexible and can incorporate various forms of regularization terms related to semantic space distance or
pixel space distance, allowing for broad applicability and adaptability.
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Figure 5: Example of our results with 3 input views on the DTU dataset.

B.2.3 Limitations on baselines

FreeNeRF is a strong baseline that achieves state-of-the-art performance compared to methods using priors from diffusion
models across many datasets. We get this conclusion from the experiment results of ReconFusion [Wu et al., 2023]. Therefore,
it is worthwhile to continue our comparison between our method and some diffusion-based methods like SparseFusion [Zhou
and Tulsiani, 2022] or ReconFusion [Wu et al., 2023].

SparseFusion’s evaluation is currently limited to the CO3D dataset [Reizenstein et al., 2021], and it lacks performance data
on three popular and classical datasets which we have used to keep the same as FreeNeRF: the Blender dataset, the DTU
dataset and the LLFF dataset. Fair evaluations of SparseFusion on these datasets are absent, and addressing this gap would
require significant additional time, which might divert from our primary research focus. Nonetheless, the datasets we employ
are robust and widely accepted in NeRF research, providing sufficient support for our experiments with numerous baseline
performances available for reference.

Additionally, the lack of open-source code for ReconFusion limits our ability to apply custom regularization terms or
conduct meaningful comparisons. Future work should aim to incorporate more new baseline methods and explore additional
variations within our framework.
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Figure 6: Example of our results with 3 input views on the LLFF dataset.


	Introduction
	Related Work
	Setup
	Framework
	Sparse View Sampling
	Greedy Algorithm
	Experiments

	Few-shot View Synthesis
	The Design of Regularization Term
	Experiments

	Conclusion, Limitations and Future Directions
	Proof
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Lemma 3

	Experiment Details
	Sparse View Sampling
	Few-shot View Synthesis
	Dataset
	Experiment Results
	Limitations on baselines



