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Abstract

While sparse autoencoders (SAEs) have generated significant excitement, a series of1

negative results have added to skepticism about their usefulness. Here, we establish2

a conceptual distinction that reconciles competing narratives surrounding SAEs.3

We argue that while SAEs are less effective tools for acting on known concepts,4

SAEs are powerful tools for discovering unknown concepts. This distinction5

cleanly separates existing negative and positive results, and suggests several classes6

of SAE applications. Specifically, we outline use cases for SAEs in (i) text as7

data, (ii) bridging prediction and explanation in ML-based science, and (iii) ML8

interpretability, explainability, fairness, and auditing.9

1 Introduction10

Sparse autoencoders (SAEs) have been a popular topic in interpretability research, showing impressive11

capabilities for identifying interpretable directions in the text representations underlying language12

models [Cunningham et al., 2023, Templeton et al., 2024]. For example, an Anthropic paper found a13

“Golden Gate Bridge” direction, which could be manipulated to make a chatbot that would always14

incorporate the Golden Gate Bridge into responses.115

However, two recent papers showed that SAEs fail to outperform simple baselines in large-scale16

evaluations on concept detection (probing) and model steering [Kantamneni et al., 2025, Wu et al.,17

2025]. These results have led to pessimism about the usefulness of SAEs. For example, in response to18

this research, the mechanistic interpretability team at Google DeepMind announced that they would19

deprioritize research into SAEs.2 Nonetheless, there continues to be optimism about new applications20

of SAEs: including in hypothesis generation [Movva et al., 2025] as well in the “biology” of LLMs21

[Lindsey et al., 2025].22

How can we square continued interest in SAEs with thorough evaluations demonstrating negative23

results? Are new attempts to use SAEs misguided? Or is there something missing in our understanding24

of the negative results? This position paper reconciles conflicting narratives surrounding SAEs by25

making a conceptual distinction. Our position is that SAEs—while ineffective at acting on known26

concepts—are powerful tools for discovering unknown concepts:27

Consider the tasks where negative results have been shown. Concept detection involves detecting28

a prespecified concept (“Does this text mention dogs?”). Model steering involves steering a model29

to exhibit a specified concept (“Make outputs less sycophantic.”). Another negative result involves30

concept unlearning (“Unlearn knowledge about concepts related to biosecurity.”) [Farrell et al., 2024]31

In these tasks, concepts are inputs—known beforehand.32

1
https://www.anthropic.com/news/golden-gate-claude

2
https://deepmindsafetyresearch.medium.com/negative-results-for-sparse-autoencoders-on-downstream-tasks-and

-deprioritising-sae-research-6cadcfc125b9
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Now consider the tasks where positive results have been shown. Hypothesis generation involves find-33

ing concepts that predict a target variable (“What concepts predict engagement of news headlines?”).34

Biology of LLMs involves finding concepts that LLMs represent when generating text (“What con-35

cepts does an LLM represent when doing addition?”). In both tasks, concepts are outputs—unknown36

beforehand. (In Table 1, we provide example concepts.)37

So while SAEs have been shown to underperform baselines when acting on knowns, overgeneralizing38

can result in missing the potential of SAEs as tools for discovering unknown concepts. By enumerating39

concepts in an unsupervised manner, SAEs allow for the discovery of concepts that fit desired criteria.40

We outline how SAEs—as a tool for generating unknown concepts—can be used to advance research41

in (i) applications of text as data, (ii) the role of prediction and explanation in ML-based science, and42

(iii) ML interpretability, explainability, fairness, and auditing.43

Paper structure. Section 2 serves as a primer on SAEs (which can be readily skipped by readers44

familiar with SAEs). Section 3 shows that negative SAE results pertain to tasks that act on known45

concepts. Section 4 surveys recent positive results, showing that these papers use SAEs to discover46

unknown concepts. Section 5 then explores use cases for SAEs in different research areas.47

2 An SAE Primer48

We offer a brief primer on the SAE architecture, their history, and why and how they are now being49

used to interpret language models. (Readers familiar with SAEs may skip to Section 3.)50

Early work on autoencoders. Autoencoders are unsupervised neural networks that learn to recon-51

struct high-dimensional inputs via a series of learned transformations. For a D-dimensional input x,52

an autoencoder computes:53

z = encoder(x), (1)
x̂ = decoder(z), (2)

where encoder(·),decoder(·) are arbitrary neural networks, z is the latent feature representation,54

and x̂ is the reconstruction. The autoencoder is trained with a mean squared error reconstruction loss,55

L = ||x̂− x||22. (3)
One classic application of autoencoders is compression: by restricting the latent representation z to56

a dimension size M ≪ D, the autoencoder learns a compressed representation in z which can be57

used to approximate x [Hinton and Salakhutdinov, 2006]. In this setting, z functions similarly to an58

M -dimensional principal component analysis of x,3 in that we wish to explain as much variance as59

possible in the distribution of x using only M dimensions.60

Sparse autoencoders. Sparse autoencoders (SAEs) perform the same reconstruction task, but61

leverage a different intuition. In an SAE, M can be larger than D, but each individual z is forced to62

be sparse—that is, only a small number of its dimensions can be nonzero. This design is motivated by63

the idea that while an entire dataset may span many possible concepts (e.g., all text on the Internet, or64

all images in ImageNet), a single datapoint (a sentence or image) often contains very few. Empirically,65

using this design results in dimensions of z which correspond to useful concepts. For example, early66

work on SAEs trains directly on input images x (e.g., from MNIST), and the features learned by z67

correspond to interpretable concepts like edges [Coates and Ng, 2011, Makhzani and Frey, 2014].68

To improve clarity, we define features and concepts:69

• A feature is one of many numerical values used to represent an input. In a neural network,70

a feature is a single dimension of a layer’s output vector; in other words, it is an activation71

computed by a neuron. We use the terms feature, activation, neuron, and dimension72

interchangeably depending on context.73

• A concept is a qualitative characteristic that may or may not be present in a given input. For74

our purposes, we operationalize concepts via natural language descriptions.75

• An interpretable feature, then, is a feature whose values correspond to the presence of76

absence of a single concept.77

3If the encoder and decoder are linear, PCA minimizes the reconstruction loss [Baldi and Hornik, 1989].
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News headlines [Movva et al., 2025]
Protests or actions of dissent

“How to / what to do” questions or instructions
Economic inequality

Memory or remembering
Direct requests or demands
Drugs or drug-related topics

Gov’t policies related to democracy, citizen rights
Climate change or global warming

Hollywood or the film industry
Cats or cat-related topics

Congressional Speeches [Movva et al., 2025]
Tax cuts or benefits for the wealthy
The national debt or debt ceiling
North Dakota or its communities

Criticizes inaction or lack of progress by Congress 

Tax relief or royalty relief
Postal Service or postal reform
High-ranking military officers

A person named Katie or Kathryn
Price-gouging or energy market

Phrases emphasizing negation or absence
General Text Corpus [Lindsey et al., 2025]

Visual deficits
Something that ends in “it”

Answering difficult questions/ sensitive questions
Meningitis symptoms

Everything’s bigger in Texas
Two-digit numbers in the 10-20 range

Rabbit
Byzantine Empire

Can’t answer
Dangers of Bleach and Ammonia

“Sometimes Silence Is The Best Form Of Protest”

“Why are People In Mexico Taking To The Streets?”

“It Would Be Revolting To Not Stand Up For What You Believe …”

“A massive, global protest is going down today. You should know why.”

“This May Be the Most Important Battle Of Our Times …”

“As riots broke out … this group of Baltimore clergy marched in 
peaceful protest”
“The Internet is Important To Protest Movements, But It’s Not Always 
Used to HELP Them.”

“Doing nothing is the worst thing Congress can do …”

“We need to stop the rhetoric and take action …”

“… for evil to triumph it is only necessary that good men do nothing.”

“… it seems to me that one way to raise it would be to do something”

“There is no action whatsoever in this bill …”

“They simply do not want to do it. But what they want to do now is 
just throw some additional money at it to kind of kick the can …”

“… we are not doing anything but saying we are going to go right …”

“… and Byzantine art was mainly found in the Roman Empire”

“… clashes between the Blues and Greens in Constantinople …”

“… Eastern Roman Empire which is what we call Byzantium …”

“… Egypt and Byzantine art was mainly found in the Roman Empire 
…”

“… Eastern Roman Empire, also known as the Byzantine Empire …”

“… la hiérarchie qui existaient sous l'empire d'Orient…”

“… reconoció formalmente al emperador romano de Oriente …”

Concepts Example Texts

Table 1: SAE neurons explained via autointerpretation, and texts that activate them [Movva et al., 2025,
Lindsey et al., 2025]. Left: Examples of concepts learned from SAEs trained on different datasets;
Right: Examples of texts that activate the corresponding SAE neuron. Concepts interpretably
describe the underlying data distribution of texts.
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Mathematical formulation of SAEs. One formulation of the sparse autoencoder follows the usual78

autoencoder forward pass, but adds an L1 penalty on z to the loss function [Coates and Ng, 2011]:79

L = ||x̂− x||22 + λ||z||1. (4)

A larger λ encourages more zero elements in z. Another approach explicitly applies a TopK function80

to the encoder that zeroes out all but the k-largest activations in z [Makhzani and Frey, 2014], where81

k ≪ M . These top-k SAEs use a vanilla reconstruction loss. With a single layer each for the encoder82

and decoder, the full forward pass is given by:83

z = ReLU(TopK(Wenc(x− bpre) + benc)),

x̂ = Wdecz+ bdec,

where bpre ∈ RD,Wenc ∈ RM×D,benc ∈ RM ,Wdec ∈ RD×M ,bdec ∈ RD, and TopK sets all84

activations except the top k to zero.85

Single layer top-k SAEs have emerged as a common architecture in recent work, with slight variations86

like an auxiliary loss or nested losses to mitigate issues like dead neurons and feature absorption87

[Gao et al., 2024, Bussmann et al., 2025]. Some work has replaced SAEs with sparse transcoders,88

which use layer ℓi to construct the output of a later layer ℓj [Paulo et al., 2025, Lindsey et al., 2025].89

For convenience, we refer to all of these closely-related methods under the “SAE” umbrella,90

while noting that the specifics of the optimal sparse coding architecture are likely to shift.91

Applying SAEs to interpret language models. The recent wave of SAE research aims to interpret92

the representations learned by large language models. The motivation for this line of work is to93

understand the units and computations an LM uses to map an input to an output. Before SAEs,94

a plethora of works over the last decade on probing language models have shown that LM token95

representations contain rich semantic information [Belinkov, 2022]. Concepts like a word’s part-of-96

speech or pronoun coreferences are a linear transformation away from the word’s representation [Liu97

et al., 2019]. Given this richness, a natural question is whether we can identify all of the concepts a98

language model encodes and the model components that encode them. A starting point is to interpret99

a single neuron [Elhage et al., 2022]. Unfortunately, individual neurons are hard to describe in a100

human-interpretable way. Neurons tend to capture a complex combination of concepts, and this101

polysemanticity appears to be a fundamental property of neural networks [Elhage et al., 2022].102

This convergence of findings—that language model representations encode numerous valuable103

concepts, but studying individual neurons does not reveal them—explains recent excitement for104

sparse autoencoders. Unlike LM neurons, SAEs produce monosemantic neurons that can be explained105

by a single concept [Cunningham et al., 2023, Bricken et al., 2023]. SAEs are trained on an LM’s106

representations x of individual tokens, resulting in latent representations z. To interpret a particular107

feature dimension i in z, we can examine tokens (and their surrounding context) that produce large108

values of z[i]. Initial work reports that after training on the representations from a small, one-layer109

LM, the SAE features z[i] fire on succinct concepts, like “Arabic text” or “citations in scientific110

papers” [Cunningham et al., 2023, Bricken et al., 2023]. Follow-up work demonstrates that SAEs111

continue to learn monosemantic features when applied to representations from state-of-the-art LLMs112

[Templeton et al., 2024, Gao et al., 2024]. SAEs also produce interesting features when trained on113

text embeddings of entire sentences or documents [O’Neill et al., 2024, Movva et al., 2025]. In114

Table 1, we provide examples of concepts learned on both specific text datasets (news headlines and115

Congressional speeches) as well as generic text datasets.116

Automatically interpreting neurons with language models. While SAEs produce neurons in z117

that are theoretically interpretable, the task of actually producing a mapping from neurons to concepts118

is a separate one. Because there are many neurons to explain, prior work has focused on automatically119

generating explanations of SAE neurons4 (Templeton et al. [2024], O’Neill et al. [2024], inter alia).120

To interpret a neuron i, a basic approach is to prompt a language model with texts that have a high121

value of z[i] against those with a low value, and ask it to identify the shared concept in the high-valued122

texts. To evaluate the quality of the resulting concept description, one can use an LM to annotate texts123

for the presence of the concept, and measure agreement between the concept annotations and the true124

4Many key works on neuron explanation interpret neurons in language or vision models directly, without
SAEs [Bau et al., 2017, Hernandez et al., 2022, Bills et al., 2023, Choi et al., 2024]. The value proposition of
SAEs is that, relative to the original model’s neurons, SAE features are easier to explain with high fidelity.
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Neg. Results: Acting on Known Concepts Pos. Results: Discovering Unknown Concepts
Concept detection [Wu et al., 2025, Kantamneni
et al., 2025]

Hypothesis Generation [Movva et al., 2025]

Is the following name a basketball player? What concepts predict engagement on news head-
lines?

Is the following entity in New York City? What concepts predict partisanship in Congres-
sional speeches?

Model steering [Wu et al., 2025] Biology of LLMs [Lindsey et al., 2025]
Make the LLM output more sycophantic. What concepts does an LLM represent after writ-

ing the first line of a poem?
Make the LLM output discuss the Golden
Gate Bridge.

What concepts does an LLM represent when per-
forming addition?

Table 2: Negative SAE results act on known concepts whereas positive SAE results focus on
discovering unknown concepts.

neuron activations. This framework gives us a quantitative measure for neuron interpretability: how125

well does a natural language explanation predict the neuron’s activations?126

There are ongoing debates about how best to sample high- and low-valued texts both during explana-127

tion and during scoring in order to produce the “best” explanation [Bills et al., 2023, Gao et al., 2024,128

Movva et al., 2025]. For example, even a generic explanation may distinguish the top-valued texts129

from random ones, but an overly specific one may miss medium-valued activations. Another proposal130

to score explanations asks an LM to generate text which contains the concept, and then measures131

whether the generated text indeed has a high activation [Juang et al., 2024]. However, this does not132

resolve issues around explanation specificity. More broadly, there is no consensus for automatic133

neuron explanation; indeed, the choice should be grounded in the task the concepts are being used for.134

3 Negative results: Acting on Known Concepts135

We now survey recent negative results about SAEs, with the goal of showing that the tasks considered136

fall under the category of acting on known concepts. This is to be contrasted with tasks that involve137

discovering unknown concepts, on which positive results have been shown (Section 4).138

Two recent papers conduct large-scale evaluations of SAEs [Kantamneni et al., 2025, Wu et al., 2025].139

A key finding of these papers is that SAEs underperform simple baseline methods (such as logistic140

regression or naive prompting). We claim that these evaluations are limited to tasks involving acting141

on known concepts. Indeed, the tasks that are studied are:142

1. Concept detection [Kantamneni et al., 2025, Wu et al., 2025]: Identifying whether a given143

concept appears in a text.144

2. Model steering [Wu et al., 2025]: Steering the outputs of a language model to contain a145

concept.146

These are important, widely-studied problems, and understanding how SAEs perform on them is147

clarifying. Notice, however, that these tasks each involve first prespecifying a concept and then acting148

upon it. In other words, concepts are inputs in these tasks. We now summarize these papers’ findings149

in greater detail.150

Concept detection. Kantamneni et al. [2025] curate 113 binary classification tasks on text data,151

which they use to evaluate concept detection accuracy. For example, one task is to determine if152

a given name corresponds to a basketball player. Another task is to determine if a tweet conveys153

happy sentiment. They train probing classifiers: on each dataset, they fit a logistic regression to154

predict concept presence using Gemma-2-9B’s representations of the final tokens in each text as155

input5. They compare this to a logistic regression trained on the representations from a Gemma-2-9B156

5Besides logistic regression, they also include PCA regression, nearest neighbors, XGBoost, and MLP.
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SAE. They further examine class imbalance, data scarcity, and label noise. In each setting, using157

the SAE representation does not add predictive power compared to probing directly from the LM158

representation.159

Wu et al. [2025] follow a similar approach. Starting from a list of 500 concepts, for each concept, they160

generate synthetic texts that either do or do not contain the concept. In addition to logistic regression161

using Gemma-2-2B representations, they train several other representation-based concept detection162

methods. They also include methods that do not use representations at all, such as prompting an LLM163

to identify whether the concept is present in the text, as well as bag-of-words. Four such baselines,164

including logistic regression and prompting, outperform the SAE.165

Model steering. Wu et al. [2025] also study model steering. Given a user prompt and a concept,166

like “where should I visit today?” and “Golden Gate Bridge,” they evaluate whether the model can167

generate a response that is fluent, relates to the prompt, and includes the concept. An LLM judge168

scores each attribute. To steer with an SAE, they identify the SAE feature that is most predictive169

of the concept’s presence, and they generate a response after increasing the value of this feature.170

Non-SAE methods include editing activations with a steering vector [Marks and Tegmark, 2024],171

finetuning the language model on responses containing the concept, or simply prompting it to include172

the concept in its response. Prompting and finetuning both outperform SAE-based steering.173

Why aren’t SAEs useful here? We speculate on why SAEs underperform baselines on these tasks.174

For concept detection, recall that SAEs are trained to reconstruct the LM token representations. A175

reconstruction encodes strictly less information about a token than the the original LM representation.176

It follows that, compared to the original representation, there is less information available in the177

SAE representation to predict the presence of a concept. For model steering, prompting performs178

well because LLMs are finetuned to be adept at instruction-following, and including a concept in179

a response falls well within this paradigm. The empirical results from both papers underscore an180

intuition that, more generally, there are many natural methods besides SAEs to act on known concepts.181

However, these baselines are less equipped to perform another simple task: enumerate a list of182

candidate concepts. This, as we show in the next section, forms the basis for tasks on which SAEs183

have a comparative advantage.184

4 Positive results: Discovering Unknown Concepts185

We now describe two positive results using SAEs6 [Movva et al., 2025, Lindsey et al., 2025], which186

focus on the following tasks:187

1. Hypothesis generation [Movva et al., 2025]: Identifying open-ended natural language188

concepts that predict a target variable.189

2. Explaining language model outputs (“Biology of LLMs”) [Lindsey et al., 2025]: Describing190

the concepts a language model uses to perform various tasks (e.g., poem completion or191

addition).192

We claim that these tasks are examples of discovering unknown concepts. To explain this, we193

summarize their findings in greater detail.194

Hypothesis generation. Movva et al. [2025] study tasks where a large dataset of texts is annotated195

with a target variable, and the goal is to understand what concepts in the text predict the target. For196

example, one such dataset consists of news headlines and numerical engagement levels. While a197

traditional analysis of such a dataset may be hypothesis-driven (e.g., Robertson et al. [2023] study198

how negativity affects engagement), here the task requires automatically extracting concepts with no199

prior specification.200

They (1) train an SAE on dense text embeddings; (2) select SAE features that predict the target; and201

(3) run autointerpretation to interpret the selected features, which become hypotheses (i.e., “headlines202

that contain {concept} receive more engagement”). They find that the resulting hypotheses outperform203

those generated without an SAE, either by skipping step 1 and selecting features directly from text204

6Note that Lindsey et al. [2025] use sparse transcoders, a slight variation on SAEs (see note in §2).
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Research area Research problem (using SAEs to discover unknown concepts)
Text as data How has language about immigration changed over time in Congres-

sional speeches? [Card et al., 2022]
What symptoms (recorded in medical records) predict clinical out-
comes? [Huang et al., 2019]
What information from court hearings do judges use when making
bail decisions? [Zhang, 2024]

Explanation vs. prediction in
ML-based science

What features explain the difference in accuracy between predictive
models and theory-grounded models? [Fudenberg et al., 2022]
Are ML models using illegitimate features (in the context of making
a scientific claim)? [Kapoor and Narayanan, 2023]

ML interpretability Finding natural language concepts that can be used to build an inher-
ently interpretable model. [Rudin, 2019]

ML explainability Finding natural language concepts that explain a model’s predictions.
[Lakkaraju et al., 2019]

ML fairness/bias In what ways do LLMs stereotype different demographic groups?
[Lucy and Bamman, 2021]

ML auditing What features are high-stakes LLM-based decision tools using? [Gae-
bler et al., 2024]

Table 3: Example research problems that can use SAEs to discover unknown concepts.

embeddings, or by using a different pipeline altogether (like topic modeling or n-grams). The method205

quantitatively outperforms existing methods for hypothesis generation on text data—generating206

more statistically significant hypotheses. In hypothesis generation, the goal is explicitly to discover207

unknown concepts.208

Explaining language model outputs. Lindsey et al. [2025] explain how language models generate209

text that completes a task. For example, given a prompt “A rhyming couplet: He saw a carrot and had210

to grab it,” the LM generates the next line “His hunger was like a starving rabbit.” Does the model211

generate the first part of the line and then “improvise” a word that rhymes, does it “plan” the rhyming212

word and tee it up, or something else? They find that, immediately after the first line, there are active213

neurons corresponding to the words “rabbit” and “habit” that result from a neuron “words rhyming214

with ‘it’.” They perform further interventions to confirm this “planning” mechanism. In another case,215

they look at how a model computes “36+59” in natural language. They find active neurons for “units216

digit 5,” (resulting from a neuron for “units digit 6 + units digit 9”) and “addition problems of ∼40217

plus ∼50,” which combine to produce “95.” These specific routes of task completion are difficult to218

forecast, underscoring how this analysis requires discovering unknown concepts.219

Why are SAEs useful here? Because SAEs are able to generate highly-interpretable features while220

maintaining the expressivity of underlying text representations, it is possible to identify concepts221

that satisfy a property: in the case of hypothesis generation, to find concepts that predict a target222

variable, and in the case of explaning language model behaviors, to find concepts that are active when223

completing a task. Precise concepts are important. If the rabbit neuron instead fired on all animals, it224

would be difficult to answer whether the model improvises or plans rhymes.225

Also note that after generating concepts using SAEs, it is possible to computationally validate whether226

the concepts satisfy the desired property. That is, it is possible to evaluate whether a hypothesized227

headline concept indeed correlates with engagement, or whether a hypothesized LLM addition feature228

is active during addition. Because of this falsifiability, even if an SAE feature is unreliable (e.g., not229

all headlines which pose a question activate the question feature), it is possible to catch these issues230

downstream.231

By enumerating a set of precise concepts that express the variation in text data, it is possible to232

systematically discover concepts that satisfy a desired property.233
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5 Use Cases for SAEs234

Having conceptualized where SAEs are useful (discovering unknown concepts), we outline research235

areas where such a capability can be useful. In particular, while initial excitement about SAEs236

was shared primarily by researchers in mechanistic interpretability, we believe that clarifying the237

comparative advantage of SAEs reveals a significantly broader set of uses. The use cases we outline238

focus on the ability of SAEs to discover unknown concepts.239

We first articulate why SAEs are a promising tool for text as data. SAEs have the potential to240

significantly improve upon methods that currently use keyword frequency or topic models. We then241

consider how SAEs can be used to bridge the prediction-explanation gap in ML-based science. Finally,242

we discuss how SAEs are an important tool for ML researchers in interpretability, explainability,243

fairness, and auditing to build upon and refine—especially insofar as these fields deal with models244

that use unstructured text data as both input and output. We summarize these potential use cases of245

SAEs for different research problems in Table 3.246

Text as data. A wide variety of disciplines (e.g., sociology, economics, healthcare) have sought to247

leverage large text datasets. This has led to prominent work developing and applying methods for248

“text as data” [Grimmer, 2010, Gentzkow et al., 2019].249

These methods often attempt to discover interpretable patterns in text data—for example, quantifying250

changes in the language used to discuss immigrants, or identifying features of clinical notes that251

predict health outcomes. Existing methods automate these tasks through simple text features such252

as keywords or n-grams, or through topic models. These methods are limited by the expressivity of253

these features: topic models and keywords do not precisely capture the range of concepts present in254

text.255

At the same time, while text embeddings better capture the information present in text, they are256

uninterpretable. SAEs, by learning interpretable features from text embeddings, can be used to answer257

the same questions that previous keyword or topic model methods are used for—i.e., discovering258

concepts that reveal patterns in text—but potentially with higher quality.259

ML-based science: bridging prediction and explanation. There are many settings in which text260

data have been shown to enable much greater predictive accuracy than existing human-specified261

features. While developing methods to quantify or improve predictive accuracy may be of independent262

interest, a growing line of work has suggested the need to bridge the gap between prediction and263

explanation [Hofman et al., 2017, 2021]. Traditionally, scientific disciplines have sought to explain264

phenomena, rather than only predict outcomes. For example, Fudenberg et al. [2022] and Ludwig265

and Mullainathan [2024] each show gaps between predictive accuracy of ML models that take in266

all available features and models that take in existing human-specified features. This gap suggests267

that existing theories are incomplete, leading to work that has sought to build automated approaches268

for closing this gap: discovering interpretable features that are predictive. SAEs are a promising269

tool for this task [Movva et al., 2025]. SAEs can close the prediction-explanation gap by converting270

black box representations into interpretable representations. These interpretable representations both271

capture much of the predictive power of the black box representations, while also enabling us to make272

predictions in terms of natural language concepts.273

Other work has demonstrated that strong predictive performance can be misleading in ML-based274

science applications, underscoring the need for explanation [Kapoor et al., 2024, Messeri and Crockett,275

2024, Del Giudice et al., 2024, Shmueli, 2010]. For example, ML models with high accuracy may276

use illegitimate or spurious features. We provide a concrete example from the results described in277

Movva et al. [2025]. In a dataset of Congressional speeches, several of the most predictive features of278

partisanship are procedural in nature, such as calling a session to order. While predictive accuracy279

in predicting partisanship could be used to measure substantive difference in partisan rhetoric, it is280

important to understand how much these procedural features contribute to the predictions. Similarly,281

even if text data in medical documents are highly predictive of patient outcomes, it is important to282

discover spurious features [Ross, 2021, Chiavegatto Filho et al., 2021]. In unstructured text data,283

discovering these illegitimate features can be difficult. SAEs provide one way of discovering these284

features. This capability extends past methods that prespecify concepts to be used for prediction with285

unstructured data [Koh et al., 2020].286
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For ML interpretability/explainability/fairness/auditing. Each of these areas aim to understand287

and build models with desiderata beyond accuracy in mind. Here, we see significant opportunity for288

SAEs. For example, SAEs can be used to identify natural language concepts that can explain black289

box model behavior [Lakkaraju et al., 2019]. Then, by identifying the concepts that are used, it is290

possible to build models that are inherently interpretable [Rudin, 2019], and that incorporate only291

features that we want (e.g., that are considered fair, avoid spurious correlations, etc).292

Whereas existing work documents how demographic information affect LLM-based decision-293

making—e.g., in hiring [Gaebler et al., 2024], it is possible to use SAEs to uncover a wider range of294

features that may affect the LLM-generated decisions. Furthermore, as LLM outputs are themselves295

often unstructured, SAEs can also be used to discover patterns in LLM outputs as a function of inputs,296

expanding the toolkit of researchers auditing models.297

6 Conclusion298

In this position paper, we argued that successful uses of SAEs involve discovering new concepts,299

while unsuccessful uses of SAEs involve acting on known concepts. We showed that negative results300

have used SAEs to act on known concepts—e.g., on tasks such as concept detection and model301

steering. Meanwhile, positive results using SAEs—including hypothesis generation and biology-of-302

LLMs—have aimed to discover unknown concepts using SAEs. Having clarified where SAEs show303

promise, we then outlined potential applications of SAEs.304
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