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ABSTRACT

Adapters have become a widely adopted strategy for efficient fine-tuning of large
pretrained models, particularly in resource-constrained settings. However, their
performance under extreme data scarcity—common in medical imaging due to high
annotation costs, privacy regulations, and fragmented datasets—remains underex-
plored. In this work, we present the first comprehensive study of adapter-based
fine-tuning for large pretrained models in low-data medical imaging scenarios. We
find that, contrary to their promise, conventional Adapters can degrade performance
under severe data constraints, performing even worse than simple linear probing
when trained on less than 1% of the corresponding training data. Through sys-
tematic analysis, we identify a sharp reduction in Effective Receptive Field (ERF)
as a key factor behind this degradation. Motivated by these findings, we propose
the Dual-Kernel Adapter (DK2), a lightweight module that expands spatial con-
text via large-kernel convolutions while preserving local detail with small-kernel
counterparts. Extensive experiments across diverse classification and segmentation
benchmarks show that DKA significantly outperforms existing Adapter methods,
establishing new leading results in both data-constrained and data-rich regimes.
Code is submitted.

1 INTRODUCTION

The rapid proliferation of large pretrained models has significantly advanced various fields such
as natural language processing (Chowdhary & Chowdhary, 2020) and computer vision (Szeliski,
2022), yet it has also amplified challenges related to computational overhead (Thompson et al.| 2020),
memory consumption (Mahendran, 2021)), and the complexity of downstream adaptation (Jiang et al.
2024)), especially when deploying these models in specialized domains like medical imaging (Strubell
et al.,|2020; Ji et al., [2021; /Wang et al., |2025). To address these issues, adapter-based fine-tuning
(Wang et al., [2020b; [Wu et al., 2025} |Gong et al., 2023 |Hu et al., |2024; |Chen et al., |2024) has
emerged as a popular strategy, enabling efficient adaptation by adjusting only a small subset of model
parameters rather than performing full fine-tuning.

In medical imaging, assembling large, well-annotasted datasets is notoriously costly: expert radiolo-
gists must painstakingly delineate structures in high-resolution 2-D and 3-D scans, and inter-observer
variability further inflates the annotation burden (Suzukil [2017; Ritter et al., 2011)). Strict privacy
regulations such as HIPAA (U.S. Department of Health & Human Services, [2003)) and the GDPR (Eu-
ropean Union, |[2016), coupled with heterogeneous institutional policies, severely limit data sharing,
fragmenting what little data exist (Schéfer et al.,2023;|Wang et al.,2021). As a result, many clinically
important downstream tasks still operate in a pronounced low-data regime. This scenario naturally
leads to the critical question:

Can standard Adapter perform effectively in medical imaging tasks under constrained data?

In this paper, we first provide a comprehensive evaluation and analysis of applying conventional
Adapter (Houlsby et al.l 2019) under constrained-data scenarios across various datasets and backbone
architectures. Our study reveals several key insights:
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Figure 1: Performance of Adapter across Various Training Data Sizes. AACC =
ACCrLinecarProbing+Adapter — ACC Linecar Probing- Experiments are conducted on the pretrained ViT-
B, Swin-T, and Swin-B backbones for Tiny ImageNet and CIFAR-100 (In-Domain), COVID, BUSI,
and ISIC-2019 (Out-of-Domain).

* Data Size Significantly Impacts Adapter Performance. We observe that the benefits of using
Adapters diminish substantially as the size of the training dataset decreases. This effect is particu-
larly pronounced for medical imaging (see Figure [I)).

* Adapters Can Harm Performance Under Severe Low Data Settings. When the training data size is
reduced to 1% or less, specifically in the context of adapting large pretrained models to medical
imaging, Adapters perform worse than linear probing. This indicates that, under extreme data
constraints, Adapters may negatively affect model adaptation (see Figure|[T).

* Effective Receptive Field (ERF) Decreases with Reduced Training Data. Visualization of the ERF
demonstrates that smaller training datasets result in reduced ERF, offering a plausible explanation
for the observed performance degradation (see Figure 2)).

Inspired by these insights, we propose a Dual-Kernel Adapter (DKA) that explicitly enlarges the ERF
of standard Adapter modules. Each DKA module introduces a dual-branch convolution design: one
branch leverages a depthwise large-kernel convolution to broaden the ERF, while the other employs a
depthwise small-kernel convolution to preserve fine-grained local details. We evaluate DKA on a range
of medical imaging tasks, including both classification and segmentation, across diverse datasets
and large pretrained models. Experimental results demonstrate that DKA consistently outperforms
existing methods in both data-constrained and data-rich settings.

Summary of Contributions

* We present the first systematic study of adapter-based fine-tuning for large pretrained models in
low-data medical-imaging scenarios, showing that the conventional Adapter can actually degrade
performance under severe data scarcity.

* We introduce the Dual-Kernel Adapter (DKA), a lightweight module that pairs large- and
small-receptive-field convolutions in parallel, simultaneously broadening spatial context and pre-
serving fine-grained detail.

* Extensive experiments on multiple segmentation and classification benchmarks demonstrate that
DKA sets new state of the art, and ablation studies reveal that using asynchronous learning rates
between adapters and linear head is critical to its gains.

2 UNDERSTANDING STANDARD ADAPTER IN CONSTRAINED-DATA SETTINGS

Adapters have gained popularity in medical image analysis due to their parameter efficiency and
adaptability for fine-tuning large pretrained models. However, their performance under constrained
data conditions remains underexplored. In this section, we investigate this critical aspect using a
diverse set of datasets, including Tiny ImageNet (Le & Yang] [2015), CIFAR-100 (Sharma et al.,
2018)), COVID (Chowdhury et al.,|2020), BUSI (Zhang et al.,2022)), and ISIC-2019 (Gessert et al.,
2020). Our experiments utilize three backbones—ViT-B (Dosovitskiy et al., 2021}, Swin-T (Liu et al.,
2021)), and Swin-B (Liu et al.| 202 1)—all pretrained on the ImageNet (Deng et al.,|2009), to evaluate
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the impact of Adapters across varying data sizes, ranging from 0.63% to 100% of the training data.
We report the difference in accuracy between the application of Adapters and the non-application of
Adapters, which is denoted by AACC = ACCrincar Probing+Adapter — ACCLinear Probing- Our key
observations are summarized as follows.

@ Degraded Adapter Performance with Less Training Data. In Figure|l} we consistently observe
that the performance gains provided by Adapters diminish across multiple tasks and pretrained
models. Notably, this decline is significantly more pronounced in medical datasets (COVID, BUSI,
ISIC-2019) compared to natural-vision datasets (TinylmageNet, CIFAR-100). A plausible explana-
tion is that medical tasks represent out-of-domain scenarios, requiring feature representations that
diverge considerably from those learned by the original pretrained models. This challenge is further
exacerbated in low-data settings, where learning domain-specific features becomes more difficult. In
contrast, natural-vision tasks remain largely in-domain, aligning more closely with the pretraining
distribution, and thus benefiting more from adapter-based fine-tuning.

@ Negative Effects of Adapters in Extremely Low Training Data in Medical Imaging. We
further observe that in medical imaging tasks, when training data is limited to 1% or less, the
performance gain from applying Adapters becomes negative, indicating a detrimental impact on
model performance. Unlike natural images, medical images typically exhibit low contrast, ambiguous
boundaries, and small or irregular pathological structures (Zhang et al., [2024)), which usually demand
a large effective receptive field (ERF) to capture long-range contextual dependencies. However,
standard Adapter do not possess a strong inductive bias toward expanding the ERF. We hypothesize
that under limited supervision, this limitation restricts the Adapter’s capacity to learn spatially
dispersed features and long-range contextual dependence, thereby contributing to the observed
degradation in performance.

@ Reduced Effective Receptive Field Under Constrained Training Data. To validate whether
reduced supervision limits the Adapter’s ability to capture spatially dispersed features and long-
range contextual dependencies, we visualize the ERF of Adapters trained on varying proportions
of the training set, ranging from 0.63% to 100%, using the COVID dataset and the pretrained
ViT-B model. Following the definition in (Araujo et al., 2019), the ERF of a neural network layer
refers to the region encompassing all input pixels that exert a non-negligible influence on a given
output unit. As shown in Figure EI, the ERF becomes progressively smaller as the amount of training
data decreases. This observation supports our hypothesis that limited supervision restricts the
Adapter’s ability to learn spatially diverse patterns and long-range contextual relationships, which
are particularly crucial in medical imaging tasks. We provide complementary ERF analysis on an
alternative backbone (Swin-T) in Appendix which leads to consistent conclusions, reinforcing
the generality of our observations.

0.63% 12.5% 25% 50% 100%

Figure 2: Effective Receptive Field of Standard Adapters Across Varying Training Set Ratios.
Experiments are conducted on the COVID dataset using the pretrained ViT-B.

These findings indicate that standard Adapter fail to enlarge the ERF in low-data settings, which in
turn degrades model performance. Consequently, it is crucial to develop new Adapter architectures
with a built-in inductive bias toward expanding the ERF.

3 DUAL-KERNEL ADAPTER

To mitigate the adverse effects of standard Adapter in low-data regimes, we propose the
Dual-Kernel Adapter (DKA), which explicitly integrates a large-kernel convolution to ex-
pand the ERF and a small-kernel convolution to preserve local spatial details. Prior studies have
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demonstrated that large kernels introduce a strong inductive bias toward capturing broader contextual
information by expanding the ERF (Huang et al., 2023; Liu et al., [2022; |Ding et al., [2022)).

As illustrated in Figure[3] DKA first reduces the dimensionality of the input features through a linear
down-projection. The reduced features are then processed in parallel by two depthwise convolution
branches—a computationally efficient form of convolution that applies a distinct filter to each input
channel (Chollet,[2017)). One branch employs a large kernel to significantly enlarge the receptive
field, facilitating the modeling of long-range dependencies. The other branch uses a smaller kernel to
retain fine-grained spatial features essential for capturing localized structures. The outputs from the
two branches are aggregated via element-wise summation, followed by a GELU activation, a linear
up-projection, and a residual connection to the input.

Formally, the DKA operation can be expressed as:
foxa(x) = 2 + Up(c(DWConViyge (Down(x)) + DWConvgyi (Down(x)))) 1)

where Down(-) and Up(-) denote linear projection layers, DWConvj,r,e and DWConygy, are depth-
wise convolutions with kernel sizes 51 and 5 respectively, and o is the GELU activation.

4 EXPERIMENTS

To comprehensively evaluate the performance

of DKA, we conduct extensive experiments on 4
medical imaging tasks, spanning classification @ Trinable Head
and segmentation benchmarks across diverse Frozen '
datasets, and additionally, models pretrained on Dentlivise /N

both natural and medical domains. P DIfA a
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tributors, [2020). Medical-pretrained Models. A 5[1;:] ! ;;; ATk
To assess domain adaptability, we further eval- N Attention
uate DKA on medical backbones, including

RadImageNet-pretrained ResNet-50 (Mei et al | Downsample DOWnsamPle/ Embedding
2022)) for classification and MedSAM (Ma et al., ' t +
2024) for segmentation. (a) Standard Adapter (b) DKA (¢) DKA Fine-tuning

Datasets and Metrics. We evaluate the pro-
posed DKA across both medical classification
and segmentation tasks to ensure broad applica-
bility. Medical Image Classification. We utilize
three widely-adopted medical image classification datasets: COVID (Chowdhury et al., 2020}, BUSI
(Zhang et al., [2022), and ISIC-2019 (Gessert et al., [2020). The COVID dataset comprises chest X-ray
images for COVID-19 diagnosis. The BUSI dataset includes breast ultrasound images categorized as
benign, malignant, or normal. The ISIC-2019 dataset is a large-scale dermoscopic dataset designed
for multi-class skin lesion classification. For each dataset, we report Top-1 Accuracy (ACC), F1 Score
(F1); and Sensitivity (SEN) under varying proportions of training data. Medical Image Segmentation.
We further assess DKA on three representative segmentation datasets: BRATS (Menze et al.;[2014),
BUSI (Zhang et al.} [2022), and ISIC-2018 (Codella et al.,|2019). BRATS focuses on brain tumor
segmentation using multi-modal MRI scans. BUSI provides breast ultrasound images with annotated
tumor regions. ISIC-2018 contains dermoscopic images with pixel-level annotations for skin lesion
segmentation. We evaluate segmentation performance using standard metrics: mean Intersection over
Union (mloU) and Dice coefficient (Dice). More details are provided in Appendix [B.T]

Figure 3: Overview of the DKA Module. (a) Stan-
dard Adapter. (b) The proposed DKA module. (c)
DKA Fine-tuning.

Baselines. We compare DKA against a broad range of baselines, categorized into three groups:
Standard Fine-tuning Methods: (1) Linear Probing: freezing the backbone and tuning only
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the head; (2) Full Fine-tuning: updating all model parameters during downstream training.
Adapter-tuning Methods: (1) Adapter (Houlsby et al., |2019): adding adapters within each trans-
former block; (2) AdapterFormer (Chen et al.||2022): adding parallel adapters with learnable scaling
to each MLP layer; (3) CIAT (Zhu et al.| |2021): adding adapters before transformer blocks and
parallel adapters within blocks; (4) Convpass (Jie et al.,|2024): enhancing adapters with parallel 3 x 3
convolution branches; (5) AIM (Yang et al.| | 2023)): combining sequential and parallel adapters across
spatial and temporal attention pathways. Other Parameter-efficient Fine-tuning (PEFT) Methods: (1)
Prompt Tuning (Jia et al.| 2022): fine-tuning extra learnable tokens; (2) LoRA (Hu et al.| | 2022):
injecting low-rank trainable matrices into attention modules; (3) BitFit (Zaken et al.||202 1):fine-tuning
only the bias terms of pretrained models.

Implementation Details. Following the common training protocol, we freeze all pretrained model
weights and update only the parameters of DKA and head during fine-tuning. Specifically, DKA
modules are inserted within transformer blocks following the placement strategy described in (Yin
et al.,2024). For the DKA module, the middle dimension d is set to 16 for classification tasks and 192
for segmentation tasks, as discussed in Section[d.4] The learning rates are set to le-4 for the task head
and le-3 for the DKA modules, as shown in Section[4.4] Classification models are trained for 100
epochs, while segmentation models are trained for 300 epochs, balancing the need for convergence
across task complexities. For experiments under constrained supervision (i.e., training with less than
100% of the training set), we perform a 5-fold cross-validation on the training set while keeping the
test set fixed. All reported results are averaged across the cross-validation folds. More details can be
found in Appendix[B.2}

4.1 SUPERIOR PERFORMANCE ON CONSTRAINED DATA

We evaluate DKA under constrained-data settings (0.63% and 1.25%) and the full-data setting.
Experiments are organized by the type of pretrained backbone: natural-image models (ViT-B,
Segmenter-B) and medical-image models (RadImageNet-ResNet-50, MedSAM). This design enables
a clear examination of DKA’s generalization across different pretraining sources.

Natural-pretrained Models. We first evaluate DKA using natural-pretrained backbones, as sum-
marized in Tables |1| and [2| DKA consistently outperforms all baselines across classification and
segmentation tasks. Notably, under low-data regimes (0.63% and 1.25%), DKA even surpasses full
fine-tuning and linear probing, while other PEFT methods exhibit clear performance degradation.
These observations confirm the effectiveness of DKA when adapting natural-pretrained models to
medical domains. Additional results on the natural-pretrained ViT-B and Segmenter-B are provided
in Appendix [D]and[C] Furthermore, similar performance improvements are observed when DKA is
applied to other natural-pretrained models such as Swin-B (see Appendix |F.1|for details).

Table 1: Comparison of Baselines and DKA on Three Classification Datasets Across Varying
Data Sizes. Results are reported in terms of ACC (%). Experiments are based on the pretrained
ViT-B. The best results are highlighted in bold.

M \ COVID \ BUSI \ ISIC-2019
ethods

\ 0.63% 1.25% 100% \ 0.63% 1.25% 100% \ 0.63% 1.25% 100%
Full Fine-tuning 87.43 88.00 98.43 | 71.17 76.73 94.62 | 60.04 61.21 82.05
Linear Probing 86.84 87.50 94.85| 73.48 77.64 89.78 | 59.15 59.44 71.83
BitFit (Zaken et al.,|2021) 7391 79.65 9695 | 57.19 60.20 88.27 | 50.80 53.22 79.84
Prompt (Jia et al.| 2022) 7791 83.75 9845 | 61.34 64.30 93.07 | 52.55 53.59 81.02
LoRA (Hu et al.;[2022) 80.43 8591 98.73 | 63.64 67.41 94.75| 51.08 53.96 81.75

Adapter (Houlsby et al.}[2019) 83.29 86.26 9833 | 63.18 73.68 93.33 | 5277 54.88 79.54
Adapterformer (Chen et al.|[2022) | 82.46 84.32 98.18 | 63.42 72.75 92.65| 51.62 52.71 78.19

Convpass (Jie et al.||2024) 84.72 86.94 98.45| 64.83 74.63 9397 | 5472 56.25 80.45
CIAT (Zhu et al.| [2021) 77.34 82.85 96.54| 60.28 65.07 89.86 | 48.35 49.96 72.18
AIM (Yang et al.| [2023) 80.92 8355 9723|6272 7034 90.12 | 50.12 52772 77.39
DKA 89.01 91.06 99.21 | 74.23 79.46 95.89 | 60.52 62.32 83.09

Medical-pretrained Models. We further evaluate DKA on medical-pretrained backbones, including
RadImageNet-pretrained ResNet-50 (Mei et al., 2022)) for classification and MedSAM (Ma et al.,
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Table 2: Comparison of Baselines and DKA on Three Segmentation Datasets Under Varying
Data Sizes. Experiments are based on the pretrained Segmenter-B. mloU is reported as percentages.
The best results are highlighted in bold.

M \ BRATS \ BUSI \ ISIC-2018
ethods

\ 0.63% 1.25% 100% \ 0.63% 1.25% 100% \ 0.63% 1.25% 100%
Full Fine-tuning 925 2239 73.08|26.67 3231 5741|6227 73.63 77.58
Linear Probing 795 2020 69.86| 25.53 3196 54.07 | 6090 71.06 74.10
BitFit (Zaken et al.,|2021) 1.20 1433 63.52| 7.13 17.08 52.56| 5321 65.84 73.10
Prompt (Jia et al.| 2022) 1.22 1521 64.53| 9.19 18.77 53.57| 56.56 67.40 73.61
LoRA (Hu et al.;[2022) 3.84 16.19 6848 | 14.10 22.39 5396 | 58.70 69.03 73.84

Adapter (Houlsby et al., 2019) 6.16 1895 72.02 | 18.18 2590 55.01 | 59.78 72.80 76.71
Adapterformer (Chen et al.|[2022) | 5.99 18.77 7254 | 17.41 25.68 55.14| 59.67 72.85 76.58

Convpass (Jie et al.}|2024) 7.13  19.64 7332|1984 2852 56.09 | 60.19 73.56 77.54
CIAT (Zhu et al.| [2021) 380 16.81 70.41 | 13.40 20.20 54.76 | 58.26 69.52 75.09
AIM (Yang et al., [2023) 458 17.61 7198 | 1540 23.54 54778 | 59.24 72.05 76.65
DKA 947 23.02 7496 | 26.85 34.52 58.90 | 63.13 74.27 78.53

2024) for segmentation. As reported in Table[3] DKA consistently surpasses full fine-tuning, linear
probing, and other PEFT baselines across ISIC-2019 and BUSI under all data scales. These im-
provements demonstrate that the gains of DKA are not limited to natural image pretraining, but also
generalize effectively to domain-specific medical large pretrained models. More results are reported
in Appendix [E]

Table 3: Performance of DKA with medical-pretrained models. (a) Classification results on the
ISIC-2019 using RadImageNet-pretrained ResNet-50 by reporting ACC (%). (b) Segmentation results
on the BUSI using MedSAM by reporting mloU (%). The best results are highlighted in bold.

(a) Classification Results. (b) Segmentation Results.
Methods 0.63% 1.25% 100% Methods 0.63% 1.25% 100%
Full Fine-tuning  52.70  55.17  76.63 Full Fine-tuning  36.21  45.04  70.62
Linear Probing 5127 5371 67.39 Linear Probing 3472 42776  66.54
BitFit 48.84  51.62 70.38 BitFit 27.85 3692 64.43
Prompt 50.12 5329 73.31 Prompt 29.57  38.71 64.62
LoRA 50.03 52,51 7292 LoRA 3239 4035 67.04
Adapter 51.32  54.04 7426 Adapter 3540 43.62 68.06
DKA 53.69 56.58 78.56 DKA 3713  46.27 72.53

4.2 ERF VISUALIZATION

To assess whether DKA effectively expands the effective receptive field (ERF), we visualize the
ERFs of DKA alongside those of other adapter-tuning baselines, including Adapter (Houlsby et al.,
2019), AdapterFormer (Chen et al., 2022), Convpass (Jie et al., [2024)), CIAT (Zhu et al., [2021]),
and AIM (Yang et al., [2023)), under both the constrained (0.63%) and the full (100%) training data
settings. As shown in Figure[d] DKA consistently exhibits the broadest ERF across both settings,
demonstrating its superior ability to capture extensive spatial context even under constrained-data
conditions. In contrast, other baselines yield more localized ERFs, particularly in the constrained-data
setting, which likely contributes to their comparatively weaker performance.

4.3 LARGE KERNEL MATTERS INSTEAD OF TRAINABLE PARAMETERS

Given that DKA introduces a slightly higher number of trainable parameters, a natural question arises:
Are the observed performance gains primarily attributable to the increased parameter count or to the
effect of the large kernel? To investigate this, we perform a controlled comparison where the increase
in trainable parameters arises either from enlarging the kernel size or from expanding the intermediate
dimension d. Specifically, we adjust the middle dimension d of other adapter-based baselines so that
their total trainable parameter counts align with that of DKA with increasing kernel sizes. We fix



Under review as a conference paper at ICLR 2026

Adapterformer Convpass CIAT Aim Ours
1.0 1.0

1.0 1.0

0.8

0.8 0.8

0.6 0.6 0.6

0.4 0.4 0.4

0.2 0.2 0.2

1.0 1.0 1.0

0.8 0.8 0.8

0.6 0.6 0.6

0.4 0.4

0.4

0.2 0.2 0.2

0.2

Figure 4: Effective Receptive Field of DKA and Other Adapter-based Methods. Experiments are
conducted on the COVID dataset based on the pretrained ViT-B under both constrained (0.63%) and
full (100%) training settings.

the middle dimension d = 16 in DKA throughout all classification experiments, ensuring that any
parameter increase stems solely from the enlarged kernel. As shown in Figure[5] the results reveal
that: @ DKA consistently outperforms all baselines across the 0.63%, 1.25%, and 100% training
data settings under similar parameter constraints; @ the performance improvements resulting from
increasing the kernel size (from 11 to 51) are significantly steeper than those obtained by merely
enlarging the hidden dimension, highlighting the effectiveness of large kernels in enhancing DKA’s
representational capacity.
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Figure 5: Comparison of Baselines and DKA with Comparable Numbers of Trainable Parameters.
Experiments are conducted on 0.63%, 1.25%, and 100% subsets of the BUSI dataset using the

pretrained ViT-B. The symbol d denotes the intermediate dimensionality in adapter-based methods.
4.4 ABLATION STUDY

Kernel Size Selection. We investigate the impact of different kernel size combinations in DKA’s
dual-branch convolution design. Specifically, we sweep over five candidate sizes (3x3, 5x5, 7x7,
9%9, 11x11,31x31, 51x51, 71x71) for both small- and large-depthwise convolution branches. As
shown in Figure[6] the combination of 5x5 (small) and 51x51 (large) consistently yields the best
accuracy on both the data-constrained (0.63% and 1.25%) setting and the full data setting (100%).
Notably, kernel sizes that are too small or too large result in performance degradation, particularly
under low-data conditions. These results support our dual-branch design choice, balancing fine-
grained detail extraction and large receptive field expanding. Extra experimental results are included

in Appendix [F3]

Single vs. Dual Convolutions. To evaluate the effectiveness of using both large- and small-depthwise
convolutions in DKA, we compare the full dual-branch design (5x5 + 51 x51) against single-branch
variants that use only one of the two kernels. Experiments are conducted on the COVID, BUSI, and
ISIC-2019 datasets across varying training set sizes. As shown in Figure[7} the dual-branch design
consistently outperforms both single-branch variants, particularly in low-data regimes. While the
5x5 branch better captures localized detail and the 51 x51 branch improves global coverage, neither
alone matches the full-dual structure. See Appendix for additional results.
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Figure 6: Performance of Different Kernel Size Combination. Experiments are conducted on the
BUSI dataset using the pretrained ViT-B across three training setting (0.63%, 1.25%, and 100%).
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Figure 7: Ablation for Dual-Convolution Design. Experiments are based on the pretrained ViT-B
across three classification datasets. ACC (%) is reported.

Asynchronous Learning Rates Matter. In standard adapter-based fine-tuning, it is common practice
to use the same learning rate for both the adapter and the head. However, given their different roles
and characteristics, this one-size-fits-all strategy may not be optimal. To investigate the effect of
asynchronous learning rates for the adapter and head, we conduct experiments on the COVID dataset
using a pretrained ViT-B. We systematically vary the learning rates assigned to the adapter and
head, and assess the results under both the 0.63% and 1.25% training data. As shown in Figure 8]
asynchronous learning rate schedules-where the adapter and head use different learning rates—often
outperform symmetric configurations. We observe that the best results are not achieved when both
components share the same learning rate, suggesting that the adapter and head benefit from distinct
optimization dynamics. This trend holds across data scales, highlighting the importance of tuning
these components independently. More results are available in Appendix [F.2]

Middle Dimension. We investigate the impact of the middle dimension d in the DKA module for both
classification and segmentation tasks. As shown in Table@ increasing d generally leads to improved
performance. For classification on the BUSI dataset, performance steadily improves from d=1to
d = 16, reaching a peak at d = 16, after which performance slightly declines or saturates, indicating
potential overfitting or redundancy. For segmentation on the ISIC-2018 dataset, the optimal middle

dimension is also moderate, with d = 192 offering the best trade-off between parameter efficiency
and accuracy. This observation aligns with the findings in (Chen et al.,[2022), which also highlight the
task-specific nature of optimal middle dimensions, emphasizing that different tasks require different
parameter settings for optimal performance.

5 RELATED WORK

Adapter-based Fine-tuning adapts large pretrained models to downstream tasks by inserting and
training lightweight modules while keeping the original model parameters frozen, offering significant
computational and memory advantages over full fine-tuning (Xu et al.} 2023} [Ding et al., 2023}, [Han|
[2024b). Early Adapter methods introduced task-specific bottleneck layers between transformer
blocks (Houlsby et al.,[2019), with subsequent innovations improving architectural designs

et al.| [2020b; [Zhang et al.| [2021)) and multi-modal applications (Sung et al.,[2022; [Pan et al [2022;
Gao et al| [2024). Recent medical imaging adaptations demonstrate how Adapter modules can
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Figure 8: Performance Comparison Across Varying Learning Rates for DKA and Classification
Head. Experiments are conducted on the COVID dataset using the pretrained ViT-B under 0.63%
and 1.25% training data. Results are reported in terms of ACC (%) and SEN (%).

Table 4: Performance Comparison of Different Middle Dimensions d in DKA. (a) Classification
performance using the pretrained ViT-B on the BUSI dataset by reporting ACC (%). (b) Segmentation
performance using the pretrained Segmenter-B on the ISIC-2018 dataset by reporting mloU (%).

(a) Middle Dimension for Classification. (b) Middle Dimension for Segmentation.
d 063% 125% 100% d 063% 125% 100%
1 65.02 70.69  87.86 64 57.93 68.68 74.10
4 69.65 7438 9142 96 60.25 71.95 76.18
8 72.18 76.68  93.61 128 62.30 73.56 7748
16 74.23 79.64 95.89 192  63.13 7427 78.06
32 73.75 79.23 95.29 256  62.72 73.88 77.95

effectively transfer pretrained knowledge to diagnostic tasks while maintaining model integrity
let al.l 2023} [Duitt et all, 20230} [Lian et al [2024). However, adapter-based methods typically assume
access to a moderate amount of labeled data (Duitt et al, 20234} [Liu et al.| [2024). Their effectiveness
in data-constrained settings remains underexplored, raising critical questions about their performance
in such scenarios.

Limited Data in Medical Imaging remains a major challenge, as labeled samples are scarce due
to privacy, high annotation cost, and limited experts (Shaikhina & Khovanova, 2017} [Chlap et al.}
[2021)). This constraint is especially critical in clinical practice, where collecting large and diverse
datasets is difficult (Ewing, 2017} [Lee & Yoon| [2017} [Li et al,2010). To address scarcity, strategies
include data augmentation (Garcea et al., [2023; |Goceri, 2023} [Zhao et al., [2019; [Islam et al., 2024),
transfer learning (Raghu et al.,[2019; |[Kim et al.| 2022; [Kora et al.,2022), semi-supervised learning
(Huynh et al.| 2022} (Chebli et al., 2018} Wang et al., 2020a; Han et al., 2024a; [Zhou et al., 2019]
and self-supervised representation learning (Ericsson et al., 2022} Jiao et al.l [2020; |Ye et al,[2024;
Krishnan et al}, [2022). These approaches leverage unlabeled data or external sources to improve

generalization under low-resource settings (Zheng et al., 2024} [Lin et al.| [2021)), and recent work
highlights large pretrained models to further reduce annotation needs (Moor et al., 2023} [Zhang &

2024}, [Khan et al.,2025)). Nevertheless, most rely on full fine-tuning or moderately sized
datasets (Davila et al.,[2024; [Khan & Fang| [2023)), while their integration with adapter-based methods

under severe scarcity remains underexplored but highly relevant in practice.

6 CONCLUSION

In this paper, we revisit adapter-based fine-tuning for medical image analysis and uncovered key
limitations in low-data settings: existing Adapters often struggle to capture relevant features under
data scarcity, partly due to their constrained receptive field. To address this, we introduced DKA, a
dual-branch adapter module that integrates large- and small-kernel depthwise convolutions to enhance
the receptive field while preserving local detail. Experiments on both medical image classification
and segmentation tasks, evaluated across various datasets and backbones show that DKA consistently
outperform both full fine-tuning and other PEFT baselines by a good margin, particularly in the
constrained-data setting, without significantly increasing parameter count.
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We provide complete implementation details, including dataset splits, training settings, and evaluation
protocols in Sectiond Appendix and Appendix Code and data will be released to facilitate
reproducibility and further research.
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

Large language models (LLMs) were not used as part of the core methodology, experiments, or
original research contributions. They were only used as an assistive tool for language editing and
formatting.

B EXPERIMENT SETTINGS

B.1 DATASETS

B.1.1 CLASSIFICATION DATASETS

COVID (Chowdhury et al., |2020): The COVID-19 Radiography Database, developed through
a collaborative effort involving researchers from Qatar University, the University of Dhaka, and
medical experts from Pakistan and Malaysia, includes approximately 3616 COVID-19 cases, 10,192
normal cases, 6012 lung opacity cases (representing non-COVID lung infections), and 1345 viral
pneumonia cases. This dataset provides a comprehensive collection of chest X-ray (CXR) images for
the diagnosis of COVID-19 and other lung conditions.

BUSI (Zhang et al. [2022): The BUSI (Breast Ultrasound Images) dataset, collected in 2018,
comprises approximately 780 ultrasound images from 600 female patients aged 25 to 75. It includes
around 437 normal, 210 benign, and 133 malignant breast lesion images, each with an average
resolution of approximately 500x500 pixels. The dataset is organized into three primary categories
based on the clinical classification of breast lesions: normal, benign, and malignant.

ISIC-2019 (Gessert et al.,[2020): The ISIC-2019 dataset, part of the annual ISIC (International Skin
Imaging Collaboration) challenges, includes 25,331 dermoscopic images compiled from previous
ISIC challenges (2017 and 2018). It spans nine diagnostic categories: melanoma, melanocytic nevus,
basal cell carcinoma, actinic keratosis, benign keratosis (including solar lentigo, seborrheic keratosis,
and lichen planus-like keratosis), dermatofibroma, vascular lesion, squamous cell carcinoma, and a
category for images that do not fit into any of the other classes, providing a comprehensive benchmark
for multi-class skin lesion classification.

B.1.2 SEGMENTATION DATASETS

BRATS (Menze et al., 2014): The BRATS (Brain Tumor Segmentation) dataset provides multi-
institutional, clinically acquired multi-parametric MRI (mpMRI) scans of gliomas, including T1,
post-contrast T1-weighted (T1Gd), T2, and T2-FLAIR volumes. It includes pathologically confirmed
cases with expert-annotated tumor sub-regions, including the enhancing tumor (ET), tumor core (TC),
and whole tumor (WT), providing a comprehensive benchmark for brain tumor segmentation.

BUSI (Zhang et al., [2022)): The BUSI (Breast Ultrasound Images) dataset includes ground truth
masks for precise lesion segmentation, facilitating the evaluation of automated lesion detection and
boundary delineation methods. These masks correspond to the original ultrasound images, capturing
the exact regions of interest for each lesion type. The dataset primarily supports the segmentation of
benign and malignant breast lesions, providing a detailed representation of lesion morphology.

ISIC-2018 (Codella et al., 2019): The ISIC-2018 dataset, released as part of the ISIC 2018 Task 1
challenge, contains a total of 3,694 dermoscopic images, each paired with a binary segmentation mask
outlining the precise lesion boundaries. This dataset serves as a critical benchmark for evaluating
automated skin lesion segmentation methods.

B.2 IMPLEMENTATION DETAILS

Our experiments are conducted on NVIDIA RTX 3090 GPUs. The code is based on PyTorch (Paszke|
2019). Due to hardware memory constraints, we use different batch sizes for classification and
segmentation tasks. Specifically, classification tasks use a batch size of 8, while segmentation tasks
are restricted to a batch size of 1, as larger batch sizes lead to out-of-memory errors. The test set is
fixed at 20% of the total dataset, ensuring consistent evaluation across all experimental settings. We
employ Adam optimizer (Kingma, 2014) for both the head and DKA modules, albeit with different
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learning rates for each. When reducing the training data sizes, we proportionally decrease samples
per class to maintain balance. Even in extreme low-data scenarios, we ensure that each class retains
some images to prevent complete absence of any category. The weights of the down-projection
layers and the biases and weights of the up-projection layers are initialized to zero, providing a stable
starting point for training.

C ADDITIONAL SEGMENTATION RESULTS ON NATURAL-PRETRAINED
MODELS

C.1 SEGMENTATION RESULTS WITH ADDITIONAL METRICS

To complement the segmentation results in the main text, we provide additional evaluations in
Table@ where performance is reported in terms of Dice scores across three datasets (BRATS, BUSI,
ISIC-2018) under different training ratios (0.63%, 1.25%, 100%). The results confirm that DKA
consistently achieves higher Dice scores than all baseline methods across datasets and data scales,
further demonstrating its robustness in capturing both local details and global context for medical
image segmentation.

Table 5: Comparison of Baselines and DKA on Three Segmentation Datasets Under Varying
Data Sizes. Experiments are based on the pretrained Segmenter-B. Results are reported in terms of
Dice (%). The best results are highlighted in bold.

M \ BRATS \ BUSI \ ISIC-2018
ethods

\ 0.63% 1.25% 100% \ 0.63% 1.25% 100% \ 0.63% 1.25% 100%
Full Fine-tuning 16.94 36.59 84.45 | 42.11 4883 7294|7675 84.81 87.37
Linear Probing 1472 33.62 8226 | 40.67 4844 70.19 | 7570 83.08 85.12
BitFit (Zaken et al.,|2021) 240 2506 77.69 | 13.31 29.18 68.90 | 69.46 79.41 84.46
Prompt (Jia et al.,[2022) 242 2641 7844 16.84 31.61 69.76 | 72.25 80.52 84.80
LoRA (Hu et al .| 2022 7.40 28.86 81.29 | 24.72 36.59 70.09 | 73.97 81.68 84.95

Adapter (Houlsby et al.|[2019) 11.60 31.86 83.73 | 30.77 41.14 7098 | 74.83 84.26 86.82
Adapterformer (Chen et al.|[2022) | 11.30 31.61 84.08 | 29.66 40.86 71.08 | 74.74 8429 86.73

Convpass (Jie et al.|[2024) 13.31 32.83 84.60 | 33.11 44.39 71.87 | 75.14 84.77 87.35
CIAT (Zhu et al.| [2021) 7.33 2872 82.64|23.63 33.62 70.77 | 73.63 82.02 85.77
AIM (Yang et al.| [2023) 8.75 3049 83.71| 26.69 38.11 70.79 | 7441 83.75 86.78
DKA 17.29 3743 85.69 | 42.34 51.33 74.13 | 77.39 8524 87.97

C.2 SEGMENTATION RESULTS WITH MORE DATA SCALES

To further validate the performance of DKA in segmentation tasks, we present additional results across
a wider range of data scales (12.5% to 75%) in Table [f] These results, covering three segmentation
medical imaging datasets, provide a comprehensive assessment of our model’s performance in mid-
scale training regimes, complementing the extreme low-data (0.63% and 1.25%) and full-data (100%)
findings discussed in Section{f.T). Consistent with our previous observations, DKA outperforms all
baselines across all datasets and training set ratios, achieving the highest mloU and Dice metrics.
This demonstrates the effectiveness of DKA, highlighting its ability to effectively capture both local
detail and global context across varying supervision levels, providing a reliable solution for medical
image segmentation.
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Table 6: Additional Segmentation Results on Three Datasets with Varying Training Set Ratios.
Experiments are based on the pretrained Segmenter-B. Results are reported as percentages for mloU
and Dice. The best results are highlighted in bold.

Methods \ BRATS \ BUSI \ ISIC-2018 \
| 125% 25%  50%  75% | 125% 25%  50%  15% | 12.5% 25%  50%  75% |
mloU (%)
Full Fine-tuning 55.28 61.35 70.43 71.50 51.44 53.70 5535 56.8 74.60 7536 7550  77.10

53.22 5943 6775 68.11 48.93 50.76 5197 5341 71.65 7199  72.18  73.63

BitFit \ 47.21 5346 6030 61.59 36.30 41.07 4245  48.09 65.27 66.36  68.00 71.55
Prompt \mlm 48.38 54.08 62.73 63.01 38.49 4338 4691 50.30 68.54 69.16  69.63 72.31
LoRA \Emlm» 50.77 57.19 6480 67.75 41.22 47.72 5042 5297 69.64 70.83 71.61 72.95
Adapter \Wﬁl 52.52 59.90  69.22  70.65 45.25 49.66 52.11 54.19 73.54 73.87 7448  76.29
Adapterformer ( 52.12 59.36  69.11 70.37 4522 49.25 5240 5444 73.45 73.79 74.15 75.66
Convpass (Jie et al.[|2024) 5408 6108 69.67 7126 | 4930 51.77 5361 5527 | 7431 7498 7513 76.94
CIAT ( 2021 5170 5823 6759 6845 4074 4772 5171 5385 | 70.83 7142 7234 7457
AIM ( 51.09 5843  68.11 6934 | 4344 4815 5120 5396 | 7271 7336 7355 7530
DKA 56.54 6292 7195 7292 | 5230 5476 5643 58.08 | 7529 75.83 76.02 78.06
Dice (%)
Full Fine-tuning 7120 7605 82.65 8338 | 6793 69.88 7126 7245 8546 8595 86.04 87.07

Linear Probin,

g 69.47 7333  80.77 81.03 65.71 6734 6839  69.63 8348 8371 8385 84.81
BitFit (Zaken et

64.86 6943 7686  76.14 | 53.57 5829 6145 6642 7820  79.21  80.13  81.78

Prompt {Jia et al |2 6521 7020 77.10 7731 | 5559 60.51 6386 6707 | 8133 8177 8210 83.93
LoRA ( 022, 6735 7277 7864 8077 | 5837 6461 6704 6926 | 82.10 8292 8345 8436
Adapter (Houlsby et al. 6887 7492 8181 8280 | 6230 6636 6852 7029 | 8475 8497 8537 8655
Adapterformer (Chen et al 6853 7449 8173 8261 | 6228 6600 6876 7050 | 8469 8492 8516 86.15
Convpass (Tie et al|[2024) 7020 7584 8213 8322 | 6604 6822 69.80 7119 | 8526 8570 8580 86.97

3021) 68.17 7360 80.66 8127 | 57.89 6461 6817 7001 | 8292 8333 8395 8543
1 [2023] 67.63 7376 8103 8190 | 6056 6500 6773 70.10 | 8420 84.63 8476 8591
DKA 7224 7724 8369 8434 | 68.68 7077 7215 7348 | 8591 8625 8638  87.68

19



Under review as a conference paper at ICLR 2026

D ADDITIONAL CLASSIFICATION RESULTS ON NATURAL-PRETRAINED
MODELS

D.1 CLASSIFICATION RESULTS WITH ADDITIONAL METRICS

In addition to the accuracy results reported in the Section .1 we further provide a comprehensive
evaluation of DKA and baselines using F1 and sensitivity (SEN) scores on three classification datasets:
COVID, BUSI, and ISIC-2019. As summarized in Table [/, DKA consistently achieves the best
or near-best performance across all data scales (0.63%, 1.25%, and 100%). In particular, under
low-data regimes, DKA exhibits notable improvements over existing PEFT approaches such as BitFit,
LoRA, and Adapter-based methods, highlighting its robustness in capturing discriminative features
when supervision is scarce. These results further validate the effectiveness of DKA beyond standard
accuracy and confirm its ability to improve both predictive balance (F1) and clinical reliability (SEN)
in medical image classification.

Table 7: Comparison of Baselines and DKA on Three Classification Datasets Across Varying
Data Sizes. Experiments are based on the pretrained ViT-B. SEN is reported as percentages, while
F1 is presented as raw value. The best results are highlighted in bold.

\ COVID \ BUSI \ ISIC-2019
Methods

\ 0.63% 1.25% 100% \ 0.63% 1.25% 100% \ 0.63% 1.25% 100%

F1

Full Fine-tuning 0.845 0.855 0.970| 0.697 0.752 0.939| 0.293 0.317 0.539
Linear Probing 0.831 0.843 0.932 | 0.710 0.756 0.897 | 0.287 0.307 0.442
BitFit (Zaken et al.,|2021) 0.718 0.762 0.950 | 0.542 0.573 0.879| 0.184 0.235 0.501
Prompt (Jia et al.,[2022) 0.753 0.819 0.972 | 0.588 0.618 0.930 | 0.218 0.235 0.534
LoRA (Hu et al .} 2022 0.786 0.814 0.973 | 0.603 0.641 0.945| 0.214 0.235 0.528

Adapter (Houlsby et al.|2019) 0.802 0.833 0.978 | 0.607 0.704 0.931 | 0.231 0.248 0.501
Adapterformer (Chen et al.|[2022) | 0.793 0.807 0.974 | 0.614 0.693 0.918 | 0.228 0.231 0.495

Convpass (Jie et al.||[2024) 0.807 0.833 0.969 | 0.622 0.718 0.938 | 0.253 0.275 0.512
CIAT (Zhu et al.|[2021) 0.748 0.794 0947 | 0574 0.635 0.899 | 0.162 0.195 0.429
AIM (Yang et al.| [2023) 0.776  0.804 0.953 | 0.602 0.682 0.907 | 0.182 0.227 0.433
DKA 0.865 0.881 0.981 | 0.720 0.774 0.951 | 0.296 0.326 0.542
SEN (%)
Full Fine-tuning 83.57 84.15 9724 | 69.27 7426 93.46 | 2776 30.64 52.35
Linear Probing 82.64 8349 9274|7025 7443 87.74 | 26.87 28.68 42.71
BitFit (Zaken et al.| 2021) 70.36 7534 9445|5133 5441 8552 1850 21.74 4755
Prompt (Jia et al, [2022) 7431 81.76 96.57 | 56.71 59.35 91.34| 20.65 23.92 49.28
LoRA (Hu et al.|[2022) 7742 80.76 96.76 | 59.37 61.41 92.07 | 20.11 24.13 50.75

Adapter (Houlsby et al.}[2019) 81.38 8240 97.41 5940 66.69 9258 | 21.84 24.93 49.50
Adapterformer (Chen et al.|[2022) | 79.34 81.51 97.40 | 60.96 65.44 90.72 | 20.36 22.78 48.31

Convpass (Jie et al.||2024) 81.23 8271 9576 | 61.79 67.90 92.74 | 24.63 2736 51.12
CIAT (Zhu et al.|[2021) 7493 7834 9435|5452 61.57 87.85]| 1624 20.17 42.18
AIM (Yang et al., [2023) 76.04 80.76 94.50 | 58.75 65.46 89.45| 18.06 21.07 47.16
DKA 8441 87.76 98.12 | 71.82 76.78 95.46 | 28.20 31.50 53.69
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D.2 CLASSIFICATION RESULTS WITH MORE DATA SCALES

To further substantiate the advantages of DKA identified in the main text, we present additional
classification results across a wider range of data scales (12.5% to 75%) in Table@ These results
reinforce the key findings, demonstrating that DKA consistently outperforms other baselines across
all datasets (COVID, BUSI, ISIC-2019). This superior performance holds not only in extreme
low-data regimes (0.63% and 1.25%) and full-data regimes (100%) but also across mid-scale settings,
confirming that DKA maintains its advantage regardless of data availability. This performance reflects
the effectiveness of its dual-branch design, which simultaneously captures local detail and broader
context, providing a critical edge in medical image classification.

Table 8: Additional Classification Results on Three Datasets with Varying Training Set Ratios.
Experiments are based on the pretrained ViT-B. ACC and SEN are reported as percentages, while F1
is presented as raw value. The best results are highlighted in bold.

Methods \ COVID \ BUSI \ ISIC-2019 \
| 125% 25%  50%  75% | 125% 25%  S0%  75% | 125% 25%  S0%  75% |
ACC (%)
Full Fine-tuning 9590 9710 97.92 9828 | 8542 9001 9132 93.00 | 69.81 7270 7657 79.06
9284 9343 9416 9434 | 7923 8403 8654 8722 | 63.66 6575 6660 6828
83.02  90.51 9357 9350 | 69.01 7500 8402 9098 | 6096 6317 6633  72.10
8732 9406 9638 97.53 | 7252 8040 8791 9115 | 6246 67.24 69.67  75.09
8850 9588 9746 9843 | 7745 8550 9077 9325 | 6262 6815 7347 7756
9432 9604 97.14 97.67 | 8051 8618 8978 9073 | 6554 6851 7055 7341
90.00 9219 9467 9739 | 7800 8519 87.75 8937 | 63.94 6945 69.73 71.88
9489 9648 97.32 9773 | 8L79 8689 89.65 9094 | 6696 6956 7127 7425
88.98 9273 9423 9545 | 7247 7932 8356 87.55 | 59.84 6516 67.55 7025
8038  93.88 9576 9617 | 7661 8200 8563 8692 | 65.62 6924 70.82 7358
9686 9734 9829 9855 | 8726 9110 9373 9501 | 7047 7404 7742  80.06
F1
Full Fine-tuning 0930 0951 0956 0968 | 0833 0.874 0902 0925 | 0402 0435 0481 0502
Linear Probing 0898 0916 0922 0929 | 0782 0828 0856 0861 | 0335 0351 0379 0392
BitFit { 0812 0860 0903 0917 | 0636 0743 0821 0875 | 0276 0344 0363 0411
Prompt { 0848 0921 0938 0953 | 0683 0795 0862 0905 | 0319 0384 0397 0446
LoRA (Hu et al]] 0866 0934 0956 0965 | 0747 0847 0886 0932 | 0331 0387 0439 0462
Adapter { yetal 0920 0946 0958 0967 | 0783 0842 0871 0897 | 0354 0382 0423 0457
Adapterformer ( 0883 0905 0920 0953 | 0767 0826 0856 0873 | 0340 0408 0416 0427
Convpass {Jie et al}[2024) 0923 0941 0958 0962 | 0794 0840 0878 0907 | 0372 0409 0421 0458
CIAT {Zhu et al |[3021] 0843 0905 0911 0925 | 0708 0788 0813 0844 | 0293 0364 0375 0417
AIM (Yang et al. 0869 0917 0928 0944 | 0731 0813 0839 0842 | 0334 0404 0415 0425
DKA 0949 0958 0970 0978 | 0.856 0.891 0931 0943 | 0407 0456 0488 0514
SEN (%)
Full Fine-tuning 9324 9516 9552 9668 | 8224  87.69 8992 9105 | 3884 4001 4156 4936
Linear Probing 8872 9013 9085 9206 | 7650 8125 8431 8528 | 3267 3481 3612 3821
BitFit (Zaken et 7933 8527 8938 9L15 | 6385 7262 8077 8631 | 2823 3585 4162 4438
Prompt (Jia et al | 2 8356 9152 9324 9495 | 6827 7725 8547 9054 | 3154 3763 4300 4675
LoRA 8515 9290 9565 9622 | 7112 8134 8793 9023 | 31.88 3731 4261 4690
Adapter (Houlsby et a 9193 9365 9536 9629 | 7653 8578 8§7.39 88.03 | 34.65 3731 4116 4412
Adapterformer ( 8735 89.80 9104 9554 | 7368 8274 8579 8716 | 3252 3910 3975 4156
Convpass ( 9200 9451 9492 9536 | 7678 8073 8503 8821 | 3536 39.84 4158  43.99
CIAT (Zhu et al ][ 8452 8949 9172 9361 | 69.64 7649 8083 8421 | 2179 2431 3625 3650
AIM : 8651 9022 9253 9327 | 7386 79.80 8377 8427 | 3423 3780 40.65 4262
DKA 9524 9627 9718 9759 | 83.88  89.62 9346 93.89 | 3972 4407 4750 5039
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E ADDITIONAL RESULTS ON MEDICAL-PRETRAINED MODELS

To provide more comprehensive evidence beyond the main paper, we further report detailed results
using medical-pretrained models. Table [9] presents classification performance on the ISIC-2019
dataset with RadImageNet-pretrained ResNet-50 (Mei et al., 2022), where DKA consistently improves
over linear probing and standard adapter tuning across different training ratios in terms of ACC,
F1, and SEN. Table @]reports segmentation results on the BUSI dataset with MedSAM (Ma et al.,
2024), showing that DKA achieves clear gains over both baselines in terms of mloU and Dice. These
extended results corroborate our main findings in Section demonstrating that the advantages of
DKA generalize robustly to medical-pretrained models and are not restricted to natural-pretrained
backbones.

Table 9: Additional Classification Results based on the RadImageNet-pretrained ResNet-50
backbone on the ISIC-2019 dataset under varying training ratios. SEN is reported as percentages,
while F1 is presented as raw value. The best results are highlighted in bold.

Methods 0.63% 1.25% 100%

F1
Full Fine-tuning ~ 0.223 0262  0.483
Linear Probing 0.216 0.236  0.387

BitFit 0.172 0.208  0.411

Prompt 0.200 0.232  0.439

LoRA 0.203 0.230  0.431

Adapter 0.218 0.242  0.440

DKA 0.230 0.278  0.498
SEN (%)

Full Fine-tuning ~ 22.57 26.86 43.14
Linear Probing 20.28 2452  37.61

BitFit 17.69 22.86  40.20
Prompt 19.83 2442  44.05
LoRA 19.79 2577 4438
Adapter 20.34 25.13 4457
DKA 23.40 27.89 45.39

Table 10: Additional Segmentation Results based on MedSAM backbone on the BUSI segmenta-
tion task under varying training ratios. Results are reported in terms of Dice (%). The best results
are highlighted in bold.

Methods 0.63% 1.25% 100%

Dice (%)
Full Fine-tuning  54.54 63.08  81.15
Linear Probing 50.09 60.90  79.68

BitFit 23.46 47.31 74.15
Prompt 25.19 50.65  78.82
LoRA 32.58 55.03 80.42
Adapter 52.28 61.81 80.35
DKA 55.39 65.24  83.97
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F ADDITIONAL ABLATIONS

F.1 DKA IN DIFFERENT BACKBONE

To evaluate whether the advantages of DKA transfer to other architectures, we repeat classification
experiments on the pretrained Swin-B using the same datasets: COVID, BUSI, and ISIC-2019. As
shown in Figure [9] DKA consistently outperforms full fine-tuning and all PEFT baselines across
different data scales. Critically, while other PEFT methods struggle to match linear probing, and
often degrade substantially in constrained-data regimes, DKA maintains strong performance in both
settings.

COVID BUSI ISIC-2019
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Figure 9: Performance of Baselines and DKA across Various Training Data Sizes. AACC =
ACCpRastines — ACCLinearProbing- EXxperiments are based on the pretrained Swin-B for COVID,
BUSI, and ISIC-2019.

F.2 PERFORMANCE OF DUAL-KERNEL CONVOLUTION AND ASYNCHRONOUS LEARNING
RATES

To further evaluate the impact of our proposed enhancements, including the introduction of dual-
convolution design and a learning rate split strategy within the DKA module, we present additional
results in Table[TT] This table compares DKA against two baselines (Adapter + Dual-Conv and Adapter
+ LR Split) across multiple datasets (COVID, BUSI, ISIC-2019) and training set ratios. Consistently,
DKA outperforms both baselines, achieving the highest overall accuracy in each dataset, with notable
gains observed even in low-data regimes. This confirms the effectiveness of our combined strategy in
capturing richer local-global features and improving learning stability.

Table 11: Performance Comparison of Enhanced Adapter Designs. Experiments are conducted
on the pretrained ViT-B across three medical imaging classification datasets and varying training set
ratios by reporting ACC (%).

Training Set Size
0.63% 125% 125% 25% 50% 75% 100%
Adapter + Dual-Conv ~ 86.78 88.89  96.01 9698 98.13 97.95 98.61

Datasets Methods

COVID Adapter + LR Split 88.04 88.95 9620 97.04 97.64 98.07 98.79
Ours 89.01 91.06 96.86 97.34 98.29 98.55 99.21

Adapter + Dual-Conv ~ 67.73  77.32 8339 89.14 90.73 91.05 94.25

BUSI Adapter + LR Split 7037 77.64 8471 89.46 91.10 93.37 9493
Ours 7423 79.64 87.26 91.10 93.73 95.01 95.89

Adapter + Dual-Conv = 5949  60.51 70.12 7327 76.60 7852 8225
ISIC-2019  Adapter + LR Split 59.06 60.09 6999 7224 76.07 78.52 81.67
Ours 60.52 6232 7047 74.04 77.42 80.06 83.09
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F.3 DKA POSITION

To understand how the position of inserted DKA influences performance, we explore three placement
strategies using the pretrained ViT-B with 12 transformer blocks: inserting DXA into the bottom
4 blocks (Blocks 0-3), middle 4 blocks (Blocks 4-7), and top 4 blocks (Blocks 8—11). We also
include a reference setting where DKA is inserted into all layers. We extend our analysis to three
medical imaging classification datasets: COVID, BUSI, and ISIC-2019. As shown in Table@ the
position of DKA significantly affects model performance across various training set sizes. Among
partial configurations, placing DKA in the middle layers consistently outperforms the top and bottom
placements across datasets. Notably, under low-data regimes (e.g., 0.63%), placing DKA in the
top layers offers stronger performance than bottom or middle placement, highlighting the value
of adapting higher-level representations when supervision is scarce. This trend is consistent with
observations from prior work (Yang et al.,2023), which reported that inserting adapters in bottom
blocks yields limited performance.

Table 12: Effect of Position. Experiments are conducted on the pretrained ViT-B across three medical
imaging classification datasets and varying training set ratios by reporting ACC (%) with standard
deviations.

Training Set Size
0.63% 1.25% 12.5% 25% 50% 75% 100%

Bottom  86.04 £1.61 88.68 £1.38 93.69+£0.89 94.29+0.75 95.524+0.60 96.64+0.45 97.34+0.35
Middle 86.80+1.45 89.18+£125 9543 +£0.53 96.80+041 97.76+029 9843 £0.25 98.79+0.21

Datasets Positions

CoviD Top 87.78 121 9050 £1.13 9472 £0.69 96.12+055 97.22+0.38 9823 £0.32 98.53 +0.26
ALL 89.01 £0.90 91.06 =0.84 96.86+ 0.40 97.34 +0.32 98.29 £0.26 98.55+0.24 99.21 +0.13

Bottom 7147 £2.06 77.16 £1.47 8486+ 1.11 88.00+£0.65 91.194+043 92.794+0.33 93.94+0.27

BUSI Middle  73.48 £1.79 7822+ 1.28 86.62+0.75 9043 £0.44 9343 +£025 9494+0.19 9546+0.11
Top 73.86 £1.64 78.16£1.22 8648+0.84 90.08+045 93.07+£0.28 94.62+0.20 95.00=+0.13

ALL 7423 £1.53 79.64+1.17 87.26 £0.64 91.10£0.39 93.73+0.23 95.01 +0.12 95.89 £ 0.09

Bottom  56.87 £2.47 58.68 £2.11 67284152 7037+126 7343£1.05 76.16+0.73 79.52+0.46

ISIC-2019 Middle  57.64 £2.33 60.01 £2.05 69.88+1.34 7395+£1.06 76.74£0.74 7943 £043 82.59+0.20

Top 59.89+2.17 61.79+£195 6932+138 7259 +1.18 76.04+£0.79 7842+0.52 81.90+0.25
ALL 60.52 +2.02 62.32+1.85 7047 £1.26 74.04+£099 77.42+0.67 80.06+0.36 83.09+0.14

F.4 ERF OF ADAPTER IN DIFFERENT BACKBONE

To further validate our findings on the impact of data scarcity on Adapter performance, we extend the
effective receptive field (ERF) analysis to the pretrained Swin-T model (Liu et al.l 2021), as shown in
Figure[I0} This complementary analysis reinforces our observations from the pretrained ViT-B model
(Figure [2), revealing a similar contraction of ERFs as the training set size decreases. Specifically,
under extreme data scarcity (e.g., 0.63% and 1.25% training data), the pretrained Swin-T exhibits
a sharply reduced EREF, aligning with the earlier findings (see Section [2) that Adapters can disrupt
pretrained feature representations under severe data constraints. This result suggests that the negative
impacts observed in the main text are not limited to a single architecture but are likely a more general
phenomenon affecting a wide range of vision backbones.

0.63% 12.5% 25% 50% 100%

Figure 10: Effective Receptive Field of Adapter under Different Training Set Ratios. Experiments
are conducted on the COVID dataset using the pretrained Swin-T.

24



Under review as a conference paper at ICLR 2026

F.5 EFFECT OF DILATED VS. STANDARD KERNELS

We further compare dilated convolutional kernels with our standard large-kernel design. In particular,
we evaluate several dilated kernel settings, including 3 x 3 with dilation rates of d = 3,25, 11 x 11
with d = 5, and 26 x 26 with d = 2, against the dual-kernel configuration of 5 x 5+ 51 x 51. The
classification results on the BUSI dataset are shown in Table and the segmentation results on the
ISIC-2018 dataset are reported in Table[T4]

Across both datasets, the 5 x 5 + 51 x 51 design consistently achieves the best performance in terms
of ACC, F1, and SEN for classification, as well as mIoU and Dice for segmentation. Although dilated
kernels provide a larger effective receptive field, they underperform compared to explicitly using
a large standard kernel. This suggests that our dual-kernel design captures both local and global
information more effectively than dilated alternatives, highlighting the efficiency of standard large
kernels in the DKA framework.

Table 13: Comparison of different kernel designs on the BUSI dataset for classification under
varying training ratios. Experiments are based on the pretrained ViT-B. ACC and SEN are reported
as percentages, while F1 is presented as raw value. The best results are highlighted in bold. “d”
represents the dilation rate in dilated convolution.

Kernel Designs 0.63% 1.25% 100%

ACC (%)
3x3(d=3)+3x3(d=25) 66.77 7732  93.61
3x3(d=3) + 11x11 (d=5) 6741 77.64 9425
3x3(d=3) +26%26 (d=2) 68.69  77.96  94.37
5x5+51x51 7423 7946  95.89

F1
3%3 (d=3) + 3x3 (d=25) 0.641 0.751  0.931
3x3(d=3)+11x11 (d=5) 0.650 0.756  0.936
3%3 (d=3) +26x26 (d=2)  0.663 0.758  0.942
5x5+51x51 0.720 0.774  0.951

SEN (%)
3x3 (d=3) + 3x3 (d=25) 62.81 7435  92.36
3x3(d=3)+11x11 (d=5) 63.99 7443  93.44
3x3 (d=3) +26x26 (d=2) 64.72 7471 94.03
55+ 51x51 71.82 76.78  95.46

Table 14: Comparison of different kernel designs on the ISIC-2018 dataset for segmentation
under varying training ratios. Experiments are based on the pretrained Segmenter-B. mIoU and
Dice are reported as percentages. The best results are highlighted in bold. “d” represents the dilation
rate in dilated convolution.

Kernel Designs 0.63% 1.25% 100%

mloU (%)
3%3 (d=3) + 3x3 (d=25) 60.25 72.71 76.43
3x3(d=3)+11x11 (d=5) 61.46 73.11 76.97
3x3 (d=3) + 26x26 (d=2) 62.27 73.43 77.48
5x5+ 5151 63.13 74.27 78.53

Dice (%)
3x3 (d=3) + 3x3 (d=25) 75.19 84.20 86.64
3x3(d=3)+11x11(d=5) 76.13 84.46  86.99
3x3 (d=3) +26x26 (d=2) 176.75 84.68 87.31
5x5+451x%51 77.39 85.24 8797
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F.6 EFFECT OF DIVERSE KERNEL COMBINATIONS

To further analyze the contribution of different kernel configurations in DKA, we evaluate multiple
kernel combinations for both classification and segmentation tasks. Specifically, we compare three
settings: (i) 5 x 5+ 11 x 11 + 51 x 51, (i) 5 x 54+ 31 x 31 4+ 51 x 51, and (@) 5 x 5+ 51 x 51.
Table [15|reports results on the BUSI classification dataset, while Table 16| presents results on the
ISIC-2018 segmentation dataset.

Across both tasks, we observe that the dual-kernel configuration (5 x 5 + 51 x 51) consistently
achieves the best trade-off, outperforming the three-branch alternatives in terms of ACC, F1, and
SEN for classification, as well as mIoU and Dice for segmentation. These results indicate that adding
intermediate kernels (e.g., 11 x 11 or 31 x 31) does not provide additional benefits, and a simpler
dual-kernel design is sufficient to capture both local and global dependencies. This further validates
the efficiency of our proposed kernel selection strategy within DKA.

Table 15: Comparison of diverse kernel combinations on the BUSI dataset for classification
under varying training ratios. Experiments are based on the pretrained ViT-B. ACC and SEN are
reported as percentages, while F1 is presented as raw value. The best results are highlighted in bold.

Kernel Combinations 0.63% 1.25% 100%

ACC (%)
Sx5+11x11+51x51  72.68 77.00  94.89
5x5+31x31+51x51  71.04 76.68  94.57
5x5+51x51 74.23 7946  95.89

F1
Sx5+11x11+51%x51  0.709 0.743 0942
5x5+31x31+51x51  0.694 0.738  0.936
5x5+451x51 0.720 0.774  0.951

SEN (%)
5x5+11x11+51x51  69.17 73.56 9411
5x5+31x31+51%x51  68.39 72.85  93.62
55 +51x51 71.82 76.78  95.46

Table 16: Comparison of diverse kernel combinations on the ISIC-2018 dataset for segmentation
under varying training ratios. Experiments are based on the pretrained Segmenter-B. mIoU and
Dice are reported as percentages. The best results are highlighted in bold.

Kernel Combinations 0.63% 1.25% 100%

mloU (%)
S5x5+11x11+51%x51 6272 73.76 78.06
5x5+31x31+51%x51 6240 73.63 77.54
5x5+51x51 63.13 74.27 78.53

Dice (%)
S5x5+11x11+51x51 77.09 84.90 87.68
5x5+31x31 +51x51 76.84 84.81 87.35
5x5+51x%x51 77.39 85.24 87.97
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F.7 EFFECT UNDER EXTREME LOW-DATA REGIMES

To further investigate the limits of DKA, we conduct experiments under an extreme low-data regime
with only 0.125% of the training set available. This setup approximately corresponds to a 5-shot
setting for COVID classification and genuine 1-shot settings for BUSI and ISIC-2019 (classification),
as well as BRATS, BUSI, and ISIC-2018 (segmentation). The results are reported in Table|l7|and
Table 18]

Across all datasets, DKA consistently outperforms both Linear Probing and standard Adapter, even
under such highly constrained supervision. For example, on ISIC-2019 classification, DKA improves
ACC from 52.54% (Linear Probing) to 55.95%, and F1 from 0.227 to 0.263. Similarly, on BUSI
segmentation, DKA achieves a Dice of 37.43%, substantially higher than Linear Probing (23.02%) and
Adapter (24.93%). These results confirm that the proposed large-kernel design remains robust and
effective even in the most challenging few-shot scenarios, highlighting its practicality for data-scarce
medical applications.

Table 17: Comparison of Linear Probing, Adapter, and DKA on three classification datasets
under 0.125% training data. Experiments are based on the pretrained ViT-B. ACC and SEN are
reported as percentages, while F1 is presented as raw value. The best results are highlighted in bold.

Methods COVID BUSI ISIC-2019
ACC (%)

Linear Probing 76.51 37.06 52.54

Adapter 71.38 35.46 47.25

DKA 78.74 39.62 55.95

F1

Linear Probing 0.735 0.273 0.227

Adapter 0.704 0.247 0.153

DKA 0.787 0.340 0.263
SEN (%)

Linear Probing 72.53 33.87 21.58

Adapter 68.40 30.41 15.07

DKA 75.64 37.13 24.39

Table 18: Comparison of Linear Probing, Adapter, and DKA on three segmentation datasets
under 0.125% training data. Experiments are based on the pretrained Segmenter-B. mloU and
Dice are reported as percentages. The best results are highlighted in bold.

Methods BRATS BUSI ISIC-2018
mloU (%)
Linear Probing 3.25 19.64 53.21
Adapter 1.20 14.24 47.05
DKA 6.36 32.83 60.25
Dice (%)
Linear Probing 6.94 23.02 69.46
Adapter 2.40 24.93 63.99
DKA 11.96 37.43 75.19
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F.8 EFFECT ON MEDICAL-PRETRAINED VISION-LANGUAGE MODELS.

To further validate the generalization ability of DKA, we extend our evaluation to medical vision-
language models. Specifically, we adopt MedCLIP (Wang et al., 2022)) as the backbone and follow
the few-shot image classification protocol commonly used in prior works on vision-language adapta-
tion (Shakeri et al.l 2024; Silva-Rodriguez et al,2024)). We report results on the BUSI dataset under
1-shot, 4-shot, and 8-shot settings, where each configuration is averaged over five random seeds. As
summarized in Table[T9] DKA consistently surpasses linear probing and standard adapter tuning across
all support sizes. These results demonstrate that the benefits of DKA are not limited to vision-only
large pretrained models, but also extend to multimodal vision-language models, highlighting its
robustness in broader medical Al scenarios.

Table 19: Comparison of different methods under few-shot settings on the BUSI dataset based
on MedCLIP. Results are reported in terms of ACC, F1, and SEN.

Tuning Strategies 1-shot 4-shot 8-shot

ACC (%)
Linear Probing 4725  54.21 58.41
Adapter 48.86  56.08  59.32
DKA 51.20 57.82  62.27
F1
Linear Probing 0421 0494  0.554
Adapter 0.435 0510 0.566
DKA 0487  0.542  0.598
SEN (%)
Linear Probing 41.55 48.16 5245
Adapter 42.87 49.72  53.96
DKA 46.17 5185  55.87

F.9 FREQUENCY-DOMAIN ANALYSIS OF KERNEL SIZES

To better understand the complementary roles of small and large kernels in DKA, we analyze their
frequency responses using the radial power spectral density (PSD). Specifically, we compute the
spectral centroid f, and the normalized frequency fqg that captures 90% of the cumulative energy.
Table 20 shows the results for 5 x 5 and 51 x 51 kernels. The smaller kernel exhibits a higher spectral
centroid (f. = 0.618 vs. 0.503), indicating stronger sensitivity to high-frequency details. In contrast,
the larger kernel shifts energy towards lower frequencies, facilitating global context modeling. This
analysis provides further evidence for the effectiveness of combining diverse kernel sizes in DKA.

Table 20: Frequency-domain analysis of kernel sizes. Results are reported as mean-+std over different
trained models.

Kernel Size fe foo
5x5 0.618 £0.018 0.924 +0.011
51 x 51 0.503 £ 0.004 0.904 + 0.003

F.10 INFERENCE LATENCY AND MEMORY USAGE

We also report the inference efficiency of different methods in terms of latency and memory consump-
tion on the BUSI dataset using the pretrained ViT-B. As summarized in Table 2T} DKA introduces only
marginal overhead compared to the standard adapter framework, with inference latency increasing by
less than 0.5 ms and memory usage by less than 6 MB. These differences are negligible in practice,
indicating that the proposed large-kernel design achieves substantial performance gains with minimal
computational cost.
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Table 21: Comparison of inference latency and memory usage on the BUSI dataset based on the
pretrained ViT-B. DKA introduces only negligible overhead compared to standard adapter variants.

Methods Inference Latency (ms) Memory (MB)
Linear Probing 6.78 352.81
Adapter 11.54 433.70
Adapter + 5x5 Conv 11.66 433.90
Adapter + 51x51 Conv 11.69 439.56
DKA 11.97 439.63

F.11 PARAMETER EFFICIENCY ANALYSIS

The DKA module integrates two depthwise convolution branches with kernel sizes k1 and ko within
each adapter. These convolutions are applied independently on each of the d channels, contributing
d(k% + k2) parameters per module. Since DKA is inserted twice in every Transformer block (after
the attention and feedforward layers), the total number of additional parameters grows linearly
with the number of blocks. Even with two kernels (e.g., k1 = 51, k2 = 5), the total number of
trainable parameters introduced by all DKA modules remains less than 2% of the pretrained backbone,

maintaining strong parameter efficiency while providing strong performance gains, especially in
low-data regimes.
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G PSEUDOCODE

Algorithm 1 Pseudo-code of a Transformer block with DKA

class DKA:

def

def

__init_ (self,

self.downsample

dim,

self.conv_large =

self.conv_small
self.activation
self.upsample =

middle_dim,

kernel_large,

Linear (dim, middle_dim)

DepthwiseConv (middle_dim,
DepthwiseConv (middle_dim,

GELU ()

Linear (middle_dim, dim)

forward(self, x):
# Store the input for the residual connection

residual = x

x = self.downsample (x)

# Dual—-Path Convolutions (Large + Small)
x_large = self.conv_large (x)

x_small = self.conv_small (x)

x = x_large + x_small

x = self.activation (x)
x = self.upsample (x)
x = x + residual

return x

class TransformerBlock_with DKA:
_ init_ (self, dim, num_heads,
# Original ViT components

def

def

self.attn = MultiheadAttention (dim,

self.norml = LayerNorm (dim)
self.mlp = MLP (dim, mlp_ratio)
self.norm2 = LayerNorm (dim)

# DKA Adapter

self.dka = DKA (dim,

forward(self, x):

residual = x

x = self.norml (x)

x = self.attn (x)
x = x + residual

x = self.dka (x)

residual = x

x = self.norm2 (x)

x = self.mlp(x)

X = X + residual

x = self.dka (x)

return x

middle_dim,

mlp_ratio,

kernel_large,

middle_dim,

num_heads)

kernel_small) :

kernel_large)
kernel_small)

kernel_large,

kernel_small)
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