
Flexible Tails for Normalizing Flows

Tennessee Hickling * 1 Dennis Prangle * 1

Abstract
Normalizing flows are a flexible class of probabil-
ity distributions, expressed as transformations of a
simple base distribution. A limitation of standard
normalizing flows is representing distributions
with heavy tails, which arise in applications to
both density estimation and variational inference.
A popular current solution to this problem is to
use a heavy tailed base distribution. We argue this
can lead to poor performance due to the difficulty
of optimising neural networks, such as normaliz-
ing flows, under heavy tailed input. We propose
an alternative, “tail transform flow” (TTF), which
uses a Gaussian base distribution and a final trans-
formation layer which can produce heavy tails.
Experimental results show this approach outper-
forms current methods, especially when the target
distribution has large dimension or tail weight.

1. Introduction
A normalizing flow (NF) expresses a complex probability
distribution as a parameterised transformation of a simpler
base distribution. A NF sample is

x = T (z; θ), (1)

where z is a sample from the base distribution, typically
N (0, I). A number of transformations have been proposed
which produce flexible and tractable distributions. Typically
multiple transformations are composed to form T with the
desired level of flexibility. Applications include density
estimation (fitting a transformation to observed data points)
and variational inference (fitting a transformation to a target
distribution). In either case θ, the parameters controlling T ,
can be optimised using stochastic gradient methods for a
suitable objective function. For reviews of NFs see Kobyzev
et al. (2020) and Papamakarios et al. (2021).

*Equal contribution 1School of Mathematics, University of
Bristol, Bristol, UK. Correspondence to: Tennessee Hickling <ten-
nessee.hickling@bristol.ac.uk>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

Figure 1: Our method models extremes in the final layer,
not the base distribution.

Modelling distributions with heavy tails is critical in many
applications such as climate (Zscheischler et al., 2018), con-
tagious diseases (Cirillo & Taleb, 2020) and finance (Gilli
& Këllezi, 2006). Indeed, in the context of density estima-
tion, results from extreme value theory (EVT) (Coles, 2001;
Embrechts et al., 2013) show distributional tails can often
be modelled using a particular heavy tailed distribution, the
generalized Pareto distribution (GPD). Heavy tailed targets
can also arise naturally in Bayesian inference, requiring
heavy tailed approximate distributions in variational infer-
ence (Liang et al., 2022) —and providing challenges for
MCMC methods (see e.g. Yang et al., 2024).

However standard NFs do not model heavy tails well. In
particular, Jaini et al. (2020) prove that Gaussian tails cannot
be mapped to GPD tails under Lipschitz transformations.
(This is a special case of their main result, which we include
as Theorem 1.2 below.) Many NFs use Lipschitz trans-
formations of Gaussian base distributions, implying they
produce distributions poorly approximating heavy tailed
distributions.

Based on this result, several authors have proposed using
heavy tailed base distributions. This includes the tail adap-
tive flow (TAF) methods of Laszkiewicz et al. (2022) for
density estimation, and similar methods for variational infer-
ence (Liang et al., 2022). We argue that using heavy tailed

1

Flexible Tails for Normalizing Flows

base distributions has an important drawback. Typical NF
transformations involve passing the input z through a neural
network. However neural network optimisation can perform
poorly under heavy tailed input—as this can induce heavy
tailed gradients, which are known to be problematic (Zhang
et al., 2020). We verify this problem empirically in Section
4.1 for NFs (and in Appendix F for a simpler neural network
regression example.)

To improve performance we propose an alternative: use a
Gaussian base distribution with a final non-Lipschitz trans-
formation in T . We refer to this as the tail transform flow
(TTF) approach. The difference is illustrated in Figure 1.
In Section 3.1 we provide a suitable final transformation
(3), motivated by extreme value theory. This is easy to im-
plement in automatic differentiation libraries as it’s based
on a standard special function: the complementary error
function. We also prove that this transformation converts
Gaussian tails to heavy tails with tunable tail weights, and
hence provides the capability of producing heavy tails when
used with standard flows.

We perform experiments showing our TTF approach out-
performs current methods, especially when the target distri-
bution has large dimension or tail weight. We concentrate
on density estimation, investigating both synthetic and real
data, but also include a small-scale variational inference
experiment.

To summarise, our contributions are:

• We illustrate the problem of using extreme inputs in
NFs.

• We introduce the TTF transformation—equation (3)—
and prove it converts Gaussian tails to heavy tails with
tunable tail weights. This provides the capability of
producing heavy tails when used with standard NFs.

• We provide practical methodology using TTF in a nor-
malizing flow architecture.

• We demonstrate improved empirical results for density
estimation (synthetic and real data examples) and varia-
tional inference (an artificial target example) compared
to standard NFs, and other NF methods for heavy tails.

In the remainder of this section we review related prior
work. Then Section 2 outlines background material and
Section 3 describes our proposed transformation, as well
as summarising our theoretical results. Section 4 contains
our examples, and Section 5 concludes. The appendices
contain further technical details, including proofs. Code
for all our examples can be found at https://github.
com/Tennessee-Wallaceh/tailnflows.

1.1. Related Work

1.1.1. THEORY

A common definition of heavy tails (e.g. Foss et al., 2011)
is as follows.

Definition 1.1. A real valued random variable Z is (right-)
heavy-tailed when E[exp(λZ)] = ∞ for all λ > 0. Other-
wise Z is light-tailed.

Examples of heavy tailed distributions include Student’s
T and Pareto distributions. An example of a light tailed
distribution is Gaussian distributions.

Under Definition 1.1 the following result holds.

Theorem 1.2 (Jaini et al., 2020). Let Z be a light tailed
real valued random variable and T be a Lipschitz transfor-
mation. Then T (Z) is also light tailed.

Jaini et al. (2020) also generalise this result to the multivari-
ate case, and prove that several popular classes of NFs use
Lipschitz transformations (see also Liang et al., 2022).

Other mathematical definitions of tail behaviour exist, in-
cluding alternative usages of the term “heavy tails”. Liang
et al. (2022) apply such definitions to prove more detailed
results on how Lipschitz transformations affect tail weights
(e.g. Theorem C.7 in our appendices).

To model heavy tailed distributions, Jaini et al. note that
there is a choice “of either using source densities with the
same heaviness as the target, or deploying more expressive
transformations than Lipschitz functions”. They pursue the
former approach and this paper investigates the latter.

1.1.2. HEAVY TAILED BASE DISTRIBUTIONS

Several NF papers propose using a heavy tailed base distri-
bution. To discuss these, let Z be a random vector following
the base distribution of the normalizing flow, and let Zi be
its ith component.

Firstly, for density estimation, Jaini et al. (2020) set Zi ∼ tν :
a standard (location zero, scale one) Student’s T distribution
with ν degrees of freedom. The Zi components are indepen-
dent and identically distributed. The ν parameter is learned
jointly with the NF parameters. Optimising their objective
function requires evaluating the Student’s T log density and
its derivative with respect to ν, which is straightforward.

An extension is to allow tail anisotropy—tail behaviour
varying across dimensions—by setting (independently)
Zi ∼ tνi

, so the degrees of freedom can differ with i. In
Laszkiewicz et al. (2022), two such approaches are pro-
posed for density estimation. Marginal Tail-Adaptive Flows
(mTAF) first learn νi values using a standard estimator (a
version of the Hill, 1975 estimator). Then the distribution
of Z is fixed while learning T . Another feature of mTAF

2

https://github.com/Tennessee-Wallaceh/tailnflows
https://github.com/Tennessee-Wallaceh/tailnflows

Flexible Tails for Normalizing Flows

is it allows Gaussian marginals by using Gaussian base dis-
tributions for appropriate Zi components, and then keeping
Gaussian and non-Gaussian components separate through-
out the flow transformation. Generalised Tail-Adaptive
Flows (gTAF) train the νis and θ jointly. Liang et al. (2022)
propose a similar method to gTAF for the setting of varia-
tional inference: Anisotropic Tail-Adaptive Flows (ATAF).

1.1.3. OTHER METHODS

Here we discuss work on alternatives to a Student’s T base
distribution. In the setting of density estimation, Amiri et al.
(2022) consider two alternative base distributions: Gaussian
mixtures, and generalized Gaussian. Although the former
are light tailed (see Appendix A), they argue that mixture
distributions can in theory model any smooth density given
enough components, and also that they are more stable in
optimisation than heavy tailed base distributions. The latter
has tails which can be heavier than Gaussian, but are lighter
than Student’s T.

McDonald et al. (2022) propose COMET (copula multivari-
ate extreme) flows for the setting of density estimation. This
involves a preliminary stage of estimating marginal cumu-
lative distribution functions (cdfs) for each component of
the data. The body of each marginal is approximated using
kernel density estimation, and the tails are taken as GPDs,
with shape parameters chosen using maximum likelihood.
The COMET flow then uses a Gaussian base distribution,
followed by a copula transformation. This is an arbitrary
normalizing flow followed by an elementwise logistic trans-
formation so that output is in [0, 1]d. Finally the inverse
marginal cdfs are applied to each component. In Appendix
C.2 we analyse the resulting tail behaviour and prove that
the output cannot capture the full range of heavy tailed be-
haviour. More formally, Theorem C.8 proves that the output
is not in the Fréchet domain of attraction—see Definition
2.1 below. This is in contrast to our proposed method, TTF,
which we show in Appendix C.3 does produce in outputs
in the Fréchet domain. Despite this our experiments in
Section 4 find COMET flows often have good empirical
performance, which we discuss in Section 5.

The extreme value theory literature also proposes methods
to jointly model heavy tails and the body of a distribution.
See Huser et al. (2025) (Section 4) for a review of several
approaches. We comment on one particularly relevant uni-
variate method: Papastathopoulos & Tawn (2013); Naveau
et al. (2016); de Carvalho et al. (2022) use a cdf G ◦H(y)
which composes the GPD cdf H with a carrier function
G : [0, 1] → [0, 1] which is taken to be a simple parametric
function. Similarly, Stein (2021) composes several carrier
functions. Our approach is similar, effectively using NFs
in place of carrier functions, and covering the multivariate
case. Naveau et al. (2016) proves that certain conditions

on the carrier function provide useful theoretical properties,
and it would be interesting to explore analogous results for
our method in future.

2. Background
2.1. Normalizing Flows

Consider vectors z ∈ Rd and x = T (z) ∈ Rd. Suppose z is
a sample from a base density qz(z). Then the transformation
T defines a normalizing flow density qx(x). Suppose T
is a diffeomorphism (a bijection where T and T−1 are dif-
ferentiable), then the standard change of variables formula
gives

qx(x) = qz(T
−1(x))|det JT−1(x)|. (2)

Here JT−1(x) denotes the Jacobian of the inverse transfor-
mation and det denotes determinant.

Typically a parametric transformation T (z; θ) is used, and
qz(z) is a fixed density, such as that of a N (0, I) distribution.
However some previous work uses a parametric base density
qz(z; θ). (So θ denotes parameters defining both T and qz .)
For instance some methods from Section 1.1 use a Student’s
T base distribution with variable degrees of freedom.

Usually we have T = TK ◦ . . . ◦ T2 ◦ T1, a composition of
several simpler transformations. Many such transformations
have been proposed, with several desirable properties. These
include producing flexible transformations and allowing
evaluation (and differentiation) of T , T−1, and the Jacobian
determinant. Such properties permit tractable sampling via
(1), and density evaluation via (2).

Throughout the paper we describe NFs in the generative
direction: by defining the transformations Ti applied to a
sample from the base distribution. NFs can equivalently be
described in the normalizing direction by defining the T−1

i

transformations. We pick the generative direction simply to
be concrete.

2.2. Density Estimation

Density estimation aims to approximate a target density
p(x) from which we have independent samples {xi}Ni=1.
We assume xi ∈ Rd.

We can fit a normalizing flow by minimising the objective

JDE(θ) = −
N∑
i=1

log qx(xi; θ).

This is equivalent to minimising a Monte Carlo approxima-
tion of the Kullback-Leibler divergence KL[p(x)||qx(x; θ)].
The objective gradient can be numerically evaluated using
automatic differentiation. Thus optimisation is possible by
stochastic gradient methods. This approach remains feasible

3

Flexible Tails for Normalizing Flows

under a Student’s T base distribution since its log density
and required derivatives are tractable.

2.3. Variational Inference

Variational inference (VI) aims to approximate a target den-
sity p(x), often a Bayesian posterior for parameters x ∈ Rd.
Typically VI is used where only an unnormalised target p̃(x)
can be evaluated. Then p(x) = p̃(x)/Z but the normalizing
constant Z =

∫
Rd p̃(x)dx cannot easily be calculated.

VI aims to minimise KL[qx(x; θ)||p(x)] over a parame-
terised set of densities qx(x; θ). In this paper qx(x; θ) is a
normalizing flow. An equivalent optimisation task is max-
imising the ELBO objective

JVI(θ) = Ex∼qx [log p̃(x)− log qx(x; θ)].

This has a tractable unbiased gradient estimate

M−1
M∑
i=1

∇θ[log p̃(xi)− log qx(xi; θ)],

where xi = T (zi; θ) and {zi}Mi=1 are independent samples
from the base distribution. Again, the gradient estimate can
be numerically evaluated using automatic differentiation,
allowing optimisation by stochastic gradient methods.

A generalisation of the above is to use a base distribution
with parameters. In particular, ATAF (Liang et al., 2022)
needs to learn degrees of freedom for Student’s T distri-
butions. The above approach remains feasible by using a
Student’s T sampling scheme which allows application of
the reparameterization trick, as detailed in Appendix G.4.

For more background on this form of VI see Rezende &
Mohamed (2015); Blei et al. (2017); Murphy (2023).

2.4. Extreme Value Theory

Extreme value theory (EVT) is the branch of statistics study-
ing extreme events (Coles, 2001; Embrechts et al., 2013).
A classic result is Pickands theorem (Pickands III, 1975);
see Papastathopoulos & Tawn (2013) for a review. Given a
scalar real-valued random variable X , consider the scaled
excess random variable X−u

h(u) |X > u, where u > 0 is a large
threshold and h(u) > 0 is an appropriate scaling function.
The theorem states that if the scaled excess converges in dis-
tribution to a non-degenerate distribution, then it converges
to a Generalized Pareto distribution (GPD).

A common EVT approach is to fix some u, treat h(u) as
constant, and model tails of distributions as having GPD
densities. The motivation is that this should be a good tail
approximation near to u, while for x ≫ u there is not
enough data to estimate the behaviour of h(u).

The GPD distribution involves a shape parameter, λ ∈ R.
For λ > 0, the GPD density is asymptotically (for large

x) proportional to x−1/λ−1, while for λ < 0 the upper tail
has bounded support. In terms of Definition 1.1, λ > 0
guarantees heavy tails and λ < 0 guarantees light tails.
Given X , the shape parameter of the GPD resulting from
Pickands theorem is a measure of how heavy the tail of X
is. A Gaussian distribution results in λ = 0 (and requires a
non-constant scaling function h(u)), and λ > 0 represents
heavier tails. Finally, we will use the following definition in
our theoretical results later.
Definition 2.1. The Fréchet domain of attraction with
shape parameter λ, Θλ, is the set of distributions resulting
in λ > 0 under Pickands theorem.

3. Methods and Theory
We propose producing normalizing flow samples R ◦
Tbody(z), where z is a N (0, 1) sample, Tbody is a standard
normalizing flow transformation and R is a final transforma-
tion. If Tbody is a Lipschitz transformation, then the input to
R has light tails by Theorem 1.2. Thus the resulting archi-
tecture avoids the problem outlined in Section 1 of passing
extreme values as inputs to any neural network layers. The
final transformation R should be able to output heavy tails of
any desired tail weight. This section presents our proposal
for a suitable transformation R.

Section 3.1 describes our proposed transformation for the
univariate case. Section 3.2 summarises our theoretical
results on its tail behaviour. Sections 3.3—3.4 give further
details to produce a practical general-purpose method, and
Section 3.5 comments on universality. Proofs and technical
details are given in the appendices. This also includes a
discussion of alternative transformations and related results
in the literature, in Appendix D.

3.1. TTF Transformation

We propose the tail transform flow (TTF) transformation
R : R → R,

R(z;λ+, λ−) = µ+ σ
s

λs
[erfc(|z|/

√
2)−λs − 1]. (3)

We use the notation s = sign(z), with λs = λ+ for s = 1
and λs = λ− for s = −1. The transformation is based on
erfc, the complementary error function. This is a special
function, reviewed in Appendix B.1, which is tractable for
use in automatic differentiation using standard libraries. The
parameters λ+ > 0, λ− > 0 control tail weights for the
upper and lower tails (also often referred to as right and left
tails respectively). This allows us to model asymmetry in tail
behaviour. The parameters µ ∈ R and σ > 0 are location
and scale parameters. We found these helped performance,
although similar effects could be achieved in principle by
adjusting Tbody.

To perform density evaluation via (2) we need to evaluate

4

Flexible Tails for Normalizing Flows

the inverse and derivative of (3). These, and some other
properties, are provided in Appendix B.3.

3.2. Theory

Appendix C.3 proves results on the asymptotic properties
of (3). Informally, if X has Gaussian tails then R(X) is in
the Fréchet domain of attraction (see Definition 2.1) with
λ+, λ− controlling the tail shape parameters. A special
case is that N (0, 1) tails produce GPD output with shape
parameters λ+, λ−.

So composing R with existing NFs permits the output to
have heavy tails with parameterised weights. This is shown
by the following argument. Most NFs use a Gaussian base
distribution and a Lipschitz transformation. By Theorem
1.2 the output has light tails. Since the NF transformation
can be the identity, it is capable of producing Gaussian tails.

3.3. Multivariate Transformation

To extend our univariate transformation R : R → R to the
multivariate case, we simply transform each marginal with
its own µ, σ, λ+, λ− parameters. In some cases we know
particular marginals are light tailed. Then we could simply
perform an identity transformation instead. However, we
find fixing λ+, λ− to low values (we use 1/1000) suffices.

A more flexible approach would be to allow dependence, for
instance by using an autoregressive structure (Papamakarios
et al., 2021) to generate the λ+, λ− parameters for each
marginal. This could capture tail behaviour that varies in
different parts of the distribution. However, exploratory
work found that this approach is harder to optimise, so we
leave it for future research.

3.4. Two Stage Procedure

Joint optimisation of R and Tbody can require careful initial-
isation of the λ parameters. (Details of how we do so are
provided in Appendix G.3.) As an alternative, we propose a
two stage procedure for density estimation: TTFfix. Here
the tail weight λ−, λ+ parameters of R are estimated in an
initial step and then fixed while optimising Tbody (and the
µ, σ parameters of R.) This can be viewed as first trans-
forming the data using R to remove heavy tails, and then
fitting a standard normalizing flow to the transformed data.
Similar approaches appear in McDonald et al. (2022) and
Laszkiewicz et al. (2022).

Shape parameter estimators exist in the EVT literature,
which we can apply to each marginal tail. We follow
Laszkiewicz et al. (2022) in using the Hill double-bootstrap
estimator (Danielsson et al., 2001; Qi, 2008). Note that this
enforces λ− = λ+. Alternatively McDonald et al. (2022)
perform maximum likelihood estimation on the highest and

lowest 5% of data, to produce tail parameters for the positive
and negative tails respectively.

We do not consider a similar two stage procedure for VI,
as preliminary estimation of tail weights from the unnor-
malised target distribution is not straightforward. However
recent work on static analysis of probabilistic programs
(Liang et al., 2024) provides progress in this direction.

3.5. Universality

It’s been proved that some NFs have a universality property:
“the flow can learn any target density to any required pre-
cision given sufficient capacity and data” (Kobyzev et al.,
2020). In Appendix E we show that many NF universality
results are preserved when the TTF transformation is added
as a final layer.

As we’ve already seen, the situation under bounded capacity
is different. Standard NFs cannot produce heavy tailed
distributions (Jaini et al. 2020, reviewed as Theorem 1.2
above). However adding our transformation does permit
these (see Section 3.2).

So theoretically our method improves the set of distributions
which can be modelled under bounded capacity without sac-
rificing expressiveness in the limit of infinite capacity. The
next section shows this is reflected by improved empirical
performance modelling heavy tailed data.

4. Experiments
This section contains our experiments. Firstly, recall that
one motivation for our work in Section 1 is the claim that
neural network optimisation can perform poorly under heavy
tailed inputs. We verify this empirically in Section 4.1
for NFs. This is also verified in Appendix F for a simple
neural network regression example. Secondly, Sections
4.1—4.3 contain normalizing flow examples, comparing our
method to existing approaches for density estimation and a
proof-of-concept variational inference example. Additional
implementation details are provided in Appendix G.

4.1. Density Estimation with Synthetic Data

This experiment looks at density estimation for data gener-
ated from the following model, with d > 1:

{Xi}d−1
i=1 ∼ tν , Xd|Xd−1 ∼ N (Xd−1, 1). (4)

In this model the only non-trivial dependency to learn is
between Xd−1 and Xd, but there are also several heavy
tailed nuisance variables.

We use this example to investigate whether modelling tails in
the final layer of a NF is superior to modelling the tails in the
base distribution. Of particular interest is how performance
varies with dimensionality d and tail weight ν. Appendix

5

Flexible Tails for Normalizing Flows

F shows that neural network regression can perform poorly
under heavy tailed inputs. Here we investigate whether a
similar finding holds in the setting of NFs.

Some NF methods we test involve fixed tail weight parame-
ters (either ν for a Student’s T base distribution or λ+, λ−
for our transformation), and for this experiment we fix these
to their known true values. This means our analysis is not
confounded by the difficulty of estimating these parameters.
The tail weights are known since the marginal density for
each Xi can be shown to be asymptotically proportional to
x−ν−1
i . Note that only λ+, λ− in (3) are fixed, not µ and σ.

Flow Architectures We investigate a selection of NF
methods, including several which aim to address extremes.
To conduct a fair comparison, we maintain as much consis-
tency between the flow architectures as possible.

A baseline method, normal, uses a d-dimensional isotropic
Gaussian base distribution. This is followed by an autore-
gressive rational quadratic spline (RQS) layer then an au-
toregressive affine layer. The latter should be capable of
capturing linear dependency, while the former can adjust
the shape of the body, but not the tails of the distribution.

Our proposed approach, tail transform flow, modifies the
architecture just described by adding an additional layer for
dealing with the tails, as described in Section 3. TTF trains
the tail parameters alongside the other parameters. TTFfix
is a 2-stage approach, which fixes the tail parameters to the
known true values.

Marginal tail adaptive flows (mTAF) have the same architec-
ture as normal, but use a Student’s T base distribution, as
detailed in Section 1.1. The degrees of freedom are fixed to
the correct tail parameters. Generalised tail adaptive flows
(gTAF) differ in that the degrees of freedom are optimised
alongside all other parameters during the training procedure.

As further variations on normal, we consider two alter-
native base distributions suggested by Amiri et al. (2022)
– Gaussian mixture (m normal) and Generalised Normal
(g normal). More details are provided in Appendix G.

We also consider COMET flows (COMET), as detailed in
Section 1.1. For the normalizing flow part of this method
we use the same architecture as normal. Our analysis is
based on the code of McDonald et al. (2022) with some im-
provements to implementation details (needed to run more
complicated examples later). COMET is a 2-stage approach,
which involves estimating tail parameters in the first stage,
so again we fix these to the known correct values.

We also tested a variant suggested by a reviewer, TTF tBase.
This combines TTF with a Student’s T base distribution with
trainable degrees of freedom. It performed worse than both
TTF and TTFfix, so is omitted from the main paper results

Table 1: Density estimation results on synthetic example
for d = 50. Each entry is a mean value of negative test log
likelihood per dimension across 10 repeated experiments,
with the standard error in brackets. Bold indicates methods
whose mean log likelihood differs from the best mean by
less than 2 standard errors (of the best mean). A dash indi-
cates potential unstable optimisation (at least one repeat had
a final loss above 1e5).

Flow ν = 0.5 ν = 1 ν = 2
normal - - 2.02 (0.01)

m normal - - 2.02 (0.00)
g normal - - 2.01 (0.00)

gTAF 7.49 (0.38) 2.65 (0.01) 1.99 (0.00)
TTF 3.68 (0.00) 2.54 (0.00) 1.98 (0.00)

mTAF 5.22 (0.04) 2.62 (0.01) 1.98 (0.00)
TTFfix 3.68 (0.00) 2.54 (0.00) 1.98 (0.00)

COMET 3.74 (0.00) 2.55 (0.00) 1.97 (0.00)

for brevity. Its results appear in Appendix J.1.

Experimental Details We run 10 repeats for each
flow/target combination. Each repeat samples a new set
of data, with 5000 observations. which is split in proportion
40/20/40, to give training, validation and test sets respec-
tively. We train using the Adam optimiser with a learning
rate of 5e-3. We use an early stopping procedure, stopping
once there has been no improvement in validation loss in
100 epochs, and returning the model from the epoch with
best validation loss. Optimisation loss plots were also visu-
ally inspected to confirm convergence. The selected model
was then evaluated on the test set to give a negative test log
likelihood per dimension.

Results Table 1 shows a selection of results with d = 50.
See Appendix J.1 for other d and ν values. The meth-
ods not specifically designed to permit GPD tails (normal,
m normal, g normal) are the worst performing, often not
converging at all for ν ≤ 1. However, the difference be-
tween methods is small for ν = 2, and all methods are simi-
lar for ν = 30 (near-Gaussian tails—results in appendix).

For particularly heavy tails (ν ≤ 1), the best performing
methods are TTF, TTFfix and COMET: the approaches
which model tails in the final transformation. We did not
detect a significant difference between the two TTF meth-
ods, but they both outperform COMET. A similar pattern is
present for other choices of d (results in appendix).

It is interesting that COMET performs competitively here,
despite not inducing Fréchet tails. A possible reason is that
COMET can produce log-normal tails (see Appendix C.2),
and these have similar sub-asymptotic properties to GPD
tails (Nair et al., 2022).

6

Flexible Tails for Normalizing Flows

Another question is whether it’s better to fix the tail parame-
ters or optimise them. Table 1 shows that mTAF outperforms
gTAF, so fixing tail parameters is better for heavy tailed base
distribution methods. However there is no significant dif-
ference between TTF methods. A further investigation of
the results suggested by a reviewer does suggest possible
advantages of TTF which might become more significant in
other settings. See Appendix J.2 for details.

4.2. Density Estimation with Real Data

This section investigates density estimation for several real
datasets with extreme values, covering insurance, financial
and weather applications. Three are taken from Liang et al.
(2022); Laszkiewicz et al. (2022) and one is novel to this pa-
per. Appendix I has more information about the datasets and
standard preprocessing applied before density estimation.

Flow Architectures In this experiment we compare NF
architectures which performed reasonably well in Section
4.1: TTF, TTFfix, mTAF, gTAF and COMET.

For most examples we reuse the NF architectures described
in Section 4.1 with a slight alteration. We add trainable
linear layers based on the LU factorisation (Oliva et al.,
2018). For TTF methods, this immediately precedes the
TTF layer. Otherwise, this is the final layer. We found
adding LU layers greatly improved empirical performance.

For the most complex dataset (CLIMDEX) we use a deeper
architecture, as used in Laszkiewicz et al. (2022), to permit
fair comparison with their results. This has 5 RQS layers, al-
ternated with LU layers. We use this architecture for mTAF
and gTAF, and modify it for TTF, TTFfix and COMET in
the same way as described in Section 4.1.

Experimental Details For all examples we run 10 repeats
for each flow/target combination. For most examples we
train for 400 epochs using the Adam optimiser with a learn-
ing rate of 5e-4. The exception is CLIMDEX, where we
follow the more complex training setup of Laszkiewicz et al.
(2022) (e.g. cosine annealing, more optimisation steps) to
permit fair comparison with their results.

Results The results are presented in Table 2. TTF outper-
forms previous NF methods for density estimation: it is the
best performing method for 3 examples, and second best to
TTFfix for the other. The performance of TTFfix is more
variable: it is the best performing in one example, second
best to TTF in two examples, but the worst performing in
the remaining example.

Overall these results show TTF methods provide an improve-
ment in density estimation performance, and that the addi-
tional freedom of TTF to learn tail behaviour compared to
TTFfix (e.g. it can learn tail asymmetry) is beneficial in some

cases, especially the most complicated dataset, CLIMDEX.

Also, estimating tail parameters for each marginal in-
volves extra compute costs, especially for high dimensional
datasets such as CLIMDEX, where the cost was comparable
to fitting the normalizing flow (although easy to parallelise).

4.3. Variational Inference for Artificial Target

As a proof-of-concept investigation of variational inference,
we perform experiments using (4) as a target distribution.
Recall that in Section 4.1 we used this to generate synthetic
data for density estimation. This model allows us to easily
vary tail weights (ν) and number of nuisance variables (d).

Flow Architectures We compare four flows which exhib-
ited good performance in Section 4.1: TTF, TTFfix, mTAF
and gTAF. While COMET flows also performed well in
the density estimation setting, they involve making kernel
density estimates of marginal distributions, which has no
obvious equivalent for the VI setting. So we do not include
them in this comparison. As in Section 4.1, for TTFfix
and mTAF we fix the tail parameters to the known correct
values.

Although mTAF and gTAF were proposed as density esti-
mation methods, it is straightforward to use these heavy tail
base distribution methods for this VI task. As noted ear-
lier, gTAF (Laszkiewicz et al., 2022) is equivalent to ATAF
(Liang et al., 2022) in the context of variational inference,
and trains the tail parameters alongside the other parameters.
It is difficult to apply mTAF to VI in general, due to the
difficulty of estimating the tail parameters, but in this case
we have theoretical correct values.

Experimental Details We take d ∈ {5, 10, 50} and ν ∈
{0.5, 1, 2, 30} (heavier than Cauchy; Cauchy; lighter than
Cauchy; close to Gaussian). We run 5 repeats for each
flow/target combination. Each repeat uses 10,000 iterations
of the Adam optimiser with learning rate 1e-3. Optimisation
loss plots were visually inspected to confirm convergence.

Diagnostics We measure the accuracy of our fitted vari-
ational density using two diagnostics based on importance
sampling and described in Appendix H: ESSe and k̂.

Results Table 3 reports our results. TTFfix has best ESSe

for heavier tails (ν ≤ 2). TTF produces slightly worse
values, with mTAF and gTAF worse than either TTF method,
especially for the ν ≤ 1, d = 50 cases (ESSe < 0.1). For
ν = 30 the best results are for mTAF, but all methods do
well (ESSe > 0.7). All methods aside from gTAF achieve
useful approximations (k̂ below 0.7), in every setting where
ν ≥ 1. In the most challenging setting—ν = 0.5, d = 50—
both TTF method achieve good k̂ values.

7

Flexible Tails for Normalizing Flows

Table 2: Real data density estimation results. Each entry is a mean test negative log likelihood over 10 trials, with standard
deviation reported in brackets. Values marked with * are those reported by Laszkiewicz et al. (2022). Results within one
standard deviation of the best mean are highlighted in bold.

Model Insurance Fama 5 S&P 500 CLIMDEX
normal 1.41 (0.03) 4.65 (0.01) 334.01 (1.02) -2101.91 (9.44)*
gTAF 1.41 (0.03) 4.68 (0.01) 321.81 (0.55) -2113.48 (7.93)*
TTF 1.37 (0.02) 4.61 (0.01) 317.56 (0.56) -2214.28 (13.25)

mTAF 1.52 (0.03) 4.90 (0.03) 322.98 (0.33) -2121.38 (10.91)*
TTFfix 1.38 (0.01) 4.63 (0.01) 314.84 (0.46) -2090.91 (11.90)

COMET 1.41 (0.03) 4.63 (0.01) 324.38 (0.58) -2118.60 (8.61)

Overall the results show that, as before, it is advantageous to
model tails in the final transformation (TTF, TTFfix). Fixing
tail parameters improves performance of TTFfix over TTF,
perhaps because optimisation is more stable in this case.

5. Conclusion
Most current methods for modelling extremes with NFs use
heavy tailed base distributions. We demonstrate this can
perform poorly, due to extreme inputs to neural networks
causing slow convergence. We present an alternative: use a
Gaussian base distribution and a final transformation which
can induce heavy tails. We propose the TTF transformation,
equation (3), and prove it can indeed produce heavy tails.
For density estimation, our TTF methods outperform exist-
ing methods on real and synthetic data. Jointly learning the
tail parameters and the rest of the flow is usually the best
approach. However for variational inference, fixing the tail
parameters is beneficial, perhaps by improving optimisation
stability. Our approaches do not damage performance in
examples without heavy tails – here all types of NF we
considered perform well.

5.1. Limitations and Future Work

An arguable limitation of our transformation is that it al-
ways converts Gaussian tails to heavy tails. Hence it cannot
produce exactly Gaussian tails. It is not clear whether this
is detrimental in practice, and it does not prevent good per-
formance in all our experiments.

Another potential limitation is that the TTF transformation
affects both the body and tail of the output distribution.
The preceding layers of the flow must learn to model the
body of the distribution, and also adapt to the final layer. It
would be appealing to decouple the transformations, so that
they can concentrate separately on the body and tail, which
could make optimisation easier. This could be achieved by
somehow ensuring the final transformation is approximately
the identity in the body region.

Possible future work is to design methods which incorporate

more extreme value theory properties. For instance, our
method doesn’t explicitly allow tail dependence (Coles et al.,
1999). This would be an interesting future direction e.g. by
adapting the manifold copula method of (McDonald et al.,
2022). Also, it would be interesting to design multivariate
transformations with the max-stable property (Coles, 2001).

We found that fixing the tail parameters to known values
performed well in our VI example on an artificial target.
However in real VI applications, the tail parameters aren’t
known, motivating methods to estimate them e.g. using
static analysis of probabilistic programs (Liang et al., 2024).
Also, in exploratory work on real VI applications, we found
it difficult to improve VI results using our method. A possi-
ble reason is that our experiments only show major improve-
ments for especially heavy tails (ν ≤ 1 in Table 3), which
we found to be uncommon for real posteriors.

A potential future application is simulation based inference.
Here neural likelihood estimation methods (Papamakarios
et al., 2019) use NF density estimation to estimate a like-
lihood function from simulated data. Our approach could
improve results when the simulated data is heavy tailed.

Finally, it would be interesting to use our tail transforma-
tion with other generative models. Here we briefly discuss
differential equation based methods e.g. continuous normal-
izing flows, diffusion models, flow matching (Lipman et al.,
2023). These sample x(0) from a base distribution such
as N (0, I), apply a differential equation dx

dt = u(x, t) (or
an SDE also including a diffusion term), and output x(1).
The vector field u is a neural network, trained to produce a
desired output distribution. Our work suggests it would be
difficult to train a vector field for heavy tailed targets. To see
this, suppose we desire output x(1) = x∗. By continuity,
we need x(1− δ) ≈ x∗ for small δ. So we must evaluate u
for input similar to x∗, which can be extreme for a heavy
tailed target. We’ve argued neural networks are hard to train
with extreme inputs. This motivates using our tail transform
as a final transformation to x(1), effectively lightening the
tails of the target, avoiding extreme x∗ values. Either joint
training or a two-stage approach could be tried, similar to
TTF and TTFfix.

8

Flexible Tails for Normalizing Flows

Table 3: Variational inference results for artificial target. Each entry is a mean value across 5 repeated experiments. For
ESSe columns, bold indicates the method with best value for each d. For k̂ columns, bold indicates any value below 0.7.

d Flow ν = 0.5 ν = 1 ν = 2 ν = 30

ESSe k̂ ESSe k̂ ESSe k̂ ESSe k̂

5

gTAF 0.47 0.89 0.53 0.93 0.90 0.79 0.97 0.53
TTF 0.59 0.67 0.83 0.40 0.89 0.43 0.98 0.18

mTAF 0.00 2.25 0.10 0.18 0.52 -0.18 0.99 0.31
TTFfix 0.62 0.82 0.97 0.37 0.98 0.35 0.98 0.19

10

gTAF 0.19 0.64 0.28 1.05 0.74 0.89 0.96 0.28
TTF 0.40 0.74 0.90 0.36 0.92 0.36 0.96 0.20

mTAF 0.00 3.13 0.09 0.31 0.52 -0.37 0.98 0.25
TTFfix 0.45 0.88 0.93 0.33 0.95 0.32 0.97 0.07

50

gTAF 0.02 0.90 0.08 0.82 0.39 0.83 0.84 0.13
TTF 0.39 0.51 0.57 0.25 0.61 0.24 0.79 0.14

mTAF 0.00 7.92 0.02 0.57 0.41 0.03 0.90 0.17
TTFfix 0.43 0.53 0.75 0.18 0.81 0.18 0.85 0.08

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

Acknowledgements Thanks to Miguel de Carvalho, Seth
Flaxman, Iain Murray, Ioannis Papastathopoulos, Scott Sis-
son, Jenny Wadsworth, Peng Zhong and anonymous review-
ers for helpful discussions. Tennessee Hickling is supported
by a PhD studentship from the EPSRC Centre for Doc-
toral Training in Computational Statistics and Data Science
(COMPASS). A preliminary version of this work appeared
as Hickling & Prangle (2023).

References
Abiri, N. and Ohlsson, M. Variational auto-encoders with

Student’s t-prior. In ESANN 2019 - Proceedings, pp.
837–848. ESANN, 2019.

Amiri, S., Nalisnick, E. T., Belloum, A., Klous, S., and
Gommans, L. Generating heavy-tailed synthetic data with
normalizing flows. In The 5th Workshop on Tractable
Probabilistic Modeling, 2022.

Blei, D. M., Kucukelbir, A., and McAuliffe, J. D. Varia-
tional inference: A review for statisticians. Journal of
the American Statistical Association, 112(518):859–877,
2017.

Cirillo, P. and Taleb, N. N. Tail risk of contagious diseases.
Nature Physics, 16:606–613, 2020.

Coles, S. An Introduction to Statistical Modeling of Extreme

Values. Springer London, London, 2001. ISBN 978-1-
84996-874-4.

Coles, S., Heffernan, J., and Tawn, J. Dependence measures
for extreme value analyses. Extremes, 2:339–365, 1999.

Danielsson, J., de Haan, L., Peng, L., and de Vries, C. G.
Using a bootstrap method to choose the sample fraction
in tail index estimation. Journal of Multivariate analysis,
76(2):226–248, 2001.

de Carvalho, M., Pereira, S., Pereira, P., and
de Zea Bermudez, P. An extreme value Bayesian
lasso for the conditional left and right tails. Journal of
Agricultural, Biological and Environmental Statistics, pp.
1–18, 2022.

Draxler, F., Wahl, S., Schnoerr, C., and Koethe, U. On the
universality of volume-preserving and coupling-based
normalizing flows. In International Conference on Ma-
chine Learning, volume 235, pp. 11613–11641. PMLR,
2024.

Durkan, C., Bekasov, A., Murray, I., and Papamakarios, G.
Neural spline flows. In Advances in Neural Information
Processing Systems, volume 32, 2019.

Durkan, C., Bekasov, A., Murray, I., and Papamakarios,
G. nflows: normalizing flows in PyTorch, November
2020. URL https://github.com/bayesiains/
nflows.

Embrechts, P., Klüppelberg, C., and Mikosch, T. Modelling
extremal events: for insurance and finance. Springer
Science & Business Media, 2013.

9

https://github.com/bayesiains/nflows
https://github.com/bayesiains/nflows

Flexible Tails for Normalizing Flows

Foss, S., Korshunov, D., and Zachary, S. An introduction to
heavy-tailed and subexponential distributions. Springer,
2011.

Fung, T. and Seneta, E. Quantile function expansion using
regularly varying functions. Methodology and Computing
in Applied Probability, 20:1091–1103, 2018.

Gilli, M. and Këllezi, E. An application of extreme value
theory for measuring financial risk. Computational Eco-
nomics, 27:207–228, 2006.

Hickling, T. and Prangle, D. Flexible tails for normalising
flows, with application to the modelling of financial return
data. In Joint European Conference on Machine Learning
and Knowledge Discovery in Databases, pp. 374–386.
Springer, 2023.

Hill, B. M. A simple general approach to inference about
the tail of a distribution. The Annals of Statistics, 3(5),
September 1975.

Huang, C.-W., Krueger, D., Lacoste, A., and Courville, A.
Neural autoregressive flows. In International Conference
on Machine Learning, pp. 2078–2087. PMLR, 2018.

Huser, R., Opitz, T., and Wadsworth, J. L. Modeling of
spatial extremes in environmental data science: time to
move away from max-stable processes. Environmental
Data Science, 4:e3, 2025.

Jaini, P., Selby, K. A., and Yu, Y. Sum-of-squares poly-
nomial flow. In International Conference on Machine
Learning, pp. 3009–3018. PMLR, 2019.

Jaini, P., Kobyzev, I., Yu, Y., and Brubaker, M. Tails of
Lipschitz triangular flows. In Proceedings of the 37th
International Conference on Machine Learning, volume
119, pp. 4673–4681. PMLR, 2020.

Kobyzev, I., Prince, S. J. D., and Brubaker, M. A. Nor-
malizing flows: An introduction and review of current
methods. IEEE transactions on pattern analysis and
machine intelligence, 43(11):3964–3979, 2020.

Laszkiewicz, M., Lederer, J., and Fischer, A. Marginal tail-
adaptive normalizing flows. In International Conference
on Machine Learning, volume 162, pp. 12020–12048.
PMLR, 2022.

Liang, F. T., Hodgkinson, L., and Mahoney, M. W. Fat-
tailed variational inference with anisotropic tail adaptive
flows. In International Conference on Machine Learning,
volume 162, pp. 13257–13270. PMLR, 2022.

Liang, F. T., Hodgkinson, L., and Mahoney, M. W. A heavy-
tailed algebra for probabilistic programming. Advances
in Neural Information Processing Systems, 36, 2024.

Lipman, Y., Chen, R. T. Q., Ben-Hamu, H., Nickel, M., and
Le, M. Flow matching for generative modeling. In The
Eleventh International Conference on Learning Repre-
sentations, 2023.

McDonald, A., Tan, P.-N., and Luo, L. COMET flows:
Towards generative modeling of multivariate extremes
and tail dependence. In International Joint Conference
on Artificial Intelligence, 2022.

Murphy, K. P. Probabilistic Machine Learning: Advanced
Topics. MIT Press, 2023.

Nair, J., Wierman, A., and Zwart, B. The fundamentals
of heavy tails: Properties, emergence, and estimation.
Cambridge University Press, 2022.

Naveau, P., Huser, R., Ribereau, P., and Hannart, A. Model-
ing jointly low, moderate, and heavy rainfall intensities
without a threshold selection. Water Resources Research,
52(4):2753–2769, apr 2016.

Oliva, J., Dubey, A., Zaheer, M., Poczos, B., Salakhutdinov,
R., Xing, E., and Schneider, J. Transformation autoregres-
sive networks. In International Conference on Machine
Learning, volume 80, pp. 3898–3907. PMLR, 2018.

Papamakarios, G., Pavlakou, T., and Murray, I. Masked
autoregressive flow for density estimation. In Advances
in Neural Information Processing Systems, volume 30,
2017.

Papamakarios, G., Sterratt, D., and Murray, I. Sequen-
tial neural likelihood: Fast likelihood-free inference with
autoregressive flows. In The 22nd International Confer-
ence on Artificial Intelligence and Statistics, pp. 837–848.
PMLR, 2019.

Papamakarios, G., Nalisnick, E., Rezende, D. J., Mohamed,
S., and Lakshminarayanan, B. Normalizing flows for
probabilistic modeling and inference. Journal of Machine
Learning Research, 22(57):1–64, 2021.

Papastathopoulos, I. and Tawn, J. A. Extended generalised
Pareto models for tail estimation. Journal of Statistical
Planning and Inference, 143(1):131–143, 2013.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison,
M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L.,
Bai, J., and Chintala, S. Pytorch: An imperative style,
high-performance deep learning library. In Advances
in Neural Information Processing Systems 32, pp. 8024–
8035. Curran Associates, Inc., 2019.

Pickands III, J. Statistical inference using extreme order
statistics. The Annals of Statistics, pp. 119–131, 1975.

10

Flexible Tails for Normalizing Flows

Qi, Y. Bootstrap and empirical likelihood methods in ex-
tremes. Extremes, 11:81–97, 2008.

Rezende, D. and Mohamed, S. Variational inference with
normalizing flows. In International conference on ma-
chine learning, volume 37, pp. 1530–1538. PMLR, 2015.

Robert, C. and Casella, G. Monte Carlo statistical methods.
Springer Verlag, 2004.

Shaw, W. T., Luu, T., and Brickman, N. Quantile
mechanics ii: changes of variables in Monte Carlo
methods and GPU-optimised normal quantiles. Eu-
ropean Journal of Applied Mathematics, 25(2):177–
212, January 2014. ISSN 1469–4425. doi: 10.1017/
s0956792513000417. URL http://dx.doi.org/
10.1017/s0956792513000417.

Stein, M. L. Parametric models for distributions when inter-
est is in extremes with an application to daily temperature.
Extremes, 24(2):293–323, 2021.

Temme, N. M. Error functions, Dawson’s and Fresnel in-
tegrals. In NIST handbook of mathematical functions.
Cambridge university press, 2010.

Teshima, T., Ishikawa, I., Tojo, K., Oono, K., Ikeda, M., and
Sugiyama, M. Coupling-based invertible neural networks
are universal diffeomorphism approximators. Advances in
Neural Information Processing Systems, 33:3362–3373,
2020.

Troshin, V. V. On the maximum domain of attraction for
transformations of a normal random variable. Journal of
Mathematical Sciences, 262(4):537–543, 2022.

Van der Vaart, A. W. Asymptotic statistics. Cambridge
university press, 2000.

Yang, J., Łatuszyński, K., and Roberts, G. O. Stereographic
Markov chain Monte Carlo. The Annals of Statistics, 52
(6):2692–2713, 2024.

Yao, Y., Vehtari, A., Simpson, D., and Gelman, A. Yes,
but did it work?: Evaluating variational inference. In
Proceedings of the 35th International Conference on Ma-
chine Learning, volume 80, pp. 5581–5590. PMLR, 2018.

Zhang, J., Karimireddy, S. P., Veit, A., Kim, S., Reddi, S.,
Kumar, S., and Sra, S. Why are adaptive methods good
for attention models? In Larochelle, H., Ranzato, M.,
Hadsell, R., Balcan, M., and Lin, H. (eds.), Advances in
Neural Information Processing Systems, volume 33, pp.
15383–15393. Curran Associates, Inc., 2020.

Zscheischler, J., Westra, S., van den Hurk, B., Seneviratne,
S. I., Ward, P. J., Pitman, A. J., Aghakouchak, A., Bresch,
D. N., Leonard, M., Wahl, T., and Zhang, X. Future
climate risk from compound events. Nature Climate
Change, 8:469–477, 2018.

11

http://dx.doi.org/10.1017/s0956792513000417
http://dx.doi.org/10.1017/s0956792513000417

Flexible Tails for Normalizing Flows

A. Gaussian mixtures are light tailed
As suggested by a reviewer, here we prove that Gaussian mixtures are light tailed. Then, by Theorem 1.2, using a Gaussian
mixture base distribution with a Lipschitz NF produces light tailed output. Amiri et al. (2022) suggest this combination
(reviewed in Section 1.1.3), and we consider it in our experiments under the name m normal.

Suppose the real valued random variable Z has density

q(z) =

m∑
i=1

wiqi(z),

where
∑m

i=1 wi = 1, wi ∈ (0, 1) and qi(z) is a Zi ∼ N (µi, σ
2
i) density. The moment generating function of Zi is

MZi(λ) = E[exp(λZi)] = exp[λµi + λ2σ2
i /2].

Hence the moment generating function of Z is

MZ(λ) = E[exp(λZ)] =

m∑
i=1

wiMZi
(λ) =

m∑
i=1

wi exp[λµi + λ2σ2
i /2].

So MZ(λ) < ∞ for all λ > 0, and Z is light tailed under Definition 1.1.

In this paper we concentrate on univariate properties. However, note that for Z which is a mixture of multivariate Gaussians,
we can consider any univariate random variable of the form Z ′ = aTZ (with aTa ̸= 0). Since Z ′ is clearly a mixture of
univariate Gaussians, it is light tailed by the argument above.

B. TTF details
This appendix gives more details of our TTF transformation:

R(z;λ+, λ−) = µ+ σ
s

λs
[erfc(|z|/

√
2)−λs − 1].

Recall that s = sign(z) and

λs =

{
λ+ for s = 1,

λ− for s = −1.
(5)

First, Section B.1 reviews some background on the complementary error function. Then Section B.2 presents a motivation
for the transformation, and Section B.3 discusses some of its properties.

B.1. Complementary error function

For z ∈ R, the error function and complementary error function are defined as

erf(z) =
2√
π

∫ z

0

exp(−t2)dt,

erfc(z) = 1− erf(z).

For large z, erfc(z) ≈ 0, so it can be represented accurately in floating point arithmetic.

Note that
FN (z) =

1

2
(1 + erf[z/

√
2]), (6)

where FN (z) is the N (0, 1) cumulative distribution function. This implies

erfc−1(x) = −F−1
N (x/2)/

√
2. (7)

Efficient numerical evaluation of erfc and its gradient is possible, as it is a standard special function (Temme, 2010),
implemented in many computer packages. For instance PyTorch provides the torch.special.erfc function. Later we
also require erfc−1, which is less commonly implemented directly. However using (7) we can compute erfc−1 using the more
common standard normal quantile function F−1

N . For instance PyTorch implements this as torch.special.ndtri
(although this can have problems for small inputs—see Appendix G.5).

12

Flexible Tails for Normalizing Flows

B.2. Motivation

This section motivates the TTF transformation by sketching how it can be derived from some simpler transformations. This
gives an informal derivation that R transforms N (0, 1) tails to GPD tails. The formal version, Theorem C.9, is presented
later and also appropriately generalises the result to N (µ, σ2) inputs.

GPD transform Section 2.4 motivates the transformation P : [0, 1] → R+ given by the GPD quantile function

P (u;λ) =
1

λ
[(1− u)−λ − 1], (8)

where λ > 0 is the shape parameter. Using P transforms a distribution with support [0, 1] to one on R+ with tunable tail
weight.

We note that (8) is also valid for λ < 0 and maps [0, 1] to [0, 1
λ]. Here the image of the transformation depends on the

parameter values, which is not a useful property for a normalizing flow. Hence we do not consider negative λ in our work.

Two tailed transform We can extend (8) to a transformation Q : [−1, 1] → R,

Q(u;λ+, λ−) =
s

λs
[(1− |u|)−λs − 1]. (9)

Here λ+ > 0, λ− > 0 are shape parameters for the positive and negative tails. We use the notation s = sign(u), with λs

defined as in (5).

Using Q transforms a distribution with support [−1, 1] to one on R with tunable weights for both tails.

Real domain transform We would like a transformation R : R → R which can transform Gaussian tails to GPD tails.
Consider z ∈ R, and let u = 2FN (z)− 1, where FN is the N (0, 1) cumulative distribution function. Then u ∈ [−1, 1] and
we can output Q(u). A drawback is that large |z| can give u values which are rounded to ±1 numerically.

Using (6) shows that
1− |u| = erfc(|z|/

√
2), (10)

so there is a standard special function to compute 1− |u| directly. Large |z| gives 1− |u| ≈ 0, which can be represented to
high accuracy in floating point arithmetic, avoiding catastrophic rounding which could result from working directly with u.

Substituting (10) into (9) and adding location and scale parameters results in our TTF transformation R.

B.3. Properties

Here we derive several properties of the TTF transformation, R. These include expressions which are useful in an automatic
differentiation implementation of R for NFs: R−1 and derivatives of R and R−1.

Forward transformation The derivative of R with respect to z is given by

∂R

∂z
(z;µ, σ, λ+, λ−) = σ

√
2

π
exp(−z2/2) erfc(|z|/

√
2)−λs−1. (11)

All of these factors are positive, which implies that for all parameter settings ∂R
∂z (z) > 0, so the transformation is

monotonically increasing.

The transformation is continuously differentiable at z = 0 as

∂R

∂z
(0;µ, σ, λ+, λ−) = σ

√
2

π
. (12)

This has no dependence on the λ+, λ− and is the limit as z → 0 from above or below.

13

Flexible Tails for Normalizing Flows

Inverse transformation Define y = λs|(x− µ)/σ|+ 1. Then the inverse transformation is

R−1(x;µ, σ, λ+, λ−) = s
√
2 erfc−1(y−1/λs). (13)

Note here we can take s = sign(x− µ). The gradient is

∂R−1

∂x
(x;µ, σ, λ+, λ−) =

1

σ

√
π

2
y−1/λs−1 exp

(
erfc−1(y−1/λs)2

)
. (14)

C. Asymptotic results
This appendix proves asymptotic results on the tails produced by COMET flows and our TTF transformation. Our main aim
to to prove whether or not the distributions are in the Fréchet domain of attraction Θλ (see Definition 2.1). We will also find
the tail behaviour in detail for some special cases.

Throughout this appendix we use the following asymptotic notation. In particular, ∼ is not used to describe probability
distributions, as it is elsewhere in the paper.
Definition C.1. For functions f : R → R+ and g : R → R+, we write

1. f(x) = O(g(x)) if lim supx→∞ f(x)/g(x) < ∞,

2. f(x) ∼ g(x) if limx→∞ f(x)/g(x) = 1.

C.1. Background

The material in this section will be used in the proofs later in this appendix. The first results are on regularly varying
functions, based on the presentation in Nair et al. (2022).
Definition C.2. A function f : R+ → R+ is regularly varying of index ρ ∈ R if

lim
x→∞

f(kx)/f(x) = kρ

for all k > 0. When ρ = 0, f(x) is slowly varying.
Theorem C.3 (Nair et al., Lemma 2.7). For slowly varying f(x),

lim
x→∞

xρf(x) =

{
0 if ρ < 0,

∞ if ρ > 0.

Theorem C.4 (Nair et al., Theorem 2.8). A function f : R+ → R+ is regularly varying of index ρ if and only if

f(x) = xρℓ(x)

for some slowly varying ℓ.

The following result is an immediate corollary of Theorem 7.5(i) of Nair et al.
Theorem C.5 (Nair et al., corrolary). Consider a real-valued random variable X with density q(x). Its distribution is in Θλ

if and only q is regularly varying of index −1− λ.

Finally, we present a result of Liang et al. (2022).
Definition C.6. Let E2 be the set of random variables X such that for some α > 0

Pr(|X| ≥ x) = O(exp[−αx2]).

Note that E2 includes Gaussian distributions, and does not intersect with Θλ for any λ > 0.

The following result is a special case of Theorem 3.2 of Liang et al., and is a more precise extension of Theorem 1.2.
Theorem C.7 (Liang et al. special case). E2 is closed under Lipschitz transformations.

Of interest is a Gaussian base distribution transformed by a Lipschitz transformation, such as most standard NFs. The result
shows that the output is in E2, and not the Fréchet domain of attraction.

14

Flexible Tails for Normalizing Flows

C.2. COMET flow tails

Recall that COMET flows (McDonald et al., 2022), reviewed in Section 1.1, use a Gaussian base distribution followed by a
generic normalizing flow. Then each component of the output is transformed by h ◦ g, where g is the logistic transformation
and h is a GPD quantile function. The following result describes the resulting tails.
Theorem C.8. Let Z be a real random variable with density p(z). Define X = h ◦ g(Z) where

g(z) =
1

1 + exp(−z)
, h(z) =

1

λ

[
(1− z)−λ − 1

]
.

Let pN (z;µ, σ2) denote a N (µ, σ2) density. Then:

1. Z ∈ E2 (see Definition C.6) implies X ̸∈ Θλ (the Fréchet domain of attraction).

2. For p(z) ∼ pN (z; 0, σ2), X has density q(x) ∼ qLN (x; 0, λ2σ2), a log-normal density with location zero and scale
λ2σ2.

Statement 1 implies that the tails produced by COMET flows are not suitably heavy tailed under most standard NFs. The
argument is as follows. Recall that (Jaini et al., 2020; Liang et al., 2022) give details showing that most standard NFs
are Lipschitz. Theorem C.7 shows that applying a Lipschitz transformation to a Gaussian base distribution produces a
distribution in E2. Then statement 1 shows that COMET flows do not map this to the Fréchet domain of attraction, which is
the desired property by Definition 2.1.

Statement 2 shows that in one particular case, the resulting tails are log-normal. While the log-normal distribution is heavy
tailed under Definition 1.1, it is not in the Fréchet domain of attraction (see e.g. Embrechts et al., 2013, Example 3.3.31).
Hence it cannot capture the full range of asymptotic tail behaviours. For instance, all moments exist for a log normal
distribution but not for a GPD.

Proof. Let x = h(v), v = g(z). It’s straightforward to derive that

z ∼ λ−1 log x, (15)
x ∼ exp(λz)/λ, (16)

g′(z) ∼ (λx)−1/λ, (17)

h′(v) ∼ (λx)1+1/λ. (18)

The change of variables theorem gives

q(x) =
p(z)

|g′(z)||h′(v)|
=

p(z)

λx
. (19)

Statement 1 We’ll prove the contrapositive: X ∈ Θλ implies Z ̸∈ E2.

By Theorems C.4 and C.5, X ∈ Θλ implies q(x) = x−λ−1ℓ(x) with λ > 0 and slowly varying ℓ. Thus

p(z) ∼ q(x)λx from (19)

= x−λ−1ℓ(x)λx expression for q(x)

∼ exp(−λ[λ+ 1]z)λλ+2xℓ(x). from (16)

Let s(z) = λ(λ+ 1) exp(−λ[λ+ 1]z). Then

p(z)

s(z)
∼ Dxℓ(x),

with D = λλ+1/(λ+ 1). By Theorem C.3 this ratio converges to ∞.

It follows that there exists z0 such that z > z0 implies p(z) > s(z). Thus for z > z0:

Pr(Z > z) =

∫ ∞

z

p(t)dt >

∫ ∞

z

s(t)dt = exp(−λ[λ+ 1]z).

This contradicts Pr(|Z| > z) = O(exp[−αz2]) for some α > 0, so Z ̸∈ E2.

15

Flexible Tails for Normalizing Flows

Statement 2 From (19), q(x) ∼ pN (z;µ, σ2)/λx. Substituting in the Gaussian density and (15) gives

q(x) ∼ r(x) = Ax−1+B exp[−C(log x)2],

where A = 1
λσ(2π)1/2

exp[− µ2

2σ2], B = µ
λσ2 and C = 1

2λ2σ2 > 0. For µ = 0, r(x) is a log-normal LN(0, λ2σ2) density, as
required.

Remark The proof of statement 1 suggests that Z with an exponential distribution would produce output in the Fréchet
domain of attraction. This motivates using a Laplace distribution as a base distribution for a COMET flow. A drawback is
the lack of smoothness of the Laplace density at the origin.

C.3. TTF tails

Our transformation R is defined in (3). Here we consider a simplified version S : R+ → R+,

S(z;λ) =
1

λ
[erfc(z/

√
2)−λ − 1]. (20)

This modifies R by setting the location parameter to zero and scale parameter to one, and only considering the upper tail. To
simplify notation it uses λ in place of λ+. We provide the following result on tails produced by this transformation.

Theorem C.9. Let Z be a random variable with density p(z) ∼ pN (z;µ, σ2), a N (µ, σ2) density. Define X = S(Z;λ).
Then:

1. The distribution of X is in the Fréchet domain of attraction with shape parameter λσ2.

2. For µ = 0, σ = 1, X has density q(x) ∼ qGPD(x;λ, 21/(2+1/λ)), a GPD density with shape parameter λ and scale
21/(2+1/λ) (see Definition C.10 below).

The result for the lower tail is a simple corollary. Also, the result is unaffected by adding a final location and scale
transformation—as in our full TTF transformation R—except that the latter will modify the scale parameter in statement 2.

As argued in Section 3.1, most NFs use a standard normal base distribution, and are capable of producing the identity
transformation. So statement 2 of Theorem C.9 shows that composing them with R can produce output which has heavy
tails with parameterised weights. Statement 1 provides robustness: the result remains true when the input to R is a Gaussian
with arbitrary location and scale parameters.

C.3.1. LEMMAS

Here we present two lemmas which are used in the proof of Theorem C.9.

Definition C.10. A GPD with shape λ > 0, location 0, and scale σ > 0 has density

qGPD(x;λ, σ) =
1

σ
(1 + λx/σ)−1−1/λ.

Lemma C.11. For k > 0,
kqGPD(x;λ, 1) ∼ qGPD(x;λ, k−1/(2+1/λ)).

The left hand side is a GPD density with scale 1, multiplied by a constant k. The lemma shows this is asymptotically
equivalent to a GPD density with unchanged shape but modified scale.

Proof. Observe that
qGPD(x;λ, σ) ∼ σ−2−1/λ(λx)−1−1/λ

⇒ kqGPD(x;λ, 1) ∼ k(λx)−1−1/λ ∼ qGPD(x;λ, k−1/(2+1/λ)).

16

Flexible Tails for Normalizing Flows

Lemma C.12. Suppose x = S(z;λ). Then for large x,

z = [2λ log(λx+ 1)]1/2 + o(1), (21)

z2 = 2
λ log(λx+ 1)− log log(λx+ 1) + log λ

π + o(1). (22)

Proof. Let FN (·) be the N (0, 1) cdf. The result is a corollary of the following asymptotic expansion from (Fung & Seneta,
2018), for p → 0

F−1
N (p) = −[−2 log p− log log p−2 − log 2π]1/2

(
1 +O

[
log | log p|
(log p)2

])
.

By definition, x = 1
λ [erfc(z/

√
2)−λ−1]. So z =

√
2 erfc−1(p) where p = (1+λx)−1/λ. Using (7) gives z = −F−1

N (p/2).
Hence we get

z = [2λ log(λx+ 1)]1/2

[
1 +

− log log(λx+ 1) + log λ
π + o(1)

2
λ log(λx+ 1)

]1/2(
1 +O

[
log log(λx+ 1)

[log(λx+ 1)]2

])
.

Expanding the middle factor using a Taylor series and checking the order of the remaining terms gives (21). Squaring the
asymptotic expansion for z and checking the order of terms gives (22).

Remark A consequence of (22) which we will use later is:

z2 = η(x)− log η(x) + o(1), (23)

where η(x) = 2
λ log(λx+ 1) + log 2

π .

C.3.2. PROOF OF THEOREM C.9

Let x = S(z;λ). The change of variables theorem gives:

q(x) = p(z)/|S′(z;λ)|.

Recall that
p(z) ∼ pN (z;µ, σ2) =

1

(2π)1/2σ
exp

[
− 1

2σ2 (z − µ)2
]
,

and from (11),

S′(z;λ) =

√
2

π
exp(−z2/2) erfc(z/

√
2)−λ−1.

Hence
q(x) ∼ 1

2
r(z;µ, σ) erfc(z/

√
2)λ+1,

where

r(z;µ, σ) =
1

σ
exp

[
−1

2

{
1

σ2
(z − µ)2 − z2

}]
.

Rearranging (20) gives (1 + λx)−1/λ = erfc(z/
√
2). So

q(x) ∼ 1
2r(z;µ, σ)(1 + λx)−(1+1/λ). (24)

Note that r(z; 0, 1) = 1. Then the proof of statement 2 concludes by applying Lemma C.11 to (24).

The remainder of the proof is for statement 1, and uses capital letters to represent constants with respect to x. We have

log r(z;µ, σ) = 1
2 (1− σ−2)z2 +Az +B.

Using Lemma C.12 gives

log r(z;µ, σ) = 1
λ (1− σ−2) log(λx+ 1) + C[log(λx+ 1)]1/2 +D log log(λx+ 1) + E + o(1).

17

Flexible Tails for Normalizing Flows

So
r(z;µ, σ) = F (λx+ 1)(1−σ−2)/λ exp

{
C[log(λx+ 1)]1/2

}
[log(λx+ 1)]D(1 + o(1)).

Substituting into (24) gives

q(x) ∼ 1
2 (1 + λx)−1−λ−1σ−2

F exp
{
C[log(λx+ 1)]1/2

}
[log(λx+ 1)]D(1 + o(1))

⇒ q(x) = x−1−λ−1σ−2

ℓ(x),

where
ℓ(x) = G exp

{
C[log(λx+ 1)]1/2

}
[log(λx+ 1)]D(1 + o(1))

can easily be checked to be a slowly varying function. Applying Theorems C.4 and C.5 shows that Y is in the Fréchet
domain of attraction with shape λσ2 as required.

D. TTF Transform: Variations and Related Work
This appendix discusses variations on our TTF transform R, (3), and related work in the literature. For simplicity we
compare to R with location zero and scale one.

As well as those discussed below, we expect many other variations are possible with equivalent asymptotic properties,
providing much scope for potential future study.

Student’s T CDF Transform A straightforward alternative transformation which converts Gaussian tails to heavy tails is

Rcdf = F−1
T ◦ FN

where FT and FN are cdfs of Student’s T and Gaussian distributions (both with location zero and scale one). Rather than
use the Student’s T distribution for the base distribution, as in the prior work reviewed in Section 1.1.2, this moves the
use of the T distribution to the final transformation. Unfortunately, F−1

T does not have a closed form allowing automatic
differentiation, so it lacks the flexibilty of TTF. In particular we cannot learn the tail weight parameters. However, Rcdf could
be applied in a two step procedure for density estimation similar to TTFfix (see Section 3.4). Exploratory work suggests this
has comparable performance to TTFfix.

Unit Scale Transformation Another alternative transformation is

Ralt(z;λ+, λ−) =
s

λs

[{
1

2
erfc(|z|/

√
2)

}−λs

− 1

]
.

This only differs from our TTF transform in that a factor of 1/2 has been included. Equation 3.15 of Shaw et al. (2014)
shows that for z → ∞, Ralt is asymptotically equivalent to Rcdf. Hence Ralt converts N (0, 1) tails to GPD tails. In this
case it has the advantage of producing output with scale one, which the TTF transformation does not do (see Theorem C.9,
statement 2). However, the reason we don’t use Ralt is due to a disadvantage—there can be a discontinuity at z = 0, since

lim
z→0+

Ralt(z;λ+, λ−) = (2λ+ − 1)/λ+,

lim
z→0−

Ralt(z;λ+, λ−) = (2λ− − 1)/λ−.

Another related result is from (Troshin, 2022). This paper investigates necessary and sufficient conditions for transformations
to map N (0, 1) inputs to the Fréchet domain of attraction. This produces a family of functions which includes R and
Ralt—see Troshin’s Remark 2. However, unlike our Appendix C, this work does not provide results for N (µ, σ2) inputs.

E. Universality
Here we prove some universality properties relating to the TTF transformation, as referred to in Section 3.5, which also
includes a broader discussion on universality.

18

Flexible Tails for Normalizing Flows

E.1. Background

We define universality for our purposes in Sections E.1–E.2 as follows.

Definition E.1. Let S be a set of transformations s : Rd → Rd. Let Z ∼ N (0, I) be the usual base distribution. We call S
universal if for every random variable X on Rd there is a sequence sn ∈ S such that sn(Z) → X in the sense of weak
convergence as n → ∞.

Universality has been proved for some NFs including SoS polynomial flows and Neural Autoregressive Flows (Huang et al.,
2018; Jaini et al., 2019; Kobyzev et al., 2020).

For all these results the set of transformations S comprises NFs of a particular type with unbounded capacity. The
sequence sn typically requires increasing capacity as n → ∞. So Definition E.1 means that an idealised sequence of NFs
can approximate any target distribution. In practice, capacity is limited and only an imperfect approximation is usually
achievable.

For many other common NFs it is unknown whether universality holds: see Jaini et al., 2019 Table 1, but note progress has
been made on coupling flows, discussed in Section E.3.

E.2. TTF preserves universality

Let S be the set of transformations corresponding to a universal NF. Let R be the set of TTF transformations under all valid
parameter choices. Let S̃ = {r ◦ s : r ∈ R, s ∈ S}. We now prove that universality of S implies universality of S̃. Note
that R does not contain the identity, so the result is not immediate.

Fix any r̃ ∈ R and some target X . Since S is universal, it contains a sequence {sn} such that sn(Z) → r̃−1(X). By the
continuous mapping theorem (see e.g. Van der Vaart, 2000, Theorem 2.3), the continuity of r̃ implies r̃ ◦ sn(Z) → X , as
required.

E.3. Coupling flows

Draxler et al. (2024) investigate universality of coupling flows. They replace Definition E.1 by an alternative convergence
metric specialised to the problem. Given a target random variable X and a normalising flow s acting on base random
variable Z ∼ N (0, I), it considers the closeness of s−1(X) to N (0, I) (in terms of the improvement possible by using s ◦ t
where t is a single coupling flow layer). See Definition 5.1 of Draxler et al. (2024) for full details.

Their main result – Theorem 5.4 of Draxler et al. 2024 – applies to any X with full support, a continuous density and
finite first and second moments. They show there exists a sequence of coupling flows {sn} achieving a convergence metric
tending to zero.

The assumption that X has finite first and second moments excludes sufficiently heavy tailed distributions from this result.
This improves on earlier work such as Teshima et al. (2020) which looks at weak convergence in a bounded subset of Rd,
and so does not consider tails at all.

It is plausible that our TTF transformation can preserve the result of Draxler et al. (2024) and extend it to heavier tailed
targets. Given some target X , the idea is to select r̃ ∈ R such that X ′ = r̃−1(X) has finite first and second moments. That
is, r̃−1 acts to lighten tails of X which are too heavy. Take the sequence {sn} from applying the result of Draxler et al.
(2024) to X ′. Then for target X the sequence {r̃ ◦ sn} produces a convergence metric tending to zero.

However further results are needed to prove when a suitable r̃ exists. We leave this for future work.

F. Neural Network Regression with Extreme Inputs
In Section 1, we claimed that neural network optimisation can perform poorly under heavy tailed input. This forms part of
the motivation for proposing our methods. In Section 4.1 we illustrated this claim empirically for an example involving NFs.
Here we provide further support in a simpler supervised learning example.

Our experiment considers the following simple regression problem

{Xi}di=1 ∼ tν , Y ∼ N (Xd, 1).

19

Flexible Tails for Normalizing Flows

Table 4: Neural network regression example results. Values are the median test MSE over 5 trials, with the maximum
provided in brackets. (We use median as it’s more robust than mean to extreme outliers. Maximum illustrates the presence
and magnitude of such outliers.)

d ν Sigmoid activation ReLU activation
30.0 1.01 (1.02) 1.01 (1.04)

5 2.0 1.74 (6.19) 1.06 (1.08)
1.0 1.57e+03 (8.57e+06) 3.45 (1.93e+03)
30.0 1.02 (1.02) 1.02 (1.05)

10 2.0 2.04 (7.28) 1.03 (1.05)
1.0 4.13e+03 (1.09e+06) 8.41 (49.6)
30.0 1.01 (1.04) 1.08 (1.09)

50 2.0 3.09 (5.26) 1.27 (12.3)
1.0 1.03e+04 (1.73e+06) 55.8 (6.59e+03)
30.0 1.02 (1.07) 1.15 (1.2)

100 2.0 3.41 (4.33) 1.60 (1.74)
1.0 1.02e+05 (1.94e+05) 336 (1.2e+03)

The d-dimensional input is heavy tailed. The output equals one of the inputs plus Gaussian noise. The other inputs act as
nuisance variables.

Experimental Details We consider a number of tail weight (ν) and dimension (d) combinations and generate 5000 train,
validation and test samples for each. Our models are simple 2 layer multi-layer perceptrons with 50 nodes in each hidden
layer. The models are optimised with Adam to minimise mean square error, selecting the model with smallest validation
loss found during training. We consider both sigmoid and ReLU activations. This is to investigate whether the main issue is
saturation of sigmoid activation functions. The experiment was repeated 5 times, each trial sampling a new set of data.

Results Table 4 shows the results of the experiment. Both models perform well for ν = 30 (light tailed inputs), worse for
ν = 2, and very badly for ν = 1. Performance also decays as d increases, but the effect is weaker. The ReLU activation
function performs a little better overall, but can still result in very large MSE values.

Overall, the results demonstrate the failure of neural network methods to capture a simple relationship in the presence of
heavy tailed inputs. The problem persists under a ReLU activation function, showing that it is not caused solely by saturation
of the sigmoid activation function.

G. Implementation Details
This appendix contains more details of how we implement our experiments in Section 4 of the main paper.

G.1. Normalizing Flows

We use the nflows package (Durkan et al., 2020) to implement the NF models. This depends on PyTorch (Paszke et al.,
2019) for automatic differentiation.

With the exception of the CLIMDEX example, our spline and autoregressive affine NF layers output the required transfor-
mation parameters from masked neural networks. These use 2 hidden layers, each with a width equal to the input dimension
plus 10. Spline layers are configured to use a bounding box of [−2.5, 2.5] with 5 bins.

For the more complicated CLIMDEX dataset, which requires more capacity, we reuse the architecture and tuning choices
used in Laszkiewicz et al. (2022), as discussed in Section 4.2.

G.2. Alternative Base Distributions

Standard NFs use a Gaussian base distribution, and a Student’s T base distribution is also popular for heavy tailed targets.
In addition to these, we also tried two alternative base distributions suggested by Amiri et al. (2022) which we describe here.

20

Flexible Tails for Normalizing Flows

The first is a Gaussian mixture model base distribution (m normal) with 5 components (preliminary work found 10 or 15
components had no significant difference in performance). For each component we optimise the d dimensional mean and
diagonal covariance terms along with other parameters.

The second alternative base distribution is d independent generalised normal distributions (g normal). The generalised
normal family does not have Pareto tails, so we cannot fix them to have the true tail weight. Instead, we optimise the shape
parameter of each marginal.

G.3. Tail Parameter Initialisation

For density estimation of heavy tailed data, the tail parameters must be initialised sufficiently high that large observations
aren’t mapped to vanishingly low probability regions of the base distribution. If this does occur, it is possible to get numerical
overflow during optimisation. For variational inference a related problem can occur: if some tail parameters are too high,
then we can sample points of very low target density and get numerical overflow. In practice, we find that initialising λ
uniformly from [0.05, 1] provides sufficient stability.

For two-stage methods, Section 3.4 describes our initial stage of tail parameter estimation. Equivalent tail parameters are
used for mTAF, TTFfix and COMET. In some cases, this estimation procedure finds that a marginal distribution is light
tailed. In these cases, as mentioned in Section 3.3, we set the tail parameter to a small value, corresponding to a degree of
freedom of ν = 1000.

G.4. Sampling Student’s T

Consider sampling from a Student’s T distribution with ν degrees of freedom. Algorithm 1 implements this, while allowing
the reparameterization trick i.e. differentiation with respect to ν.

Algorithm 1 Sampling Student’s T

Require: Input: degrees of freedom ν, threshold ϵ ≥ 0.
1: Sample g ∼ Gamma(ν/2, 1).
2: Let g′ = max(g, ϵ).
3: Sample z ∼ N (0, 1).
4: Return z

√
ν
2g′ .

Abiri & Ohlsson (2019) suggest this algorithm with ϵ = 0, and comment on how to differentiate through a Gamma
distribution. This method is implemented in PyTorch. However we found that taking the reciprocal of g ≈ 0 can result in an
overflow error. Hence we make a slight adjustment for numerical stability: we clamp g to ϵ = 1e-24.

G.5. Inverse Transformation for Small Inputs

Equation (13) gives an expression for R−1(x), the inverse of our TTF transformation R, in terms of erfc−1(y−1/λs) where
y(x) = λs|(x− µ)/σ|+ 1. However we experience numerical issues when implementing (13) for small x. Therefore for
y−1/λs < 10−6 our code uses the approximation

R̂−1(x) = s [η(x)− log η(x)]
1
2 ,

where η(x) = 2
λs

log y(x) + log 2
π ,

and s = sign(x− µ). We have R̂−1(x) ≈ R−1(x) using (23).

G.6. Optimisation

All of the experiments use the Adam optimiser. Table 5 gives learning rate and batch size values.

Most experiments use pytorch defaults for other tuning choices. One exception is density estimation for CLIMDEX, where
we follow the optimisation setup from Laszkiewicz et al. (2022). Another is the ν = 0.5 variational inference example,
where we clip the gradient norm to 5, which was beneficial to the stability of mTAF and TTFfix.

21

Flexible Tails for Normalizing Flows

Table 5: Optimisation Hyperparameters.

Experiment Group Learning Rate Batch Size
Synthetic Density Estimation (Section 4.1) 5e-3 None (full pass)

Real Data (Section 4.2) 5e-4 512
Variational Inference (Section 4.3) 1e-3 100

H. Variational Inference Diagnostics
We measure the quality of a density qx(x) produced by VI using two diagnostics based on importance sampling. This
involves calculating wi = p(xi)/qx(xi) where p(x) is the target density and xi ∼ qx(x) (independently) for i = 1, 2, . . . , n.
In our examples we use n = 10, 000.

Our first diagnostic is based on effective sample size (Robert & Casella, 2004)

ESS(n) =

(
n∑

i=1

wi

)2

/

n∑
i=1

w2
i .

We report ESS efficiency, ESSe(n) = ESS(n)/n. A value of ESSe(n) ≈ 1 indicates qx(x) ≈ p(x).

Our second diagnostic is from Yao et al. (2018), who fit a GPD to the wis and return the estimated shape parameter k̂. Lower
k̂ values indicate a better approximation of p(x) by qx(x). Yao et al. (2018) argue that k̂ < 0.7 indicates a useful variational
approximation, so we highlight this threshold in our tables.

I. Data
Table 6 summarises the real data sets used in our experiments.

Table 6: Real data sets information.

Name Dimension Average ν Topic Source
Insurance 2 2.17 Medical claims Liang et al. (2022)
Fama 5 5 2.36 Daily returns of 5 major indices Liang et al. (2022)

S&P 500 300 4.78 Daily returns of the 300 most traded US stocks Novel to our paper
CLIMDEX 412 4.24 High dimensional meteorological data Laszkiewicz et al. (2022)

All datasets are pre-processed before density estimation is performed. To do so, data is normalized to zero mean and unit
variance using the estimated mean and variance from the training and validation sets, as is standard practice in NF density
estimation (Papamakarios et al., 2017; Durkan et al., 2019).

I.1. S&P 500

Here we describe the S&P 500 dataset which we introduce. These financial returns are an example of moderately high
dimensional multivariate data with extreme values. We take the closing prices of the top 300 most traded S&P 500 stocks,
and convert them in standard fashion to log returns i.e. the log returns are xj = log(

sj+1

sj
) where sj is stock closing price on

day j. We use data covering the time period 2010-01-04 to 2022-10-27, corresponding to 3227 days in total. In this example
we concentrate on the tails of the data, rather than time series structure. As such, we treat each day of log returns as an
independent observation in Rd.

The test set is comprised of observations after 2017-09-14, with train and validation sampled uniformly from the period up
to and including this date. This corresponds to 1292 training, 645 validation and 1290 test observations respectively.

22

Flexible Tails for Normalizing Flows

J. Additional Results for Density Estimation with Synthetic Data
J.1. Other Experimental Settings

Table 7 expands on the results from Table 1 from the main paper, by including more values of d and ν.

Dashes in the table indicate potential unstable optimisation: at least one repeat had a very large final loss (above 1e5). In
these cases, even excluding losses this large resulted in significantly worse mean losses than other methods. These results
confirm that all the methods not specifically designed to permit GPD tails become increasingly unstable as the data becomes
more heavy tailed.

The table includes results for the TTF tBase architecture. As described in Section 4.1, this is similar to TTF, but uses a
Student’s T base distribution with trainable degrees of freedom. TTF tBase always does worse than TTF and TTFfix. For
the largest ν values – 2 and 30 – it is the worst of all methods. It also has the largest standard error values, suggesting that
optimisation may be more difficult once these two methods are combined and there are two sets of tail parameters to tune.

Table 7: Density estimation results on synthetic example. Each entry is a mean value of negative test log likelihood per
dimension across 10 repeated experiments, with the standard error in brackets. (Dividing by dimension acts to normalises
the values, allowing for easier comparison across dimensions.) Bold indicates methods whose mean log likelihood differs
from the best mean by less than 2 standard errors (of the best mean). A dash indicates potential unstable optimisation (at
least one repeat had a final loss above 1e5). No entry indicates that the experiment was not ran.

d Flow ν = 0.5 ν = 1 ν = 2 ν = 30

5

normal - - 2.01 (0.07) 1.46 (0.00)
m normal - 403.24 (239.15) 1.94 (0.02) 1.46 (0.00)
g normal - - 1.93 (0.01) 1.46 (0.00)

gTAF 6.42 (0.27) 2.49 (0.02) 1.90 (0.01) 1.46 (0.00)
TTF 3.33 (0.01) 2.34 (0.01) 1.89 (0.01) 1.47 (0.00)

mTAF 4.08 (0.03) 2.49 (0.02) 1.92 (0.01) 1.46 (0.00)
TTFfix 3.33 (0.01) 2.35 (0.01) 1.89 (0.01) 1.47 (0.00)

COMET 3.42 (0.01) 2.35 (0.01) 1.89 (0.00) 1.46 (0.00)
TTF tBase 3.39 (0.02) 2.51 (0.04) 2.04 (0.02) 1.65 (0.03)

10

normal - - 2.00 (0.02) 1.46 (0.00)
m normal - - 2.04 (0.07) 1.46 (0.00)
g normal - - 1.98 (0.02) 1.46 (0.00)

gTAF 7.13 (0.31) 2.63 (0.02) 1.95 (0.00) 1.47 (0.00)
TTF 3.55 (0.01) 2.47 (0.00) 1.93 (0.00) 1.47 (0.00)

mTAF 4.48 (0.04) 2.63 (0.01) 1.95 (0.00) 1.46 (0.00)
TTFfix 3.54 (0.01) 2.46 (0.00) 1.93 (0.00) 1.47 (0.00)

COMET 3.63 (0.01) 2.46 (0.00) 1.93 (0.00) 1.47 (0.00)
TTF tBase 3.67 (0.01) 2.63 (0.01) 2.08 (0.01) 1.62 (0.01)

50

normal - - 2.02 (0.01) 1.47 (0.00)
m normal - - 2.02 (0.00) 1.47 (0.00)
g normal - - 2.01 (0.00) 1.47 (0.00)

gTAF 7.49 (0.38) 2.65 (0.01) 1.99 (0.00) 1.47 (0.00)
TTF 3.68 (0.00) 2.54 (0.00) 1.98 (0.00) 1.47 (0.00)

mTAF 5.22 (0.04) 2.62 (0.01) 1.98 (0.00) 1.47 (0.00)
TTFfix 3.68 (0.00) 2.54 (0.00) 1.98 (0.00) 1.47 (0.00)

COMET 3.74 (0.00) 2.55 (0.00) 1.97 (0.00) 1.47 (0.00)
TTF tBase 4.17 (0.01) 2.84 (0.04) 2.35 (0.04) 1.82 (0.06)

J.2. Learned Tail Parameters

Figure 2 illustrates tail parameters learned by TTF corresponding to the d = 5 experiment of Table 7. These results show
that the learned parameters don’t exactly match the TTFfix values chosen to match the known tail shapes. Our theory –
Theorem C.9 statement 2 – shows that the two should be equal for a good tail fit if our transformation were applied to

23

Flexible Tails for Normalizing Flows

Figure 2: Box plots of TTF final tail shape parameters λ from repeated optimiser runs. The dashed horizontal lines show the
TTFfix values. The y-axis shows 1/λ, as then the TTFfix values directly match the target Student’s T degrees of freedom.

a N (0, 1) random variable. However Theorem C.9 statement 1 shows that changing the input random variable – e.g. to
N (µ, σ2) – can produce a resulting distribution with a different tail shape. So the lack of a match in practice suggests the
learned TTF parameters adjust slightly from the TTFfix values to compensate for the effect of the other normalising flow
layers.

Adjusting in this way could be an advantage in learning the tail parameters (as in our TTF method) rather than fixing them in
advance (as in our TTFfix method). However in this case any such advantage is small, as the overall results are very similar
in Table 7. Also, as we have seen in other experiments, TTFfix is often competitive in practice, and can be easier to train.

24

	Introduction
	Related Work
	Theory
	Heavy Tailed Base Distributions
	Other Methods

	Background
	Normalizing Flows
	Density Estimation
	Variational Inference
	Extreme Value Theory

	Methods and Theory
	TTF Transformation
	Theory
	Multivariate Transformation
	Two Stage Procedure
	Universality

	Experiments
	Density Estimation with Synthetic Data
	Density Estimation with Real Data
	Variational Inference for Artificial Target

	Conclusion
	Limitations and Future Work

	Gaussian mixtures are light tailed
	TTF details
	Complementary error function
	Motivation
	Properties

	Asymptotic results
	Background
	COMET flow tails
	TTF tails
	Lemmas
	Proof of Theorem C.9

	TTF Transform: Variations and Related Work
	Universality
	Background
	TTF preserves universality
	Coupling flows

	Neural Network Regression with Extreme Inputs
	Implementation Details
	Normalizing Flows
	Alternative Base Distributions
	Tail Parameter Initialisation
	Sampling Student's T
	Inverse Transformation for Small Inputs
	Optimisation

	Variational Inference Diagnostics
	Data
	S&P 500

	Additional Results for Density Estimation with Synthetic Data
	Other Experimental Settings
	Learned Tail Parameters

