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ABSTRACT

Inverse rendering aims to decompose the an image into geometry, materials, and
lighting. Recently, Neural Radiance Fields (NeRF) based inverse rendering has
significantly advanced, bridging the gap between NeRF-based models and con-
ventional rendering engines. Existing methods typically adopt a two-stage opti-
mization approach, beginning with volume rendering for geometry reconstruction,
followed by physically based rendering (PBR) for materials and lighting estima-
tion. However, the inherent ambiguity between materials and lighting during PBR
and the suboptimal nature of geometry reconstruction by volume rendering only
compromise the outcomes. To address these challenges, we introduce Uni-IR,
a unified framework that imposes mutual constraints to alleviate ambiguity by
integrating volume rendering and physically based rendering. Specifically, we
employ a physically-based volume rendering (PBVR) approach that incorporates
PBR concepts into volume rendering, directly facilitating connections with mate-
rials and lighting, in addition to geometry. Both rendering methods are utilized
during optimization, imposing mutual constraints and optimizing geometry, mate-
rials, and lighting synergistically. Employing a meticulously crafted unified repre-
sentation for both lighting and materials, Uni-IR achieves high-quality geometry
reconstruction, materials and lighting estimation across various object types.

1 INTRODUCTION

Multi-view 3D reconstruction is a pivotal task in computer vision and computer graphics, serving
as a cornerstone for various applications such as game modeling Gregory (2018); Lewis & Jacob-
son (2002), computer animation Parent (2012); Lasseter (1987), and virtual reality Schuemie et al.
(2001). Despite the remarkable progress achieved by Neural Radiance Fields (NeRF) Mildenhall
et al. (2021) and subsequent approaches like SDF-based neural implicit surface learning Wang et al.
(2021); Yariv et al. (2021); Oechsle et al. (2021), multi-view 3D reconstruction still presents chal-
lenges in bridging the gap between NeRF-based models and conventional rendering engines. Vol-
ume rendering, the core mechanism of NeRF, generates radiance without explicitly considering the
interactions of materials and lighting. In contrast, conventional rendering engines derive shading
through the interactions between surface materials Nicodemus (1965) and lighting.

To bridge the gap, inverse rendering, the task of disentangling radiance into geometry, materials, and
lighting, has garnered significant attention. This approach allows the reconstructed 3D model to be
directly integrated into rendering engines, thereby playing a critical role in downstream applications
such as game production Lewis & Jacobson (2002) and virtual reality Schuemie et al. (2001).

Recent studies Zhang et al. (2022); Sun et al. (2023); Zhang et al. (2021a;b); Liu et al. (2023);
Yang et al. (2023) have explored the inverse rendering task within a neural implicit surface learning
framework. These approaches typically adopt a two-stage training strategy. In the initial stage, vol-
ume rendering is utilized for geometry reconstruction. Subsequently, in the second stage, physically
based rendering is employed to refine materials and lighting under a fixed geometry as shown in
Figure 1 (a). However, the performance in the second stage heavily relies on the quality of geometry
reconstruction in the first stage. While these methods demonstrate the effectiveness on the objects
with diffuse materials, they often lead to suboptimal results in reconstructing reflective surfaces,
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consequently leading to compromised materials and lighting predictions in the second stage. More
recently, several studies have focused on object reconstruction with reflections Ge et al. (2023);
Verbin et al. (2022); Liu et al. (2023); Liang et al. (2023a), with some of them Liu et al. (2023);
Liang et al. (2023a) further leveraging well-reconstructed geometry for inverse rendering. Despite
the promising results achieved, the ill-posed nature of inverse rendering makes optimization still
challenging. Lack of constraints in physically based rendering leads to suboptimal performance,
with inherent ambiguity between lighting and materials in Figure 1 (b).

To tackle the challenges, we propose to integrate volume rendering and physically based rendering
to simultaneously optimize geometry, materials, and lighting, aiming at imposing mutual constraints
to alleviate the ambiguity. While this idea appears straightforward, unifying the two rendering
pipelines is non-trivial. Merely integrating the two into a unified framework will not introduce
mutual constraints, since volume rendering lacks physical plausibility and severs the connection with
physically based rendering. Conversely, the optimization becomes intractable due to the ambiguity
among geometry, materials, and lighting. To address this issue, we depart from the traditional
volume rendering, which employs an MLP to predict radiance with entangled materials and lighting
as shown in Figure 1 (a). Instead, we integrate the principles of PBR into volume rendering inspired
by Liu et al. (2023). In this approach, radiance is also formulated as the interaction between the
materials and lighting. We refer to this method as physically based volume rendering (PBVR).

By integrating PBVR and PBR within a unified framework, we introduce a method named Uni-IR as
illustrated in Figure 1 (c). At the heart of this approach lies a meticulously crafted unified represen-
tation for materials and lighting representations across both rendering methods, achieving mutual
constraints and optimizing geometry, materials, and lighting synergistically. In the lighting repre-
sentation, we consolidate the lighting representation for both PBVR and PBR through integrated
directional encoding Verbin et al. (2022). Two distinct light MLPs are employed to model direct and
indirect lighting, respectively, addressing global illumination and inter-reflection, which are crucial
for differentiating indirect light from albedo and environment map. Additionally, we parameterize
the visibility term through two distinct MLPs. One is probabilistic for PBVR, while the other is
deterministic for PBR, indicating whether direct or indirect lights should be used. For materials
prediction, we employ a shared material MLP for both PBVR and PBR.

To summarize, our contributions are listed as follows.

• To the best of our knowledge, we introduce the first unified optimization framework for in-
verse rendering task, seamlessly integrating PBVR and PBR. Unifying these two rendering
methods synergistically enhances the performance of inverse rendering.

• We meticulously design a unified lighting and materials representation for PBVR and PBR,
effectively imposing mutual constraints and mitigating ambiguity.

• We present a comprehensive evaluation protocol, encompassing assessments of geometry
reconstruction, as well as material and lighting estimation accuracy. Extensive experiments
conducted on multiple datasets demonstrate the effectiveness of the proposed framework.
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2 RELATED WORK

2.1 MULTI-VIEW 3D RECONSTRUCTION

Traditional multi-view 3D reconstruction typically employs Multi-View Stereo (MVS) techniques
Curless & Levoy (1996); Fua & Leclerc (1995); Furukawa & Ponce (2009); Schönberger et al.
(2016); Schonberger & Frahm (2016); Xu & Tao (2019), with the objective of reconstructing scene
geometry from multi-view images. These techniques utilize multi-view consistency to establish cor-
respondences and estimate depth values across different views, yielding a point cloud reconstruc-
tion. However, MVS methods encounter challenges in reconstructing reliable geometry in specific
scenarios, such as surfaces with specular reflections and regions with low texture. In such cases,
multi-view consistency is compromised, potentially resulting in severe artifacts and missing parts in
the reconstructed output.

With the recent advancements in deep learning, learning-based approaches utilizing implicit surface
representations have emerged, where neural networks are employed to map continuous points to
either an occupancy field Mescheder et al. (2019); Peng et al. (2020) or a Signed Distance Function
(SDF) Park et al. (2019). Unlike traditional methods, these approaches are immune to appearance
changes as they rely on 3D ground truth supervision. However, these methods typically necessitate
additional supervision corresponding to the occupancy value or SDF for each point. Unfortunately,
such supervision may not always be readily available when utilizing solely multi-view 2D images,
thereby restricting their scalability.

The advent of volumetric approaches in NeRF Mildenhall et al. (2021) has sparked significant inter-
est in 3D reconstruction utilizing neural implicit surface representations Oechsle et al. (2021); Yariv
et al. (2021); Wang et al. (2021). Subsequent research endeavors have continued to enhance the
reconstruction performance across various aspects. Despite demonstrating promising performance
in 3D reconstruction, these methods still struggle to accurately recover the geometry of specular
surfaces. Therefore, in this study, we concentrate on the reconstruction of reflective objects, along
with the estimation of material and lighting properties.

2.2 MODELING FOR OBJECT WITH REFLECTION

Recently, several studies Boss et al. (2021); Srinivasan et al. (2021); Zhang et al. (2021a;b); Verbin
et al. (2022); Ge et al. (2023); Liu et al. (2023); Wang et al. (2024; 2023); Fan et al. (2023) have
focused on modeling objects with reflection. Some studies Verbin et al. (2022); Boss et al. (2021);
Zhang et al. (2021b); Bi et al. (2020); Rodriguez et al. (2020); Kopanas et al. (2022); Liang et al.
(2023b) tackle rendering tasks, where they model view-dependent reflective appearances by decom-
posing a scene into shape, reflectance, and illumination for novel view synthesis and relighting.
Other studies Ge et al. (2023); Liu et al. (2023); Wang et al. (2024); Fan et al. (2023); Liang et al.
(2023a) focus on reconstructing reflective geometry by modeling specular light more reasonably or
mitigating the effects of specular surfaces. For example, Ref-NeuS Ge et al. (2023) and NeP Wang
et al. (2024) reduce the impact of highly uncertain reflective regions while enhancing the significance
of less altered areas. Additionally, ENVIDR Liang et al. (2023a) and NeRO Liu et al. (2023) adopt
a more physically plausible approach to model specular color, leading to notable improvements in
reconstruction performance. Typically, physically based rendering is employed to further estimate
materials and lighting given well-reconstructed geometry. Despite achieving promising results, the
entanglement between illumination and materials compromises outcomes due to the ill-posed na-
ture of inverse rendering, inevitably leading to suboptimal results in many cases. In this study, we
propose a unified framework that imposes mutual constraints and alleviates the entanglement issue.

2.3 INVERSE RENDERING WITH NEURAL IMPLICIT LEARNING

Inverse rendering Barron & Malik (2014); Nimier-David et al. (2019) aims to decompose image
appearance into intrinsic properties such as geometry, materials, and lighting. This task has posed
a challenge in computer vision and graphics due to its ill-posed nature. Recovering reliable intrin-
sic properties is particularly difficult because of the limited constraints added during optimization.
To address this challenge, most existing methods Zhang et al. (2022); Liu et al. (2023); Yu et al.
(1999); Zhang et al. (2021b); Yao et al. (2022); Wang et al. (2024); Yang et al. (2023) employ a
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geometry-first optimization framework. Initially, they utilize volume rendering to reconstruct geom-
etry. Subsequently, in the second stage, physically based rendering is used for materials and lighting
estimation. However, ambiguity between materials and lighting hinders the second-stage optimiza-
tion. These methods do not establish a connection between volume rendering and physically based
rendering, as they are performed separately in two distinct stages. Our approach integrates PBVR,
which incorporates the concept of PBR into traditional volume rendering to establish a connection
with PBR, and PBR within a unified framework. Featuring a carefully designed unified representa-
tion for both lighting and material representation, our method effectively imposes mutual constraints
and mitigates ambiguity.

3 APPROACH

With N calibrated multi-view images denoted as X = {Ii}Ni=1, our objective is to address the inverse
rendering that simultaneous reconstructing of the object’s geometry and estimating the materials and
lighting. We commence by providing a succinct overview of volume rendering and physically based
rendering in Section 3.1. Next, we introduce physically based volume rendering (PBVR), and how
we integrate PBR and PBVR into a unified framework in Section 3.2. Subsequently, we delve
into the design of unified lighting and materials representations in Section 3.3. Lastly, Section 3.4
presents full optimization. An overview of our framework is illustrated in Figure 2.

3.1 PRELIMINARIES

Volume Rendering. Volume rendering Kajiya & Von Herzen (1984) used in NeRF Mildenhall
et al. (2021) aims at multi-view 3D reconstruction and novel view synthesis. The core idea is to
represent the continuous attributes (i.e., density and radiance) of a 3D scene with neural networks.
α compositing Max (1995) aggregates these attributes along a ray r to approximate the pixel RGB
values by:

Ĉ(r) =

P∑
i=1

Tiαici, (1)

where Ti = exp
(
−
∑i−1

j=1 αjδj

)
and αi = 1 − exp (−σiδi) denote the transmittance and alpha

value of sampled point, respectively. δi is the distance between neighboring sampled points. P is
the number of sampled points along a ray. σi and ci are predicted attributes by the neural networks.
The training object L is the mean square error between the ground-truth pixel color C(r) and the
rendered color Ĉ(r) formulated as

Lrender =
∑
r∈R

∥C(r)− Ĉ(r)∥22, (2)

where R is the set of all rays shooting from the camera center to image pixels. Subsequent ap-
proaches use Signed Distance Function (SDF) instead opacity σ to define the geometry. Following
NeuS Wang et al. (2021), the formulation of αi is calculated from the signed distance g (x) rather
than density σi as

αi = max

(
Φs (g(xi))− Φs (g(xi+1))

Φs (g(xi))
, 0

)
, (3)

where g is the geometry network, which maps a position x to its signed distance g(x). Φs(x) =

(1 + e−sx)
−1 and 1/s is a trainable parameter which indicates the standard deviation of Φs(x).

Physically Based Rendering. Physically based rendering aims to produce photo-realistic 2D im-
ages given geometry, materials and lighting. At its core, the rendering equation Kajiya (1986)
models the interaction between materials and lighting in a physically plausible manner. It inherently
represents an integral equation that describes the equilibrium of light in a scene. The formula is
expressed as

c(x,ωo) =

∫
Ω

f(x,ωo,ωi)Li(x,ωi)(ωi · n)dωi, (4)

where ωo is the viewing direction of the outgoing light, Li is the incident light of direction ωi

sampled from the upper hemisphere Ω of the surface point x, and n is the surface normal. f is the
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BRDF properties. The function f consists of a diffused and a specular component

f(x,ωo,ωi) = (1−m)
a

π
+

DFG

4(ωi × n)(ωo × n)
, (5)

where m ∈ [0, 1] is the metallic of the surface point. a ∈ [0, 1]3 is the albedo color of the point. D
is the normal distribution function, F is the Fresnel term and G is the geometry term, which are all
determined by the metallic m, the roughness r and the albedo a. We detail the expression of D, F
and G in the Appendix. With Eq. equation 4 and Eq. equation 5, the outgoing radiance is given by

c(x,ωo) = cd(x,ωo) + cs(x,ωo), (6)

cd(x,ωo) = (1−m)a

∫
Ω

Li(x,ωi)
(ωi · n)

π
dωi, (7)

cs(x,ωo) =

∫
Ω

DFG

4(ωi × n)(ωo × n)
Li(x,ωi)(ωi · n)dωi. (8)

3.2 UNIFYING VOLUME RENDERING AND PHYSICALLY BASED RENDERING

It is not trivial to integrate volume rendering (VR) and physically based rendering (PBR) into a
unified framework for simultaneous reconstructing the object’s geometry and estimating its materials
and lighting. A naive solution is to evaluate the rendering equation on surface points. However,
materials and lighting remain only related to PBR without integrating with volume rendering, thus
failing to introduce mutual constraints, since traditional volume rendering adopts an MLP for direct
radiance prediction, entangling the materials and lighting. Consequently, the optimization process
becomes intractable due to the ambiguity among geometry, materials, and lighting.

To guarantee that volume rendering also incorporates materials and lighting, we integrate it with the
principles of PBR, which allows the radiance to be computed by modeling the interaction between
materials and lighting. Inspired by NeRO Liu et al. (2023), we represent the radiance of each
sampled point along a ray using a simplified rendering equation, which approximates the lighting
with light MLP instead of integral in Eq. equation 7 and equation 8, termed PBVR. The diffuse and
specular components are

cPBVR
d (x,ωo) = (1−m)aLPBVR

d , LPBVR
d ≈

∫
Ω

Li(x,ωi)D(n, 1)dωi (9)

cPBVR
s (x,ωo) = maLPBVR

s , LPBVR
s ≈

∫
Ω

Li(x,ωi)D(d̂, ρ)dωi (10)

where LPBVR
d , LPBVR

s are the approximated diffuse and specular light, respectively. D(d̂, ρ) is the
normal distribution function (i.e., specular lobe), d̂ is the reflective direction. D(n, 1) ≈ (ωi·n)

π is
the diffuse lobe. We elaborate the simplified process from Eq. equation 8 to Eq. equation 10 in the
Appendix.

For physically based rendering, we evaluate the rendering equation on the surface points xs =

o+d
∑P

i=1 Tiαiti, where o is the camera origin, d is the camera direction and ti is the depth of i-th
sampled point. We adopt Monte Carlo sampling to approximate the diffuse color and specular color.
The diffused color is estimated by sampling Nd rays with a cosine-weighted probability

cPBR
d (xs,ωo) = (1−m)a

Nd∑
i

LPBR
i , (11)

where i indicate the i-th sampled direction. For specular color, we adopt the GGX distribution as
normal distribution D. We sample Ns rays follows DDX distribution Cook & Torrance (1982) to
estimate specular color

cPBR
s (xs,ωo) =

1

Ns

Ns∑
i

FG(ωo · h)
(n · h)(n · ωo)

LPBR
i , (12)

where h is the half-way vector between ωi and ωo, LPBR
i is predicted light of i-th sampled direction.

Both rendering methods require materials and lighting for shading. By integrating PBVR and PBR
with a carefully crafted materials and lighting representation, we enhance the mutual constraints for
inverse rendering, thereby reducing the probability of converging to suboptimal results.
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3.3 UNIFYING LIGHTING AND MATERIALS REPRESENTATION

All the radiance terms in Eq. equation 9, Eq. equation 10, Eq. equation 11, and Eq. equation 12 de-
pend on lighting and materials. Appropriately representing these elements is essential for effectively
imposing mutual constrains and mitigating ambiguity among geometry, materials, and lighting.

Lighting Representation. Given the crucial role that global illumination and inter-reflection play
in distinguishing indirect light from albedo and environment maps, we utilize two distinct MLPs
to separately encode direct and indirect lighting. The direct light MLP ldirect(SH(ωi)) takes only
direction as input, ensuring a globally consistent direct environment map. SH(·) is the directional
encoding using spherical harmonics as basis functions. This model is applicable when the path from
point x to direction ωi is unobstructed. In contrast, the indirect light MLP lindirect(SH(ωi),x) re-
quires both position and direction as input to accommodate the spatial variability of indirect lighting
across the scene. This model is used when the path from x to ωi encounters obstructions.

To establish a unified lighting representation, we utilize integrated directional encoding (IDE) Verbin
et al. (2022), which shows the integral of light in Eq. equation 9 and Eq. equation 10 has a closed-
form solution by representing the Li(x,ωi) with spherical harmonics, based on direction and rough-
ness denoted as IDE(ω, k). Although the roughness term in IDE(ω, ρ) is defined by the von Mises-
Fisher (vMF) distribution, which differs from the roughness term in the GGX distribution used in
PBR, both serve similar functions by defining positively correlated concentration. We optimize the
roughness as the parameter in the GGX distribution and use it for lighting approximation in PBVR.

For PBVR, the integrals of diffuse and specualr light can be approximated by

LPBVR
d = ldirect (IDE(n, 1)) , LPBVR

s = ldirect(IDE(d̂, ρ)). (13)
In PBR, the diffuse and specular light are both computed by

LPBR
i = ldirect (IDE(ωi, 0)) , (14)

where ρ is set to 0 since sampled directions are deterministic instead of a distribution. For indirect
light, the position x is additionally inputted. We consolidate the lighting representation for both
PBVR and PBR, encompassing both specular and diffuse components. This consolidation effec-
tively imposes constraints on lighting optimization and alleviates entanglement issues.

Visibility Representation. Given the inclusion of indirect light in our lighting representation, it
is critical to estimate a visibility term to correctly apply direct or indirect light. In PBR, light is
determined through Monte Carlo sampling, where each sampled direction is deterministic, resulting
in binary visibility values of either 0 or 1, denoted as vPBR

i ∈ {0, 1}. An MLP maps the surface
point xs and sampled direction ωi to visibility, defined as vPBR

i = VPBR(xs,ωi). In PBVR, vis-
ibility is probabilistic, denoted as vPBVR ∈ [0, 1], since lighting representation in Eq. equation 13
approximates the specular light using a single direction and roughness. When roughness is large,
the light integral is influenced not only by the reflective direction d̂. Thus, another MLP maps the
sampled point x and IDE(d̂, ρ)) to visibility, denoted as vPBVR = VPBVR(x, IDE(d̂, ρ)). To ac-
count for the deterministic and probabilistic property, we use visibility by ray-marching in geometry
network and visible proportion by Monte Carlo sampled directions as supervision, respectively. The
visibility loss is given by

Lvis = ∥vPBR
i − vmarch

i ∥1 + ∥vPBVR − 1

Ns

Ns∑
i=1

vPBR
i ∥1. (15)

Given the visibility, the light LPBVR
s in Eq. equation 13 can be expressed as

LPBVR
s = vPBVRldirect(IDE(d̂, ρ)) + (1− vPBVR)lindirect(IDE(d̂, ρ),x). (16)

Since diffuse light primarily contains low-frequency information, we do not explicitly model the
indirect diffused light for PBVR. The light LPBR

i in Eq. equation 14 is modified as

LPBR
i = vPBR

i ldirect(IDE(ωi, 0)) + (1− vPBR
i )lindirect(IDE(ωi, 0),xs). (17)

Materials Representation. Material representation, including metallic m, roughness ρ, and albedo
a, is conducted using a material MLP Mmaterial based on position x, denoted as {m, ρ,a} =
Mmaterial(x), and these predictions are shared across PBR-based rendering and PBR. The distinc-
tion lies in the fact that material prediction operates on ray-based points and surface-based points,
respectively. This difference introduces two types of constraints for material optimization.
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3.4 OPTIMIZING

During the training process, our total loss function is

L = LPBVR
render + λPBRLPBR

render + λeikLeik + λvisLvis + λmat regLmat reg, (18)

where Lrender is the Charbonier loss Barron et al. (2022) calculated between the rendered color and
the ground-truth color. In PBVR, the rendered color is derived from Eq. equation 1, where each ci
combines cPBVR

d and cPBVR
s as outlined in Eqs. 9 and 10, and αi determined by Eq. equation 3.

In the context of PBR, the rendered color is formulated as C = cPBR
d + cPBR

s , based on Eq.
equation 11 and Eq. equation 12. Leik is an eikonal term Gropp et al. (2020) to regularize the
gradients of geometry network formualated as

Leik =
1

P

P∑
i=1

(|∇f (x)| − 1)
2
. (19)

Lmat reg is a smoothness regularization to ensure the material more smooth in the space

Lmat reg = ∥M(xs)−M(xs + ϵ)∥2, (20)

where ϵ = 5e− 3.

4 EXPERIMENTS

4.1 DATASETS AND EVALUATION PROTOCOL

To evaluate the effectiveness of our method, we conducted experiments on objects from several
datasets. These include synthetic data from ShinyBlender Verbin et al. (2022) and CompoBlender,
where objects are composed from ShinyBlender or Blender Mildenhall et al. (2021), featuring more
complex scenes and inter-reflections (see Appendix for more details), as well as real captured data
from Stanford-ORB Kuang et al. (2024).

We present a comprehensive evaluation protocol, encompassing assessments of geometry recon-
struction accuracy as well as materials and lighting estimation accuracy.

Geometry Reconstruction. The evaluation metric used is the Chamfer Distance, provided by the
DTU evaluation metrics Aanæs et al. (2016). This metric comprises two components: accuracy and
completeness. Consistent with Ref-NeuS Ge et al. (2023), only accuracy is reported on ShinyBlender
and CompoBlender. We also reported the results of Stanford-OBR in the same scale.

Materials Estimation. Given access to ground truth of albedo, roughness, and metallic maps for the
synthetic datasets, Mean Squared Error (MSE) was reported for metallic and roughness, and PSNR
was used for diffuse albedo. For the real dataset Stanford-ORB, where ground truth for roughness
and metallic maps is unavailable, qualitative relighting results including PSNR, SSIM and LPIPS
were provided as an alternative. Besides, pseudo albedo was used to evaluate predicted albedo.

Lighting Estimation. For lighting evaluation,
akin to DeepLight LeGendre et al. (2019) and
StyleLight Wang et al. (2022), we employ three
spheres with different materials for assessment:
mirror silver, matte silver, and diffuse grey, de-
picted in Figure 3. The three spheres are ren-
dered with ground-truth lighting and the estimated
environment map using Blender Hess (2013).
Evaluation metrics include RMSE, scale-invariant
RMSE (si-RMSE) and Angular Error.

Mirror SilverGray Diffuse Matte Silver

Figure 3: Three spheres with different
materials: mirror silver, matte silver,
and diffuse grey.

4.2 IMPLEMENTATION DETAILS

Our model was developed based on NeRO Liu et al. (2023). The architecture of the geometry
network, lighting network, and material network mirrors that of NeRO. For more details, please see
our Appendix. Our model underwent training for 200,000 iterations, requiring 12 hours on a single

7
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Mirror Matte Diffuse

GT

NeRO

Ours

Environment Map

Nvdiffrec

InvRender

Mirror Matte Diffuse Environment Map

Reference

image

Method

Figure 4: The environment map and rendered spheres on “car” and “toahel”. We ran InvRender,
Nvidiffrec, NeRO official implementations. Our method obviously produces better result.

NVIDIA RTX 3090 Ti GPU. Upon convergence, a mesh was extracted from the signed distance
functions within a predefined bounding box using the Marching Cubes Lorensen & Cline (1987)
at a resolution of 512. An environment map with a resolution of 512 × 1024 was generated by
uniformly sampling across azimuth and elevation in spherical space, followed by querying the light
using the direct light MLP. Note that although our approach builds upon NeRO Liu et al. (2023), we
believe it can be adapted to any volumetric neural implicit framework. For example, techniques such
as Instant-NGP and CUDA-based Monte Carlo sampling can be readily leveraged for acceleration.

4.3 COMPARISON WITH STATE-OF-THE-ART METHODS

We compared the results of our method with several other methods, including NeRO Liu et al.
(2023), InvRender Zhang et al. (2022) and NvdiffRec Munkberg et al. (2022) and a 3D Gaussian
Splatting based inverse rendering method GaussianShader (GShader) Jiang et al. (2024) on both
synthetic dataset, and compared with cutting-edge method NeRO on real captured dataset. The
quantitative results are shown in Tables 1 and 2. Since InvRender assume dielectric materials, the

Reference Image GT Ours GaussianShader Nvdiffrec InvRender

Figure 5: Visualization of estimated environment map. Our method can recover fine-grained envi-
ronment map given only multi-view 2D images.
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Table 1: Comparison with state-of-the-art methods on ShinyBlender and CompoBlender Dataset.
Bold results have the best score. Our method outperforms these methods by a large margin.

Method ShinyBlender CompoBlender
Geometry Materials Lighting Geometry Materials Lighting

GShader 1.37 0.041 / 0.069 / 20.10 13.71 / 2.24 / 2.09 1.69 0.125 / 0.101 / 16.01 12.35 / 2.21 / 1.52
Nvdiffrec 2.59 0.045 / 0.074 / 19.90 14.11 / 2.30 / 2.05 2.95 0.138 / 0.110 / 15.93 10.70 / 2.12 / 1.41
InvRender 1.39 0.035 / - / - 11.38 / 2.09 / 2.04 1.35 0.069 / - / - 15.09 / 2.40 / 1.90
NeRO 0.67 0.023 / 0.030 / 22.26 8.86 / 1.65 / 1.97 2.05 0.063 / 0.055 / 17.68 9.40 / 1.73 / 1.04
Ours 0.58 0.015 / 0.025 / 23.21 7.91 / 1.58 / 1.45 0.82 0.039 / 0.026 / 18.84 8.17 / 1.54 / 0.88

Table 2: Comparison with cutting-edge method NeRO on Stanford-ORB Dataset. Bold results have
the best score. Our method performs better on real captured dataset.

Method Geometry Relighting Material
CD ↓ PNSR ↑ SSIM ↑ LPIPS ↓ PSNR ↑

NeRO 1.35 25.45 0.898 0.054 23.25
Ours 0.97 26.13 0.902 0.051 24.84

metallic and diffuse albedo are not available. We reported the mean result for each evaluation met-
ric. For lighting, we further averaged the results on three spheres. Please refer to our Appendix for
more details. Our method significantly outperforms all other compared methods on all evaluation
metrics. We shown the qualitative comparison of lighting estimation in Figure 4 and the extracted
2D environment map by querying the optimized direct light MLP in Figure 5. We also visualized
the qualitative comparison of geometry reconstruction in Figure 6. Note that though the 3D Gaus-
sian Splatting-based method Jiang et al. (2024) excels in optimization speed, its performance is
significantly inferior. More visualizations are in the Appendix, where we also discuss how incorrect
materials can lead to wrong geometry reconstruction.

4.4 ABLATION STUDY

We conducted an ablation study on the “coffee” object from ShinyBlender and the “gnome” object
from Stanford-ORB to evaluate the effectiveness of unifying PBR and PBVR, as well as the unified

1.12 0.85

1.56 0.97

0.65 0.52

1.43 0.46

NeRO
( CD )

Ours
( CD )Reference image

Figure 6: The qualitative
comparison of reconstruc-
tion between NeRO and our
method. Incorrect material
estimation hinders the ge-
ometry reconstruction.

VR+PBR

PBVR+PBR
(w/o unified lighting)

PBVR+PBR
(ours)

Ground truth

Albedo
(PSNR )

Albedo
(PSNR )

Metallic
(MSE )

Metallic
(MSE )

Roughness
(MSE )

Roughness
(MSE )

12.71

17.17

20.86

0.058 0.142 26.09 0.016 0.147

0.018 0.015 18.08 0.17 0.015

0.026 0.026 28.57 0.013 0.008

    

Figure 7: Ablation study on “coffee” and “car” dataset from
ShinyBlender. “VR + PBR” indicates integrating volume
rendering and physically based rendering. “PBVR + PBR
(w/o unified lighting)” indicates that we used two different
light MLPs for PBVR and PBR, respectively. The number
below each image indicates the evaluation metric.
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Reference image Albedo Diffuse light Specular light Metallic Roughness

Ours

PBVR

PBR

Figure 8: Comparison with the separate use of PBVR and PBR on the “gnome” from the Stanford-
ORB demonstrates that our method effectively disentangles lighting and albedo from the appearance.

light representation. We first compared our method with naively integrating traditional volume ren-
dering and PBR. However, traditional volume rendering struggles to reconstruct reflective surfaces
accurately, which is essential for optimizing materials and lighting. Consequently, we employed
Ref-NeuS Ge et al. (2023) for volume rendering, which demonstrated ideal reconstruction results
for specular surfaces. The results are shown in Figure 7 denoted as “VR + PBR”. Next, we highlight
the importance of unifying lighting representation by encoding the light for PBVR and PBR with
two different light MLPs, respectively. The results are shown in Figure 7 indicated as “PBVR + PBR
(w/o unified lighting)”. Our method significantly improves the performance of materials estimation.
We then compared our method with the two-stage optimization approach on the “gnome” object
from the Stanford-ORB dataset to validate the effectiveness of unifying PBR and PBVR. In the first
stage, PBVR was utilized for surface reconstruction. In the second stage, based on the derived ge-
ometry, PBR was applied for materials and lighting estimation. The results, as illustrated in Figure 8,
demonstrate that our method effectively disentangles lighting and albedo from appearance, whereas
the two-stage approach with PBVR and PBR results in entangled outputs. More visualization of the
ablation study can be found in the Appendix.

5 LIMITATION AND CONCLUSION

Limitation. Although our method shows promising results in inverse rendering across various ob-
ject types, several limitations remain. Firstly, our approach does not account for shadow effects,
which are often incorrectly attributed to the albedo rather than diffuse lighting. Given our method’s
proficiency in recovering lighting and geometry, we are able to infer shadows based on the geom-
etry and highlights. We plan to explore this capability as part of our future work. Secondly, while
PBVR and PBR impose significant constraints on inverse rendering, they can lead to consistent mis-
estimations of materials. When they converge on the same incorrect material prediction, the unified
framework fails under specific conditions. We show some examples in the Appendix.

Conclusion. In this paper, we explore the issue of inverse rendering for various object types, a
topic that serves as a critical bridge between NeRF-based models and conventional rendering en-
gines, yet remains under-explored. The inherent ambiguity among geometry, materials, and lighting
can significantly hinder accurate decomposition. Our method, Uni-IR, effectively addresses this
challenge by integrating physically based volume rendering and physically based rendering into a
unified framework. Both rendering methods directly reason materials, lighting and geometry. With
a carefully designed unified representations for both lighting and materials, our approach impose
mutual constraints and achieve significant performance on inverse rendering task.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Henrik Aanæs, Rasmus Ramsbøl Jensen, George Vogiatzis, Engin Tola, and Anders Bjorholm Dahl.
Large-scale data for multiple-view stereopsis. International Journal of Computer Vision (IJCV),
2016.

Jonathan T Barron and Jitendra Malik. Shape, illumination, and reflectance from shading. IEEE
transactions on pattern analysis and machine intelligence (TPAMI), 2014.

Jonathan T. Barron, Ben Mildenhall, Dor Verbin, Pratul P. Srinivasan, and Peter Hedman. Mip-nerf
360: Unbounded anti-aliased neural radiance fields. Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), 2022.

Sai Bi, Zexiang Xu, Pratul Srinivasan, Ben Mildenhall, Kalyan Sunkavalli, Miloš Hašan, Yannick
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A APPENDIX

A OPTIMIZATION AND MODEL DETAILS

Optimization Details. We employed Adam Kingma & Ba (2014) as our optimizer . Initially, over
the first 5,000 iterations, the learning rate was progressively increased from 1 × 10−5 to 5 × 10−4

via a warm-up strategy. Subsequently, it was reduced to 1 × 10−5. For Monte Carlo sampling, we
used Nd = 256 for the diffuse lobe and Ns = 512 for the specular lobe. We sampled 512 rays
for each batch. Each ray involved sampling 64 coarse points, 64 fine points, and 32 background
points, following the methodology in NeRF++ Zhang et al. (2020). We apply the standard gamma
correction to get colors in the sRGB space before computing the rendering loss. For Lvis, given
that up to 512 × Ns directions are sampled, computing vmarch for all directions incurs substantial
computational costs. Consequently, we capped the maximum number of computations for vmarch

at 8129 for each batch. The weights used in the loss computation are λPBR
render = 0.1, λeik = 0.1,

λvis = 1.0 and λmat reg = 0.5. Each model was trained over 200,000 iterations, requiring a total of
12 hours on a single NVIDIA RTX 3090 Ti GPU.

Network architecture. Our network architecture, akin to NeRO Liu et al. (2023), includes a geome-
try network, a material network, two light networks, and two visibility networks. These components
respectively encode the signed distance function (SDF), material parameters, light representations,
and visibility terms. The geometry network, which parametrizes the signed distance function, com-
prises 8 hidden layers, each with 256 units. Unlike traditional ReLU activation, we employ Softplus
with a β parameter of 100 across all layers. Additionally, a skip connection Mildenhall et al. (2021)
links the input directly to the output of the fourth layer. It takes a spatial position x as input and
outputs signed distances. The material network comprises a material feature network and three
dedicated networks for encoding albedo, metalness, and roughness. The material feature network
accepts spatial position x, outputting a 256-dimensional material feature vector. This vector is sub-
sequently processed by three networks to predict albedo, metalness, and roughness. The material
feature network consists of 8 hidden layers, each with 256 units. Similarly, the networks for albedo,
metalness, and roughness each include 4 hidden layers with 256 units. The direct light MLP ldirect,
indirect light MLP lindirect, and the visibility MLPs VPBR and VVR each comprise 4 layers, with each
layer containing 256 units. For all MLPs that take the position x as input, we utilize positional en-
coding with a frequency of 8. For MLPs that receive a single direction as input, positional encoding
with a frequency of 6 is employed. For both light MLPs, we use exponential function to get light
radiance in [0,∞). For material network, we use Sigmoid to get values in [0, 1].

B EVALUATION DETAILS

Geometry. For the ShinyBlender Verbin et al. (2022) and CompoBlender datasets, the ground truth
meshes were exported from the source Blender files. Given that the original models were quite
small, with a radius of approximately 1, we applied a scale factor of 150 during export. Similarly,
we increased the scale of the reconstructed results by 150 times on the Stanford-ORB dataset, en-
suring consistent scales across all ground truth meshes. During training, we normalized the objects
to fit within a unit sphere for both the ShinyBlender and CompoBlender datasets. For inference, we
transformed the meshes back to their original dimensions to accurately compute the Chamfer Dis-
tance. For the Stanford-ORB dataset, we adhered to the protocols defined in the officially released
dataset code for training.

Since the original meshes contained too few points, we upsampled the points within each triangle
to generate dense point clouds suitable for evaluation. Subsequently, the Chamfer Distance was
computed by

d(S1, S2) =
1

S1

∑
x∈S1

min
y∈S2

||x− y||22 +
1

S2

∑
y∈S2

min
x∈S1

||y − x||22, (21)

where the first term is employed to assess accuracy, while the second term evaluates complete-
ness Aanæs et al. (2016). Here, S1 and S2 represent the recovered point clouds that are upsam-
pled from the meshes and the ground truth dense point clouds, respectively. For ShinyBlender and
CompoBlender, we only reported the accuracy as suggested by Ref-NeuS Ge et al. (2023), and for
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Standford-ORB, we reported the mean of accuracy and completeness, since the ground-truth meshes
only contrain one-layer surface.

Materials. Material estimation involves calculating the Mean Square Error (MSE) for metalness
and roughness, as well as the PNSR for albedo. For metalness and roughness, MSE is computed in
linear space. Regarding albedo, the predicted values, initially in linear space, are converted to sRGB
space for PSNR computation. For the ShinyBlender and CompoBlender datasets, we compared the
diffuse albedo, expressed as (1−m) ∗ a, with the ground truth diffuse albedo rendered by Blender.
For the Stanford-ORB dataset, we compared the predicted albedo a with the pseudo ground truth
albedo. Since there is no ground-truth data for metalness and roughness in real captured datasets, we
evaluated the relighting performance instead, using PSNR, SSIM, and LPIPS as evaluation metrics.
Improved geometry and materials estimation directly contribute to enhanced relighting results.

Lighting. To evaluate the lighting estimation, we utilize three spheres with distinct materials: mirror
silver, matte silver, and diffuse grey. The material parameters are defined as follows:

• Diffuse Grey: m = 0.0, ρ = 0.364, a = {0.8, 0.8, 0.8}.

• Matte Silver: m = 1.0, ρ = 0.327, a = {0.8, 0.8, 0.8}.

• Mirror Silver: m = 1.0, ρ = 0.0, a = {0.8, 0.8, 0.8}.

These spheres are rendered using both ground-truth lighting and the estimated environment map in
Blender. We assess the performance by calculating the RMSE, si-RMSE, and Angular Error between
the two rendered images. To mitigate issues caused by excessively high light intensity in the ground
truth environment map, we employ a mask to filter out excessively large light intensities. To acquire
the predicted 2D environment map from the direct light MLP, we employed the Equirectangular
Projection for mapping a sphere to a rectangle with resolution 512 × 1024.

C DATASET

ShinyBlender The ShinyBlender dataset, introduced in Ref-NeRF Verbin et al. (2022), aims at the
novel view synthesis task for specular surfaces. The original dataset does not include ground truth
for diffuse albedo, metallic, and roughness. We re-rendered the dataset using Blender, maintaining
consistent camera poses with the original dataset for each object.

CompoBlender We combined individual objects from the ShinyBlender and Blender datasets to
create the CompoBlender dataset. This dataset is designed to validate the effectiveness of our method
in more complex scenes. First, we combined the “helmet” from ShinyBlender with a part of the
“hotdog” from the Blender dataset to create the “hothel” dataset, which features both shiny and
diffuse materials. Second, we combined the “toaster” and “helmet” from ShinyBlender to create
the “toahel” dataset, which includes indirect lighting and inter-reflections. For rendering multi-view
images, we implemented the code from NeRFactor Zhang et al. (2021b). Additionally, we added
output nodes for metallic, roughness, and diffuse albedo to evaluate materials. For the environment
map, we used the same environment map as “musclecar” for these two scenes.

Stanford-ORB The dataset comprises 14 common objects with different materials captured in 7
natural scenes. For each object, 60 training views and 10 testing views are provided, featuring both
high dynamic range (HDR) and low dynamic range (LDR) images under three different scenes. We
used LDR images for training and testing. For each object, one scene is selected for training, while
the remaining two scenes are used for relighting evaluation. Specifically, we observed that there is
always one scene where the object is captured in an outdoor environment. This outdoor scene was
consistently chosen for training.

D BRDF PARAMETERIZATION

In Sec. 3.1 we introduce the D, F and G term of the specular component of BRDF property. We
implement the Cook-Torrance BRDF model Cook & Torrance (1982). The basic specular albedo
F0 = (m ∗a+(1−m) ∗ 0.04), where a is the albedo and m is the metalness. The Fresnel term (F)
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Table 3: Comparison of surface reconstruction with state-of-the-art methods for each object in the
ShinyBlender and CompoBlender datasets. Bold results have the best score. Chamfer Distance
(lower is better) is used as the evaluation metric.

Methods ShinyBlender CompoBlender
helmet toaster coffee car teapot mean hothel toahel mean

NeuS 0.85 3.04 1.37 0.72 0.78 1.35 1.24 1.82 1.53
GShader 0.78 2.54 1.61 0.78 1.13 1.37 1.32 2.06 1.69

InvRender 0.68 2.34 3.24 0.58 1.03 1.39 1.02 1.67 1.35
NvdiffRec 2.67 3.89 3.31 1.76 1.33 2.59 2.67 3.23 2.95

NeRO 0.51 0.42 1.12 0.47 0.86 0.68 1.56 2.54 2.05
Ours 0.47 0.42 0.85 0.41 0.75 0.58 0.97 0.67 0.82

is defined as:
F = F0 + (1− F0)(1− (h · ωo))

5, (22)

where h is the half-way vector between ωo and viewing direction ωi. The normal distribution
function D is Trowbridge-Reitz GGX distribution as

D(h) =
α2

π ((n · h)2(α2 − 1) + 1)
2 , (23)

where α = ρ2, n is the surface normal. The geometry term G is the Schlick-GGX Geometry
function:

G(n,ωo,ωi, k) = Gsub(n,ωo, k)Gsub(n,ωi, k), (24)

where Gsub is given by:
Gsub(n,ω, k) =

n · ω
(n · ω)(1− k) + k

, (25)

where k is a parameter related to the roughness ρ, often approximated as k = ρ4

2 .

The simplified process from Eq. (8) to Eq. (10) follows the split-sum approximation Karis & Games
(2013), where cspecular in Eq. (8) can be rewrited as

cspecular(x,ωo) ≈
∫
Ω

L(x,ωi)D(d̂, ρ)dωi

∫
Ω

DFG

4(ωo · n)
dωi, (26)

where cspecular(x,ωo) is the integral of specular lights on the normal distribution function D(d̂, ρ),
where d̂ is the reflective directions. The latter part indicates the integral of BRDF, which can be
directly computer as (1−m) ∗ 0.04 +m ∗ a ∗ F1 + F2, where F1 and F2 are pre-computed scalars
and stored in a 2D lookup texture related to ρ,n and ωo. So the Eq. (8) can be modified as

cspecular(x,ωo) ≈ ((1−m) ∗ 0.04 +m ∗ a ∗ F1 + F2)

∫
Ω

L(x,ωi)D(d̂, ρ)dωi. (27)

E DETAILED RESULTS

We provided detailed quantitative metrics for each individual object in the ShinyBlender, Com-
poBlender, and Stanford-ORB datasets.

Geometry reconstruction results. For geometry reconstruction, we reported the Chamfer Distance
(CD) for each object across the three datasets. Table 3 presents the results for ShinyBlender and
CompoBlender. Table 4 shows the results comparison with NeRO of geometry reconstruction, re-
lighting and albedo estimation on Stanford-ORB. We further reported the detailed reconstruction
comparison with Nvdiffrec, IDR and GaussianShader and NeRO on Stanford-ORB dataset in Table
??. Note that to make consistent scale with our result on ShinyBlender, we follow the evaluation
methodology for CD from Ref-NeuS Ge et al. (2023), so the number is not the same as reported
in the website of Stanford-ORB. Our method achieves significant improvement compared to IDR,
the best performanced method in Stanford-OBR before. We show the qualitative comparison with
GaussianShader on Stanford-ORB in Figure 9 and geometry comparison with NvdiffRec and IDR
in Figure 10.
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Table 4: Comparison of surface reconstruction with NeRO, GaussianShader, Nvdiffrec and IDR for
each object in the Standford-ORB datasets. Bold results have the best score.

Methods baking ball blocks cactus car chips cup curry gnome grogu pepsi pitcher salt teapot mean
Geometry ( CD ↓)

Nvdiffrec 1.76 0.89 1.96 1.35 1.62 2.59 3.29 1.89 1.72 2.02 2.71 1.92 1.46 1.32 1.89
IDR 1.18 0.50 1.49 0.82 1.07 2.01 2.77 1.41 0.86 1.60 2.04 1.53 0.82 0.85 1.35

GShader 1.07 0.49 1.05 0.87 0.65 0.99 1.99 1.39 0.81 2.01 1.71 1.92 0.66 0.72 1.22
NeRO 0.93 1.43 1.08 0.90 0.65 0.85 1.62 1.77 1.74 1.83 0.87 2.39 2.19 0.60 1.35
Ours 0.91 0.46 0.96 0.75 0.52 0.69 1.69 1.26 0.74 1.82 0.64 2.12 0.46 0.59 0.97

Table 5: Comparison of materials estimation with state-of-the-art methods for each object in the
ShinyBlender and CompoBlender datasets. Bold results have the best score.

Methods
ShinyBlender CompoBlender

helmet toaster coffee car teapot mean hothel toahel mean
Roughness (MSE ↓)

GShader 0.047 0.016 0.108 0.022 0.011 0.041 0.102 0.149 0.125
InvRender 0.045 0.014 0.098 0.011 0.008 0.035 0.089 0.048 0.069
NvdiffRec 0.049 0.017 0.123 0.026 0.010 0.045 0.122 0.154 0.138

NeRO 0.034 0.009 0.063 0.008 0.004 0.023 0.072 0.026 0.063
Ours 0.037 0.009 0.026 0.008 0.001 0.015 0.043 0.036 0.039

Metalness (MSE ↓)
GShader 0.031 0.141 0.093 0.070 0.008 0.069 0.094 0.107 0.101

InvRender - - - - - - - - -
NvdiffRec 0.037 0.147 0.102 0.074 0.009 0.074 0.104 0.115 0.110

NeRO 0.016 0.097 0.023 0.012 0.003 0.030 0.069 0.041 0.055
Ours 0.013 0.070 0.026 0.013 0.001 0.025 0.020 0.032 0.026

Diffuse Albedo (PSNR ↑)
GShader 15.32 18.23 17.52 23.97 25.40 20.10 16.32 15.69 16.01

InvRender - - - - - - - -
NvdiffRec 14.62 18.47 16.92 24.37 25.10 19.90 16.34 15.52 15.93

NeRO 16.13 21.76 19.56 27.37 26.50 22.26 17.85 17.52 17.68
Ours 16.54 22.90 20.86 28.57 26.77 23.13 18.92 18.75 18.84

Materials estimation results. For material estimation, we reported the MSE for metalness and
roughness, and PSNR for diffuse albedo for each object in the synthetic datasets, as shown in Table
5. Additionally, we report the relighting performance metrics, including PSNR, SSIM, and LPIPS,
as well as PSNR for albedo for each object in the Stanford-ORB dataset, in the middle and bottom
parts of Table 4. Note that the albedo is only a pseudo ground truth albedo, which is predicted using
NVDiffRec Hasselgren et al. (2022).

Lighting estimation results. For lighting estimation, we reported the RMSE, Si-RMSE and Angu-
lar Error between two rendered images on three spheres with different materials, which are rendered
with ground truth environment map and predicted environment map. The detailed results for each
object in ShinyBlender are reported in Table 7. The detailed results for each object in CompoBlender

Comparison with GS

Ours

baking chips curry grogu pepsi teapot

GaussainShader

Figure 9: The surface normal of GaussainShader and our method on Stanford-ORB dataset.
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ours

IDR

ball

GT

curry pepsi teapot car

Nvdiffrec

Figure 10: More reconstruction results on objects from Stanford-ORB. IDR, Nvdffrec are compared.

Table 6: Comparison of novel view synthesis with Ref-NeRF and NeRO, including the first stage
PBVR and the second stage PBR. Bold results have the best score.

Methods PSNR ↑ SSIM ↑ LPIPS ↓
Ref-NeRF 27.86 0.878 0.375

NeRO (PBVR) 29.73 0.904 0.326
NeRO (PBR) 27.53 0.866 0.384
Ours (PBVR) 29.77 0.902 0.324
Ours (PBR) 29.51 0.894 0.329

are reported in Table 8. We further reported the detailed relighting metrics and albedo estimation
metric on Stanford-ORB dataset compared with NeRO in Table 9.

Novel-view synthesis quality. To show the quality of novel view synthesis (NVS), we additionally
reported the NVS quality in Table 6 compared to Ref-NeRF, the PBVR and PBR in NeRO and our
method in terms of PSNR, SSIM, and LPIPS. The qualitative comparison with NeRO are visualized
in Figure 11. The rendered image of ”NeRO (PBR)” is inferior to the same PBR rendered image
in our unified framework, which shows that our method enhances PBR anti-aliasing capability. The
rendered results of ”NeRO (PBVR)” and our framework are comparable.

Relighting quality. For the relighting evaluation, we selected challenging objects that include inter-
reflections. Speciı̀cally, the ”cat” from GlossyBlender dataset and the ”coffee” from ShinyBlender
dataset were chosen. The results of these evaluations are reported in Figure 12.

F DISCUSSION ABOUT THE RECONSTRUCTION RESULTS.

Here, we discuss why physically based volume rendering fails to reconstruct accurate surfaces, while
unifying PBR and PBVR achieves better geometry reconstruction results.

NeuS Wang et al. (2021), an SDF-based neural implicit surface learning method that employs tradi-
tional volume rendering, excels at recovering the surfaces of diffuse materials but fails to correctly
reconstruct specular surfaces. This failure occurs because the specular color is not well-estimated
when the camera view direction conditions the radiance MLP.
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Table 7: Comparison of lighting estimation with state-of-the-art methods for each object in the
ShinyBlender Dataset. Bold results have the best score.

helmet toaster coffee car teapot mean
Methods Angular Error ↓
GShader 5.61 / 9.01 / 14.52 8.32 / 11.05 / 15.12 17.90 / 16.41 / 23.24 5.01 / 6.59 / 13.97 5.92 / 7.81 / 9.95 8.55 / 10.17 / 15.36

InvRender 5.46 / 8.78 / 13.87 8.12 / 10.93 / 14.92 18.70 / 16.86 / 23.93 4.95 / 6.53 / 13.82 5.97 / 7.84 / 10.02 8.64 / 10.19 / 15.31
NvdiffRec 4.92 / 8.15 / 13.45 9.15 / 11.58 / 12.98 25.65 / 28.46 / 34.84 6.80 / 11.93 / 20.04 7.10 / 7.24 / 9.39 10.72 / 13.47 / 18.14

NeRO 3.91 / 7.17 / 11.44 6.22 / 8.15 / 7.44 17.89 / 15.82 / 11.04 3.17 / 4.78 / 9.35 4.24 / 8.36 / 13.90 7.09 / 8.86 / 10.63
Ours 4.12 / 7.49 / 12.03 6.01 / 7.59 / 7.09 16.94 / 14.02 / 10.56 1.99 / 1.89 / 7.47 3.15 / 6.82 / 11.53 6.44 / 7.56 / 9.74

Scale-invariant RMSE ↓
GShader 0.92 / 2.07 / 7.96 1.12 / 4.66 / 6.99 0.10 / 0.19 / 0.41 0.31 / 1.26 / 6.14 0.08 / 0.18 / 0.59 0.51 / 1.67 / 4.42

InvRender 0.90 / 1.99 / 7.83 0.99 / 4.26 / 6.76 0.08 / 0.15 / 0.35 0.27 / 1.06 / 5.95 0.06 / 0.14 / 0.56 0.46 / 1.52 / 4.29
NvdiffRec 0.89 / 2.46 / 7.34 1.28 / 3.98 / 6.94 0.11 / 0.19 / 0.39 1.08 / 1.76 / 6.28 0.20 / 0.64 / 1.02 0.71 / 1.81 / 4.39

NeRO 0.62 / 1.52 / 6.35 0.81 / 3.56 / 2.99 0.07 / 0.12 / 0.28 0.27 / 0.91 / 6.55 0.09 / 0.23 / 0.42 0.37 / 1.27 / 3.32
Ours 0.65 / 1.60 / 6.56 0.78 / 3.38 / 2.89 0.06 / 0.10 / 0.24 0.25 / 0.89 / 5.68 0.06 / 0.18 / 0.42 0.36 / 1.23 / 3.16

RMSE ↓
GShader 1.31 / 2.51 / 7.71 1.82 / 4.61 / 5.12 0.58 / 0.51 / 0.69 0.59 / 1.19 / 2.73 0.17 / 0.62 / 1.09 0.89 / 1.89 / 3.47

InvRender 1.25 / 2.35 / 7.47 1.92 / 4.77 / 5.29 0.50 / 0.46 / 0.60 0.56 / 1.13 / 2.60 0.14 / 0.56 / 0.97 0.87 / 1.87 / 3.39
NvdiffRec 1.08 / 2.46 / 7.10 1.68 / 4.10 / 3.56 0.96 / 0.88 / 1.03 0.74 / 1.77 / 3.20 0.42 / 0.64 / 1.04 0.98 / 1.97 / 3.19

NeRO 1.05 / 1.87 / 6.76 1.90 / 4.07 / 3.31 0.30 / 0.27 / 0.55 0.52 / 1.01 / 6.60 0.10 / 0.52 / 0.71 0.77 / 1.55 / 3.59
Ours 0.91 / 1.84 / 4.45 1.85 / 4.01 / 3.21 0.25 / 0.21 / 0.51 0.36 / 0.93 / 2.10 0.06 / 0.44 / 0.64 0.69 / 1.49 / 2.18

Table 8: Comparison of lighting estimation with state-of-the-art methods for each object in the
CompoBlender Dataset. Bold results have the best score.

hothel toahel mean
Methods Angular Error ↓
GShader 9.91 / 14.29 / 18.55 5.41 / 15.74 / 22.67 7.66 / 15.02 / 20.61

InvRender 10.86 / 15.09 / 19.23 5.60 / 16.54 / 23.22 8.23 / 15.82 / 21.23
NvdiffRec 6.06 / 10.47 / 15.64 6.00 / 10.43 / 15.62 6.03 / 10.45 / 15.63

NeRO 4.20 / 8.45 / 16.77 3.37 / 7.00 / 16.58 3.79 / 7.73 / 16.68
Ours 3.89 / 7.15 / 14.92 3.01 / 5.98 / 14.08 3.45 / 6.57 / 14.50

Scale-invariant RMSE ↓
InvRender 0.36 / 0.91 / 4.41 0.47 / 1.05 / 5.12 0.42 / 0.98 / 4.77
InvRender 0.42 / 1.04 / 4.53 0.59 / 1.29 / 6.52 0.51 / 1.17 / 5.53
NvdiffRec 0.54 / 1.16 / 4.65 0.57 / 1.16 / 4.64 0.55 / 1.16 / 4.65

NeRO 0.21 / 0.70 / 4.37 0.20 / 0.59 / 4.29 0.21 / 0.65 / 4.33
Ours 0.15 / 0.60 / 3.97 0.14 / 0.49 / 3.89 0.15 / 0.55 / 3.93

RMSE ↓
InvRender 0.60 / 0.98 / 2.44 0.73 / 1.42 / 2.01 0.67 / 1.20 / 2.23
InvRender 0.70 / 1.08 / 3.04 0.83 / 1.71 / 4.01 0.77 / 1.40 / 3.53
NvdiffRec 0.62 / 1.28 / 2.35 0.62 / 1.25 / 2.32 0.62 / 1.26 / 2.34

NeRO 0.53 / 0.80 / 1.85 0.53 / 0.76 / 1.78 0.53 / 0.78 / 1.82
Ours 0.45 / 0.70 / 1.51 0.46 / 0.67 / 1.49 0.46 / 0.69 / 1.50

The radiance and geometry are entangled and mutually affected due to the intrinsic nature of volume
rendering, where geometry determines the weights of radiance integration along a ray. If the radiance
is not well-estimated, the geometry is also degraded. This conclusion has been demonstrated in
Ref-NeRF Verbin et al. (2022) and Ref-NeuS Ge et al. (2023). These methods reparameterize the
radiance network as a function of the reflection direction about the surface normal, providing better
modeling for radiance and hence improved reconstruction results.

In PBVR, the radiance is influenced by both lighting and materials. Correct lighting and materials
also contribute to better geometry, consistent with the aforementioned conclusion. However, with
only PBVR, the lighting and materials are often inaccurately estimated, especially in complex or
real scenes. In contrast, unifying PBVR and PBR provides better materials and lighting estimation
during training. PBR models the lighting using Monte Carlo sampling in a more physically plausi-
ble way, while PBVR only approximates the lighting. This comprehensive approach enhances the
performance of geometry reconstruction.

G MORE VISUALIZATION OF ABLATION STUDY

To validate the importance of our proposed unified light representation, we carried out more ablation
studys on the Stanford-ORB dataset and Glossy-Blender dataset to validate the effectiveness of
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Table 9: Comparison of surface reconstruction with Nvdiffrec, IDR and GaussainShader for each
object in the Standford-ORB datasets. Bold results have the best score.

Methods baking ball blocks cactus car chips cup curry gnome grogu pepsi pitcher salt teapot mean
Relighting ( PNSR ↑)

NeRO 26.03 22.48 25.65 26.72 25.36 28.58 25.11 24.44 26.05 24.44 25.31 27.06 24.06 25.05 25.45
Ours 26.31 23.58 26.24 27.61 27.23 27.88 26.23 23.54 28.54 26.35 26.06 26.75 23.78 25.76 26.13

Relighting ( SSIM ↑)
NeRO 0.909 0.854 0.894 0.910 0.912 0.919 0.905 0.894 0.847 0.904 0.907 0.905 0.880 0.925 0.898
Ours 0.902 0.867 0.918 0.920 0.921 0.904 0.921 0.886 0.878 0.914 0.905 0.901 0.868 0.929 0.902

Relighting ( LPIPS ↓)
NeRO 0.041 0.067 0.091 0.050 0.034 0.025 0.053 0.061 0.090 0.051 0.048 0.069 0.046 0.036 0.054
Ours 0.039 0.056 0.068 0.042 0.029 0.028 0.047 0.065 0.084 0.047 0.045 0.073 0.049 0.033 0.050

Albedo ( PSNR ↑)
NeRO 21.16 24.93 26.71 23.12 24.89 21.10 19.90 24.48 24.14 23.10 20.42 23.00 23.20 25.39 23.25
Ours 22.24 25.00 27.95 28.95 28.56 20.45 20.37 22.56 27.45 29.15 24.59 22.02 22.69 25.76 24.84

combining PBVR and PBR for imposing mutual constraints in inverse rendering. The results are
shown in Figure 13.

H FAILURE CASES

Figure 14 presents the inverse rendering results for the “salt” object from the Stanford-ORB dataset,
illustrating a failure case of our method. In this scenario, both PBVR and PBR consistently misesti-
mate the material properties, converging on an incorrect metalness value of approximately m ≈ 1.0.
Our method also misestimates the metalness at m ≈ 1.0. We intend to explore material priors to ad-
dress this issue in future work. Leveraging the robust recognition capabilities of Large MultiModal-
ity Models (LMMs), we can obtain material priors, as demonstrated in Figure 16. Nevertheless, our
approach achieves superior geometry reconstruction quality, and the estimated albedo is more accu-
rate, introducing less environmental light into the albedo estimation. Another failure case involves
the shadow effect as illustrated in Figure 15, where our method tends to attribute the shadow compo-
nent to the albedo rather than diffuse light. Given that our method excels at recovering fine-grained
geometry and environment maps, which are critical for determining shadow locations, we plan to
further explore this capability in future work.
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Figure 11: The extracted environment map from the direct light MLP. Our method can recover fine-
grained environment map given only multi-view 2D images.

NeRO

Ours

Relighting Albedo roughnessRelighting

GT

30.03 25.54

31.94 27.29

Figure 12: Relighting comparison with NeRO on the ShinyBlender and Glossy-Blender datasets.
Our method excels at accurately estimating materials, including albedo (highlighted in the red box in
“cat”) and roughness (“coffee”), particularly in scenarios with inter-reflection. Correctly recovering
these parameters is crucial for accurate relighting.

Ref-NeuS + PBR

Ours

Geometry Albedo Roughness Geometry Albedo Roughness

Figure 13: Ablation study on the Stanford-ORB dataset and Glossy-Blender dataset to validate the
effectiveness of combining PBVR and PBR for imposing mutual constraints in inverse rendering.
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Reference image Metallic Roughness Normal

PBVR

PBR

Ours

Albedo

Figure 14: A failure case in our method. When both PBVR and PBR consistently misestimate the
material properties, our method also misestimates the material in some circumstances. Nevertheless,
our approach achieves superior geometry reconstruction quality.

Albedo Diffuse light

Ours

Ground truth

Figure 15: A failure case in our method. The shadow effect are distilled into the albedo instead of
diffuse light. The ground truth diffuse light is rendered by Blender.
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Query: help me recognize the material of given image

Answer: 

• The object appears to have a dark body with some text or labeling on it.

• The top part of the object looks relatively smooth and uniform in color.

Given these observations, the object does not exhibit strong metallic 

characteristics such as sharp reflections or a shiny appearance. It is more 

likely to be made of a non-metallic material such as plastic or cardboard, 

especially considering the smooth and uniform top surface.

Figure 16: Large MultiModality Models (LMMs), such as GPT-4(vision), can deduce materials
from a single image due to their robust recognition capabilities. This material prior can significantly
aid in the inverse rendering task.
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