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ABSTRACT

Inverse rendering aims to decompose the an image into geometry, materials, and
lighting. Recently, Neural Radiance Fields (NeRF) based inverse rendering has
significantly advanced, bridging the gap between NeRF-based models and con-
ventional rendering engines. Existing methods typically adopt a two-stage opti-
mization approach, beginning with volume rendering for geometry reconstruction,
followed by physically based rendering (PBR) for materials and lighting estima-
tion. However, the inherent ambiguity between materials and lighting during PBR
and the suboptimal nature of geometry reconstruction by volume rendering only
compromise the outcomes. To address these challenges, we introduce Uni-IR,
a unified framework that imposes mutual constraints to alleviate ambiguity by
integrating volume rendering and physically based rendering. Specifically, we
employ a physically-based volume rendering (PBVR) approach that incorporates
PBR concepts into volume rendering, directly facilitating connections with mate-
rials and lighting, in addition to geometry. Both rendering methods are utilized
during optimization, imposing mutual constraints and optimizing geometry, mate-
rials, and lighting synergistically. Employing a meticulously crafted unified repre-
sentation for both lighting and materials, Uni-IR achieves high-quality geometry
reconstruction, materials and lighting estimation across various object types.

1 INTRODUCTION

Multi-view 3D reconstruction is a pivotal task in computer vision and computer graphics, serving
as a cornerstone for various applications such as game modeling |Gregory| (2018); [Lewis & Jacob-
son| (2002)), computer animation [Parent| (2012); |Lasseter| (1987), and virtual reality [Schuemie et al.
(2001). Despite the remarkable progress achieved by Neural Radiance Fields (NeRF) Mildenhall
et al.|(2021) and subsequent approaches like SDF-based neural implicit surface learning Wang et al.
(2021); |Yariv et al.| (2021)); |Oechsle et al.| (2021), multi-view 3D reconstruction still presents chal-
lenges in bridging the gap between NeRF-based models and conventional rendering engines. Vol-
ume rendering, the core mechanism of NeRF, generates radiance without explicitly considering the
interactions of materials and lighting. In contrast, conventional rendering engines derive shading
through the interactions between surface materials Nicodemus| (1965) and lighting.

To bridge the gap, inverse rendering, the task of disentangling radiance into geometry, materials, and
lighting, has garnered significant attention. This approach allows the reconstructed 3D model to be
directly integrated into rendering engines, thereby playing a critical role in downstream applications
such as game production [Lewis & Jacobson|(2002) and virtual reality Schuemie et al.|(2001).

Recent studies [Zhang et al.| (2022); Sun et al.| (2023)); [Zhang et al.| (2021alb); [Liu et al.| (2023));
Yang et al.|(2023) have explored the inverse rendering task within a neural implicit surface learning
framework. These approaches typically adopt a two-stage training strategy. In the initial stage, vol-
ume rendering is utilized for geometry reconstruction. Subsequently, in the second stage, physically
based rendering is employed to refine materials and lighting under a fixed geometry as shown in
Figure[I](a). However, the performance in the second stage heavily relies on the quality of geometry
reconstruction in the first stage. While these methods demonstrate the effectiveness on the objects
with diffuse materials, they often lead to suboptimal results in reconstructing reflective surfaces,
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Figure 1: Two-stage and unified optimization. ~ Figure 2: An overview of Uni-IR framework.

consequently leading to compromised materials and lighting predictions in the second stage. More
recently, several studies have focused on object reconstruction with reflections (Ge et al.| (2023));
Verbin et al.| (2022); |Liu et al.| (2023); Liang et al.| (2023a), with some of them |Liu et al.| (2023));
Liang et al.| (2023a)) further leveraging well-reconstructed geometry for inverse rendering. Despite
the promising results achieved, the ill-posed nature of inverse rendering makes optimization still
challenging. Lack of constraints in physically based rendering leads to suboptimal performance,
with inherent ambiguity between lighting and materials in Figure[T] (b).

To tackle the challenges, we propose to integrate volume rendering and physically based rendering
to simultaneously optimize geometry, materials, and lighting, aiming at imposing mutual constraints
to alleviate the ambiguity. While this idea appears straightforward, unifying the two rendering
pipelines is non-trivial. Merely integrating the two into a unified framework will not introduce
mutual constraints, since volume rendering lacks physical plausibility and severs the connection with
physically based rendering. Conversely, the optimization becomes intractable due to the ambiguity
among geometry, materials, and lighting. To address this issue, we depart from the traditional
volume rendering, which employs an MLP to predict radiance with entangled materials and lighting
as shown in Figure[T|(a). Instead, we integrate the principles of PBR into volume rendering inspired
by [Liu et al.| (2023). In this approach, radiance is also formulated as the interaction between the
materials and lighting. We refer to this method as physically based volume rendering (PBVR).

By integrating PBVR and PBR within a unified framework, we introduce a method named Uni-IR as
illustrated in Figure(l|(c). At the heart of this approach lies a meticulously crafted unified represen-
tation for materials and lighting representations across both rendering methods, achieving mutual
constraints and optimizing geometry, materials, and lighting synergistically. In the lighting repre-
sentation, we consolidate the lighting representation for both PBVR and PBR through integrated
directional encoding [Verbin et al.|(2022). Two distinct light MLPs are employed to model direct and
indirect lighting, respectively, addressing global illumination and inter-reflection, which are crucial
for differentiating indirect light from albedo and environment map. Additionally, we parameterize
the visibility term through two distinct MLPs. One is probabilistic for PBVR, while the other is
deterministic for PBR, indicating whether direct or indirect lights should be used. For materials
prediction, we employ a shared material MLP for both PBVR and PBR.

To summarize, our contributions are listed as follows.

* To the best of our knowledge, we introduce the first unified optimization framework for in-
verse rendering task, seamlessly integrating PBVR and PBR. Unifying these two rendering
methods synergistically enhances the performance of inverse rendering.

* We meticulously design a unified lighting and materials representation for PBVR and PBR,
effectively imposing mutual constraints and mitigating ambiguity.

* We present a comprehensive evaluation protocol, encompassing assessments of geometry
reconstruction, as well as material and lighting estimation accuracy. Extensive experiments
conducted on multiple datasets demonstrate the effectiveness of the proposed framework.
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2 RELATED WORK

2.1 MULTI-VIEW 3D RECONSTRUCTION

Traditional multi-view 3D reconstruction typically employs Multi-View Stereo (MVS) techniques
Curless & Levoy| (1996)); [Fua & Leclerc| (1995)); [Furukawa & Ponce| (2009); Schonberger et al.
(2016); |[Schonberger & Frahm| (2016); Xu & Tao| (2019)), with the objective of reconstructing scene
geometry from multi-view images. These techniques utilize multi-view consistency to establish cor-
respondences and estimate depth values across different views, yielding a point cloud reconstruc-
tion. However, MVS methods encounter challenges in reconstructing reliable geometry in specific
scenarios, such as surfaces with specular reflections and regions with low texture. In such cases,
multi-view consistency is compromised, potentially resulting in severe artifacts and missing parts in
the reconstructed output.

With the recent advancements in deep learning, learning-based approaches utilizing implicit surface
representations have emerged, where neural networks are employed to map continuous points to
either an occupancy field Mescheder et al.|(2019); Peng et al.|(2020) or a Signed Distance Function
(SDF) [Park et al.| (2019). Unlike traditional methods, these approaches are immune to appearance
changes as they rely on 3D ground truth supervision. However, these methods typically necessitate
additional supervision corresponding to the occupancy value or SDF for each point. Unfortunately,
such supervision may not always be readily available when utilizing solely multi-view 2D images,
thereby restricting their scalability.

The advent of volumetric approaches in NeRF Mildenhall et al.| (2021)) has sparked significant inter-
est in 3D reconstruction utilizing neural implicit surface representations Oechsle et al.[(2021); |Yariv
et al.| (2021); Wang et al.| (2021). Subsequent research endeavors have continued to enhance the
reconstruction performance across various aspects. Despite demonstrating promising performance
in 3D reconstruction, these methods still struggle to accurately recover the geometry of specular
surfaces. Therefore, in this study, we concentrate on the reconstruction of reflective objects, along
with the estimation of material and lighting properties.

2.2 MODELING FOR OBJECT WITH REFLECTION

Recently, several studies |Boss et al.| (2021); |Srinivasan et al.| (2021); Zhang et al.| (2021aib); |Verbin
et al.[ (2022); |Ge et al.| (2023); [L1u et al.| (2023); Wang et al.| (2024; |2023); [Fan et al.| (2023)) have
focused on modeling objects with reflection. Some studies [Verbin et al.| (2022); Boss et al.| (2021);
Zhang et al.[ (2021b); |B1 et al.[ (2020); Rodriguez et al.[ (2020); |[Kopanas et al.| (2022); Liang et al.
(2023Db)) tackle rendering tasks, where they model view-dependent reflective appearances by decom-
posing a scene into shape, reflectance, and illumination for novel view synthesis and relighting.
Other studies |Ge et al.| (2023); |Liu et al.| (2023); Wang et al.| (2024); |Fan et al.| (2023); Liang et al.
(2023a) focus on reconstructing reflective geometry by modeling specular light more reasonably or
mitigating the effects of specular surfaces. For example, Ref-NeuS |Ge et al.| (2023) and NeP [Wang
et al.|(2024) reduce the impact of highly uncertain reflective regions while enhancing the significance
of less altered areas. Additionally, ENVIDR [Liang et al.|(2023a) and NeRO [Liu et al.| (2023) adopt
a more physically plausible approach to model specular color, leading to notable improvements in
reconstruction performance. Typically, physically based rendering is employed to further estimate
materials and lighting given well-reconstructed geometry. Despite achieving promising results, the
entanglement between illumination and materials compromises outcomes due to the ill-posed na-
ture of inverse rendering, inevitably leading to suboptimal results in many cases. In this study, we
propose a unified framework that imposes mutual constraints and alleviates the entanglement issue.

2.3 INVERSE RENDERING WITH NEURAL IMPLICIT LEARNING

Inverse rendering Barron & Malikl (2014); Nimier-David et al.| (2019) aims to decompose image
appearance into intrinsic properties such as geometry, materials, and lighting. This task has posed
a challenge in computer vision and graphics due to its ill-posed nature. Recovering reliable intrin-
sic properties is particularly difficult because of the limited constraints added during optimization.
To address this challenge, most existing methods [Zhang et al.| (2022); [Liu et al.| (2023); [Yu et al.
(1999); IZhang et al.| (2021b); [Yao et al.| (2022); Wang et al.| (2024); Yang et al.| (2023) employ a
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geometry-first optimization framework. Initially, they utilize volume rendering to reconstruct geom-
etry. Subsequently, in the second stage, physically based rendering is used for materials and lighting
estimation. However, ambiguity between materials and lighting hinders the second-stage optimiza-
tion. These methods do not establish a connection between volume rendering and physically based
rendering, as they are performed separately in two distinct stages. Our approach integrates PBVR,
which incorporates the concept of PBR into traditional volume rendering to establish a connection
with PBR, and PBR within a unified framework. Featuring a carefully designed unified representa-
tion for both lighting and material representation, our method effectively imposes mutual constraints
and mitigates ambiguity.

3 APPROACH

With N calibrated multi-view images denoted as X' = {Ii}i]il, our objective is to address the inverse
rendering that simultaneous reconstructing of the object’s geometry and estimating the materials and
lighting. We commence by providing a succinct overview of volume rendering and physically based
rendering in Section Next, we introduce physically based volume rendering (PBVR), and how
we integrate PBR and PBVR into a unified framework in Section Subsequently, we delve
into the design of unified lighting and materials representations in Section [3.3] Lastly, Section [3.4]
presents full optimization. An overview of our framework is illustrated in Figure 2}

3.1 PRELIMINARIES

Volume Rendering. Volume rendering |[Kajiya & Von Herzen| (1984) used in NeRF Mildenhall
et al.| (2021) aims at multi-view 3D reconstruction and novel view synthesis. The core idea is to
represent the continuous attributes (i.e., density and radiance) of a 3D scene with neural networks.
o compositing Max| (1995) aggregates these attributes along a ray r to approximate the pixel RGB
values by:

P
C(r)= ZTiaiCi, (1
i=1

where T; = exp (— Z;;ll ajéj) and o; = 1 — exp (—0;9;) denote the transmittance and alpha

value of sampled point, respectively. J; is the distance between neighboring sampled points. P is
the number of sampled points along a ray. o; and c; are predicted attributes by the neural networks.
The training object £ is the mean square error between the ground-truth pixel color C(r) and the

rendered color C(r) formulated as

Acrender = Z ||C(I'> - C’(r)”%, (2)

reR

where R is the set of all rays shooting from the camera center to image pixels. Subsequent ap-
proaches use Signed Distance Function (SDF) instead opacity o to define the geometry. Following
NeuS Wang et al.| (2021)), the formulation of «; is calculated from the signed distance g (x) rather

than density o; as
(I)s i)) q)s i
S < (9(2) ~ @ (g(a +1>>70> |
q)s (g(wz))
where g is the geometry network, which maps a position « to its signed distance g(x). ®s(z) =
(1+ )" and 1/s is a trainable parameter which indicates the standard deviation of ®,(z).

3)

Physically Based Rendering. Physically based rendering aims to produce photo-realistic 2D im-
ages given geometry, materials and lighting. At its core, the rendering equation [Kajiyal (1986)
models the interaction between materials and lighting in a physically plausible manner. It inherently
represents an integral equation that describes the equilibrium of light in a scene. The formula is
expressed as

c(a:,wo) = /Qf(w7w07w'L)L7,($awl)(wl : n)dw'w (4)

where w,, is the viewing direction of the outgoing light, L; is the incident light of direction w;
sampled from the upper hemisphere (2 of the surface point &, and n is the surface normal. f is the
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BRDF properties. The function f consists of a diffused and a specular component

a DFG
fl,wo,w;) = (1 — m); + 4(w; x n)(we x n)’

(&)

where m € [0, 1] is the metallic of the surface point. a € [0, 1] is the albedo color of the point. D
is the normal distribution function, F' is the Fresnel term and G is the geometry term, which are all
determined by the metallic m, the roughness r and the albedo a. We detail the expression of D, F'
and G in the Appendix. With Eq. equation[d]and Eq. equation[5} the outgoing radiance is given by

c(a:,wo) = cd(mvwo) + cs(w,wo), (6)
cd(wvwo) = (1 - m)a/ Ll(wawl) (wz : n) dw’iv (7)
Q s

DFG
Cs(x,wo) = /Q 4((—Uz X n)(wo X 1’1)

Li(x,w;)(w; - n)dw;. (8)

3.2 UNIFYING VOLUME RENDERING AND PHYSICALLY BASED RENDERING

It is not trivial to integrate volume rendering (VR) and physically based rendering (PBR) into a
unified framework for simultaneous reconstructing the object’s geometry and estimating its materials
and lighting. A naive solution is to evaluate the rendering equation on surface points. However,
materials and lighting remain only related to PBR without integrating with volume rendering, thus
failing to introduce mutual constraints, since traditional volume rendering adopts an MLP for direct
radiance prediction, entangling the materials and lighting. Consequently, the optimization process
becomes intractable due to the ambiguity among geometry, materials, and lighting.

To guarantee that volume rendering also incorporates materials and lighting, we integrate it with the
principles of PBR, which allows the radiance to be computed by modeling the interaction between
materials and lighting. Inspired by NeRO |Liu et al.| (2023), we represent the radiance of each
sampled point along a ray using a simplified rendering equation, which approximates the lighting
with light MLP instead of integral in Eq. equation [7]and equation|[8] termed PBVR. The diffuse and
specular components are

cPVR(x,w,) = (1 = m)aLfBVR, LEBVR ~ / Li(z,w;)D(n,1)dw; )
Q

PBVR (g, w,) = maLPBVR,  [PBVR y / Li(w,wi)D(d, p)dw; (10)
Q

where LEBVR, LFPBVR are the approximated diffuse and specular light, respectively. D(d, p) is the
normal distribution function (i.e., specular lobe), d is the reflective direction. D(n,1) = @ is
the diffuse lobe. We elaborate the simplified process from Eq. equation [§]to Eq. equation [I0]in the

Appendix.

For physically based rendering, we evaluate the rendering equation on the surface points x;, =

o+d Zf; T;a;t;, where o is the camera origin, d is the camera direction and ¢; is the depth of ¢-th
sampled point. We adopt Monte Carlo sampling to approximate the diffuse color and specular color.
The diffused color is estimated by sampling N, rays with a cosine-weighted probability

Ng
PRz, wo) = (1—m)aZLfBR, (11)
where ¢ indicate the i-th sampled direction. For specular color, we adopt the GGX distribution as

normal distribution D. We sample N, rays follows DDX distribution |Cook & Torrance| (1982) to
estimate specular color

N,
1 <~ FG(wo-h)
PBR o PBR
5y, Wo) = E L; =%, 12
e (@ wo) = 7 — (0 h)(n - w,) (12)
where h is the half-way vector between w; and w,, LY BR is predicted light of i-th sampled direction.

Both rendering methods require materials and lighting for shading. By integrating PBVR and PBR
with a carefully crafted materials and lighting representation, we enhance the mutual constraints for
inverse rendering, thereby reducing the probability of converging to suboptimal results.
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3.3 UNIFYING LIGHTING AND MATERIALS REPRESENTATION

All the radiance terms in Eq. equation[9] Eq. equation|[I0} Eq. equation[T1] and Eq. equation[I2]de-
pend on lighting and materials. Appropriately representing these elements is essential for effectively
imposing mutual constrains and mitigating ambiguity among geometry, materials, and lighting.

Lighting Representation. Given the crucial role that global illumination and inter-reflection play
in distinguishing indirect light from albedo and environment maps, we utilize two distinct MLPs
to separately encode direct and indirect lighting. The direct light MLP lgiect (S H (w;)) takes only
direction as input, ensuring a globally consistent direct environment map. SH (-) is the directional
encoding using spherical harmonics as basis functions. This model is applicable when the path from
point x to direction w; is unobstructed. In contrast, the indirect light MLP liydirect (S H (w;), ) re-
quires both position and direction as input to accommodate the spatial variability of indirect lighting
across the scene. This model is used when the path from x to w; encounters obstructions.

To establish a unified lighting representation, we utilize integrated directional encoding (IDE) Verbin
et al.| (2022), which shows the integral of light in Eq. equation[9)and Eq. equation[I0]has a closed-
form solution by representing the L;(x, w;) with spherical harmonics, based on direction and rough-
ness denoted as IDE(w, k). Although the roughness term in IDE(w, p) is defined by the von Mises-
Fisher (vMF) distribution, which differs from the roughness term in the GGX distribution used in
PBR, both serve similar functions by defining positively correlated concentration. We optimize the
roughness as the parameter in the GGX distribution and use it for lighting approximation in PBVR.

For PBVR, the integrals of diffuse and specualr light can be approximated by

LEPVR = ldirecs (IDE(n, 1)), LYPVT = liirect (IDE(, p)). (13)
In PBR, the diffuse and specular light are both computed by
L% = lgirect (IDE(w;, 0)) (14)

where p is set to 0 since sampled directions are deterministic instead of a distribution. For indirect
light, the position « is additionally inputted. We consolidate the lighting representation for both
PBVR and PBR, encompassing both specular and diffuse components. This consolidation effec-
tively imposes constraints on lighting optimization and alleviates entanglement issues.

Visibility Representation. Given the inclusion of indirect light in our lighting representation, it
is critical to estimate a visibility term to correctly apply direct or indirect light. In PBR, light is
determined through Monte Carlo sampling, where each sampled direction is deterministic, resulting
in binary visibility values of either 0 or 1, denoted as v P* € {0,1}. An MLP maps the surface
point x, and sampled direction w; to visibility, defined as v'BR = VPBR(z_ ;). In PBVR, vis-
ibility is probabilistic, denoted as v"EVR € [0, 1], since lighting representation in Eq. equation[13]
approximates the specular light using a single direction and roughness. When roughness is large,
the light integral is influenced not only by the reflective direction d. Thus, another MLP maps the
sampled point 2 and IDE(d, p)) to visibility, denoted as v"BVR = VPBVR (g IDE(d, p)). To ac-
count for the deterministic and probabilistic property, we use visibility by ray-marching in geometry
network and visible proportion by Monte Carlo sampled directions as supervision, respectively. The
visibility loss is given by

N,
1 X
_ ||, PBR _ _ march PBVR . PBR
Luis = o P = v Ry + [0V — <= ; o PR |l1. (15)
Given the visibility, the light LEBVE in Eq. equation can be expressed as
LYV = PPV R0 (IDE(, ) + (1 = 07"V lingivect (IDE(d, p), ). (16)

Since diffuse light primarily contains low-frequency information, we do not explicitly model the
indirect diffused light for PBVR. The light LY'BR in Eq. equation [14]is modified as

LEBR — oPBR et IDE(w;, 0)) + (1 — vFP) lindirect IDE(w;, 0), ). (17)
Materials Representation. Material representation, including metallic m, roughness p, and albedo
a, is conducted using a material MLP M aterial based on position @, denoted as {m, p,a} =
M material (), and these predictions are shared across PBR-based rendering and PBR. The distinc-
tion lies in the fact that material prediction operates on ray-based points and surface-based points,
respectively. This difference introduces two types of constraints for material optimization.
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3.4 OPTIMIZING

During the training process, our total loss function is
L= Ei%gg + APBREIi?lger + )\eikﬁeik + )\Visﬁvis + Amaljegﬁmat,rega (18)

where L ender 18 the Charbonier loss [Barron et al.| (2022) calculated between the rendered color and
the ground-truth color. In PBVR, the rendered color is derived from Eq. equation[I} where each ¢;
combines chVR and cFBVR ag outlined in Egs. |§| and and o; determined by Eq. equation
In the context of PBR, the rendered color is formulated as C = chBR + CEBR, based on Eq.
equation [TT] and Eq. equation [I2] L. is an eikonal term [Gropp et al] (2020) to regularize the

gradients of geometry network formualated as

P
Lac=5 Y (9F @) - 1)*. (19)
i=1

Lmat_reg 15 @ smoothness regularization to ensure the material more smooth in the space
Linatreg = [M(zs) — M(xs + €) |2, (20)

where € = be — 3.

4 EXPERIMENTS

4.1 DATASETS AND EVALUATION PROTOCOL

To evaluate the effectiveness of our method, we conducted experiments on objects from several
datasets. These include synthetic data from ShinyBlender Verbin et al.[(2022) and CompoBlender,
where objects are composed from ShinyBlender or Blender Mildenhall et al.|(2021)), featuring more
complex scenes and inter-reflections (see Appendix for more details), as well as real captured data
from Stanford-ORB Kuang et al.|(2024).

We present a comprehensive evaluation protocol, encompassing assessments of geometry recon-
struction accuracy as well as materials and lighting estimation accuracy.

Geometry Reconstruction. The evaluation metric used is the Chamfer Distance, provided by the
DTU evaluation metrics /Aanzs et al|(2016)). This metric comprises two components: accuracy and
completeness. Consistent with Ref-NeuS|Ge et al.|(2023)), only accuracy is reported on ShinyBlender
and CompoBlender. We also reported the results of Stanford-OBR in the same scale.

Materials Estimation. Given access to ground truth of albedo, roughness, and metallic maps for the
synthetic datasets, Mean Squared Error (MSE) was reported for metallic and roughness, and PSNR
was used for diffuse albedo. For the real dataset Stanford-ORB, where ground truth for roughness
and metallic maps is unavailable, qualitative relighting results including PSNR, SSIM and LPIPS
were provided as an alternative. Besides, pseudo albedo was used to evaluate predicted albedo.

Lighting Estimation. For lighting evaluation,
akin to DeepLight [LeGendre et al| (2019) and
StyleLight Wang et al.| (2022), we employ three
spheres with different materials for assessment: \
mirror silver, matte silver, and diffuse grey, de-

picted in Figure @ The three spheres are ren- Gray Diffuse Matte Silver Mirror Silver
dered with ground-truth lighting and the estimated

environment map using Blender [Hess| (2013). Figure 3: Three spheres with different
Evaluation metrics include RMSE, scale-invariant materials: mirror silver, matte silver,
RMSE (si-RMSE) and Angular Error. and diffuse grey.

4.2 IMPLEMENTATION DETAILS

Our model was developed based on NeRO |Liu et al.| (2023). The architecture of the geometry
network, lighting network, and material network mirrors that of NeRO. For more details, please see
our Appendix. Our model underwent training for 200,000 iterations, requiring 12 hours on a single
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Figure 4: The environment map and rendered spheres on “car” and “toahel”. We ran InvRender,
Nvidiffrec, NeRO official implementations. Our method obviously produces better result.

NVIDIA RTX 3090 Ti GPU. Upon convergence, a mesh was extracted from the signed distance
functions within a predefined bounding box using the Marching Cubes [Lorensen & Cline| (1987)
at a resolution of 512. An environment map with a resolution of 512 x 1024 was generated by
uniformly sampling across azimuth and elevation in spherical space, followed by querying the light
using the direct light MLP. Note that although our approach builds upon NeRO (2023), we
believe it can be adapted to any volumetric neural implicit framework. For example, techniques such
as Instant-NGP and CUDA-based Monte Carlo sampling can be readily leveraged for acceleration.

4.3 COMPARISON WITH STATE-OF-THE-ART METHODS

We compared the results of our method with several other methods, including NeRO
(2023)), InvRender [Zhang et al] (2022) and NvdiffRec Munkberg et al|(2022) and a 3D Gaussian
Splatting based inverse rendering method GaussianShader (GShader) Jiang et al.| (2024) on both
synthetic dataset, and compared with cutting-edge method NeRO on real captured dataset. The
quantitative results are shown in Tables[T]and [2} Since InvRender assume dielectric materials, the

Reference Image GT Ours GaussianShader Nvdiffrec InvRender

Figure 5: Visualization of estimated environment map. Our method can recover fine-grained envi-
ronment map given only multi-view 2D images.



Under review as a conference paper at ICLR 2025

Table 1: Comparison with state-of-the-art methods on ShinyBlender and CompoBlender Dataset.
Bold results have the best score. Our method outperforms these methods by a large margin.

Method ShinyBlender CompoBlender

Geometry  Materials Lighting Geometry  Materials Lighting
GShader 1.37 0.041/0.069/20.10 13.71/2.24/2.09 1.69 0.125/0.101/16.01 12.35/2.21/1.52
Nvdiffrec ~ 2.59 0.045/0.074/19.90 14.11/2.30/2.05 2.95 0.138/0.110/15.93  10.70/2.12/1.41
InvRender 1.39 0.035/-1/- 11.38/2.09/2.04 135 0.069/-1/- 15.09/2.40/1.90
NeRO 0.67 0.023/0.030/22.26 8.86/1.65/197  2.05 0.063/0.055/17.68 9.40/1.73/1.04
Ours 0.58 0.015/0.025/23.21 791/1.58/145  0.82 0.039/0.026 /18.84 8.17/1.54/0.88

Table 2: Comparison with cutting-edge method NeRO on Stanford-ORB Dataset. Bold results have
the best score. Our method performs better on real captured dataset.

Method Geometry Relighting Material
CDJ]  PNSRT SSIM{ LPIPS] PSNRT

NeRO 1.35 25.45 0.898 0.054 23.25

Ours 0.97 26.13 0.902 0.051 24.84

metallic and diffuse albedo are not available. We reported the mean result for each evaluation met-
ric. For lighting, we further averaged the results on three spheres. Please refer to our Appendix for
more details. Our method significantly outperforms all other compared methods on all evaluation
metrics. We shown the qualitative comparison of lighting estimation in Figure 4] and the extracted
2D environment map by querying the optimized direct light MLP in Figure [5] We also visualized
the qualitative comparison of geometry reconstruction in Figure [f] Note that though the 3D Gaus-
sian Splatting-based method [Jiang et al.| (2024) excels in optimization speed, its performance is
significantly inferior. More visualizations are in the Appendix, where we also discuss how incorrect
materials can lead to wrong geometry reconstruction.

4.4 ABLATION STUDY

We conducted an ablation study on the “coffee” object from ShinyBlender and the “gnome” object
from Stanford-ORB to evaluate the effectiveness of unifying PBR and PBVR, as well as the unified
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Figure 6: The qualitative
comparison of reconstruc-
tion between NeRO and our
method. Incorrect material
estimation hinders the ge-
ometry reconstruction.

Figure 7: Ablation study on “coffee” and “car” dataset from
ShinyBlender. “VR + PBR” indicates integrating volume
rendering and physically based rendering. “PBVR + PBR
(w/o unified lighting)” indicates that we used two different
light MLPs for PBVR and PBR, respectively. The number
below each image indicates the evaluation metric.
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Figure 8: Comparison with the separate use of PBVR and PBR on the “gnome” from the Stanford-
ORB demonstrates that our method effectively disentangles lighting and albedo from the appearance.

light representation. We first compared our method with naively integrating traditional volume ren-
dering and PBR. However, traditional volume rendering struggles to reconstruct reflective surfaces
accurately, which is essential for optimizing materials and lighting. Consequently, we employed
Ref-NeusS |Ge et al,| (2023) for volume rendering, which demonstrated ideal reconstruction results
for specular surfaces. The results are shown in Figure[7]denoted as “VR + PBR”. Next, we highlight
the importance of unifying lighting representation by encoding the light for PBVR and PBR with
two different light MLPs, respectively. The results are shown in Figure[7indicated as “PBVR + PBR
(w/o unified lighting)”. Our method significantly improves the performance of materials estimation.
We then compared our method with the two-stage optimization approach on the “gnome” object
from the Stanford-ORB dataset to validate the effectiveness of unifying PBR and PBVR. In the first
stage, PBVR was utilized for surface reconstruction. In the second stage, based on the derived ge-
ometry, PBR was applied for materials and lighting estimation. The results, as illustrated in Figure[8]
demonstrate that our method effectively disentangles lighting and albedo from appearance, whereas
the two-stage approach with PBVR and PBR results in entangled outputs. More visualization of the
ablation study can be found in the Appendix.

5 LIMITATION AND CONCLUSION

Limitation. Although our method shows promising results in inverse rendering across various ob-
ject types, several limitations remain. Firstly, our approach does not account for shadow effects,
which are often incorrectly attributed to the albedo rather than diffuse lighting. Given our method’s
proficiency in recovering lighting and geometry, we are able to infer shadows based on the geom-
etry and highlights. We plan to explore this capability as part of our future work. Secondly, while
PBVR and PBR impose significant constraints on inverse rendering, they can lead to consistent mis-
estimations of materials. When they converge on the same incorrect material prediction, the unified
framework fails under specific conditions. We show some examples in the Appendix.

Conclusion. In this paper, we explore the issue of inverse rendering for various object types, a
topic that serves as a critical bridge between NeRF-based models and conventional rendering en-
gines, yet remains under-explored. The inherent ambiguity among geometry, materials, and lighting
can significantly hinder accurate decomposition. Our method, Uni-IR, effectively addresses this
challenge by integrating physically based volume rendering and physically based rendering into a
unified framework. Both rendering methods directly reason materials, lighting and geometry. With
a carefully designed unified representations for both lighting and materials, our approach impose
mutual constraints and achieve significant performance on inverse rendering task.
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A APPENDIX

A OPTIMIZATION AND MODEL DETAILS

Optimization Details. We employed Adam |[Kingma & Ba| (2014) as our optimizer . Initially, over
the first 5,000 iterations, the learning rate was progressively increased from 1 x 107° to 5 x 10~*
via a warm-up strategy. Subsequently, it was reduced to 1 x 10~°. For Monte Carlo sampling, we
used Ny = 256 for the diffuse lobe and N, = 512 for the specular lobe. We sampled 512 rays
for each batch. Each ray involved sampling 64 coarse points, 64 fine points, and 32 background
points, following the methodology in NeRF++ Zhang et al.| (2020). We apply the standard gamma
correction to get colors in the SRGB space before computing the rendering loss. For L,is, given
that up to 512 x N, directions are sampled, computing v™2*? for all directions incurs substantial
computational costs. Consequently, we capped the maximum number of computations for v™arch
at 8129 for each batch. The weights used in the loss computation are )\fe?ql}er = 0.1, Aeix = 0.1,
Avis = 1.0 and Apaireg = 0.5. Each model was trained over 200,000 iterations, requiring a total of
12 hours on a single NVIDIA RTX 3090 Ti GPU.

Network architecture. Our network architecture, akin to NeRO|Liu et al.|(2023), includes a geome-
try network, a material network, two light networks, and two visibility networks. These components
respectively encode the signed distance function (SDF), material parameters, light representations,
and visibility terms. The geometry network, which parametrizes the signed distance function, com-
prises 8 hidden layers, each with 256 units. Unlike traditional ReL.U activation, we employ Softplus
with a 3 parameter of 100 across all layers. Additionally, a skip connection Mildenhall et al.|(2021)
links the input directly to the output of the fourth layer. It takes a spatial position x as input and
outputs signed distances. The material network comprises a material feature network and three
dedicated networks for encoding albedo, metalness, and roughness. The material feature network
accepts spatial position x, outputting a 256-dimensional material feature vector. This vector is sub-
sequently processed by three networks to predict albedo, metalness, and roughness. The material
feature network consists of 8 hidden layers, each with 256 units. Similarly, the networks for albedo,
metalness, and roughness each include 4 hidden layers with 256 units. The direct light MLP e,
indirect light MLP lipgirect, and the visibility MLPs VPBR and VYR each comprise 4 layers, with each
layer containing 256 units. For all MLPs that take the position x as input, we utilize positional en-
coding with a frequency of 8. For MLPs that receive a single direction as input, positional encoding
with a frequency of 6 is employed. For both light MLPs, we use exponential function to get light
radiance in [0, 00). For material network, we use Sigmoid to get values in [0, 1].

B EVALUATION DETAILS

Geometry. For the ShinyBlender |Verbin et al.[(2022)) and CompoBlender datasets, the ground truth
meshes were exported from the source Blender files. Given that the original models were quite
small, with a radius of approximately 1, we applied a scale factor of 150 during export. Similarly,
we increased the scale of the reconstructed results by 150 times on the Stanford-ORB dataset, en-
suring consistent scales across all ground truth meshes. During training, we normalized the objects
to fit within a unit sphere for both the ShinyBlender and CompoBlender datasets. For inference, we
transformed the meshes back to their original dimensions to accurately compute the Chamfer Dis-
tance. For the Stanford-ORB dataset, we adhered to the protocols defined in the officially released
dataset code for training.

Since the original meshes contained too few points, we upsampled the points within each triangle
to generate dense point clouds suitable for evaluation. Subsequently, the Chamfer Distance was
computed by

1 . 1 .
d(S1,82) = o= Y min[lz —y|l§ + o= > min [y —a[[3, @D
1 $€S1y 2 2 yES?2 !

where the first term is employed to assess accuracy, while the second term evaluates complete-
ness |[Aanzs et al| (2016). Here, S; and S5 represent the recovered point clouds that are upsam-
pled from the meshes and the ground truth dense point clouds, respectively. For ShinyBlender and
CompoBlender, we only reported the accuracy as suggested by Ref-NeuS |Ge et al.| (2023), and for
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Standford-ORB, we reported the mean of accuracy and completeness, since the ground-truth meshes
only contrain one-layer surface.

Materials. Material estimation involves calculating the Mean Square Error (MSE) for metalness
and roughness, as well as the PNSR for albedo. For metalness and roughness, MSE is computed in
linear space. Regarding albedo, the predicted values, initially in linear space, are converted to SRGB
space for PSNR computation. For the ShinyBlender and CompoBlender datasets, we compared the
diffuse albedo, expressed as (1 — m) * a, with the ground truth diffuse albedo rendered by Blender.
For the Stanford-ORB dataset, we compared the predicted albedo a with the pseudo ground truth
albedo. Since there is no ground-truth data for metalness and roughness in real captured datasets, we
evaluated the relighting performance instead, using PSNR, SSIM, and LPIPS as evaluation metrics.
Improved geometry and materials estimation directly contribute to enhanced relighting results.

Lighting. To evaluate the lighting estimation, we utilize three spheres with distinct materials: mirror
silver, matte silver, and diffuse grey. The material parameters are defined as follows:

* Diffuse Grey: m = 0.0, p = 0.364, a = {0.8,0.8,0.8}.
* Matte Silver: m= 1.0, p =0.327, @ = {0.8,0.8,0.8}.
* Mirror Silver: m= 1.0, p = 0.0, a = {0.8,0.8,0.8}.

These spheres are rendered using both ground-truth lighting and the estimated environment map in
Blender. We assess the performance by calculating the RMSE, si-RMSE, and Angular Error between
the two rendered images. To mitigate issues caused by excessively high light intensity in the ground
truth environment map, we employ a mask to filter out excessively large light intensities. To acquire
the predicted 2D environment map from the direct light MLP, we employed the Equirectangular
Projection for mapping a sphere to a rectangle with resolution 512 x 1024.

C DATASET

ShinyBlender The ShinyBlender dataset, introduced in Ref-NeRF|Verbin et al.[(2022), aims at the
novel view synthesis task for specular surfaces. The original dataset does not include ground truth
for diffuse albedo, metallic, and roughness. We re-rendered the dataset using Blender, maintaining
consistent camera poses with the original dataset for each object.

CompoBlender We combined individual objects from the ShinyBlender and Blender datasets to
create the CompoBlender dataset. This dataset is designed to validate the effectiveness of our method
in more complex scenes. First, we combined the “helmet” from ShinyBlender with a part of the
“hotdog” from the Blender dataset to create the “hothel” dataset, which features both shiny and
diffuse materials. Second, we combined the “toaster” and “helmet” from ShinyBlender to create
the “toahel” dataset, which includes indirect lighting and inter-reflections. For rendering multi-view
images, we implemented the code from NeRFactor [Zhang et al.|(2021b). Additionally, we added
output nodes for metallic, roughness, and diffuse albedo to evaluate materials. For the environment
map, we used the same environment map as “musclecar” for these two scenes.

Stanford-ORB The dataset comprises 14 common objects with different materials captured in 7
natural scenes. For each object, 60 training views and 10 testing views are provided, featuring both
high dynamic range (HDR) and low dynamic range (LDR) images under three different scenes. We
used LDR images for training and testing. For each object, one scene is selected for training, while
the remaining two scenes are used for relighting evaluation. Specifically, we observed that there is
always one scene where the object is captured in an outdoor environment. This outdoor scene was
consistently chosen for training.

D BRDF PARAMETERIZATION

In Sec. 3.1 we introduce the D, F' and G term of the specular component of BRDF property. We
implement the Cook-Torrance BRDF model |Cook & Torrance| (1982). The basic specular albedo
Fy = (m=*a+ (1 —m)*0.04), where a is the albedo and m is the metalness. The Fresnel term (F)
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Table 3: Comparison of surface reconstruction with state-of-the-art methods for each object in the
ShinyBlender and CompoBlender datasets. Bold results have the best score. Chamfer Distance
(lower is better) is used as the evaluation metric.

Methods ShinyBlender CompoBlender
helmet toaster coffee car teapot mean | hothel toahel mean
NeuS 0.85 3.04 1.37 072 0.78 1.35 1.24 1.82 1.53

GShader 0.78 2.54 161 078 1.13 1.37 1.32 2.06 1.69
InvRender  0.68 2.34 324 058 1.03 1.39 1.02 1.67 1.35
NvdiffRec 2.67 3.89 3.31 1.76 133 2.59 2.67 3.23 2.95
NeRO 0.51 0.42 1.12 047 0.86 0.68 1.56 2.54 2.05
Ours 0.47 0.42 085 041 0.75 0.58 0.97 0.67 0.82

is defined as:
F=Fy+(1-F)(1-(h w,))’, (22)

where h is the half-way vector between w, and viewing direction w;. The normal distribution
function D is Trowbridge-Reitz GGX distribution as

aQ

D(h) = 27
™ ((n-h)?*(a? —1) +1)

(23)

where o« = p?, n is the surface normal. The geometry term G is the Schlick-GGX Geometry

function:
G(n7w03wiak) = Gsub<n7w07k)GSub<n7wi7k)) (24)
where Gy, is given by:
n-w

(n-w)(1—Fk)+k ()

Gsub(n7 w, k) =

4
where k is a parameter related to the roughness p, often approximated as k = &-.

The simplified process from Eq. (8) to Eq. (10) follows the split-sum approximation Karis & Games
(2013)), where cgpecutar in Eq. (8) can be rewrited as

cspecular(mawo) ~ /

Q

L(z,w;)D(d, p)dw; / dew;, (26)

o 4w, - m)

where Cpecular (€, W, ) is the integral of specular lights on the normal distribution function D(d, p),

where d is the reflective directions. The latter part indicates the integral of BRDF, which can be
directly computer as (1 —m) * 0.04 + m * a x F} + F», where Fy and F are pre-computed scalars
and stored in a 2D lookup texture related to p, n and w,. So the Eq. (8) can be modified as

Copecular (T, wo) = ((1 —m) % 0.04 +m x a x Fy + F) / L(z,w;)D(d, p)dw;. 27
Q

E DETAILED RESULTS

We provided detailed quantitative metrics for each individual object in the ShinyBlender, Com-
poBlender, and Stanford-ORB datasets.

Geometry reconstruction results. For geometry reconstruction, we reported the Chamfer Distance
(CD) for each object across the three datasets. Table |3| presents the results for ShinyBlender and
CompoBlender. Table [ shows the results comparison with NeRO of geometry reconstruction, re-
lighting and albedo estimation on Stanford-ORB. We further reported the detailed reconstruction
comparison with Nvdiffrec, IDR and GaussianShader and NeRO on Stanford-ORB dataset in Table
??. Note that to make consistent scale with our result on ShinyBlender, we follow the evaluation
methodology for CD from Ref-NeuS |Ge et al| (2023)), so the number is not the same as reported
in the website of Stanford-ORB. Our method achieves significant improvement compared to IDR,
the best performanced method in Stanford-OBR before. We show the qualitative comparison with
GaussianShader on Stanford-ORB in Figure 9] and geometry comparison with NvdiffRec and IDR
in Figure
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Table 4: Comparison of surface reconstruction with NeRO, GaussianShader, Nvdiffrec and IDR for
each object in the Standford-ORB datasets. Bold results have the best score.

Methods baking  ball  blocks cactus car chips cup curry gnome grogu pepsi pitcher salt teapot ~mean

Geometry (CD [)
Nvdiffrec 1.76  0.89 1.96 1.35 1.62 259 329 1.89 1.72 202 271 1.92 146 132 1.89
IDR 1.18 0.50 1.49 082 1.07 201 277 141 0.86 1.60 2.04 1.53 082 0.85 1.35
GShader 1.07 0.49 1.05 087 065 099 199 139 0.81 2.01 1.71 1.92 0.66 0.72 1.22

NeRO 0.93 1.43 1.08 090 065 085 1.62 177 1.74 183  0.87 2.39 2.19  0.60 1.35
Ours 0.91 046  0.96 075 052 0.69 1.69 1.26 0.74 1.82  0.64 212 046 059 0.97

Table 5: Comparison of materials estimation with state-of-the-art methods for each object in the
ShinyBlender and CompoBlender datasets. Bold results have the best score.

ShinyBlender CompoBlender
Methods  helmet toaster coffee car teapot mean | hothel toahel mean
Roughness (MSE )
GShader 0.047 0.016 0.108 0.022 0.011 0.041 | 0.102 0.149 0.125
InvRender 0.045 0.014 0.098 0.0 0.008 0.035 | 0.089 0.048 0.069
NvdiffRec  0.049  0.017 0.123 0.026 0.010 0.045 | 0.122 0.154 0.138
NeRO 0.034 0.009 0.063 0.008 0.004 0.023 | 0.072 0.026 0.063
Ours 0.037  0.009 0.026 0.008 0.001 0.015 | 0.043 0.036 0.039

Metalness (MSE )

GShader 0.031 0.141 0.093  0.070 0.008 0.069 | 0.094 0.107 0.101

InvRender - - - - - - - - -
NvdiffRec  0.037 0.147  0.102 0.074 0.009 0.074 | 0.104 0.115 0.110
NeRO 0.016 0.097  0.023 0.012 0.003 0.030 | 0.069 0.041 0.055
Ours 0.013 0.070  0.026 0.013 0.001 0.025 | 0.020 0.032 0.026

Diffuse Albedo (PSNR 1)
GShader 15.32 18.23 17.52 2397 2540 20.10 | 1632 15.69 16.01
InvRender

NvdiffRec  14.62 18.47 1692 2437 2510 1990 | 1634 1552 1593
NeRO 16.13 2176 19.56 27.37 2650 2226 | 17.85 17.52 17.68
Ours 16.54 2290 20.86 28.57 26.77 23.13 | 18.92 1875 18.84

Materials estimation results. For material estimation, we reported the MSE for metalness and
roughness, and PSNR for diffuse albedo for each object in the synthetic datasets, as shown in Table
B} Additionally, we report the relighting performance metrics, including PSNR, SSIM, and LPIPS,
as well as PSNR for albedo for each object in the Stanford-ORB dataset, in the middle and bottom
parts of Table[d] Note that the albedo is only a pseudo ground truth albedo, which is predicted using
NVDiffRec |Hasselgren et al.| (2022).

Lighting estimation results. For lighting estimation, we reported the RMSE, Si-RMSE and Angu-
lar Error between two rendered images on three spheres with different materials, which are rendered
with ground truth environment map and predicted environment map. The detailed results for each
object in ShinyBlender are reported in Table[7} The detailed results for each object in CompoBlender

GaussainShader i fm FF ' ‘O
-~ §F | @) W

baking chips curry grogu pepsi teapot

Figure 9: The surface normal of GaussainShader and our method on Stanford-ORB dataset.
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Figure 10: More reconstruction results on objects from Stanford-ORB. IDR, Nvdffrec are compared.

Table 6: Comparison of novel view synthesis with Ref-NeRF and NeRO, including the first stage
PBVR and the second stage PBR. Bold results have the best score.

Methods PSNRT SSIM{ LPIPS
Rel-NeRF 2786 0878 0375
NeRO (PBVR) | 29.73 0904  0.326
NeRO (PBR) | 27.53 0866  0.384
Ours PBVR) | 29.77 0902 0.324
Ours (PBR) 2051 0894 0329

are reported in Table [§] We further reported the detailed relighting metrics and albedo estimation
metric on Stanford-ORB dataset compared with NeRO in Table[9]

Novel-view synthesis quality. To show the quality of novel view synthesis (NVS), we additionally
reported the NVS quality in Table [6] compared to Ref-NeRF, the PBVR and PBR in NeRO and our
method in terms of PSNR, SSIM, and LPIPS. The qualitative comparison with NeRO are visualized
in Figure[T1] The rendered image of "NeRO (PBR)” is inferior to the same PBR rendered image
in our unified framework, which shows that our method enhances PBR anti-aliasing capability. The
rendered results of "NeRO (PBVR)” and our framework are comparable.

Relighting quality. For the relighting evaluation, we selected challenging objects that include inter-
reflections. Speciically, the ’cat” from GlossyBlender dataset and the “coffee” from ShinyBlender
dataset were chosen. The results of these evaluations are reported in Figure[T2]

F DISCUSSION ABOUT THE RECONSTRUCTION RESULTS.

Here, we discuss why physically based volume rendering fails to reconstruct accurate surfaces, while
unifying PBR and PBVR achieves better geometry reconstruction results.

NeuS |Wang et al.|(2021)), an SDF-based neural implicit surface learning method that employs tradi-
tional volume rendering, excels at recovering the surfaces of diffuse materials but fails to correctly
reconstruct specular surfaces. This failure occurs because the specular color is not well-estimated
when the camera view direction conditions the radiance MLP.
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Table 7: Comparison of lighting estimation with state-of-the-art methods for each object in the
ShinyBlender Dataset. Bold results have the best score.

helmet toaster coffee car teapot mean
Methods Angular Error |
GShader  5.61/9.01/14.52 832/11.05/15.12 17.90/16.41/23.24 5.01/6.59/13.97 5.92/7.81/9.95 8.55/10.17/15.36
InvRender 5.46/8.78/13.87 8.12/10.93/14.92 18.70/16.86/23.93 4.95/6.53/13.82 597/7.84/10.02 8.64/10.19/15.31
NvdiffRec 4.92/8.15/1345 9.15/11.58/12.98 25.65/28.46/34.84 6.80/11.93/20.04 7.10/7.24/9.39 10.72/13.47/18.14
NeRO 3.91/7.17/11.44 6.22/8.15/7.44 17.89/15.82/11.04 3.17/4.7819.35 4.24/8.36/13.90 7.09/8.86/10.63
Ours 4.12/7.49/12.03 6.01/7.59/7.09 16.94 / 14.02 / 10.56 1.99/1.89/7.47 3.15/6.82/11.53 6.44/7.56/9.74
Scale-invariant RMSE |
GShader 0.92/2.07/7.96 1.12/4.66/6.99 0.10/0.19/0.41 0.31/126/6.14 0.08/0.18/0.59 0.51/1.67/4.42
InvRender  0.90/1.99/7.83 0.99/42676.76 0.0870.15/0.35 0.27/1.06/5.95 0.06/0.1470.56 0.46/1.5274.29
NvdiffRec  0.89/2.46/7.34 1.28/3.98/6.94 0.11/0.19/0.39 1.08/1.76/6.28 0.20/0.64/1.02 0.71/1.81/4.39
NeRO 0.62/1.52/6.35 0.81/3.567/2.99 0.07/0.1270.28 0.277/0.91/6.55 0.09/0.23/0.42 0.37/1.2773.32
Ours 0.65/1.60/6.56 0.78/3.38/2.89 0.06/0.10/0.24 0.25/0.89/5.68 0.06/0.18/0.42 0.36/1.23/3.16
RMSE |
GShader 1.31/25177.71 1.82/4.61/5.12 0.58/0.51/0.69 0.59/1.19/2.73 0.17/0.62/1.09 0.89/1.89/3.47
InvRender  1.25/2.35/7.47 1.92/4.77/529 0.50/0.46 /0.60 0.56/1.13/2.60 0.14/0.56/0.97 0.87/1.87/3.39
NvdiffRec  1.08/2.46/7.10 1.68/4.10/3.56 0.96/0.88/1.03 0.74/1.77/3.20 0.42/0.64/1.04 0.98/1.97/3.19
NeRO 1.05/1.87/6.76 1.90/4.07/3.31 0.30/0.27/0.55 0.52/1.01/6.60 0.10/0.52/0.71 0.77/1.55/3.59
Ours 0.91/1.84/4.45 1.85/4.01/3.21 0.25/0.21/0.51 0.36/0.93/2.10 0.06/0.44 / 0.64 0.69/1.49/2.18

Table 8: Comparison of lighting estimation with state-of-the-art methods for each object in the
CompoBlender Dataset. Bold results have the best score.

hothel toahel mean
Methods Angular Error |
GShader 991/14.29/18.55 541/15.74/22.67 7.66/15.02/20.61
InvRender 10.86/15.09/19.23 5.60/16.54/23.22 8.23/15.82/21.23
NvdiffRec  6.06/10.47/15.64 6.00/10.43/15.62 6.03/10.45/15.63
NeRO 4.20/8.45/16.77 3.37/7.00/16.58 3.79/7.73/16.68
Ours 3.89/7.15/ 14.92 3.01/5.98/14.08 3.45/6.57/14.50
Scale-invariant RMSE |
InvRender 0.36/0.91/4.41 0.47/1.05/5.12 0.42/0.98/4.77
InvRender 0.42/1.04/4.53 0.59/1.29/6.52 0.51/1.17/5.53
NvdiffRec 0.54/1.16/4.65 0.57/1.16/4.64 0.55/1.16/4.65
NeRO 0.21/0.70/4.37 0.20/0.59/4.29 0.21/0.65/74.33
Ours 0.15/0.60/3.97 0.14/0.49/3.89 0.15/0.55/3.93
RMSE |
InvRender 0.60/0.98/2.44 0.73/1.42/2.01 0.67/1.20/2.23
InvRender 0.70/1.08 /3.04 0.83/1.71/4.01 0.77/1.40/3.53
NvdiffRec 0.62/1.28/2.35 0.62/1.25/2.32 0.62/1.26/2.34
NeRO 0.53/0.80/1.85 0.53/0.76 / 1.78 0.53/0.78/1.82
Ours 0.45/0.70 / 1.51 0.46/0.67 / 1.49 0.46/0.69 / 1.50

The radiance and geometry are entangled and mutually affected due to the intrinsic nature of volume
rendering, where geometry determines the weights of radiance integration along a ray. If the radiance
is not well-estimated, the geometry is also degraded. This conclusion has been demonstrated in
Ref-NeRF |Verbin et al.| (2022) and Ref-NeuS |Ge et al.|(2023). These methods reparameterize the
radiance network as a function of the reflection direction about the surface normal, providing better
modeling for radiance and hence improved reconstruction results.

In PBVR, the radiance is influenced by both lighting and materials. Correct lighting and materials
also contribute to better geometry, consistent with the aforementioned conclusion. However, with
only PBVR, the lighting and materials are often inaccurately estimated, especially in complex or
real scenes. In contrast, unifying PBVR and PBR provides better materials and lighting estimation
during training. PBR models the lighting using Monte Carlo sampling in a more physically plausi-
ble way, while PBVR only approximates the lighting. This comprehensive approach enhances the
performance of geometry reconstruction.

G MORE VISUALIZATION OF ABLATION STUDY

To validate the importance of our proposed unified light representation, we carried out more ablation
studys on the Stanford-ORB dataset and Glossy-Blender dataset to validate the effectiveness of
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Table 9: Comparison of surface reconstruction with Nvdiffrec, IDR and GaussainShader for each
object in the Standford-ORB datasets. Bold results have the best score.

Methods baking ball blocks cactus car chips cup curry gnome grogu  pepsi  pitcher salt teapot  mean

Relighting (PNSR T)

NeRO 2603 2248 2565 2672 2536 28.58 25.11 2444 26.05 2444 2531 27.06 24.06 2505 2545

Ours 2631 23.58 2624 27.61 27.23 27.88 2623 2354 2854 2635 2606 2675 2378 2576 26.13

Relighting ( SSIM 1)

NeRO 0909 0.854 0894 0910 0912 0919 0905 0.894 0.847 0.904 0907 0.905 0.880 0925 0.898

Ours 0902 0.867 0918 0.920 0921 0.904 0921 0.886 0.878 0914 0.905 0901 0.868 0.929 0.902

Relighting ( LPIPS |)

NeRO 0.041  0.067 0.091 0.050 0.034 0.025 0.053 0.061 0.090 0.051 0.048 0.069 0.046 0.036 0.054
Ours 0.039 0.056 0.068 0.042 0.029 0.028 0.047 0.065 0.084 0.047 0.045 0.073 0.049 0.033 0.050

Albedo (PSNR 1)

NeRO 21.16 2493 2671 23.12 2489 21.10 1990 2448 24.14 23.10 2042 23.00 2320 2539 2325

Ours 2224 25.00 27.95 2895 2856 2045 2037 2256 2745 29.15 2459 2202 2269 2576 24.84

combining PBVR and PBR for imposing mutual constraints in inverse rendering. The results are
shown in Figure

H FAILURE CASES

Figure[T4] presents the inverse rendering results for the “salt” object from the Stanford-ORB dataset,
illustrating a failure case of our method. In this scenario, both PBVR and PBR consistently misesti-
mate the material properties, converging on an incorrect metalness value of approximately m ~ 1.0.
Our method also misestimates the metalness at m ~ 1.0. We intend to explore material priors to ad-
dress this issue in future work. Leveraging the robust recognition capabilities of Large MultiModal-
ity Models (LMMs), we can obtain material priors, as demonstrated in Figure[T6] Nevertheless, our
approach achieves superior geometry reconstruction quality, and the estimated albedo is more accu-
rate, introducing less environmental light into the albedo estimation. Another failure case involves
the shadow effect as illustrated in Figure[T3] where our method tends to attribute the shadow compo-
nent to the albedo rather than diffuse light. Given that our method excels at recovering fine-grained
geometry and environment maps, which are critical for determining shadow locations, we plan to
further explore this capability in future work.
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Figure 11: The extracted environment map from the direct light MLP. Our method can recover fine-
grained environment map given only multi-view 2D images.
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Figure 12: Relighting comparison with NeRO on the ShinyBlender and Glossy-Blender datasets.
Our method excels at accurately estimating materials, including albedo (highlighted in the red box in
“cat”) and roughness (“coffee”), particularly in scenarios with inter-reflection. Correctly recovering
these parameters is crucial for accurate relighting.

Ref-NeuS + PBR

o L8O
- A 8O

Geometry Albedo Roughness Geometry Albedo Roughness

Figure 13: Ablation study on the Stanford-ORB dataset and Glossy-Blender dataset to validate the
effectiveness of combining PBVR and PBR for imposing mutual constraints in inverse rendering.
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Figure 14: A failure case in our method. When both PBVR and PBR consistently misestimate the
material properties, our method also misestimates the material in some circumstances. Nevertheless,
our approach achieves superior geometry reconstruction quality.
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Figure 15: A failure case in our method. The shadow effect are distilled into the albedo instead of
diffuse light. The ground truth diffuse light is rendered by Blender.
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~
- Query: help me recognize the material of given image

Answer: @

- » The object appears to have a dark body with some text or labeling on it.
* The top part of the object looks relatively smooth and uniform in color.

Given these observations, the object does not exhibit strong metallic
characteristics such as sharp reflections or a shiny appearance. It is more
likely to be made of a non-metallic material such as plastic or cardboard,
especially considering the smooth and uniform top surface.

Figure 16: Large MultiModality Models (LMMs), such as GPT-4(vision), can deduce materials
from a single image due to their robust recognition capabilities. This material prior can significantly
aid in the inverse rendering task.
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