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ABSTRACT

Co-training can achieve parameter-efficient multi-task models but remains unex-
plored for quantization-aware training. Our investigation shows that directly in-
troducing co-training into existing quantization-aware training (QAT) methods re-
sults in significant performance degradation. Our experimental study identifies
that the primary issue with existing QAT methods stems from the inadequate ac-
tivation quantization scales for the co-training framework. To address this issue,
we propose Task-Specific Scales Quantization for Multi-Task Co-Training (TSQ-
MTC) to tackle mismatched quantization scales. Specifically, a task-specific
learnable multi-scale activation quantizer (TLMAQ) is incorporated to enrich the
representational ability of shared features for different tasks. Additionally, we
find that in the deeper layers of the Transformer model, the quantized network
suffers from information distortion within the attention quantizer. A structure-
based layer-by-layer distillation (SLLD) is then introduced to ensure that the quan-
tized features effectively preserve the information from their full-precision coun-
terparts. Our extensive experiments in two co-training scenarios demonstrate the
effectiveness and versatility of TSQ-MTC. In particular, we successfully achieve
a 4-bit quantized low-level visual foundation model based on IPT, which attains a
PSNR comparable to the full-precision model while offering a 7.99× compression
ratio in the ×4 super-resolution task on the Set5 benchmark.

1 INTRODUCTION

The paradigm of multi-task training (Caruana, 1997) facilitates knowledge sharing between different
tasks and enables the learning of universal representations through multi-objective training across
diverse datasets. Multi-task learning has achieved significant advancements in various fields such
as natural language processing (Collobert & Weston, 2008; Raffel et al., 2020), computer vision
(Eigen & Fergus, 2015; Likhosherstov et al., 2022) and multi-modal learning (Hu & Singh, 2021;
Chen et al., 2023a).

Unlike early multi-task learning methods (He et al., 2017; Zhang et al., 2014), which develop mod-
els to complete multiple tasks simultaneously, co-training (Maninis et al., 2019) trains a versatile
model that performs a single task at a time for a given input. This learning strategy enables the co-
trained model to handle multiple datasets with varying characteristics (Zhang et al., 2021). There-
fore, co-training has been widely used to establish a universal representation learning framework for
multi-modal data (Girdhar et al., 2022) or single-modal task-related data (Chen et al., 2021). No-
tably, the co-training paradigm efficiently integrates multiple tasks into a single framework through
shared parameters, offering considerable advantages for deployment on edge computing devices
(Likhosherstov et al., 2022).

Despite the high performance with shared parameters, the inherent computational and memory over-
head of co-trained models still restricts deployments in scenarios with limited memory and computa-
tional resources (Likhosherstov et al., 2022). By integrating low-bit quantization (Esser et al., 2019;
Hubara et al., 2021) into the co-training framework, we can effectively enhance the deployment
potential of co-trained models in practical scenarios. Quantization mainly involves mapping the
original floating-point values of weights and activations to lower-bit representations, such as 8-bit
or even binary formats, while striving to maintain model accuracy (Zhou et al., 2016). For models
designed for image classification and object detection, quantization methods have been extensively
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Figure 1: Feature distributions of decoder.layer9.self attn.value in the 4-bit IPT model co-trained
with LSQ+ (see baseline-multi in Sec. 3.2). The first row shows three tasks (tasks 0, 1, and 2) for
×2, ×3, and ×4 super-resolution tasks, respectively. In the second row, task 3 corresponds to the
deraining task, while task 4 and task 5 are denoising tasks with σ = 30 and σ = 50. The green
dashed line indicates the position of the 0.995 quantile, and the orange one shows the position of
the 0.005 quantile. We can observe significant distribution differences between tasks, which require
diverse activation quantization scales for co-training.

studied and shown notable success (Yang & Jin, 2021; Wang et al., 2022; Xu et al., 2023). However,
in the context of co-training, directly introducing quantization-aware training (QAT) (Bhalgat et al.,
2020) suffers from inferior quantization performance.

In this work, we focus on integrating quantization-aware training with the co-training paradigm,
which is underexplored in prior research. Based on the 4-bit QAT baseline established on Image
Processing Transformer (IPT) (Chen et al., 2021), we observe that the quantized baseline model
after co-training exhibits significant performance degradation compared to its full-precision coun-
terpart, with varying performance gaps across different tasks. Through an analysis of the activation
quantizer, we identify that the incompatibility of existing QAT methods for co-training primarily
stems from the activation quantization scales. Specifically, as shown in Fig. 1, for the same activa-
tion quantizer, the input feature distributions vary significantly between tasks, particularly between
super-resolution and denoising tasks. This discrepancy results in a conflict, which degrades the
representational ability of the shared quantized features across tasks. Moreover, we find that in
the deeper layers of the Transformer model (Vaswani, 2017), the quantized attention module of-
ten experiences information distortion. Therefore, simple logit-level supervision is ineffective and
coarse-grained for differences in attention information distortion across different layers.

In this paper, we build the baselines by naively integrating the multi-task co-training with QAT,
validate their effectiveness, and show the analysis through comprehensive experiments. Based on
baselines and analysis, we propose an effective low-bit quantization method, Task-Specific Scales
Quantization for Multi-Task Co-Training (TSQ-MTC). To address the issue of mismatched quantiza-
tion scales during co-training, we introduce a task-specific learnable multi-scale activation quantizer
(TLMAQ), enabling different task inputs to have richer representational ability and improve the low-
bit quantization performance. Meanwhile, to ensure that the quantized features effectively preserve
the information from their full-precision counterparts, we propose a structure-based layer-by-layer
distillation (SLLD). It leverages the structural similarity of features, thereby enhancing the model’s
adaptability in each task. We conduct comprehensive experiments in two co-training data scenarios:
a single-modal task-related data scenario based on IPT and a multi-modal data scenario based on
ResNet, demonstrating the effectiveness of TSQ-MTC.
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To summarize, our contributions are as follows:

1. Our Task-Specific Scales Quantization for Multi-Task Co-Training (TSQ-MTC) effectively
incorporates quantization-aware training into co-training and significantly reduces the per-
formance gap between multi-task co-trained models and their 4-bit quantized counterparts.

2. We introduce a task-specific learnable multi-scale activation quantizer (TLMAQ) for multi-
task co-training. TLMAQ addresses the issue of mismatched quantization scale and im-
proves the representational capabilities of quantized features across tasks.

3. We design a structure-based layer-by-layer distillation (SLLD). It deals with information
distortion problems in deeper layers of Transformer, thereby enhancing framework’s effec-
tiveness and versatility.

4. Extensive experiments on two co-training data scenarios (a single-modal task-related data
scenario and a multi-modal data scenario) show that our 4-bit quantization outperforms the
baselines by a large margin and achieves comparable performances with the full-precision
counterparts.

2 RELATED WORK

2.1 MULTI-TASK LEARNING AND CO-TRAINING

Early multi-task learning (MTL) methods (Zhang et al., 2014; Eigen & Fergus, 2015; Ren et al.,
2016) improve the performance by using a single input to produce different task outputs. They
aggregate the loss of tasks while adjusting their importance. However, these models encountered
the challenge of task interference (Maninis et al., 2019), where a potent backbone could enhance
overall multi-task performance, yet the performance of each task might still fall short compared to
that achieved through single-task training with the same backbone (He et al., 2017; Kokkinos, 2017).
Co-Training (Maninis et al., 2019), also referred to as “single-tasking of multiple tasks”, develops
a model trained on multiple tasks but executes only one task at a time, effectively addressing task
interference in shared networks. As research on unified frameworks (Gao et al., 2023; Wang et al.,
2023; Han et al., 2024) continues to expand, co-training is typically adopted in two types of data
scenarios: the multi-modal data scenario and the single-modal task-related data scenario. In the
former scenario, co-training integrates varying modalities of data and tasks to unify representations
(Hu & Singh, 2021; Zhang et al., 2021; Likhosherstov et al., 2022; Chen et al., 2023b; Srivastava
& Sharma, 2024). In contrast, in the latter scenario, models are trained to focus on the intrinsic
correlation of feature learning among different tasks under a single modality (Chen et al., 2021; Ma
et al., 2024; Li et al., 2024). Due to the training efficiency and multi-task capabilities of co-training,
it is frequently utilized as one of the training techniques for foundation models (Chen et al., 2023a).
However, incorporating quantization-aware training into this learning approach to further enhance
the model’s lightweight deployment capabilities remains an underexplored area for research.

2.2 QUANTIZATION SCALE

Quantization scale (the width of a quantization bin) is a crucial parameter within quantizers, en-
abling effective quantization mappings for both activation inputs and weights (Esser et al., 2019).
Early methods (Li et al., 2016; McKinstry et al., 2018) typically calculate quantization scales di-
rectly using data distribution statistics during each forward pass. Due to the fluctuating ranges in
activations, these methods often result in training instability (Jacob et al., 2018). In quantization-
aware training, follow-up methods (Esser et al., 2019; Bhalgat et al., 2020) propose novel strategies
to learn quantization mapping in deep networks. Specifically, LSQ (Esser et al., 2019) approximates
the gradient to the quantizer step size (scaling factor), sensitive to quantized state transitions. In
contrast, LSQ+ (Bhalgat et al., 2020) points out to involve learnable offsets for more effective asym-
metric quantization. For super-resolution (SR) models (Lim et al., 2017), PAMS (Li et al., 2020)
applies a trainable truncated parameter (can be regarded as quantization scale) to explore the upper
bound of the activation quantization range to accommodate varying distributions of feature maps.
Additionally, multi-bit quantization methods (Xu et al., 2022; Hong et al., 2022) provide another
efficient multi-scale quantization approach, whereas there is limited hardware deployment support.
We also notice that some Parameter-Efficient and Quantization-aware Adaptation (PEQA) methods
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(Kwon et al., 2022; Chen et al., 2024) introduce quantization to efficient fine-tuning of large lan-
guage models (LLMs), where only the scales of weights are fine-tuned in specific task, enhancing
the adaptability of the LLMs to downstream tasks. Unlike existing multi-bit quantization or PEQA,
we identify the bottlenecks in co-training during QAT, focusing on the shared representation learning
for quantized models with adaptive scales suitable for efficient lower-bit deployment.

3 PRELIMINARIES

3.1 CO-TRAINING FRAMEWORK

In a multi-task co-training, the architecture of models usually comprises multiple heads Htask(·)
and tails Ttask(·) to address each task independently, along with a shared body B(·) and a task-
specific query embedding ftask (Hu & Singh, 2021; Likhosherstov et al., 2022; Girdhar et al., 2022;
Srivastava & Sharma, 2024). During the training, the model is trained on multiple tasks. Still, for
each batch, specific task input is selected based on a sampling strategy (Likhosherstov et al., 2022;
Girdhar et al., 2022). The overall process is expressed as:

Ô = Ttask (B (Htask(I), ftask)) , (1)

where I denotes the input data for a specific task, and Ô represents the output generated by the
network after processing through the head, shared body, and tail.

For instance, IPT (Chen et al., 2021), based on the degradation modeling of different low-level visual
tasks, synthesizes various corrupted task-specific images from randomly selected data in large-scale
ImageNet (Deng et al., 2009) dataset as task inputs for co-training. It achieves dominant high per-
formances in super-resolution, deraining, and denoising.

3.2 QUANTIZATION BASELINES

We follow LSQ+ (Bhalgat et al., 2020) to introduce a general framework of symmetric channel-wise
weight quantization and asymmetric layer-wise activation quantization. The quantization operations
are defined as follows:

Qa(x) =

⌊
clip

{
x− zx
αx

,−Qx
n, Q

x
p

}⌉
, Qw(w) =

⌊
clip

{
w

αw
,−Qw

n , Q
w
p

}⌉
, (2)

x̂ = Qa(x) ◦ αx + zx, ŵ = Qw(w) ◦ αw, (3)
where x denotes the activation value, w denotes the weight value, and zx represents the zero-point
offset for activation quantization. αx and αw are the scaling factors for activations and weights,
respectively. With a-bit quantization, Qx

n = 2a−1, Qx
p = 2a−1 − 1 are the discrete bounds. The

function clip{y, r1, r2} returns y constrained between r1 and r2 (i.e., values lower than r1 are set
to r1, and values higher than r2 are set to r2). The operator ⌊y⌉ rounds y to the nearest integer,
and the ◦ denotes the channel-wise multiplication (layer-wise for activations with scalar αx). x̂
and ŵ represent the dequantized approximation values of the activations and weights, respectively.
Denoting the loss function as L, the straight-through estimator (STE) (Bengio et al., 2013) is used
to retain the derivation of the gradient in backward propagation:

∂L
∂x

=
∂L
∂x̂

∂x̂

∂x
=

{
∂L
∂x̂ if x ∈ [−Qx

n, Q
x
p ]

0 otherwise
. (4)

We apply the quantization framework to perform 4-bit quantization on co-training models like
IPT, establishing two baselines (baseline-single and baseline-multi). Given the full-precision pre-
trained model, baseline-single uses the above quantization framework to quantize full-precision
model for each task separately. Instead, baseline-multi co-trains the model with QAT directly. The
details of baseline-multi and baseline-single are expatiated in Appendix A.

4 CHALLENGE ANALYSIS

We conduct and analyze the aforementioned baselines on IPT. Sec. 4.1 indicates that baseline-
multi exhibits a more competitive performance. Sec. 4.2 points out the bottlenecks arising from the
optimization competition among tasks, which can lead to mismatched quantization scales, affecting
model performance.
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Figure 2: The comparison of PSNR on ×4 super-resolution Set14 benchmark for baseline-multi
(red, BM), baseline-single (green, BS), and full precision IPT model (blue, FP).

Figure 3: The histogram of features produced by general attention calculation (orange) and quan-
tized calculation (blue) from 4 selected attention layers in baseline-multi (4-bit quantized IPT
model). We can observe that the distribution of quantized features differs noticeably from that
of full-precision features, especially in the deeper layers, indicating an information distortion.

4.1 CHOICE BETWEEN SINGLE-TASK AND MULTI-TASK QUANTIZATION

Considering that multi-task learning may lead to task interference problem (Maninis et al., 2019),
a primary question is whether co-training with multiple tasks can be integrated with quantization
while maintaining the superior performance of full-precision models. We compare the performance
of baseline-multi and baseline-single on super-resolution tasks (×2, ×3, ×4 scale), as shown in
Fig. 2. More results and evidence are presented in Sec. 6.1. Due to the regularization of co-training
(Likhosherstov et al., 2022), the baseline-multi achieves better performance across multiple tasks
compared to the baseline-single, which aligns with the training results of the full-precision model.
Thus, it is worth noting that although the full-precision IPT exhibits prominent performance and
generalization capabilities during co-training, the learned universal representation (Chen et al., 2021)
does not translate well to a low-bit quantization counterpart when finetuning on a single task. Based
on this observation, it is essential to incorporate quantization-aware training into co-training.

4.2 BOTTLENECK OF CO-TRAINING QUANTIZATION.

With the quantized co-training framework, we further discover that the baseline-multi still exhibits
significant performance loss compared to the full-precision model, with varying gaps in perfor-
mance across different tasks, as shown in Fig. 2. The analysis of the quantized feature distribu-
tions in the activation quantizers reveals that the incompatibility of existing QAT methods primarily
stems from mismatched activation scales in the co-training framework. Specifically, we visual-
ize the input feature distributions and their 0.995 / 0.005 quantiles for the activation quantizer of
decoder.layer9.self attn.value in baseline-multi, as shown in Fig. 1. It can be observed that, for
the deraining task, the range of [−3.72, 3.75] can cover 99% of its feature values, whereas de-
noising tasks require an interval of [−7.66, 7.64]. This indicates that different tasks reveal distinct
data feature distributions, particularly with significant differences in the mean and variance between
super-resolution and denoising tasks. Moreover, during training, the influence of different tasks on
quantization scales may conflict, resulting in the failure of quantization for specific tasks. Conse-
quently, the scaling factors learned by the activation quantizer cannot effectively match all input
data, negatively impacting the representational ability of the quantized features.

In addition, during co-training, we notice that quantization introduces information distortion and
precision errors, which can be regarded as cumulative distribution perturbations (Li et al., 2022; Xu
et al., 2023), especially within the attention module of Vision Transformers (Dosovitskiy, 2021).
As shown in Fig. 3, there is a noticeable difference between the features produced by the general
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Figure 4: Overview of TSQ-MTC. Note that our TLMAQ can be employed for all activation quan-
tization in both the linear layer and attention module of the Transformer, as well as the convolution
layer in CNNs examined in our experiments.

attention calculation and those generated by the quantized attention calculation, resulting in a loss
of quantization performance.

5 THE PROPOSED METHOD

This section provides a detailed explanation of our Task-Specific Scales Quantization for Multi-Task
Co-Training (TSQ-MTC), as shown in Fig. 4, effectively integrating quantization-aware training
(QAT) with co-training. Our TSQ-MTC mainly consists of two novel techniques: task-specific
learnable multi-scale activation quantizer (TLMAQ) and structure-based layer-by-layer distillation
(SLLD), which are presented in Sec. 5.1 and Sec. 5.2, respectively.

5.1 ADAPTIVE QUANTIZATION SCALES FOR MULTI-TASK CO-TRAINING

Because LayerNorm (Vaswani, 2017) in Transformers and BatchNorm (Ioffe & Szegedy, 2015)
in CNNs can not align the distributions of data in different tasks, multi-task learning may lead to
degraded model performance, especially in quantization. The core of our approach is to design more
suitable quantization mappings that allow the model to adapt simultaneously to the data distributions
of different tasks. PAMS (Li et al., 2020) indicates that the range variations of the weights are stable.
Therefore, adjusting the layer-wise activation quantizers is efficient and does not add overhead.
We propose a task-specific learnable multi-scale activation quantizer (TLMAQ), which learns the
corresponding activation quantizer scales for each task input to alleviate the quantization mapping
conflicts between different tasks. Specifically, given K training tasks, for the input data x belonging
to task k, there is a corresponding activation function:

Qa(x, fk) =

⌊
clip

{
x− Φz(fk)

Φα(fk)
,−Qx

n, Q
x
p

}⌉
, (5)

x̂ = Qa(x, fk) ◦ Φα(fk) + Φz(fk), (6)

where fk is the query embedding of task k. Φα(fk) and Φz(fk) are switching functions to select the
learnable scaling factor akx and offset zkx corresponding to task k for activation quantizer respectively.
Since the quantized feature is also inversely transformed to the original scale after completing the
low-bit calculation using Eq. 6, different quantization scales will not affect the floating-point range
of the output feature. Our task-specific learnable multi-scale activation quantizer performs inde-
pendent quantization for different task inputs, aligning with the co-training strategy and resulting in
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Figure 5: Visualization of the task-related scaling factors for the activation quantizer in en-
coder.layer1.self attn.query, decoder.layer6.linear1, decoder.layer9.self attn.value of the IPT model
trained with TLMAQ. It is noted that the scaling factors for the denoising task (red), deraining task
(green), and super-resolution task (blue) show distinct differences.

a simple and efficient implementation. Therefore, it can be used for the linear layer and attention
module in the shared Transformer backbone and the convolution layer in CNNs, examined in Sec. 6.
The overall process is summarized in Alg. 1.

Initialization and convergence of scales. Although the quantization scales of the model are learned
through gradient updates, their initialization significantly impacts the network’s convergence and
performance (Bhalgat et al., 2020). Using the feature statistics of a pre-trained full-precision net-
work as initialization enables the model to adapt effectively to training tasks (Li et al., 2020). There-
fore, we initialize the weights from their full-precision counterparts at the start of training and then
calculate the corresponding quantization scales akx and zkx separately for each task k based on the
different inputs x and task query embedding fk. Experiments indicate that converged full-precision
weight is indispensable for task-specific quantization scales; otherwise, TLMAQ may not lead to
performance improvements.

Task-scale consistency. To validate the effectiveness of TLMAQ, we conduct a visual analysis of
the quantization scales for the IPT model trained with our module. Among the various activation
quantizers, the quantization scales exhibit significant task consistency, with similar tasks showing
comparable quantization scales. In contrast, dissimilar tasks demonstrate considerable differences,
as shown in Fig. 5. Specifically, the scales for ×2, ×3, and ×4 super-resolution tasks are similar,
whereas there is no apparent correlation of scales with the denoising tasks and super-resolution tasks.
This observation aligns with the similarities in task distributions discussed in Sec. 4.2. Therefore,
we suggest that quantization scales can be merged according to tasks after convergence, allowing
similar tasks to share a set of quantization scales, further reducing the model’s parameters.

5.2 STRUCTURE-BASED LAYER-BY-LAYER DISTILLATION

To mitigate the information distortion observed in Sec. 4.2, we adopt a layer-by-layer distillation fol-
lowing Wang et al. (2024). Specifically, in both the encoder and the decoder of the Transformer, q,
k, and v simultaneously perform general and quantized attention calculation, yielding full-precision
outputs F and quantized outputs F̂ for information alignment. However, vision tasks, especially
low-level ones, are susceptible to information loss. Simple logit-level supervision is effective for
classification tasks but coarse-grained and sub-optimal in this context. In contrast, structural simi-
larity (SSIM) preserves spatial information more effectively, which is crucial for vision tasks (Xie
et al., 2023). We compute the mean SSIM over the feature map using a sliding window. The quan-
tized outputs F̂ are refined with a distillation loss:

Ldis = λdis(1− MSSIM(F, F̂ )), (7)

where MSSIM(·) is the mean SSIM function and λdis is the coefficient of distillation loss. This
distillation method directly computes the full-precision attention results before quantization. Thus,
it does not require a full-precision model, thereby reducing the resource requirements for training.
For Transformer models, the final optimization objective is the combination of the task-specific loss
and the SLLD loss. The effectiveness of SLLD can be found in Appendix D.
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Algorithm 1 Task-Specific Scales Quantization for Multi-Task Co-Training with TLMAQ
Input: Set of K task-related training datasets D = {D1, . . . , Dk}, full-precision model Mf ,
task-specific activation quantizer scaling factor αk

x and offset zkx
Output: Quantized model Mq

1: Initialize weights of Mq from Mf with Eq. 2;
2: for i = 1 to K do
3: Initialize αk

x and zkx with input from dataset Dk;
4: end for
5: for i = 1 to N epoch do
6: Randomly select a task k;
7: Sample a mini-batch in Dk;
8: Forward propagation with Eq. 5 and Eq. 6;
9: Update weights and αk

x and zkx via gradient backward propagation;
10: end for
11: return Mq .

6 EXPERIMENTS

In this section, we evaluate the performance of TSQ-MTC in two settings within the co-training
framework. The first experiment focuses on single-modal task-related data co-training, conducted
on IPT, performing low-level vision tasks. The second experiment focuses on multi-modal data
co-training and is conducted on shared-parameter CNN classification models. Comparisons with
state-of-the-art single-task super-resolution quantization methods are provided in Appendix B. Ad-
ditionally, we discuss the compression performance of TSQ-MTC compared to baseline-multi, in-
cluding parameter counts and FLOPs, in Appendix E.

6.1 SINGLE-MODAL DATA CO-TRAINING

Task. In this experiment, we focus on utilizing TSQ-MTC to improve the performance of a 4-bit
quantized IPT model, which processes single-modal task-related image data. We compare our TSQ-
MTC with baseline-single and baseline-multi based on LSQ+ (Bhalgat et al., 2020). In addition,
we also show results of several quantization methods related to our work, including MinMax using
statistics to calculate scales, LSQ (Esser et al., 2019) with learnable scales, PAMS (Li et al., 2020)
designed for super-resolution and Q-ViT (Li et al., 2022) for Transformer-based model. Except
baseline-single, all methods are trained in the co-training framework, including seven low-level
vision tasks, such as super-resolution (×2, ×3 and ×4), deraining, and denoising (σ = 30 and
σ = 50).

Datasets. We evaluate the super-resolution performace on Set5 (Bevilacqua et al., 2012), Set14
(Zeyde et al., 2012), B100 (Martin et al., 2001), Urban100 (Huang et al., 2015). For the denoising
task, we adopt CBSD68 (Martin et al., 2001) and Urban100. As for deraining, we use Rain100L
(Yang et al., 2017). For all benchmarks, the performances are measured by PSNR.

Results. Quantitative results for super-resolution tasks are shown in Table 1. The baseline-single
achieves only 33.00 dB PSNR for the ×2 scale super-resolution task on the Urban100 dataset, which
is significantly lower than the 33.76 dB of the full-precision IPT. In contrast, the baseline-multi
achieved 33.46 dB on the same task after co-training, demonstrating the effectiveness of co-training.
Moreover, the PSNR on all super-resolution tasks achieved by our TSQ-MTC method is signifi-
cantly higher than baseline-multi, showcasing the superior effectiveness of our adaptive scales. For
example, the 4-bit IPT trained by our method achieves 27.08dB PSNR on Urban100 dataset for
×4 SR, surpassing the baseline-multi by 0.23 dB. TSQ-MTC also attains higher PSNR than other
existing methods, such as MinMax, LSQ, PAMS and Q-ViT. Furthermore, our approach reaches
comparable results compared to full-precision counterpart on specific datasets (×2 super-resolution
on Set14 / B100 and ×4 super-resolution on Set5), while accelerates and compresses the model by
7.99×. Similar trends can also be found for denoising and deraining tasks in Appendix B. For in-
stance, our TSQ-MTC reaches 42.02dB in deraining task on Rain100L dataset, while baseline-multi
achieves only 41.89dB. The quantitative results show that our method surpasses other approaches,
highlighting its overall performance.
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Table 1: Comparison of methods across different super-resolution scales (PSNR(dB)). All methods
are implemented on IPT for 4-bit quantization. w, α and a represent the bit width of weights,
activations, and attentions.

Method #Bits Co- Scale Set 5 Set 14 B100 Urban100(w/α/a) Training
Full Precision 32/32/32 ✓ ×2 38.37 34.43 32.48 33.76
baseline-single

4/4/4

✗

×2

38.13 34.03 32.32 33.00
Minmax ✓ 37.16 32.78 31.62 30.64
PAMS ✓ 38.12 34.14 32.35 33.12
LSQ ✓ 38.18 34.34 32.42 33.43
baseline-multi ✓ 38.25 34.29 32.43 33.46
Q-ViT ✓ 38.30 34.35 32.45 33.60
TSQ-MTC ✓ 38.33 34.42 32.47 33.67
Full Precision 32/32/32 ✓ ×3 34.81 30.85 29.38 29.49
baseline-single

4/4/4

✗

×3

34.58 30.59 29.23 28.91
Minmax ✓ 33.44 29.61 28.59 26.92
PAMS ✓ 34.52 30.59 29.22 28.91
LSQ ✓ 34.59 30.71 29.30 29.17
baseline-multi ✓ 34.64 30.73 29.30 29.18
Q-ViT ✓ 34.70 30.76 29.33 29.29
TSQ-MTC ✓ 34.73 30.80 29.35 29.40
Full Precision 32/32/32 ✓ ×4 32.64 29.01 27.82 27.26
baseline-single

4/4/4

✗

×4

32.37 28.79 27.67 26.76
Minmax ✓ 31.17 27.88 27.10 25.06
PAMS ✓ 32.31 28.76 27.65 26.67
LSQ ✓ 32.43 28.88 27.73 26.88
baseline-multi ✓ 32.48 28.89 27.72 26.85
Q-ViT ✓ 32.57 28.91 27.75 26.92
TSQ-MTC ✓ 32.64 28.97 27.78 27.08

Table 2: Comparison of accuracy on different 4-bit quantized CNN models and modalities.

Backbone Modality Full Precision LSQ+ TSQ-MTC
Top-1 Top-1 Top-1

ResNet-18
All 95.37 96.73 97.28

SAR 94.54 96.17 96.17
RGB 96.20 96.74 98.37

ResNet-34
All 96.19 95.64 97.55

SAR 93.99 92.90 96.17
RGB 98.37 98.37 98.91

ResNet-50
All 94.55 95.64 96.73

SAR 91.80 92.35 93.44
RGB 97.28 97.83 100.00

ResNet-101
All 94.55 96.46 97.55

SAR 91.80 93.44 96.72
RGB 97.28 99.46 98.37

6.2 MULTI-MODAL DATA CO-TRAINING

Tasks. In this experiment, we focus on utilizing TSQ-MTC to enhance the performance of 4-bit
quantized shared-parameter CNN classification models for multi-modal data. Our objective is to
further validate the versatility and applicability of our TSQ-MTC. We consider the classification of
different modalities as distinct tasks and modify our CNN backbones into multi-heads and multi-tails
architectures. The implementation details are provided in Appendix A. The tasks involve classifying
ships and airplanes based on SAR and RGB images. We compare our method with the general
quantization framework in Sec. 3.2, namely LSQ+ (Bhalgat et al., 2020), to assess its effectiveness.
Specifically, we use ResNet-18, ResNet-34, ResNet-50, and ResNet-101 (He et al., 2016) as shared-
parameter backbones by adding heads and tails to process each modality. All models, including the
full precision network, are trained within the co-training framework.

Datasets. For experiments on multi-modal data co-training, we utilize a SAR-RGB dataset collected
from open-source datasets. Details of the dataset are provided in Appendix F.
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Table 3: Ablation study on TLMAQ for super-resolution tasks. All methods are implemented on
IPT for 4-bit quantization.

Method Scale Set 5 Set 14 B100 Urban100
Baseline-multi

×2

38.25 34.29 32.43 33.46
w/ TLMAQ 38.32 34.38 32.46 33.59
w/ TLMAQ & Init 38.34 34.34 32.47 33.64
w/ TLMAQ & Init & SLLD (TSQ-MTC) 38.33 34.42 32.47 33.67
Baseline-multi

×3

34.64 30.73 29.30 29.18
w/ TLMAQ 34.72 30.77 29.34 29.28
w/ TLMAQ & Init 34.72 30.80 29.35 29.36
w/ TLMAQ & Init & SLLD (TSQ-MTC) 34.73 30.80 29.35 29.40
Baseline-multi

×4

32.48 28.89 27.72 26.85
w/ TLMAQ 32.60 28.94 27.76 26.95
w/ TLMAQ & Init 32.61 28.97 27.78 27.06
w/ TLMAQ & Init & SLLD (TSQ-MTC) 32.64 28.97 27.78 27.08

Table 4: Ablation study on SLLD. All methods are implemented on IPT for 4-bit quantization.
Distillation Loss None Cross Entropy Cosine Similarity SSIM (TSQ-MTC)
PSNR 37.596 37.698 37.713 37.893

Results. Our quantitative results, shown in Table 2, indicate that our method consistently outper-
forms LSQ+ across various backbones. Furthermore, our method performs better on deeper models,
such as ResNet-34 (97.55% of all) and ResNet-50 (100% of RGB). Mismatching quantization scales
may accumulate with deeper models, leading to significant performance degradation. Our approach
effectively mitigates this issue, resulting in superior performance. It is worth noting that overfitting
may occur when the network becomes too deep. As a result, the multi-task ResNet-101 trained by
LSQ+ performs better in classifying RGB images but performs poorly on SAR images.

6.3 ABLATION STUDY

To demonstrate the effectiveness of the techniques in our TSQ-MTC framework, we conduct abla-
tion studies on TLMAQ and SLLD.

Effectiveness of TSQ-MTC. For TLMAQ, ablation studies are conducted on single-modal task-
related data co-training with 4-bit quantized IPT. We validate the effectiveness of TLMAQ, task-
specific initialization, and SLLD. The resulting PSNR values of SR tasks are presented in Table 3.
Results show that TLMAQ significantly improves performance compared to the baseline-multi, and
the model achieves further improvement after incorporating the initialization strategy. Furthermore,
with SLLD, our model exhibits noticeable improvements in specific metrics.

Comparison of different distillation losses. To further validate the effectiveness of SLLD, we
use baseline-single for comparison. We train our models on DIV2K (Timofte et al., 2017) dataset
in ×2 SR task for 150 epochs and evaluate the performance of different loss functions on Set5
benchmark, including cross-entropy, cosine similarity, and structural similarity. As shown in Table 4,
the SLLD outperforms baseline and other loss functions, with 37.893dB PSNR, demonstrating the
effectiveness of the structural constraints imposed on the attention module.

7 CONCLUSION

This paper proposes Task-Specific Scales Quantization for Multi-Task Co-Training (TSQ-MTC).
This effective method addresses the bottleneck of combining co-training and quantization-aware
training. Specifically, TSQ-MTC leverages a task-specific learnable multi-scale activation quantizer
(TLMAQ) to enhance the representational ability of quantized features across different tasks and a
structure-based layer-by-layer distillation (SLLD) technique to preserve the information from the
full-precision features. Through comprehensive experiments, we demonstrate the effectiveness of
TSQ-MTC and its components, TLMAQ and SLLD. Especially, we successfully achieved a 4-bit
quantized low-level visual foundation model based on IPT, which outperforms existing state-of-the-
art quantized super-resolution networks, demonstrating the superior performance of TSQ-MTC.
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APPENDIX

A IMPLEMENTATION DETAILS

Baseline-multi and baseline-single. Both baseline-multi and baseline-single are quantized by
LSQ+ (Bhalgat et al., 2020). The difference is that baseline-multi employs the co-training strategy
used in IPT to learn a shared representation across different low-level vision tasks. On the ImageNet
(Deng et al., 2009) dataset, baseline-multi is trained for 50 epochs. In contrast, baseline-single con-
ducts single-task quantization training on the DIV2K (Timofte et al., 2017) dataset for each SR scale.
Following Hong et al. (2022), baseline-single is trained for 900 epochs until convergence, achieving
performance that is consistent with existing single-task super-resolution quantization models (Qin
et al., 2024).

TSQ-MTC on IPT. TSQ-MTC is employed to quantize the IPT model for single-modal task-related
data co-training. PyTorch is used to implement both our baselines and TSQ-MTC. The training is
conducted on NVIDIA Tesla A100 GPUs, each with 80 GB memory, using the Adam optimizer with
β1 = 0.9 and β2 = 0.999. We initialize all the quantized models from full-precision pre-trained
weights and perform co-training for 50 epochs on the ImageNet (Deng et al., 2009) dataset. The
learning rate starts at 5× 10−5 and decays to 2× 10−5 throughout the training, with a batch size of
225. SSIM is the loss for SLLD, with a weight coefficient of 0.01. To ensure a fair comparison with
the full-precision IPT model, for each super-resolution task, we perform 30 epochs of single-task
fine-tuning on the DIV2K dataset (Timofte et al., 2017) respectively, with a learning rate of 1e-6.

TSQ-MTC on CNNs. We use ResNet-18, ResNet-34, ResNet-50, and ResNet-101 as shared-
parameter backbones for multi-modal data co-training. We add multiple task-specific heads (a
convolutional block) before the backbone to process the input data. After the backbone, multi-
ple task-specific fully connected layers are used for output classification. The training is conducted
on 2 NVIDIA Tesla A5000 GPUs using the Adam optimizer, initialized with full-precision weights.
We do co-training for 50 epochs on our SAR-RGB dataset with an initial learning rate of 1× 10−5

multiplied by 0.1 at epoch 25.

B ADDITIONAL EXPERIMENTAL RESULTS ON SINGAL-MODAL DATA
CO-TRAINING

Quantitative results. As a multi-task model, the quantized IPT is also evaluated on denoising and
deraining tasks. We compare our approach against Minmax, PAMS (Li et al., 2020), LSQ (Esser
et al., 2019), Q-ViT (Li et al., 2022), and baseline-multi. Our method consistently demonstrates its
superior performance, as shown in Table A for the denoising task and Table B for the deraining task.
Specifically, the results show that the performance gap among different QAT methods is relatively
small for the denoising and deraining tasks. For instance, in the denoising task (σ = 30), the
difference of PSNR between TSQ-MTC and baseline-multi is only 0.01dB on CBSD68 dataset.
This is due to the quantization scales being more suitable for these two tasks. Nevertheless, our
TSQ-MTC still achieves the best performance.

Qualitative results. We visualize the 4x super-resolution task results on three selected images from
the Urban100 (Huang et al., 2015) dataset in Fig. 2. It can be observed that TSQ-MTC better restores
the fine details of the original image than other methods.

Comparison with the state-of-the-art quantization methods for super-resolution. We also com-
pare our approach against several single-task quantized SR models, such as PAMS (Li et al., 2020),
CADyQ (Hong et al., 2022) and QuantSR-T (Qin et al., 2024). Note that the backbone for PAMS
and CADyQ is SRResNet (referred to as PAMS-C and CADyQ-C), while the backbone for QuantSR
is SwinIR-S (referred to as QuantSR-T). We also add the results of the IPT quantized by PAMS
on super-resolution tasks (referred to as PAMS-IPT). As shown in Table C, our method exhibits a
clear performance advantage compared to single-task quantized super-resolution models. For exam-
ple, for the ×2 super-resolution task on the Urban100 benchmark, TSQ-MTC achieves a PSNR of
33.67dB, significantly surpassing the performance of QuantSR-T, which recorded 32.20dB.
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Table A: Comparison of Methods for Denoising Tasks (PSNR(dB)). All methods are implemented
on IPT for 4-bit quantization. w, α and a represent the bit width of weights, activations, and atten-
tions.

Method #Bits Task CBSD68 Urban100(w/α/a)
Full Precision 4/4/4 Denoising (σ = 30) 32.40 34.10
Minmax

4/4/4 Denoising (σ = 30)

30.30 30.13
PAMS 32.37 33.92
LSQ 32.39 34.00
baseline-multi 32.39 33.99
Q-ViT 32.40 34.02
TSQ-MTC 32.40 34.05
Full Precision 4/4/4 Denoising (σ = 50) 29.99 31.67
Minmax

4/4/4 Denoising (σ = 50)

28.89 28.68
PAMS 29.97 31.47
LSQ 29.97 31.56
baseline-multi 29.98 31.54
Q-ViT 29.98 31.59
TSQ-MTC 29.99 31.61

Table B: Comparison of Methods for Deraining Task (PSNR(dB)). All methods are implemented on
IPT for 4-bit quantization. w, α, and a represent the bit width of weights, activations, and attentions.

Method #Bits Rain100L(w/α/a)
Full Precision 4/4/4 41.98
Minmax

4/4/4

35.91
PAMS 41.46
LSQ 41.87
baseline-multi 41.89
Q-ViT 41.98
TSQ-MTC 42.02

Table C: Comparison of Methods Across ×2 and ×4 Super-Resolution Scales (PSNR(dB)). w, α
and a represent the bit width of weights, activations, and attentions.

Method Backbone Training #Bits Scale Set 5 Set 14 B100 Urban100(w/α/a)
PAMS-C SRResNet single-task

4/4/4 ×2

37.67 33.19 31.90 31.10
CADyQ-C SRResNet single-task 37.58 33.14 31.87 30.94
QuantSR-T SwinIR single-task 38.10 33.65 32.21 32.20
PAMS-IPT IPT multi-task 38.12 34.14 32.35 33.12
TSQ-MTC IPT multi-task 38.33 34.42 32.47 33.67
PAMS-C SRResNet single-task

4/4/4 ×4

31.59 28.20 27.32 25.32
CADyQ-C RResNet single-task 31.48 28.05 27.21 25.09
QuantSR-T SwinIR single-task 32.18 28.63 27.59 26.11
PAMS-IPT IPT multi-task 32.31 28.76 27.65 26.67
TSQ-MTC IPT multi-task 32.64 28.97 27.78 27.08
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Table D: Ablation study on TLMAQ for Denoising Tasks (PSNR(dB)). All methods are implemented
on IPT for 4-bit quantization.

Method Task CBSD68 Urban100
Baseline-multi

Denoising (σ = 30)

32.39 33.99
w/ TLMAQ 32.40 34.02
w/ TLMAQ & Init 32.40 34.04
w/ TLMAQ & Init & SLLD (TSQ-MTC) 32.40 34.05
Baseline-multi

Denoising (σ = 50)

29.98 31.54
w/ TLMAQ 29.99 31.57
w/ TLMAQ & Init 29.99 31.59
w/ TLMAQ & Init & SLLD (TSQ-MTC) 29.99 31.61

Table E: Ablation study on TLMAQ for Deraining Task (PSNR(dB)). All methods are implemented
on IPT for 4-bit quantization.

Method Task Rain100L
Baseline-multi

Deraining

41.89
w/ TLMAQ 41.99
w/ TLMAQ & Init 41.98
w/ TLMAQ & Init & SLLD (TSQ-MTC) 42.02

C ABLATION STUDY ON TLMAQ FOR DENOISING AND DERAINING

Ablation experiments are also performed on the denoising task and deraining task with 4-bit quan-
tized IPT within the single-modal task-related data co-training setup. We evaluate the effectiveness
of TLMAQ, task-specific initialization, and SLLD. The results of the denoising task are shown in Ta-
ble D, while the results of deraining task are presented in Table E. We can see that TLMAQ improves
performance over the baseline-multi, with more gains achieved through task-specific initialization.
The addition of SLLD provides a further boost, resulting in the best performance across both tasks.

D EFFECTIVENESS OF SLLD

We visualize the distributions of full-precision and quantized attention results in the 4-bit quantized
IPT, comparing models trained with and without SLLD, as shown in Fig. B. It can be observed
that after adding SLLD, the distribution of quantized features aligns more closely with that of full-
precision features, demonstrating the effectiveness of structural loss in preserving full-precision
feature information.

E COMPRESSION RATIO

In Table F, we present the parameter counts and FLOPs of the baseline-multi and the IPT trained
by TSQ-MTC, as well as the full-precision model, along with their PSNR performances on the
Urban100 benchmark for ×2 super-resolution task. For the super-resolution, we do not quantize
the input and output layers of the model. Additionally, the upsampling layer at the tail’s end is not
quantized. It can be observed that baseline-multi and TSQ-MTC successfully achieve significant
acceleration, with a compression ratio of 87.5%. Notably, TSQ-MTC achieves better performance
by introducing a small number of additional activation quantizer scales, improving the PSNR from
33.46dB to 33.67dB, further narrowing the gap with the full-precision model. In fact, the parameter
count of TSQ-MTC is almost identical to that of the baseline-multi, with merely an increase of
0.04M, demonstrating the efficiency of our method.

F DETAILS OF SAR-RGB DATASET

Due to the fact that existing classification datasets primarily contain a single modality and consider-
ing the significant quality differences between SAR and RGB datasets, we organize a dataset suitable
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Figure A: Visualization of results for 4x super-resolution task (on selected images of Urban100)

Figure B: The histogram of features produced by general attention calculation (orange) and quan-
tized calculation (blue) from 4 selected attention layers in models with and without SLLD. It can be
seen that SLLD can reduce the information distortion caused by quantization.

for the tasks described in this paper from open-source datasets. We manually segment and annotate
these images, ultimately creating a high-quality dataset with aligned categories and consistent quan-
tities across the two modalities. Some sample instances are illustrated in Fig. C. Specifically, our
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Table F: Efficiency Comparison in Terms of Bit Width, Parameter Count, FLOPs, and PSNR for ×2
super-resolution on Urban100 (Huang et al., 2015). The input image has a shape of (1, 3, 48, 48). w
and a represent the bit width of weights and activations.

Method #Bits Params (M) Ops (G) Set14 Urban100
(ω/α/a) (↓Ratio) (↓Ratio) PSNR PSNR

Full Precision 32/32/32 115.31 (↓0.0%) 33.06 (↓0.0%) 34.43 33.76
baseline-multi 4/4/4 14.34 (↓87.6%) 4.14 (↓87.5%) 34.29 33.46
TSQ-MTC 4/4/4 14.38 (↓87.5%) 34.42 33.67

Figure C: The visualization of the SAR-RGB dataset.

SAR-RGB dataset is sourced from several open source datasets (Hou et al., 2020; Huang et al.,
2017; Di et al., 2021; Xia et al., 2018), collected from Google Earth (satellite), TerraSAR, RadarSat,
Capella, Gaofen-3, consisting of 1709 instances within 8 RGB categories and corresponding 8 SAR
categories.

G ACCURACY DURING TRAINING OF MULTI-TASK CNN MODEL

We visualize the validation accuracy during the training of the multi-task ResNet-34 quantized with
TSQ-MTC and LSQ+, as shown in Fig. D. It is evident that in the later stage of training, our method
significantly outperforms both LSQ+ and the full-precision model, while the models trained with
LSQ+ underperform compared to the full-precision model for a period of time.

It is worth noting that the convergence of the full-precision model directly impacts the quantization
performance of TSQ-MTC. Specifically, we utilize TSQ-MTC to quantize a ResNet model trained
for only 30 epochs in full precision, while the models employed in our main experiments are trained
for 50 epochs. The accuracy of the model after quantization is not significantly different from that
of the same model quantized by LSQ+.
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Figure D: Validation Accuracy during Training of Quantized Multi-Task ResNet-34

Figure E: Visualization of the task-related scaling factors for the activation quantizer in
feature extractor.2.1.conv2.act, feature extractor.2.2.conv2.act, feature extractor.3.2.conv2.act of
quantized multi-task ResNet-34. It is noted that the scaling factors for SAR (green) and RGB (blue)
show distinct differences.

H VISUALIZATION OF THE TASK-RELATED SCALING FACTORS OF
MULTI-TASK CNN MODEL

We conduct a visual analysis of the quantization scales for the CNN model trained with TSQ-
MTC. The scaling factors of the three modules in quantized multi-task ResNet-34 network, fea-
ture extractor.2.1.conv2.act, feature extractor.2.2.conv2.act, and feature extractor.3.2.conv2.act, are
visualized in Fig. E. We also observed pronounced differences in scales between different tasks, fur-
ther supporting the validity of our approach. For example, in feature extractor.2.1.conv2.act, the
scaling factor for the SAR task is 1.23 times that of the RGB task, which can lead to significant
changes in the quantization mapping.

I EXPERIMENTAL RESULTS ON CROSS-DOMAIN DATASET

Task and dataset. We also conduct experiments to explore the effectiveness of TSQ-MTC on
cross-domain datasets. Specifically, we select a subset of DomainNet (Peng et al., 2019) for cross-
domain classification tasks, which includes 13504 instances within four domains and ten categories
for each domain. Consistent with the experiments in the main paper, we follow the DomainNet to
use ResNet-101 (He et al., 2016) as the backbone and consider the classification of the four domains
as four distinct tasks, adding corresponding heads and tails to process each modality. We compare
TSQ-MTC with LSQ+ (Bhalgat et al., 2020).

Results. Experimental results show that compared to the full-precision model, both TSQ-MTC and
LSQ+ achieved effective quantization. However, our method does not exhibit significant advantages.
To investigate this finding, we further examine the quantization scales for different tasks within the
network and found that the quantization scales of the same activation quantizer are almost the same.
One possible explanation is that for cross-domain data within the same task, the feature distribution
differences are negligible, and different tasks do not exert opposing effects on the scales. Using a
single scale might actually lead to faster convergence.
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