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ABSTRACT

Photorealistic style transfer aims to transfer the artistic style of an image onto
an input image or video while keeping photorealism. In this paper, we think
it’s the summary statistics matching scheme in existing algorithms that leads to
unrealistic stylization. To avoid employing the popular Gram loss, we propose a
self-supervised style transfer framework, which contains a style removal part and a
style restoration part. The style removal network removes the original image styles,
and the style restoration network recovers image styles in a supervised manner.
Meanwhile, to address the problems in current feature transformation methods,
we propose docouple instance normalization to decompose feature transformation
into style whitening and restylization. It works quite well in ColoristaNet and can
transfer image styles efficiently while keeping photorealism. To ensure temporal
coherency, we also incorporate optical flow methods and ConvLSTM to embed
contextual information. Experiments demonstrates that ColoristaNet can achieve
better stylization effects when compared with state-of-the-art algorithms.

1 INTRODUCTION

Nowadays rapid development of video-capture devices has made videos become a mainstream
information carrier (Hansen, 2004). People usually post videos accompanied with different color
styles on social media (Kopf et al., 2012; Xu et al., 2014) to share daily life, express different emotions,
and get more exposures (Yan et al., 2016; Zabaleta & Bertalmı́o, 2021). Thus, photorealistic video
style transfer or automatic color stylization becomes popular in many mobile devices. Different from
artistic style transfer (Gatys et al., 2016; Huang & Belongie, 2017), photorealistic video style transfer
or automatic color stylization needs to replace color styles in original videos with one or multiple
reference images and keep the outputs maintain ”photorealism”. The photorealism in style transfer
refers to that stylization results should look like real photos taken from cameras without any spatial
distortions or unrealistic artifacts. Moreover, algorithms need to run in realtime.

Several popular algorithms have been proposed to conduct photorealistic style transfer for single
image. DeepPhoto (Luan et al., 2017) incorporated semantic segmentation masks to guide style
transfer and utilized a photorealism regularization term to reduce spatial distortions. PhotoWCT (Li
et al., 2018) exploited whitening and coloring transforms (WCT (Li et al., 2017c)) to conduct
arbitrary style transfer and used photorealistic smoothing to remove spatially inconsistent stylization.
WCT2 (Yoo et al., 2019) proposed a wavelet corrected transfer based on WCT to preserve structural
information while stylizing images at the same time. PhotoNAS (An et al., 2020) proposed a neural
architecture search framework for photorealistic style transfer and achieved impressive results.

Although these algorithms can conduct style transfers in many scenarios, their stylization results still
contain unpleasant artifacts or look unreal, and some algorithms need additional supports. In Figure 1
(a), given a content image which contains a tree in autumn and a style reference, previous state-of-
the-art algorithm WCT2 (Yoo et al., 2019) will generate synthesized images with obvious structural
artifacts. Besides, these algorithms conduct style transfer by matching the summary statistics of
content features with style references completely, which will lead to unrealistic stylization as in
Figure 1 (b). For photorealistic style transfer in videos, there are only very few existing algorithms that
can only perform style transfer with constraints. MVStylizer (Li et al., 2020) need good stylization
initilaization at the first frame and Xia’s method (Xia et al., 2021) incorporates additional semantic
masks for each frame in videos. These problems limit these methods’ usage in many real applications.
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Figure 1: Illustration of unsolved problems in photorealistic style transfer. From left to right: (a)
Previous state-of-the-art algorithm WCT2 (Yoo et al., 2019) generates stylization results with obvious
structural artifacts. (b) The stylization result produced by WCT2 (Yoo et al., 2019) looks painterly
and slightly unreal. (c) Video stylization algorithms need additional inputs, such as good stylization
initialization (Li et al., 2020) or semantic masks (Xia et al., 2021), to guide style transfer.

In this paper, we aim to solve the problems listed above in photorealistic video style transfer. Different
from previous algorithms which match summary statistics of content images to that of style references
through whitening and coloring transformation (Li et al., 2018), adaptive instance normalization (An
et al., 2020) and the Gram loss (Luan et al., 2017), we propose a style removal and restoration
framework in a self-supervised manner to conduct arbitrary style transfer while keeping photorealism.
Our motivation is that during photorealistic style transfer, if we can remove the style of image content
without destroying image structures, we can recover its original style by using the content image
both as style reference and stylization target. According to our experiences, artifacts produced
by PhotoWCT (Li et al., 2018), WCT2 (Yoo et al., 2019), and PhotoNAS (An et al., 2020) come
from two parts: (1) the Gram loss; (2) whitening and coloring transformation (WCT (Li et al.,
2017c)). In our method, we avoid using the Gram loss and train networks with the content loss
only (Gatys et al., 2016). We improve the summary statistics matching scheme with decoupled
instance normalization which can remove original image styles and add new styles for inputs without
hurting image structures. Meanwhile, decoupled instance normalization does not match styles of
reference images completely and avoid unrealistic stylization in Figure 1 (b). To keep temporal
consistency in videos, we exploit optical flow estimation (Teed & Deng, 2020) and ConvLSTM (Shi
et al., 2015a) to conduct consecutively style transfer. We summarize our contributions as follows:

• In this paper, we propose a novel photorealistic video style transfer network called ColoristaNet,
which can conduct color style transfer in videos without introducing painterly spatial distortions and
inconsistent flickering artifacts. We put many videos in the supplementary material to compare with
other state-of-the-art algorithms.

• We propose decoupled instance normalization which works together with ConvLSTM (Shi et al.,
2015a) to implement structure-preserving and temporally consistent feature transformation. The
decoupled instance normalization decomposes style transfer into feature whitening and stylization,
which can avoid unrealistic style transfer.

• ColoristaNet can adapt color styles in videos consecutively with multiple different style references
and runs faster than most of recent algorithms. Qualitative results and a user study show that our
method outperforms other state-of-art algorithms in making a balance between good stylization results
and photorealism. Besides, we also conduct extensive ablation studies whose results demonstrate the
effectiveness of different modules and designs in ColoristaNet clearly.
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2 PRELIMINARIES AND MOTIVATIONS
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Figure 2: The training and test pipeline of ColoristaNet. During training, a ColoristaNet is firstly
exploited to replace the color style of a content image with a style reference. Then, another Col-
oristaNet restores the style of the synthesized image by using the original content input as a style
reference. During testing, the style restoration ColoristaNet can conduct style transfer efficiently.

Neural style transfer algorithms (Gatys et al., 2016; Li et al., 2017b) have achieved great success
in creating artistic images of high perceptual quality. Using neural representations to separate and
recombine content and style of arbitrary images is widely investigated and adopted by researchers (Li
et al., 2017a; Zhu et al., 2017b; Johnson et al., 2016; Ledig et al., 2017). In Gatys’ paper, the Gram
matrix consists of the correlations between different filter responses and describe the overall image
style, and features in deeper layers is thought capturing the high-level content in term of objects
and their arrangement. Then style transfer problems can be solved by matching summary statistics
of content inputs to that of style references. However, although such a framework works quite
well for artistic style transfer, it is not suitable for photorealistic style transfer. Because matching
the summary statistics of content images with arbitrary style references will generate unpleasant
artifacts or distortions. Photorealistic style transfer algorithms, such as DeepPhoto (Luan et al., 2017),
PhotoWCT (Li et al., 2018), WCT2 (Yoo et al., 2019), and PhotoNAS (An et al., 2020), focus on
eliminating artifacts or distortions with additional smoothing term or other regularization terms. As
shown in Figure 1, structural artifacts and unrealistic stylization is hard to be avoided.

In this paper, we hold an assumption that in previous methods, it’s the summary statistics matching
scheme in learning objectives and feature transformation modules that lead to structural artifacts or
unrealistic stylization. That means the Gram loss (Gatys et al., 2016), AdaIN (Huang & Belongie,
2017)] and WCT (Li et al., 2018) are problematic in photorealistic style transfer. To address these
issues, we propose ColoristaNet with: (1) a self-supervised style transfer framework that avoids
employing the Gram loss during training; and (2) a novel feature transformation module to substitute
AdaIN or WCT to perform summary statistics matching. For the self-supervised style transfer
framework, as shown in Figure 2, if we can remove the style of an image without hurting its structure,
the style restoration problem becomes a fully supervised one. The reason why our idea works is
because in the photorealistic setting, image structures are shared and unchanged during style transfer.
The benefits of our self-supervised learning scheme come from two folds: (1) We avoid employing
the Gram loss or other regularization loss functions that will result structural artifacts or blur effects;
(2) Our learning targets are real photos which can ensure that the stylization results make a good
balance between stylization and photorealism. We discuss more details in Appendix B.1.

To address the problems brought by AdaIN and WCT, ColoristaNet incorporates a novel feature
transformation module called decoupled instance normalization (DecoupleIN) to match the styles of
content images with that of reference images. DecoupledIN is inspired by AdaIN, and decompose
the feature transformation into a style whitening step and a restylization step. This decomposition
avoids forcing the feature statistics of content images to match that of style images directly, and
show impressive results. In addition, as we conduct video style transfer, we need to keep temporal
coherency in consecutive frames. So we employ optical flow methods to estimate pixel locations in
a next frame and propagate style information through ConvLSTM (Shi et al., 2015a) as shown in
Figure 3. We give more explanations about the design of ColoristaNet in Appendix B.2.
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3 METHOD
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Figure 3: Illustration of the training pipeline of ColoristaNet. There are five content frames and five
style references for a video clip. For each frame, it firstly passes through a style transfer network to
conduct style removal and then go through another style transfer network for style restoration. In
style restoration, features from different time steps are connected with a ConvLSTM unit. A flow
estimation network (RAFT (Teed & Deng, 2020) with fixed parameters) predicts optical flow between
two adjacent frames to warp the hidden states of ConvLSTM for movement compensation. Note that
parameters of style removal and restoration networks at different time steps are shared.

3.1 OVERVIEW OF THE PROPOSED METHOD

In this section, we introduce the training pipeline of ColoristaNet. For the test pipeline, we give
more details in Appendix A.2. As discussed in the previous sections, we exploits a style removal
ColoristaNet and a style restoration ColoristaNet to conduct end-to-end training (as shown in Figure 3).
Given a video clip with five image frames, we send them together with randomly selected style
references to a style transfer network to conduct style removal. Then these style removal results are
used as content inputs and the original inputs are used as style images to perform style restoration with
another style transfer network. Both style transfer networks are in a similar structure except that the
style restoration incorporates RAFT (Teed & Deng, 2020) and ConvLSTM (Shi et al., 2015a) to keep
temporal coherency. For the learning objective, they are trained with two content loss respectively,
and their learning targets are original video frames. During the test, the second style transfer network
is exploited to conduct style transfer without additional constraints.

3.2 STYLE TRANSFER NETWORK

Figure 3 shows the architecture of two style transfer networks roughly. A style transfer network
consists of a VGG-19 encoder Simonyan & Zisserman (2014), four decoupled instance normalization
modules, four ConvLSTM units Shi et al. (2015b), and a decoder to generate final output. Note that,
in style removal, ConvLSTM units are removed, since it doesn’t need context information. Given an
input image pair (ICt

, ISt
), feature maps at ”conv1 1”, ”conv2 1”, ”conv3 1” and ”conv4 1” of a

VGG-19 network Φvgg with frozen parameters are extracted: These multiscale features pass through
four decoupled instance normalization modules (shown in Figure 4) to map feature statistics of the
content image to match that of its style reference. In style restoration, RAFT is exploited to estimate
pixel locations in adjacent frames and ConvLSTM is responsible to incorporate contextual information.
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Then, a U-net Ronneberger et al. (2015) style decoder fuses information across different scales and
generate stylization results. We give a very detailed structure configurations in Appendix A.2.

3.3 DECOUPLED INSTANCE NORMALIZATION

(a) Decoupled Instance Normalization

（b) Visual Comparison of AdaIN and DecoupledIN

Content and Style DecoupleINAdaIN

Figure 4: Conceptual illustration of decoupled in-
stance normalization and visual comparison with
AdaIN (Huang & Belongie, 2017).

Matching feature statistics through feature trans-
formation has been proven powerful in both
artistic style transfer and photorealistic style
transfer (AdaIN (Huang & Belongie, 2017) and
WCT (Li et al., 2017c)). But directly apply-
ing AdaIN will hurt some subtle image details,
and WCT often leads to unrealistic stylization.
Here we propose decoupled instance normal-
ization (DecoupledIN) that decomposes the fea-
ture transformation into feature whitening and
stylization. Figure 4 shows the DecoupledIN
module. Given a content input fCt,i and a style
input fSt,i at i-th layer, we remove the style of
fCt,i as Equation 1 firstly, and then send the
whitened result f̃Ct,i and style input fSt,i into
a 3 × 3 convolutional layer with 2c filters to
conduct AdaIN (c is the number of input feature
channel). Finally, we reduce the feature chan-
nels of stylized features gt,i to be the same with
inputs. The overall process of DecoupledIN can
be described with the following equations:

Whitening : f ′
Ct,i =

fCt,i − µ (fCt,i)

σ (fCt,i)
,

Transform : f ′′
Ct,i, f

′′
St,i = Conv

(
f ′
Ct,i

)
,Conv (fSt,i) ,

Stylization : gt,i = σ
(
f ′′
St,i

)f ′′
Ct,i

− µ
(
f ′′
Ct,i

)
σ
(
f ′′
Ct,i

)
+ µ

(
f ′′
St,i

)
,

(1)

where µ and σ calculate the mean and standard deviation for each feature channel respectively.
Figure 4 indicates that style transfer through DecoupledIN will generate better stylization results
without hurting image details when compared with using AdaIN. We attribute this to that directly
changing the content feature statistics will make some neurons work out of their working range and
remove detailed structures. When we separate feature whitening from stylization, we conduct feature
transformation more smoothly and get better results. We disucss DecoupledIN and conduct more
ablations in Appendix B.2 to investigate our assumptions. Experiments indicates that more whitening
will lead to better stylization effects.

3.4 LOSS

Unlike previous works which employed multiple loss functions including content loss, temporal loss,
Gram loss, and etc, we simply employ content loss to constrain the structure of the stylization results
to be the same as content inputs (for style removal) and guide ColoristaNet to generate photorealistic
videos like real world videos (for style restoration). Given a stylization result IG and an input image
IC , we use the feature maps at conv4 1 layer of VGG-19 to calculate the content loss. The two
ColoristaNets are trained end-to-end without sharing parameters. For a video clip with N frames, the
learning objective becomes:

L =

N∑
i=1

Lcontent

(
IG1,i , ICi

)
+ λLcontent

(
IG2,i , ICi

)
, (2)

where IG1,i
and IG2,i

are generated images of style removal and restoration networks respectively. In
experiments, we set λ = 1 and get impressive results.
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4 EXPERIMENTS

4.1 EXPERIMENTAL DETAILS

We conduct extensive experiments to indicates the effectiveness of the proposed method. Due to the
page length limit, we put implementation details into the appendix, including datasets, evaluation
protocols and training and test settings (in Appendix A). We also put more results and discussions
in the appendix part to compare with state-of-the-art methods and investigate the effectiveness of
different designs and modules in ColoristaNet.

4.2 QUALITATIVE COMPARISON

Figure 5: Multiple color stylization on a set of consecutive frames with ColoristaNet. Stylization
targets are visualized in the right up corner of first, fourth, and seventh columns. From left to right,
color styles of input frames changed smoothly without any painterly distortions or flickering artifacts.
More stylization videos are packed in the supplementary material.

Photorealism. In photorealistic style transfer, the most important principle is to change color styles
of images without resulting distortions or artifacts. Meanwhile, photorealism means that stylization
results should looks like taken from cameras. Figure6 compares ColoristaNet with state-of-the-art
methods in terms of photorealism. When zooming in to check details of local image patches, no
obvious unpleasant artifacts in results produced by ColoristaNet.

Coherency. For video stylization, maintaining temporal coherency is vital in many real applications.
In figure 5, from left to right are stylization results at different time steps. There are three different
style images in large style variations for each video. A Gaussian smoothing function is exploited to
smooth the stylization vectors among frames with different style references. Stylized video frames
change smoothly without any flickers. Nor there is any structural inconsistency between stylized
video frames. This proves that ColoristaNet is able to produce temporally coherent videos even when
there are multiple style references. Please refer to our supplementary material for videos generated
by ColoristaNet (with single style reference and multiple style reference).
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(a) Content and Style (b) WCT² (c) PhotoNAS (d) Ours

Figure 6: Visual comparison with popular algorithms including WCT2 (Yoo et al., 2019), Pho-
toNAS (An et al., 2020) and our ColoristaNet. Images in the first column and their top right corners
are content images and their style counterparts. Each row contains stylization results rendered by
different styles. While ColoristaNet generates photorealistic results, other methods either damage
image structure or produce over-stylization.

4.3 QUANTITATIVE COMPARISON

Quantitative Metrics. Following PhotoNAS (An et al., 2020), we evaluate the stylization results
with SSIM, LPIPS (Zhang et al., 2018), content loss (Gatys et al., 2016) and Gram loss (Gatys et al.,
2016). SSIM, LPIPS (Zhang et al., 2018), content loss (Gatys et al., 2016) are employed to measure
the strcture similarity between two images, and gram loss is used to calculate the style distance of two
images. We randomly select 100 video/style image pairs to evaluate the performance of state-of-art
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algorithms. We use official codes and models provided by PhotoWCT (Li et al., 2018), WCT2 (Yoo
et al., 2019) and PhotoNAS (An et al., 2020) to generate stylization results. In Table 1, the proposed
ColoristaNet achieves better scores in SSIM, LPIPS, the content loss, and a comparable gram loss. It
means our ColoristaNet has a stronger ability in preserving structural details.

Table 1: Quantitative comparison with state-of-art photorealistic style transfer algorithms.Higher
SSIM scores mean test images are more similar to input contents with fine details. Lower LPIPS
scores mean higher perceptual similarities between stylization results and content images.

Method PhotoWCT(full) WCT2 PhotoNAS Ours

SSIM↑ 0.548 0.555 0.737 0.785
LPIPS↓ 0.464 0.391 0.326 0.223

Content Loss↓ 11.035 7.256 4.351 2.427
Gram Loss↓ 0.00025 0.00032 0.00028 0.00026

Table 2: User study results.
Method PhotoWCT(full) WCT2 PhotoNAS Ours

Photorealism 2.20 2.77 2.67 3.57
Stylization 2.03 2.70 2.17 3.40
Coherency 2.00 3.37 3.27 3.70

Overall quality 2.23 3.03 2.77 3.57

Table 3: Computing-time comparison.
Image Size PhotoWCT(full) WCT2 PhotoNAS Ours

600×360 0.408s 2.13s 0.124s 0.068s
854×480 0.495s 2.15s 0.175s 0.111s
1280×720 0.811s 4.267s 0.383s 0.225s

1920×1080 1.430s 4.362s 0.564s 0.482s

User Study. We recruited 30 testers who are not connected with this project to evaluate the quality
of the stylization results. The testers are asked to take the quality of details in the image and the
stylization effects into consideration during their evaluation. Images are rated on a scale of 1-5, where
higher scores stand for better stylization results. In total, we collected 900 responses (30 videos × 30
users) for each kind of method. As shown in Table 2, our approach perform best for photorealism,
stylization effects, temporal coherency and overall quality.

Inference Speed. To demonstrate the efficiency of our method, we compare the inference speed
of the different models. We use GeForce RTX 3090 GPU to test all state-of-the-art methods. We
randomly select 5 different videos, each of which contains 80 frames, and compute the average
running time of each method. Furthermore, we also test the speed of these algorithms in different
resolutions. As shown in Table 3, our ColoristaNet is much faster than other methods.

Time step 1             Time Step 2 Time Step 3Time Step 1        Time Step 2       Time step 3
（a）without RAFT （b）without ConvLSTM

ColoristaNet

Content & 
Style

without 
RAFT or 
ConvLSTM

Figure 7: Investigation of the effectiveness of RAFT and ConvLSTM in ColoristaNet.

4.4 ABLATION STUDY

Whether optical flow estimation and ConvLSTM are necessary? To check whether RAFT together
with ConvLSTM are necessary for video style transfer, we remove them to test the performance
of ColoristaNet. From Figure7, we can find that when we remove RAFT optical flow estimation,
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ColoristaNet will generate noticeable artifacts. When we remove all ConvLSTM units, some images
details disappeared. It shows both RAFT and ConvLSTM are necessary.

(a) Content and Style (b) AdaIN (c) DecoupledIN (f) DecoupledIN(d) Content and Style (e) AdaIN

Figure 8: Visual comparison of the results produced by AdaIN and DecoupledIN.

Whether DecoupledIN is important to get good results? To verify decoupledIN’s ability in
preserving subtle image details, we replace all decoupledIN modules in ColoristaNet with AdaIN.
As shown in Figure 8, AdaIN is powerful in generating synthesised images with good stylization
effects and keeping photorealism. However, if we zoom in to see more details, we find that AdaIN
will overwrite some image details and produce images that seem to be ”overexposed”.

(a) Content & Style (b) ColoristaNet without 
"conv3_1" and "conv4_1" 
branches

(c) ColoristaNet without 
the  "conv4_1" branch

(d) ColoristaNet

Figure 9: Results of ablation on the multi-scale feature fusion scheme of ColoristaNet. (d) is complete
multi-scale feature fusion scheme, (c) removes the feature transformation at the ”conv4 1” stage, (b)
further removes the feature transformation at the ”conv3 1” stage on the basis of (c).

Whether multi-scale features are useful in the decoder? We remove feature maps produced by
”conv4 1” and ”conv3 1” stages and compare their results with ColoristaNet in Figure 9. From left
to right, we list the stylization results produced by ColoristaNet with two, three, and four different
feature scales. These results demonstrate that multi-scale features can generate better stylization
results. More results in Appendix B.4 indicates more feature scales will lead to less artifacts.

5 CONCLUSIONS, LIMITATIONS AND FUTURE WORKS

In this paper, we propose ColoristaNet, a photorealistic video style transfer network, along with a
removal-and-restoration training pipeline. ColoristaNet learns color stylization in a self-supervised
manner and generates stylization results looking as if taken from cameras. Two important components
of ColoristaNet are decoupled instance normalization and ConvLSTM units that can implement
arbitrary style transfer while preserving salient image structure and temporal stylization coherency.
Experiments show that results of ColoristaNet have strong visual quality and high artistic value.

Limitation. However, since ColoristaNet makes a balance between stylization results and photore-
alism, it doesn’t completely embed styles of reference images into input videos like that of other
methods. According to our experiments, in many scenarios, enforcing stylization results to have
the exactly same style of references will make images looks like paintings not real photos. Besides,
we exploit RAFT to compute optical flow and many other modules with heavy computational cost
to conduct style transfer. This makes ColoristaNet unable to run in realtime on a single NVIDIA
GeForce RTX 3090 GPU, which deserves thorough analysis in the future. In the future, we will try to
work on this problem to alleviate these limitations. Our techniques can be used in many social media
platforms and we haven’t found obvious negative societal impact of ColoristaNet.
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Appendix

A IMPLEMENTATION

A.1 SETTINGS

Dataset. ColoristaNet is trained by videos collected from HMDB (Kuehne et al., 2011) and Youtube
VOS (Xu et al., 2018) as content inputs and images collected from Internet as style images. We have
around 6000 videos and around 24000 images in our training set. During test, we download videos
from Youtube (YouTube), Videvo (VideoNet) and other websites, and select style images that can
generate pleasant stylization results.

Evaluation. To check the color stylization ability of ColoristaNet, we conduct style transfer on
various high-definition videos with different style images as shown in Figure 5. We compare with
photorealistic image style transfer algorithms, such as WCT2 (Yoo et al., 2019), PhotoNAS (An
et al., 2020). We directly conduct style transfer frame by frame using their official codes. We can’t
compare with photorealistic video style transfer algorithms MVStylizer (Li et al., 2020) and Xia et
al. (Xia et al., 2021) and other methods, since their source codes are not released. We conduct both
quantitative comparison and a user study to evaluate different algorithms.

Training. All experiments are implemented with PyTorch (Paszke et al., 2019), and run on two
NVIDIA GeForce RTX 3090 GPUs with 24 GB RAM. Parameters of VGG-19 (Simonyan & Zis-
serman, 2014) and RAFT (Teed & Deng, 2020) are initialized with pretrained weights and are fixed
during training. We use the SGD optimizer with momentum 0.9 and basic learning rate 1e-5 to
optimize parameters of ColoristaNet in 80 epochs. We schedule our learning rate a bit different from
common practise. The learning rate at the first epoch is set to 0.01, and then is decreased to 1e-5 in
the next five epochs. After that we apply cosine decay for the rest epochs. Images are cropped and
resized into the resolution 128× 128 during training.
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Figure 10: Inference with style transfer network. For a video clip, each frame is paired with a style
reference to pass VGG-19 feature extractor, decoupled instance normalization, ConvLSTM and
the decoder to generate the final output. There may be multiple style references at the same time.
ColoristaNet can conduct arbitrary style on videos of any length according to users’ preference.

A.2 CONFIGURATIONS OF STYLE TRANSFER NETWORK
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Figure 11: Detailed illustration of style transfer network. There are five shared blocks in a style trans-
fer network: (b) Upsample block, (c) Downsample Block, (d) Convolution Block, (e) Concatenation
Block, and (f) Output Block. Structures of style transfer networks in style removal and restoration
are slightly different. In style removal network, there are no ConvLSTM (Shi et al., 2015b) units.

Figure 11 gives detailed architectures of ColoristaNet. The style transfer network has a U-net (Ron-
neberger et al., 2015) style encoder-decoder structure. During training, networks are shared by
different time steps. The number of convolution filters in each block is denoted with c. ”ConvBlock,
64” stands for the filter number in a convolution block is 64 and the kernel size of convolutional layers
is 3× 3. Other blocks have the similar notations. The style removal network and style restoration
network have a similar architecture, except that there are no ConvLSTM (Shi et al., 2015b) units
across style removal networks.

B COLORISTANET: DETAILS, ADDITIONS AND ABLATIONS

To generate photorealistic stylization results which look like taken from cameras, ColoristaNet
exploits a set of training strategies and micro designs to avoid structural distortions and painterly
artifacts, including self-supervised learning, decoupled instance normalization, flow estimation
network (RAFT) (Teed & Deng, 2020), ConvLSTM (Shi et al., 2015a), multi-scale feature learning
and etc. Here, we give more details, additional experiments and ablations on the designs and choices
of these different modules.

B.1 SELF-SUPERVISED LEARNING IN COLORISTANET

Self-supervised learning obtains supervisory signals from unlabeled data itself and thus leverages
underlying structure and common representation in data, which has achieved great success in natural
language processing (Devlin et al., 2018; Brown et al., 2020) and computer vision (Chen et al., 2020a;
Caron et al., 2021; He et al., 2022). In unpaired image-to-image translation, CycleGAN (Zhu et al.,
2017a) introduces consecutive image-to-image translations in cycles to ensure content consistencies
in images with the help of generative adversarial networks (Goodfellow et al., 2014). In this paper,
we exploit the self-supervised learning strategy for photorealistic style transfer. Our motivation here
is that if the style of an image can be replaced without hurting subtle structures arbitrarily, its style
can be recovered by using itself as the style reference. Such an assumption holds in photorealistic
style transfer because the underlying image structure remains unchanged during color style transfer.
So in our training pipeline, we apply two ColoristaNets that are responsible for style removal and
style restoration respectively. When styles of images are removed, the style transfer or restoration
task becomes a fully supervised one. As shown in Figure 12, such a strategy has been proven to be
the key of the success of ColorsitaNet.
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(a) Content and Style (b) Without self-supervision (c) Style removal net (d) Style restoration net

Figure 12: Stylization results comparison of different style transfer networks: (a) Content and style
images, (b) A single ColoristaNet simply trained with content loss (without the removal-restoration
pipeline), (c) The style removal ColoristaNet in the proposed training pipeline, (d) The style removal
ColoristaNet in the proposed training pipeline.

Style Removal. During style removal, style transfer network overwrites styles of images with
given style references through decoupled instance normalization at different feature resolutions.
Conducting style transfer without resulting any distortions or artifacts is the most important principle
in style removal. We implement style removal with decoupled instance normalization and give
detailed introduction and analysis in Appendix B.2. Meanwhile, to ensure image structures to be full
preserved, we simply exploit the content loss (Gatys et al., 2016) to enforce the structure consistency.
As is known that style loss (Gatys et al., 2016) can conduct mixed transfers of both texture and color,
it will result in painterly distortions of image structures. Figure 12 visualizes stylization results of
the style removal network. It can be found that image structures of content images are preserved and
original image styles are partly removed. Its stylization effects are unsatisfactory and look just like
paintings.

Style Restoration. Following the assumption described above, the style restoration network just
takes the style removal result in as the content input and use the original image as the style reference
to conduct style transfer. Thus, the stylization results can be expected to be the same with the original
content image. In this way, the content image, the style reference and the stylization result can be
defined clearly. We use the style transfer network in the same architecture with that in the style
removal part to conduct supervised style transfer. Again, no style loss is exploited to enforce good
stylization. Surprisingly, we can find that such a strategy can help to generate good stylization results
without obvious distortions or artifacts. We attribute this to that the linear feature transformations
in DecoupledIN and the self-supervised learning framework without style loss. Besides, we find
that training the style removal and restoration networks jointly will make the training much more
stable and converge faster. To validate the effectiveness of the two stage style transfer framework, we
conduct an ablation study to check whether the self-supervised learning strategy is necessary. We
train ColoristaNet with a randomly selected style reference to perform parameter learning without
self-supervision. Figure 12 shows the stylization results produced by ColoristaNet without self-
supervision, the style removal and restoration ColoristaNets respectively. It can be found that without
the self-supervised learning strategy, ColoristaNet can not transfer the style of a reference image to
the target successfully.
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(a) Content and Style (b) AdaIN (c) DecoupledIN

Figure 13: Visual comparison of the results produced by AdaIN and DecoupledIN.

B.2 DECOUPLE INSTANCE NORMALIZATION

Transferring styles of images arbitrarily through feature transformations has been widely accepted
in style transfer (Huang & Belongie, 2017; Li et al., 2017c; 2018; Yoo et al., 2019). In (Huang &
Belongie, 2017), Huang et al. proposed adaptive instance normalization (AdaIN) to aligns the mean
and variance of the content features with those of the style features to achieve arbitrarily artistic style
transfer without iterative optimization process. Li et al. (Li et al., 2017c) conducted universal style
transfer through the whitening and coloring transforms (WCT) to match feature covariance of the
content image to a given style image. PhotoWCT (Li et al., 2018) brought the idea of conducting
style transfer through feature transformations from WCT (Li et al., 2017c) to perform photorealistic
style transfer. However, the feature transformation in WCT is nonlinear, and thus lead to distortions
in image structures obviously. PhotoWCT (Li et al., 2018) exploits a photorealistic smoothing
term to ensure local consistency in pixel intensities. But in many cases, there are obvious artifacts
produced by WCT that can not be removed by the smoothing term. Besides, the smoothing term
also make images blurry and lost some subtle local contrast. Yoo et al. (Yoo et al., 2019) proposed a
wavelet corrected transfer based on whitening and coloring transforms (WCT2) to avoid introducing
additional masks and unfavorable blurry artifacts. Although these methods are powerful and can
conduct arbitrary style transfer, they can’t achieve photorealistic stylization results. According to
our analysis, the feature whitening and coloring transforms in WCT (Li et al., 2017c) can match the
feature correlation of content images to that of style references exactly, but it will change the local
feature contrast which maintains image structures. AdaIN has very nice properties that won’t damage
local feature contrast but it can not match the feature statistics of style references compactly and thus
lead to inferior stylization effects.

In this paper, we aim to achieve photorealistic stylization while still make synthesized images look
like taken from cameras. As shown in Figure 13, AdaIN is powerful to generate synthesized images
with good stylization effects and keeping photorealistic. However, if we zoom in to see more
details, we find that AdaIN will overwrite some image details and produce images that seem to
be ”overexposed”. We attribute this to that AdaIN aligns feature statistics of content images with
their style references in a shared feature space, which may weaken the local structural details. To
alleviate this issue and achieve better stylization results, the decoupled instance normalization aims
to decompose the feature transformation into a style whitening step and a restylization step. Thus, we
need to insert a convolutional layer after the style whitening operation. The motivation of designing
the 3x3 convolutional layer with 2c filters is to expand the feature channels to recover the missing
information during the whitening step. Then in the subsequent stylization step, we can conduct
style transfer in a higher dimension to benefit from the rich information provided by more feature
channels. At last, we fuse the transformation with a simple convolution operation. From Figure 13
and Figure 16, we can find that DecoupledIN can preserve more image details and achieve better
stylization results.

Multiple Style Whitening in DecoupledIN. The structure of DecoupledIN modules with more
whitening operations are demonstrated in figure 14 and figure 15. From Figure 16, we can find
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Figure 14: Visualisation of the module structure of DecoupledIN with two style whitening.
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Figure 15: Visualisation of the module structure of DecoupledIN with three style whitening.

(a) Content and Style (b) AdaIN (c) DecoupledIN (d) Whitening x 2 (e) Whitening x 3

Figure 16: Visual comparison of AdaIN and DecoupledIN with different style whitening strategies.
From left to right: (a)content and style images, (b) AdaIN, (c) DecoupledIN with one style whitening,
(d) DecoupledIN with two style whitening, and (e) DecoupledIN with three style whitening. The
stylization effects is enhanced from left to right gradually.
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that althrough DecoupledIN gets better stylization effects compared with AdaIN, the style of the
original content input is remained and combined with the style reference to generate mixed stylization
results. To remove the original image style more completely, we conduct multiple style whitening in
DecoupledIN and visulaize the results in Figure 16. We conduct the style whitening in DecoupledIN
by 1, 2 and 3 times respectively. When looking at these image carefully, we can find that more style
whitening will lead to better stylization effects. Since the influence of different feature transformations
is hard to be distinguished, please zoom in to check the color variations carefully.

B.3 FLOW ESTIMATION AND CONVLSTM FOR TEMPORAL CONSISTENCY MAINTENANCE

Optical flow estimation methods (Dosovitskiy et al., 2015; Ilg et al., 2016; Teed & Deng, 2020) and
ConvLSTM (Shi et al., 2015a) have been exploited in many video style transfer literature (Chen et al.,
2017; 2020b; Anderson et al., 2016; Gao et al., 2020) to ensure temporal coherency. In ColoristaNet,
we exploit RAFT (Teed & Deng, 2020) to track pixels across different frames and use ConvLSTM
to pass the contextual information to adjacent frames. With RAFT and ConvLSTM, we implement
temporal consistent feature transformations and thus can conduct photorealistic video style transfer
with high temporal coherency. While as it has been shown in the supplementary videos, simply
transferring styles of each frame in videos with image-based photorealistic style transfer algorithms
can still generate stylized videos in good quality. It’s because that consecutive frames in videos
are temporally coherent and we use a Gaussian smoothing function to smooth the style vectors
during switches between different style references. However, if we zoom in to check the details of
other state-of-the-art methods, such as PhotoWCT (Li et al., 2018), WCT2 (Yoo et al., 2019) and
PhotoNAS (An et al., 2020), we can find that there are many structural distortions and flickering
artifacts. Since these previous methods can’t ensure the photorealism in most of their stylization
results, the temporal inconsistency problem are not in the first place to be solved.

Without RAFT. To check whether RAFT can maintain temporal consistency during style transfer,
we conduct ablation study by removing RAFT from ColoristaNet and still use ConvLSTM to fuse
information across different frames. Figure 17 shows that without RAFT, ColoristaNet generates
many stylization results with obvious artifacts. It’s because without the guidance of optical flow, the
information propagation between adjacent frames becomes incorrect. In fact, in some cases, RAFT
failed to generate accurate correspondences between image pixels and thus lead to bad stylization
effects.

Without ConvLSTM. To check whether ConvLSTM can incorporate contextual information among
adjacent frames, we remove the ConvLSTM units to test the performance of ColoristaNet. Since
ConvLSTM aims to propagate information across different frames, if there is no ConvLSTM, RAFT
should be removed too. That means we just conduct video style transfer with image-based algorithms
as that of PhotoWCT (Li et al., 2018), WCT2 (Yoo et al., 2019) and PhotoNAS (An et al., 2020).
Figure 18 shows two different kinds of scenarios that ConvLSTM is important for ColoristaNet. In
the first case, if there is no ConvLSTM module, there will have some flickering artifacts. And in the
second case, ColoristaNet with ConvLSTM can ensure style consistency when there are multiple
styles to be transferred.

B.4 EMPLOYMENT OF MULTI-SCALE FEATURES

Since deep convolutional neural networks have multi-scale hierarchical structures and can encode
images into features with different semantic levels, it’s popular to conduct style transfer with the
benefits of multi-scale features (Li et al., 2018; Yoo et al., 2019). PhotoWCT (Li et al., 2018)
passed the lost spatial information to the decoder in a hierarchical manner to facilitate reconstructing
fine details for photorealistic image synthesis. WCT2 (Yoo et al., 2019) inherited the U-net style
structures from PhotoWCT and achieved impressive results. PhotoNAS (An et al., 2020) searched
the best architecture for photorealistic style transfer and found that the multi-level stylization strategy
is important for style transfer in high quality. We adopt the multi-scale architecture as previous
methods to conduct style transfer. We conduct ablations on the multi-scale feature fusion scheme
of ColoristaNet. In the style transfer network, there are feature transformations at four different
resolutions. Denote the feature transformations in ColoristaNet from lower resolutions to higher
resolutions with ”conv1 1”, ”conv2 1”, ”conv3 1” and ”conv4 1” respectively. We remove the
feature transformation at the ”conv4 1” stage at first, and remove other feature transformations
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Figure 17: Investigation of the effectiveness of flow estimation network in ColoristaNet. We test
ColoristaNet in three different scenarios to see that without flow estimation network (RAFT (Teed &
Deng, 2020)), ColoristaNet will generate many artifacts.
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Figure 18: Investigation of the effectiveness of ConvLSTM in ColoristaNet.
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(a) Content & Style (b) ColoristaNet without 
"conv3_1" and "conv4_1" 
branches

(c) ColoristaNet without 
the  "conv4_1" branch

(d) ColoristaNet

Figure 19: Results of ablation on the multi-scale feature fusion scheme of ColoristaNet. (d) is
complete multi-scale feature fusion scheme, (c) removes the feature transformation at the ”conv4 1”
stage, (b) further removes the feature transformation at the ”conv3 1” stage on the basis of (c).

consecutively to check the stylization results. As shown In Figure 19, from left to right, we list the
stylization results produced by ColoristaNet with two, three, and four different feature scales. It can
be found that with more different scales, we get better stylization results with less artifacts.

C EXPERIMENTAL RESULTS WITH FURTHER ANALYSIS

C.1 COMPARISON WITH STATE-OF-THE-ART METHODS

Previous state-of-the-art photorealistic style transfer algorithms, such as MVStylizer (Li et al., 2020)
and Xia’s video style transfer (Xia et al., 2021), don’t make their codes publicly available, so we
can just compare with image-based photorealistic style transfer algorithms. We compare with four
state-of-the-art algorithms including PhotoWCT (Li et al., 2018), WCT2 (Yoo et al., 2019) and
PhotoNAS (An et al., 2020). We simply conduct style transfer on image frames independently and put
the stylization results together to generate stylized videos. To avoid drastic style change when there
are multiple style references, a Gaussian smoothing function is exploited to smooth the stylization
vectors among frames with different style references. The Gaussian kernel size is 20. That means for
every 20 video frames, their corresponding stylization vectors are smoothed. Figure 20, Figure 21,
Figure 27, Figure 28 and Figure 29 give the visual comparison with state-of-the-art algorithms. All
previous state-of-the-art algorithms will produce observable blur, structural distortions and flickering
artifacts. While ColoristaNet generates videos that look like taken from cameras without any blur,
distortions and artifacts. Although ColoristaNet does not transfer the colors of style references to the
targets completely, the stylization results are still very competitive.
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(a) Content and Style (b) WCT² (c) PhotoNAS (d) Ours

Figure 20: Visual comparison with popular algorithms including WCT2 (Yoo et al., 2019), Pho-
toWCT (Li et al., 2018), PhotoNAS (An et al., 2020) and our ColoristaNet.
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Figure 21: Additional Visual comparison with popular algorithms including WCT2 (Yoo et al., 2019),
PhotoWCT (Li et al., 2018), PhotoNAS (An et al., 2020) and our ColoristaNet.

Contradictions between Stylization and Photorealism. Separating styles of images from their
contents is very difficult since there is no concrete definition of the content and style of an image. In
Gatys’ paper (Gatys et al., 2016), they stated features in higher layer of deep convolutional neural
networks capture the high-levl contents interms of objects and their arrangements and can be thought
as the content representation. However, as stated in Lapstyle (Li et al., 2017a), the low-level features
of the content image is substituted by that of style references and thus will generate unpleasing
artifacts. Photorealistic style transfer is some kind of color transfer that need to get the color styles
of references image while keeps image content unchanged. In fact, it’s hard to achieve a balance
between stylization and photorealism. If one want to get a stylization result that matches the style of
another image exactly, the color style and the local textures need to be modified. Modifications in
local textures will lead to painterly artifacts easily as shown in Figure 26.

C.2 COMPUTATIONAL COST ANALYSIS

In Table 4, we list the computational cost of different sections of ColoristaNet. There are three
main components in ColoristaNet, including VGG-19 feature backbone (Simonyan & Zisserman,
2014), RAFT (Teed & Deng, 2020) and the decoder. There are 3.5M, 1M and 72.2M parameters
in them respectively. The VGG-19 feature backbone has only 3.5M parameters because we only
use feature maps at the first four convolutional stages. There are relative less parameters in these
convolutional layers. RAFT has 1M parameters and the inference speed is very slow compared with
other components. The decoder has 72.2M parameters because there four sets of ConvLSTM units,
DecoupledIN modules and many other convolutional operations. It can be found that RAFT takes the
most time in ColorsitaNet. But when there is no RAFT, ColoristaNet will generate obvious artifacts
in many cases as shown in Figure 17. So how to replace RAFT with some other faster methods that
can track pixels across different frames is an important problem for future study.

C.3 STYLIZATION EFFECTS CONTROL

ColoristaNet achieves a balance between good stylization effects and photorealism. We try to
improve and control the stylization effects by incorporating a style loss during training, adding a
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Modules Parameters (M) Inference Speed (ms)
VGG-19 backbone 3.5 5

RAFT 1.0 209
the decoder 72.2 14

Table 4: Comparison of efficiency between the VGG-19 feature backbone, RAFT and the decoder.

stylization factor in DecoupledIN, and exploiting several DecoupledIN consecutively. We visualize
the stylization results in Figure 22 and give some analysis in the following subsections.

Incorporation of the Style Loss. We add a stylization loss in both style removal and restoration
networks. We have try different weights for the style loss, but these training don’t converge.

Stylization Factor. Since DecoupledIN can conduct style transfer by matching feature statistics
of content images to that of style references, We add a stylization factor λ ∈ [0, 1] in the matching
process as follows

Whitening : f ′
Ct,i =

fCt,i − µ (fCt,i)

σ (fCt,i)
,

Transform : f ′′
Ct,i, f

′′
St,i = Conv

(
f ′
Ct,i

)
,Conv (fSt,i) ,

Reweighting : Varnew,Meannew = λσ
(
f ′′
St,i

)
+ (1− λ)σ

(
f ′′
Ct,i

)
, λµ

(
f ′′
St,i

)
+ (1− λ)µ

(
f ′′
Ct,i

)
,

Stylization : gt,i = Varnew

f ′′
Ct,i

− µ
(
f ′′
Ct,i

)
σ
(
f ′′
Ct,i

)
+Meannew,

(3)
where µ and σ calculate the mean and standard deviation for each feature channel respectively, and
Varnew and Meannew are the reweighted mean and standard deviation vectors. During the training,
we add the stylization factor in the style restoration network, and get the λ value randomly using
the sampling strategy based on a uniform distribution. During the inference, we set λ from 0.2 to
1.0. Figure 22 visualizes the stylization results. It can be found that ColoristaNet can control the
stylization effects explicitly.

Multiple Decoupled Instance Normalization. In some cases, the style of the original content
input is still contained in stylization results produced by ColoristaNet. Here we aim to get stronger
stylization results by matching the style of reference images much more closely through adding more
DecoupledIN modules consecutively. Figure 23 indicates that when we apply more DecoupledIN
modules consecutively in ColoristaNet, the stylization effects will become stronger.

D FAILURE CASES AND FURTHER DISCUSSIONS

To examine the robustness of ColoristaNet, we conduct experiments on a plenty of videos to find
the failure cases of ColoristaNet. After huge amount of experiments, we find some failure cases and
summarize them into three categories, including (1) temporal inconsistency in small regions; (2)
under-stylization; (3) over-stylization (caused by extra whitening steps). As in figure 24, we can see
that in the original frames, the background color in the red boxes remain unchanged, while in the
stylized frames, the coloring is shifting between bright green and dark green. Such inconsistency
is caused by properties of DecoupledIN. As the foreground object moves dramatically, the mean
and standard deviation of content feature channels will change, which will influence stylizations
of both the moving object and the remaining stationary pixels. As such inconsistency can be fixed
by ConvLSTM combined with flow estimation in most cases, they become identifiable when flow
estimation fails. Among several hundreds of test videos we have examined, we only spotted subtle
temporal inconsistencies like Figure 24. As discussed in Appendix B.3, we attribute this to that
the input content videos are temporally coherent so in most cases the temporal inconsistency is not
obvious. Compared with state-of-the-art methods, our methods sometimes suffer under-stylization
(in Figure 25). This is expected since we prioritize photorealism. In the future, we aim to enhance the
stylization performance of our model while still maintaining a high level of photorealism. When we
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(a) Content and 
Style

(b) λ = 0.2 (c) λ = 0.4 (d) λ = 0.6 (e) λ = 0.8 (f) λ = 1.0

Figure 22: Illustration of the gradual change in stylisation effect when different style control factors
λ are taken. ColoristaNet can control the stylization effect through the stylization factor explicitly.
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(a) Content and Style (b) AdaIN (c) DecoupledIN (d) DecoupledIN x 2 (e) DecoupledIN 
x 3

Figure 23: Visualising the results of using AdaIN, decoupledIN, two consecutive decoupledIN and
three consecutive decoupledIN.

(a) Frame 32 (b) Frame 40 (d) Frame 132(c) Frame 128

Figure 24: Illustration of failure cases produced by ColoristaNet: Temporal Inconsistency.

(a) Content and Style (b) WCT² (c) PhotoNAS (d) Ours

Figure 25: Illustration of failure cases produced by ColoristaNet: Under-stylization.
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(a) Content and Style (b) Normalize once (c) Normalize twice (d) Normalize three times

Figure 26: Illustration of failure cases produced by ColoristaNet: Over-stylization.

apply multiple whitening steps in our DecoupledIN module, it is possible that too much information
is erased, which makes the stylized video look misty (in Figure 26). This is a trade off for stronger
stylization effects.

27



Under review as a conference paper at ICLR 2023

(a) Content and Style (b) WCT² (c) PhotoNAS (d) Ours

Figure 27: Additional comparison between ColoristaNet and state-of-the-art methods.
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(a) Content and Style (b) WCT² (c) PhotoNAS (d) Ours

Figure 28: Additional comparison between ColoristaNet and state-of-the-art methods.
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(a) Content and Style (b) WCT² (c) PhotoNAS (d) Ours

Figure 29: Additional comparison between ColoristaNet and state-of-the-art methods.
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