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Abstract

Model inversion attacks (MIAs) aim to reconstruct class-representative samples
from trained models. Recent generative MIAs utilize generative adversarial net-
works to learn image priors that guide the inversion process, yielding reconstruc-
tions with high visual quality and strong fidelity to the private training data. To
explore the reason behind their effectiveness, we begin by examining the gradients
of inversion loss w.r.t. synthetic inputs, and find that these gradients are surprisingly
noisy. Further analysis reveals that generative inversion implicitly denoises these
gradients by projecting them onto the tangent space of the generator manifold,
thereby filtering out off-manifold components while preserving informative direc-
tions aligned with the manifold. Our empirical measurements show that, in models
trained with standard supervision, loss gradients often exhibit large angular devia-
tions from the generator manifold, indicating poor alignment with class-relevant
directions. This observation motivates our central hypothesis: models become more
vulnerable to MIAs when their loss gradients align more closely with the generator
manifold. We validate this hypothesis by designing a novel training objective that
explicitly promotes such alignment. Building on this insight, we further introduce
a training-free approach to enhance gradient-manifold alignment during inversion,
leading to consistent improvements over state-of-the-art generative MIAs. The
code is publicly available at https://github.com/tmlr-group/AlignMI.

1 Introduction

Machine learning (ML) models are increasingly deployed in high-stakes domains such as fi-
nance [Rundo et al., 2019], healthcare [Richens et al., 2020], and biometrics [Zhong et al., 2024].
Trained on sensitive data, these models are attractive targets for adversarial threats [Fredrikson et al.,
2014, Choquette-Choo et al., 2021, Jiang et al., 2023, Zhang et al., 2023]. One emerging threat is
the model inversion attack (MIA), which exploits model outputs to infer class-sensitive attributes or
reconstruct representative samples, thereby posing serious risks to user privacy and security.

Early work by Fredrikson et al. [2015] formulated MIAs as an input-space optimization problem,
using gradient descent to find inputs that maximize the prediction score of a target class. This method
effectively reconstructed low-resolution grayscale faces from shallow models. However, this approach
performs poorly on deep neural networks (DNNs) trained on high-dimensional data (e.g., RGB facial
images). Direct optimization in the input space is often ill-posed, because natural images are not
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(a) Framework overview (b) Loss gradient visualization

Figure 1: Generative MIA framework and loss gradient visualization. (a) Generative model
inversion extracts private information via inversion-time classification loss gradients ∇xL(ŷ, y)
from model fθ. (b) Loss gradient visualizations under PPA method in the high-resolution setting,
comparing cross-entropy (LCE) and Poincaré (LPoincaré) losses. In both cases, the loss gradients appear
highly noisy. Additional low-resolution visualizations are provided in Appendix E.4.

uniformly distributed across the input domain, but are instead concentrated on a low-dimensional
manifold embedded in a high-dimensional ambient space [Fefferman et al., 2016]. Consequently,
reconstructions often fall off the manifold and produce semantically irrelevant features.

To address this challenge, Zhang et al. [2020] introduced the generative model inversion framework,
which leverages generative adversarial networks (GANs) [Goodfellow et al., 2014, Radford et al.,
2016] to learn an image prior from public auxiliary datasets, such as web-scraped facial images. The
learned prior constrains the inversion process to the generator’s latent space, significantly improving
the visual quality and semantic relevance of reconstructed samples. This paradigm has spurred
notable progress in the MIA field [Wang et al., 2021a, Struppek et al., 2022, Nguyen et al., 2023b,
Peng et al., 2024a], enabling recovery of samples that closely resemble the private training data.

Despite the empirical success of generative MIAs, it remains insufficiently understood how private
information encoded in the target model is exploited during the inversion process. To bridge this
research gap, we adopt a gradient-based perspective, and begin by closely examining the gradients of
the inversion-time classification loss w.r.t. the synthetic inputs (hereafter referred to as loss gradients)
during the inversion optimization process. Surprisingly, we observe that these gradients are highly
noisy (see Fig. 1(b)). Based on the manifold hypothesis and a geometric analysis, we show that the
generative MIA approach implicitly performs gradient denoising by projecting the loss gradients onto
the tangent space of the generator manifold. This projection preserves informative components that
lie along the manifold while filtering out noisy directions that deviate from it (see Fig. 2).

To assess how well the loss gradients capture semantically meaningful directions, we measure
their alignment with the tangent space of the generator manifold [Bordt et al., 2023, Srinivas et al.,
2023]. Specifically, we quantify this alignment by computing the cosine of the angle between the
gradient and its projection onto the manifold. Empirical results show that models trained under
standard classification supervision (i.e., vanilla models) exhibit consistently low alignment (see
Fig. 3), suggesting that their loss gradients often deviate from the generator manifold and therefore
encode limited class-relevant information. Motivated by this observation, as well as the intuition that
stronger alignment with the generator manifold indicates more informative gradients, we propose the
following hypothesis: Models tend to be more vulnerable to MIAs when their loss gradients are more
aligned with the tangent space of the generator manifold.

To validate this hypothesis, we design a training objective that promotes alignment between loss
gradients and the generator manifold during the inversion process. Although this alignment is not
directly measurable during training, a key observation bridges the gap: by the chain rule, loss gradients
can be expressed as linear combinations of input gradients, i.e., the gradients of the model’s outputs
w.r.t. its inputs. This insight allows us to shift our focus: during training, we can instead encourage
alignment between input gradients and the tangent space of the data manifold. To estimate this tangent
space, we leverage a pre-trained variational autoencoder (VAE) from Stable Diffusion [Kingma and
Welling, 2014, Rombach et al., 2022], which approximates the natural image manifold. Based on this
estimate, we propose a novel training objective that augments the standard classification loss with an
auxiliary term that promotes input gradients to align with the estimated tangent space.
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Building on the empirical validation of our hypothesis, we further propose AlignMI, a training-free
approach that enhances gradient-manifold alignment during the model inversion process. The key
idea is to sample multiple variants of a synthetic input within a local neighborhood and average their
corresponding loss gradients [Smilkov et al., 2017]. This operation attenuates noisy, off-manifold
components while amplifying consistent directions aligned with the generator manifold, resulting in
a more informative and semantically meaningful gradient signal.

In summary, our contributions are: (1) We present the first geometric analysis of generative model
inversion, revealing that it fundamentally operates as an implicit gradient denoising mechanism via
projection onto the generator manifold (Sec. 3). (2) This perspective leads us to hypothesize, and
empirically validate that stronger gradient-manifold alignment increases a model’s vulnerability to
MIAs, revealing a previously underexplored dimension of model inversion vulnerability (Sec. 4). (3)
Based on this insight, we propose AlignMI, a training-free approach to enhance gradient-manifold
alignment during inversion. We instantiate AlignMI with two concrete techniques: perturbation-
averaged alignment (PAA) and transformation-averaged alignment (TAA) (Sec. 5), both of which
consistently improve the performance of state-of-the-art (SOTA) generative MIAs (Sec. 6).

2 Background

In this section, we formalize the problem setup of generative MIAs and introduce the necessary
geometric concepts and notations. A detailed discussion of related work is provided in Appendix A.

Problem Setup of Generative MIAs. Let the ambient space be X = Rd, and the private label
space be Ypri = {1, . . . , C}. The target model f(·;θ) : X → RC is a classifier that outputs
class logits, trained on a private dataset Dpri sampled from distribution ppri(x, y). We presume the
manifold hypothesis: the private data distribution ppri is supported on a low-dimensional submanifold
Mpri ⊂ Rd with intrinsic dimension k ≪ d. In MIAs, the adversary aims to synthesize inputs that
reveal class-sensitive features of the private training data for a target class y ∈ Ypri. The adversary is
assumed to have white-box access to the model f , as well as general knowledge of the data domain
(e.g., the data consists of facial images), but no direct access to the private dataset Dpri.

MIAs are typically framed as an optimization problem: given a target class y, the adversary seeks for
an input x ∈ X that maximizes the likelihood of y under model f [Fredrikson et al., 2015]. However,
when f is a DNN trained on high-dimensional data, direct optimization in the ambient space X often
results in unrealistic samples that lack semantic relevance [Szegedy et al., 2014], due to the ill-posed
nature of the problem. To address this challenge, Zhang et al. [2020] proposed a two-stage generative
model inversion framework, which we outline below.

In the first stage, the adversary collects a public auxiliary dataset Daux drawn from a distribution
paux, with a label set disjoint from that of the private training dataset (i.e., Yaux ∩ Ypri = ∅). The
distribution paux is assumed to be supported on a submanifoldMaux that approximates the private
data manifoldMpri, even though ppri and paux may differ. A GAN is then trained on Daux to estimate
paux, consisting of a generator G : Z → X that maps latent variables z ∈ Z = Rk to samples
x ∈Maux, and a discriminator D : X → R that distinguishes real from generated data. In the second
stage, the adversary performs attack optimization in the latent space Z of the generator G, effectively
restricting the search space to the manifoldMaux, which can be formulated as:

z∗ = argmin
z

Linv(z; y, f,G,D) = Lcls(z; y, f,G) + λLprior(z; G,D). (1)

Here, Lcls denotes the inversion-time classification loss, e.g., the logit loss −fy(G(z)) [Nguyen
et al., 2023b], which drives the optimization toward a synthetic sample x∗ = G(z∗) that maximally
activates class y. The term Lprior regularizes the latent code z, promoting plausible generations. The
hyperparameter λ controls the trade-off between the two loss terms.

Geometric Preliminaries and Notation. LetM⊂ Rd be a k-dimensional differentiable manifold.
At any point x ∈M, the tangent space TxM is a k-dimensional linear subspace of Rd that locally
approximatesM, capturing the directions of infinitesimal motion that remain on the manifold. To
formalize projections onto this space, we denote by Px ∈ Rd×d the projection matrix that projects
vectors in Rd onto TxM. When Px is symmetric and idempotent, it defines an orthogonal projection.

Now consider a differentiable generator G : Z → X . For any latent vector z ∈ Z , the Jacobian
matrix JG(z) =

∂G
∂z ∈ Rd×k characterizes how infinitesimal perturbations in the latent space map to
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changes in data space. If JG(z) has full column rank k, then the image of G forms a k-dimensional
differentiable manifoldM ⊂ Rd [Lee, 2003]. Moreover, the column span (i.e., range) of JG(z)
equals the tangent space at the corresponding point x = G(z):

TxM = span
{
∂G

∂z1
, . . . ,

∂G

∂zk

}
=: Range(JG(z)). (2)

The Jacobian JG plays a key role in our analysis of how loss gradients interact with the generator
manifold in the context of generative model inversion, as detailed in the next section.

3 A Geometric Lens for Understanding Generative MIAs

Figure 2: Geometric interpretation of
loss gradients projection onto the gener-
ator manifold. The generative model in-
version process implicitly denoises the loss
gradients ∇xL by projecting them onto
the tangent space TxM of the generator
manifoldM. The bottom panel illustrates
the reconstructed image, its inversion-time
loss gradients, the manifold-projected gra-
dients, and the residual component.

In this section, we analyze how generative model in-
version exploits private information encoded in a tar-
get model f to reconstruct input samples. Central to
this process are the the inversion-time loss gradients
∇xLcls(f(x), y) (with x = G(z)), which are backprop-
agated to optimize the latent variable z (see Fig. 1(a)).
Empirically, we find that these gradients are often highly
noisy (see Figs. 1(b) and 2), with many components
misaligned with the intrinsic structure of the genera-
tor manifold. This observation may explain why direct
optimization in the ambient space frequently leads to se-
mantically meaningless samples [Fredrikson et al., 2015,
Zhang et al., 2020, Wang et al., 2021a]. To better un-
derstand how the generator G processes this gradient
signal, we analyze the transformation of the gradient via
the Jacobian JG. By the chain rule, the loss gradients
w.r.t. the latent variable z can be expressed as:

∇zLcls = (JG)
⊤∇xLcls ∈ Rk

=

[〈
∂G

∂z1
,∇xLcls

〉
, . . . ,

〈
∂G

∂zk
,∇xLcls

〉]⊤
.

Thus, ∇zLcls can be interpreted as expressing the am-
bient loss gradients ∇xLcls in the basis formed by the
columns of the generator’s Jacobian (i.e., the tangent
basis at x). In other words, each component of the latent
gradient represents the directional derivative of the loss
along one of the generator’s valid, manifold-constrained
directions. This “pullback” maps the high-dimensional
loss gradient into the latent space, yielding a structured signal aligned with the generator manifold.
To understand how these latent gradients influence updates in data space, we now analyze their
pushforward by applying a first-order Taylor approximation:

G(z− η∇zLcls)−G(z) ≈ −ηJG∇zLcls.

Here, η denotes the step size for updating z. The term JG∇zLcls represents a linear combination of
the tangent basis vectors at x, where∇zLcls serves as the coordinate vector in this basis. As a result,
it lies entirely within the tangent space TxM2 (see Eq. (2)). More importantly, the resulting vector
can be interpreted as the projection of the ambient gradients∇xLcls onto the tangent space TxM:

ProjTxM (∇xLcls) = JG∇zLcls =
[
JG(JG)

⊤]∇xLcls = P̃x∇xLcls,

where P̃x = JG(JG)
⊤ is an unnormalized projector onto the tangent space TxM. This projection

operation has a critical denoising effect: it preserves only the gradient components aligned with the
tangent space of the generator manifold, while filtering out directions that deviate from it (see Fig. 2).
Thus, backpropagation through the generator fundamentally acts as a geometric filter, allowing
optimization to proceed along semantically meaningful directions.

2For notational simplicity, we use M to denote Maux throughout this section.
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(a) Low resolution (DCGAN) (b) High resolution (StyleGAN) (c) Inversion-phase dynamics

Figure 3: gradient-manifold alignment during the inversion process. (a) Alignment score
distribution in the low-resolution setting using LOMMA with a DCGAN trained on CelebA. (b)
High-resolution counterpart using PPA with a StyleGAN trained on FFHQ. In both cases, alignment
scores are only slightly above those of random vectors, suggesting weak alignment along the generator
manifold. (c) Evolution of the average alignment score and prediction confidence over the inversion
process. While the model’s prediction confidence steadily increases, the gradient-manifold alignment
remains consistently low, indicating no direct dependence between the two. For additional details on
this experiment, as well as results from other attack methods, refer to Appendix D.6.

To assess how well the loss gradient ∇xLcls aligns with informative directions, we measure its
alignment with the tangent space TxM at point x. Specifically, we quantify this alignment by
computing the cosine of the angle between the loss gradients and the projection onto TxM. Note that
while P̃x performs a projection onto TxM, it is not a valid orthogonal projection operator unless the
columns of JG are orthonormal. To construct an orthogonal projector, we perform singular value
decomposition (SVD) on the JG: JG = UΣV⊤, where U ∈ Rd×d, Σ ∈ Rd×k and V ∈ Rk×k.
Let Uk ∈ Rd×k denote the matrix consisting of the first k left-singular vectors, which form an
orthonormal basis for Range(JG), i.e., the tangent space TxM (see Eq. (2)). The corresponding
orthogonal projection matrix is then given by Px = UkU

⊤
k . Consequently, we compute the cosine

of the angle ϕ between the loss gradients and the projection on the tangent space as:

cos(ϕ) =
∥∥Px∇xLcls

∥∥ / ∥∥∇xLcls

∥∥. (3)

We refer to this quantity as the alignment score, denoted AS(∇xLcls) := cos(ϕ), which quantifies the
extent to which the loss gradient lies within the tangent space at point x. Higher values correspond to
smaller angles and thus indicate stronger alignment. When evaluating Eq. (3), it is important to note
that even random vectors exhibit non-zero projections onto the tangent space purely due to geometric
effects. In expectation, a random vector aligns with a k-dimensional subspace with a magnitude of
approximately

√
k/d [Vershynin, 2018]. To assess the informativeness of the loss gradients, we track

the alignment score throughout the inversion process. Empirically, we observe that in models trained
with standard supervision, the alignment score remains consistently low (see Fig. 3). This suggests
that the loss gradients frequently point in directions misaligned with the underlying data manifold,
and therefore carry limited semantically meaningful information for guiding inversion.

4 Does Gradient-Manifold Alignment Indicate MIA Vulnerability?

Motivated by the previous empirical findings and the intuition that stronger alignment with the
generator manifold reflects more informative gradients, we propose the following hypothesis:

Models tend to be more vulnerable to MIAs when their loss gradients are more
aligned with the tangent space of the generator manifold.

To validate our hypothesis, we aim to design a training objective that promotes stronger alignment
between loss gradients and the generator manifold during inversion. A key challenge, however,
is that this alignment is not directly accessible during training. To bridge this gap, we analyze
the inversion-time classification loss, which is the only term that directly interacts with the target
model f to extract private information. By the chain rule, its gradients can be expressed as a linear
combination of input gradients (i.e., the gradients of model outputs w.r.t. inputs) [Srinivas and Fleuret,
2021, Bhalla et al., 2023]. Formally, let f(x) = [f1(x), f2(x), . . . , fC(x)] denote the model’s logits
for C classes. The inversion-time classification loss Lcls(f(x), y) is a function of these logits, i.e.,
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Lcls(f(x), y) = Lcls

(
f1(x), f2(x), . . . , fC(x)

)
. Thus, by the chain rule, we obtain:

∇xLcls =

C∑
i=1

∂Lcls

∂fi
∇xfi. (4)

In other words, the loss gradient is a weighted sum of input gradients, where the weights ∂Lcls

∂fi
quantify the sensitivity of the loss to each logit. This structural insight allows us to shift our focus
from loss gradients to input gradients, which are directly accessible during training [Sundararajan
et al., 2017, Dwivedi et al., 2023]. Moreover, if the input gradients align well with the data manifold,
then by construction, the loss gradients will also exhibit improved alignment. Thus, during training,
we propose to encourage alignment between input gradients and the tangent space of the data
manifold, thereby indirectly promoting alignment of loss gradients during the inversion phase,
making alignment-aware training feasible without requiring access to the inversion process.

Gradient-Manifold Alignment Training. Building on the above analysis, we propose a novel
training objective to validate our hypothesis. It consists of two components: (1) the standard
cross-entropy (CE) loss for training-time classification, and (2) an auxiliary term that explicitly
encourages the model’s input gradients to align with the estimated tangent space of the data manifold.
Crucially, the second term leverages the fact that the input gradients of the classifier, ∇xfi(x;θ), are
differentiable w.r.t. model parameters θ, and can therefore be directly optimized during training.

To estimate the tangent space of the data manifold, we leverage a powerful pre-trained variational
autoencoder (VAE), specifically, the one used in Stable Diffusion [Rombach et al., 2022]. Trained on
large-scale datasets [Kuznetsova et al., 2020, Schuhmann et al., 2022], this VAE provides a strong
approximation of the natural image manifold. A VAE consists of an encoder E and a decoder D.
Given an input image x, the encoder maps it to a latent vector z = E(x), and the decoder reconstructs
the image as x̂ = D(z)3. The decoder D implicitly defines a data manifold with intrinsic dimension
equal to that of the latent space. Then, for any data point x ∈ Dpri, we estimate its tangent space via
the Jacobian of D, approximated by Range(JD(z)). Following the method in Sec. 3, we construct
the orthogonal projection matrix Px onto the tangent space at x. To promote alignment between the
model’s input gradients and the data manifold, we propose the following training objective:

Lalign(θ) = E(x,y)∼Dpri

[
LCE(f(x;θ), y)− β

1

C

C∑
i=1

∥∥Px∇xfi(x;θ)
∥∥∥∥∇xfi(x;θ)

∥∥
]
, (5)

where the first term is the standard cross-entropy loss for classification, and the second term encour-
ages the input gradients to align with the estimated tangent space. The hyperparameter β controls the
trade-off between the two objectives. However, computing this alignment term requires C projection
operations per training example (one per class logit), which can become computationally expensive
when the input dimension is high or the number of classes is large. To reduce this cost, we derive the
following upper bound for the alignment promotion term (see Appendix B for proof):

−
∥∥Px

∑C
i=1∇xfi(x;θ)

∥∥∥∥∑C
i=1∇xfi(x;θ)

∥∥ ≥ − 1

C

C∑
i=1

∥∥Px∇xfi(x;θ)
∥∥∥∥∇xfi(x;θ)

∥∥ . (6)

This inequality allows us to define a more efficient surrogate objective that only requires a single
projection operation per data point (the algorithmic implementation is provided in Appendix C):

Lalign(θ) = E(x,y)∼Dpri

[
LCE

(
f(x;θ), y

)
− β

∥∥Px

∑C
i=1∇xfi(x;θ)

∥∥∥∥∑C
i=1∇xfi(x;θ)

∥∥
]
. (7)

Empirical results confirm that this alignment-aware training increases the model’s vulnerability to
generative MIAs, thereby validating our hypothesis (see Sec. 6.2). Moreover, this finding motivates
the design of a training-free method to further enhance gradient-manifold alignment during the
inversion process, as detailed in the next section.

3To align with VAE literature, we use D to denote the VAE decoder, despite its earlier use for the dataset in
Sec. 2. The latent representation z is similarly reused for notational convenience.
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5 Enhancing Gradient-Manifold Alignment Without Training

Motivated by the previous observations, we propose AlignMI, a training-free approach to enhance
gradient-manifold alignment during the inversion process. The core idea is geometric: since informa-
tive gradients lie along the tangent space of the generator manifold, we aim to suppress off-manifold
components and enhance alignment with semantically meaningful directions. To this end, rather
than relying on a single gradient estimate at a synthetic input x, we sample multiple variants of x
within a local neighborhood and average their corresponding loss gradients. This averaging process
attenuates noisy, off-manifold directions while amplifying consistent components aligned with the
manifold, yielding a more semantically meaningful and geometrically coherent signal. Formally, let
N(x) ⊂ Rd denote a measurable neighborhood around x, and let p(· | x) be a probability distribution
supported on N(x). We define the smoothed, alignment-enhanced gradient as:

∇̃L(x) = Ex′∼p(·|x)
[
∇L(x′)

]
. (8)

This technique is entirely training-free and can be applied directly at the inversion time. We instantiate
AlignMI with two concrete strategies for sampling from the neighborhood N(x).

(1) Perturbation-Averaged Alignment (PAA). In this realization, the neighborhood distribution is
defined as an isotropic Gaussian centered at the synthetic input:

p(· | x) = N (x, σ2I).

This corresponds to sampling within a spherical region around x, smoothing the gradient by averaging
over random perturbations. The process suppresses high-frequency, noisy components that are likely
to deviate from the generator manifold.

(2) Transformation-Averaged Alignment (TAA). Alternatively, in this realization, we define the
distribution as uniform over a set of semantically invariant transformations:

p(· | x) = Uniform{τ(x) | τ ∈ T },

where T is a predefined set of semantic-preserving transformations, such as random cropping, flipping,
or affine warping. This formulation captures local perturbations along the manifold, encouraging
alignment with directions that preserve perceptual consistency and geometric semantics. Both PAA
and TAA are model-agnostic and fully post hoc. Their algorithmic implementations are provided
in Appendix C. As demonstrated in Sec. 6.3, incorporating either strategy consistently improves
inversion performance by producing loss gradients that are better aligned with the generator manifold.

6 Experiments

In this section, we first validate the hypothesis proposed in Sec. 4, followed by a comprehensive
evaluation of the training-free AlignMI approach introduced in Sec. 5. Our experiments focus
on real-world face recognition tasks. To ensure computational efficiency, we perform hypothesis
validation in the low-resolution setting (64× 64), where tangent space estimation is tractable. For
the method evaluation, we compare the performance of state-of-the-art generative MIAs before and
after integrating our proposed techniques, i.e., PAA and TAA. Specifically, in the high-resolution
setting (224× 224), we evaluate on PPA [Struppek et al., 2022]. For the low-resolution setting, we
consider GMI (LOMMA) with StyleGAN [Zhang et al., 2020, Karras et al., 2020, Nguyen et al.,
2023b], KEDMI (LOMMA) with DCGAN [Chen et al., 2021], and PLG-MI [Yuan et al., 2023].
In addition, we evaluate the performance of these methods against strong MIA defenses, including
BiDO [Peng et al., 2022], NegLS [Struppek et al., 2024], and TL-DMI [Ho et al., 2024].

6.1 Experimental Setup

We begin with a brief overview of the experimental setup; refer to Appendix D for details.

Datasets and Models. In line with existing MIA literature, we use the CelebA [Liu et al., 2015],
FaceScrub [Ng and Winkler, 2014], and FFHQ datasets [Karras et al., 2019]. These datasets are
divided into two parts: the private training dataset Dpri and the public auxiliary dataset Daux, with
no overlapping classes. For high-resolution tasks, we use ResNet-18 [He et al., 2016], DenseNet-
121 [Huang et al., 2017] and ResNeSt-50 [Zhang et al., 2022] as target models. For low-resolution
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Vanilla 
Model

(a) (b) (c)

Figure 4: Empirical evaluation of gradient-manifold alignment. (a) Test accuracy vs. training-
time alignment score (AStr) for models sampled during alignment-aware training. Insets show
input gradient visualizations for models with varying degrees of alignment. (b) Distribution of
inversion-time alignment scores (ASinv) for the vanilla model compared to the alignment-aware
model. (c) Average alignment scores AStr and ASinv across models with varying test accuracy.
Enlarged versions of (a) and (b), along with experimental details, are provided in Appendix D.7.

Vanilla Model Model B

Model A

Model C

Figure 5: MIA success on vanilla and alignment-
aware models with different AStr.

Table 1: Alignment score, predictive accuracy,
and inversion vulnerability for vanilla and three
alignment-aware models.

Training Variant AStr Test Acc Acc@1 KNN Dist

Vanilla 0.175 96.53 77.92 1452.20
Model A 0.253 94.92 79.68 1413.53
Model B 0.339 93.75 80.76 1408.00
Model C 0.406 91.80 69.72 1613.96

tasks, we use VGG16 [Simonyan and Zisserman, 2015] and FaceNet [Wang et al., 2021b] as target
models. Training details for these models are provided in Appendix D.2. A summary of the attack
methods, target models, and datasets used is provided in Tab. 3.

Evaluation Metrics. (1) To quantify the alignment between gradients and the image manifold, we
report two metrics: training-time alignment scores based on input gradients (AStr), and inversion-time
alignment scores based on loss gradients (ASinv), as defined in Eq. (3). (2) To evaluate the inversion
performance of MIAs, we follow standard metrics in the literature [Zhang et al., 2020], including
top-1 (Acc@1) and top-5 (Acc@5) attack accuracy, as well as K-Nearest Neighbors Distance (KNN
Dist). Details for these metrics are provided in Appendix D.5.

6.2 Empirical Validation of the Hypothesis

In this subsection, we empirically validate the hypothesis introduced in Sec. 4, by comparing standard
(vanilla) models with alignment-aware models trained using the objective defined in Eq. (7). For this
evaluation, we adopt GMI (LOM) as the inversion method, using a StyleGAN as the prior.

Gradient-manifold Alignment Analysis. Specifically, we fine-tune the pre-trained vanilla VGG16
and FaceNet models using the alignment-aware training objective, resulting in multiple models with
varying training-time alignment scores (AStr). As shown in Fig. 4(a), the vanilla models exhibit
low alignment scores (approximately 0.15 and 0.18), which marginally exceed those expected from
random vectors, indicating weak alignment between input gradients and the data manifold. As fine-
tuning progresses, AStr steadily increases, and gradient visualizations reveal a corresponding rise in
semantically meaningful features. Notably, this increase in alignment is accompanied by a gradual
decline in test accuracy, suggesting an empirical trade-off between gradient-manifold alignment and
predictive performance. This trend is consistent across both architectures. We hypothesize that this
trade-off could stem from the inherent limitations of modern deep neural network architectures or the
implicit biases introduced by stochastic gradient-based optimization.

Fig. 4(b) compares the distribution of inversion-time alignment scores (ASinv) between the FaceNet
vanilla model and the alignment-aware model (corresponding to Model B in Fig. 5). The Model
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trained with the alignment-aware objective exhibits significantly higher ASinv values, demonstrating
that promoting gradient-manifold alignment during training leads to stronger alignment at inversion
time. This validates the effectiveness of our training strategy. Additionally, the inversion loss gradient
visualizations also reveal clearer and more semantically meaningful structures.

Model Inversion Vulnerability Analysis. We further evaluate the vulnerability of both vanilla and
alignment-aware models to the GMI (LOM) attack method. As shown in Fig. 5, model inversion
vulnerability initially increases with training-time alignment score (AStr), reaching a peak before
declining. To understand this behavior, we first recall that previous work [Zhang et al., 2020] has
shown that models with higher predictive power (i.e., test accuracy) tend to be more susceptible to
generative MIAs, whereas models with lower test accuracy are generally more resistant. If gradient-
manifold alignment were unrelated to model inversion vulnerability, one would expect a monotonic
decline in attack accuracy with increasing AStr, due to the corresponding drop in test accuracy
(Fig. 4(a)). However, Fig. 5 instead shows a non-monotonic trend.

This trend arises because improvements in gradient-manifold alignment create a new attack surface,
leading to increased model inversion vulnerability. At early stages, the benefits of improved alignment
outweigh the negative impact of reduced test accuracy, hence attack accuracy rises. Beyond a certain
point, however, the adverse effects of declining test accuracy become dominant, and attack accuracy
begins to decline. This trend holds consistently across both architectures we studied. These findings
suggest that, for models with comparable test accuracy, those with better gradient-manifold alignment
tend to be more vulnerable to MIAs, thus supporting our main hypothesis.

To illustrate this trend in detail, we examine three representative alignment-aware models and report
their training-time alignment scores, test accuracies, and MIA vulnerabilities. Results in Tab. 1
show that models A and B, despite having lower test accuracy than the vanilla baseline, exhibit
greater vulnerability to MIAs. This increased susceptibility is attributable to their higher AStr, which
produces more informative loss gradients during inversion. In contrast, model C, with a higher
alignment score but lower test accuracy, shows reduced vulnerability, suggesting that excessive
alignment may come at the cost of generalization and thereby diminish the attack surface.

Moreover, we study the correlation between model predictive power and the gradient-manifold
alignment. As shown in Fig. 4(c), both AStr and ASinv remain relatively steady across models
with varying predictive performance, indicating that model predictive power and gradient-manifold
alignment exhibit little correlation. These results suggest that gradient-manifold alignment captures
a complementary aspect of model inversion vulnerability—one not explained by predictive power
alone—and offer new insights into the factors underlying privacy risks in machine learning models.

6.3 Evaluation of Proposed Methods

In this subsection, we evaluate the effectiveness of our training-free AlignMI approach by comparing
the inversion performance of the PPA method before and after integration with its two realizations,
PAA and TAA. This evaluation focuses on the high-resolution setting, representing a more realistic
and challenging attack scenario. Additional experiments, including results on low-resolution MIAs,
evaluations under SOTA MIA defenses, and ablation studies, are provided in Appendix E.

For all experiments, we configure PAA with Gaussian perturbations of standard deviation σ set to
5% of the synthesized images’ dynamic range. For TAA, we apply standard semantic-preserving
transformations, including random resized cropping with scale [0.8, 1.0] and aspect ratio [0.9, 1.1]),
horizontal flipping with a probability of 0.5, and random rotations within ±5◦. For both methods, we
average the loss gradients over 50 samples to approximate the expectation in Eq. (8).

We conduct three independent runs for both the baseline and our method. The mean results are
reported in Tab. 2, and the complete results are provided in Tab. 4 in Appendix E. The results
demonstrate that our methods consistently enhance inversion performance across all setups, yielding
higher attack accuracy and lower KNN distance, thus validating their effectiveness. Notably, TAA
outperforms PAA in most cases. This is because PAA improves alignment by adding noise perturba-
tions to loss gradients, which can reduce prediction confidence, as models are typically not trained
on noisy inputs. In contrast, TAA uses semantic-preserving augmentations, which maintain input
realism and avoid this trade-off. Visualizations of gradient images and reconstructed samples for the
target models are provided in Appendix E.4 and Appendix E.5, respectively.
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Table 2: Comparison of inversion performance with PPA in the high-resolution setting. Dpri = CelebA
or FaceScrub, GANs are pre-trained on Daux = FFHQ. The symbol ↓ (or ↑) indicates that smaller (or
larger) values are preferred, and the green numbers represent the performance improvement. The
results are averaged over three independent runs.

CelebA FaceScrub
Target Model Method Acc@1↑ Acc@5↑ KNN Dist↓ Ratio↓ Acc@1↑ Acc@5↑ KNN Dist↓ Ratio↓

ResNet-18
PPA 85.63 95.12 0.693 / 81.57 94.85 0.796 /
+ PAA (ours) 88.75 (+3.12) 96.59 0.669 (-0.024) 1.50 83.97 (+2.40) 95.78 0.777 (-0.019) 1.55
+ TAA (ours) 91.68 (+6.05) 97.68 0.662 (-0.031) 1.61 93.68 (+12.11) 98.84 0.691 (-0.105) 1.61

DenseNet-121
PPA 82.22 93.26 0.708 / 75.66 90.91 0.786 /
+ PAA (ours) 85.64 (+3.42) 95.16 0.684 (-0.024) 2.82 80.70 (+5.04) 93.40 0.761 (-0.025) 2.82
+ TAA (ours) 87.88 (+5.66) 96.20 0.687 (-0.021) 2.87 86.54 (+10.88) 95.12 0.712 (-0.074) 2.93

ResNeSt-50
PPA 70.75 87.43 0.793 / 71.58 90.60 0.827 /
+ PAA (ours) 75.71 (+4.96) 90.48 0.764 (-0.029) 2.93 73.38 (+1.80) 91.34 0.807 (-0.020) 3.12
+ TAA (ours) 79.19 (+8.44) 92.28 0.761 (-0.032) 3.12 84.38 (+12.80) 96.04 0.753 (-0.074) 3.13

7 Discussion

Limitations. Our experiments validate the proposed hypothesis in the low-resolution setting, where
gradient-manifold alignment-aware training is currently feasible only at this scale. We observe an
empirical trade-off between alignment and predictive performance, suggesting that stronger alignment
may come at the cost of impairing model generalization. However, due to computational limitations,
we are unable to examine whether this trend persists in high-resolution settings. In particular, high-
resolution inputs of size 224× 224× 3 produce latent representations of size 28× 28× 4 from the
VAE encoder, resulting in a decoder Jacobian of size 150,528×3136. This is roughly 150 times larger
than in the low-resolution case, rendering tangent space estimation computationally and memory
intensive. Moreover, the underlying cause of the observed alignment-accuracy trade-off remains
unclear and warrants more systematic in future work.

Broader Impacts. From a geometric perspective, our analysis identifies a previously underexplored
factor contributing to model inversion vulnerability, complementing existing explanations focused on
predictive power. This perspective offers new insight into the mechanisms that give rise to privacy
risks in machine learning models. Beyond its technical implications, the AlignMI approach also
raises important ethical considerations: if misused, it could increase the likelihood of exposing
sensitive training data. Conversely, this geometric understanding provides a foundation for principled
defenses against generative MIAs. In particular, reducing gradient-manifold alignment may serve as
an effective strategy for mitigating such vulnerabilities.

8 Conclusion

In this work, we investigate the underlying mechanism of generative model inversion from a geometric
perspective. We show that generative MIAs implicitly denoise loss gradients by projecting them onto
the tangent space of the generator manifold, preserving informative on-manifold directions while
filtering out noisy off-manifold components. Building on this insight, we identified a previously
underexplored vulnerability: models with loss gradients align more strongly with the generator
manifold tend to be more susceptible to inversion attacks. We validated this hypothesis using a
novel training objective that explicitly promotes gradient-manifold alignment. Finally, we propose
AlignMI, a training-free approach to enhance such alignment during inversion, and demonstrate its
effectiveness through extensive experiments across multiple attack methods.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We first analyze the effectiveness of generative MIAs through a geometric lens,
revealing their implicit gradient denoising mechanism (Section 3). Based on these insights,
we hypothesize a link between model vulnerability and loss gradient alignment, which
we validate using a dedicated alignment-aware training objective (Section 4). Building on
this, we propose a training-free method to enhance gradient–manifold alignment during
inversion (Section 5). We evaluate the hypothesis and the proposed method through extensive
experiments in Section 6, with additional results presented in Appendix E.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We primarily discuss the limitations of this work in Section 7.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: In Appendix B, we present the complete mathematical proof that derives
the upper bound for the alignment promotion term, which serves as an efficient surrogate
objective to validate our hypothesis.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The experimental setups are briefly introduced at the beginning of Section 6,
and detailed in Appendix D.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Our well-organized source codes, along with a detailed README file, is
available is available at https://github.com/tmlr-group/AlignMI.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The experimental details and settings are briefly introduced at the beginning of
Section 6 and detailed in Appendix D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Due to the significant time required for MIAs, we conduct a single attack
against each target model. To reduce randomness, we generate at least 100 samples for each
target class across various setups.
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Guidelines:
• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide detailed information about the hardware and software configura-
tions in Appendix D.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We only utilize publicly available datasets to develop machine learning algo-
rithms aimed at promoting community development.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
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Answer: [Yes]
Justification: We primarily discuss the broader impacts of this work in Appendix 7.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have cited the original papers that produced the code packages or datasets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We provide well-structured source code accompanied by a detailed README
file, which is available at https://anonymous.4open.science/r/AlignMI-1682.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

19

paperswithcode.com/datasets
https://anonymous.4open.science/r/AlignMI-1682


• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Related Work

Model inversion attacks (MIAs) were first introduced by Fredrikson et al. [2014], who demonstrated
the reconstruction of private data in simple regression tasks using shallow models. Their pioneering
attack algorithm aimed to infer sensitive attributes, such as genetic markers, via input space optimiza-
tion, assuming access to both the linear target model and auxiliary information. This work highlighted
the privacy risks inherent in exposing model predictions. Building on this, Fredrikson et al. [2015]
extended MIAs to shallow neural networks for reconstructing low-resolution grayscale face images.
While effective for simple models, this method fails when applied to deep neural networks (DNNs)
handling high-dimensional data, as reconstructions often lack semantic relevance.

To address these limitations, Zhang et al. [2020] introduced the two-stage generative model inversion
approach, which leverages generative adversarial networks (GANs) [Goodfellow et al., 2014, Radford
et al., 2016] to learn an image prior from public auxiliary datasets and constrains the attack optimiza-
tion to the generator’s latent space. This breakthrough significantly improved the visual quality and
semantic fidelity of reconstructed samples and has since fueled major advances in the field of MIAs,
particularly for high-dimensional image data [Zhou et al., 2024, Han et al., 2025]. Recent works can
be categorized by the model inversion adversary’s access level: white-box, black-box, and label-only
settings, each posing unique challenges and guiding corresponding defense developments.

In the white-box setting, where attackers have full access to the model architecture and weights,
most works follow the generative model inversion framework. KEDMI [Chen et al., 2021] enhanced
this by introducing an advanced discriminator that incorporates knowledge from the target model.
VMI [Wang et al., 2021a] recast the problem as variational inference, using a Bayesian framework to
balance diversity and fidelity. PPA [Struppek et al., 2022] further pushed the frontier by leveraging
pre-trained StyleGAN generators and introducing the Poincaré loss to replace cross-entropy (CE)
loss, addressing gradient vanishing issues in the inversion process. Similarly, Nguyen et al. [2023b]
proposed the logit maximization (LOM) loss as an alternative to CE loss, alongside model augmenta-
tion techniques to mitigate overfitting. PLG-MI [Yuan et al., 2023] advanced MIAs by integrating a
conditional GAN (cGAN) with max-margin loss and pseudo-label guidance, effectively decoupling
class-specific search spaces and enhancing the exploitation of target model information. These
methods primarily concentrate on either the initial training process of GANs or the optimization
techniques used in the attacks. A Recent work PPDG-MI [Liu et al., 2020, Peng et al., 2024b]
took a different direction by fine-tuning the GAN generator post-attack with reconstructed samples,
narrowing the distribution gap between prior and private data distributions.

In the black-box setting, where attackers can only query the model, An et al. [2022] introduced a
genetic search approach to replace gradient-based optimization, while RLB-MI [Han et al., 2023]
framed the attack as a Markov decision process (MDP) and applied reinforcement learning to optimize
the latent vector. In the label-only setting, which is the most restrictive scenario where only hard
labels are available, Kahla et al. [2022] proposed the boundary-repelling model inversion (BREP-MI)
method, which uses zeroth-Order Optimization method to approximate gradient descent and steer the
search toward dense class regions. Inspired by transfer learning, Nguyen et al. [2023a] introduced
label-only via knowledge transfer (LOKT), which uses a target model-assisted ACGAN (T-ACGAN)
to effectively transform the label-only attack into a white-box setting.

Many studies have also focused on designing defense methods against generative MIAs. Since MIAs
exploit the strong correlation between inputs and outputs for successful attacks, Wang et al. [2020]
proposed augmenting the standard classification objective with a mutual information regularizer to
penalize this correlation. However, this approach can significantly degrade the model’s predictive
performance. To overcome this limitation, Peng et al. [2022] introduced bilateral dependency opti-
mization (BiDO), which enhances the dependency between input features and latent representations
while minimizing the dependency between representations and outputs [Peng et al., 2025]. Inspired
by BiDO, Stealthy Shield Defense (SSD) [Zhuang et al., 2025] adopts an inference-time strategy
that minimizes mutual information between input features and predictions while maximizing the
mutual information between predictions and labels, providing an effective black-box defense. Addi-
tionally, Ho et al. [2024] proposed freezing the early layers of a pre-trained model and fine-tuning the
remaining layers on private data to reduce vulnerability for reconstruction attacks. Struppek et al.
[2024] further observed that negative label smoothing can also mitigate generative MIAs. In a recent
work, Hao et al. [2024] examined the impact of model architecture on MIA robustness and found that
residual connections can increase vulnerability to these attacks.
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B Derivation of the Alignment-aware Training Objective

In this section, we provide a derivation of the Inequality (6), which serves as a relaxation used to
obtain the final alignment-aware training objective in Eq. (7).
Lemma B.1. Under the same notation as in Section 4, and assuming all gradient vectors∇xfi(x;θ)
have equal norm, the following inequality holds:

−
∥∥P̃x

∑C
i=1∇xfi(x;θ)

∥∥∥∥∑C
i=1∇xfi(x;θ)

∥∥ ≥ − 1

C

C∑
i=1

∥∥P̃x∇xfi(x;θ)
∥∥∥∥∇xfi(x;θ)

∥∥ . (9)

Proof. Let gi := ∇xfi(x;θ) and assume ∥gi∥ = a > 0 for all i. Put g :=
∑C

i=1 gi and suppose
g ̸= 0. By linearity of the orthogonal projector P̃x,

P̃xg =

C∑
i=1

P̃xgi.

Applying the triangle inequality,

∥∥P̃xg
∥∥ =

∥∥∥ C∑
i=1

P̃xgi

∥∥∥ ≤ C∑
i=1

∥∥P̃xgi
∥∥.

Dividing both sides by ∥g∥ and multiplying by −1 reverses the inequality:

−
∥∥P̃xg

∥∥
∥g∥

≥ −
∑C

i=1

∥∥P̃xgi
∥∥

∥g∥
. (10)

Since ∥g∥ =
∥∥∑C

i=1 gi
∥∥ ≤∑C

i=1 ∥gi∥ = Ca, we have 1
∥g∥ ≥

1
Ca . Substituting this bound into the

right-hand side of Inequality (10) yields

−
∑C

i=1

∥∥P̃xgi
∥∥

∥g∥
≥ −

∑C
i=1

∥∥P̃xgi
∥∥

Ca
= − 1

C

C∑
i=1

∥∥P̃xgi
∥∥

a
. (11)

Combining Inequalities (10) and (11) and substituting a = ∥gi∥ gives

−
∥∥P̃xg

∥∥
∥g∥

≥ − 1

C

C∑
i=1

∥∥P̃xgi
∥∥

∥gi∥
,

which is exactly Inequality (9). Equality holds iff both triangle inequalities above are tight, i.e., (i)
all vectors P̃xgi are colinear and (ii) all gi themselves are colinear.

C Algorithmic Realizations of Gradient–Manifold Alignment Methods

This section presents the algorithmic implementations of our proposed training objective for validating
the hypothesis, as well as the training-free alignment approach designed to enhance gradient–manifold
alignment and improve model inversion performance.

(1) Alignment-Aware Training. To validate our hypothesis that stronger alignment between loss
gradients and the generator manifold leads to greater inversion vulnerability, we introduce a gradi-
ent–manifold alignment-aware training objective. This objective augments the standard classification
loss with a geometric alignment term and can be optimized via standard backpropagation. The
training procedure is detailed in Algorithm 1.

(2) Training-Free Alignment Promotion. Motivated by the above findings, we propose a training-
free method that improves gradient–manifold alignment at inversion time. By averaging loss gradients
over perturbed or transformed versions of the synthetic input, this approach denoises the gradient
signal in a geometry-aware manner. The inference-time procedure is described in Algorithm 2.
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Algorithm 1 Gradient–Manifold Alignment-Aware Training
Input: Classifier f(· ;θ), pre-trained VAE decoder D, training set Dpri, trade-off hyperparameter β,
number of training steps T
Output: Updated target model parameters θ

1: for t = 1 to T do
2: Sample a minibatch {(x(n), y(n))}Bn=1 from Dpri
3: for each (x, y) in batch do
4: Compute latent code: z← E(x)
5: Compute Jacobian: JD(z) = ∂D

∂z

6: Compute SVD: JD(z) = UΣV⊤

7: Let Uk be the first k columns of U
8: Estimate projection matrix: P̃x ← UkU

⊤
k

9: Compute softmax probabilities: p = softmax(f(x;θ))
10: Compute CE loss: LCE = − log py
11: Compute input gradients of logits: {∇xfi(x;θ)}Ci=1

12: Compute gradient sum: g =
∑C

i=1∇xfi(x;θ)

13: Compute alignment term: Lgeo
align ←

∥P̃x g∥
∥g∥

14: Compute final loss: Lalign(θ)← LCE − β · Lgeo
align

15: end for
16: Update θ via backpropagation over average batch loss
17: end for
18: return θ

Algorithm 2 Training-Free Gradient–Manifold Alignment During Inversion
Input: Target model f , pre-trained generator G, inversion loss L, initial latent code z, number of
inversion steps T , number of samples K, perturbation strength α, sampling strategy ρ ∈ {PAA, TAA}
Output: Recovered image x̂ = G(z)

1: for t = 1 to T do
2: x← G(z)
3: Initialize gradient buffer: G ← ∅
4: for k = 1 to K do
5: if ρ = PAA then
6: Compute noise scale: σ ← α

(
max(x)−min(x)

)
7: Sample noise: ϵk ∼ N (0, σ2I)
8: xk ← x+ ϵk
9: else if ρ = TAA then

10: Sample transformation: τk ∼ T
11: xk ← τk(x)
12: end if
13: Compute loss gradient: gk ← ∇xk

L(xk)
14: Append to buffer: G ← G ∪ {gk}
15: end for
16: Compute averaged gradient: ∇̃L(x)← 1

K

∑K
k=1 gk

17: Update latent code: z← z− η JG(z)
⊤∇̃L(x)

18: end for
19: return x̂ = G(z)

D Experimental Setup and Implementation Details
D.1 Hard- and Software Details

All high-resolution MIA experiments using Plug & Play Attacks (PPA) were conducted on Oracle
Linux Server 8.9 with NVIDIA A100-80G GPUs, using CUDA 11.7, Python 3.9.18, and PyTorch
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Table 3: A summary of experimental setups.

Setting MIAs Private Dataset Public Dataset Target Model Evaluation Model

Low-resolution setting
GMI (LOMMA) /
KEDMI (LOMMA) /
PLG-MI

CelebA
CelebA /
FFHQ

VGG16 /
FaceNet (64)

FaceNet (112)

High-resolution setting PPA
CelebA /
FaceScrub

FFHQ
ResNet-18 /
DenseNet-121 /
ResNeSt-50

Inception-v3

1.13.1. Low-resolution facial recognition MIAs were run on Ubuntu 20.04.4 LTS with NVIDIA RTX
3090 GPUs, under CUDA 11.6, Python 3.7.12, and PyTorch 1.13.1.

D.2 Target Models

(1) Empirical Validation of the Hypothesis. To validate our hypothesis, we conduct experiments
on models pre-trained for a 1000-class classification task using 64 × 64 CelebA images. The
model and training pipeline are based on the implementation provided at https://github.com/
sutd-visual-computing-group/Re-thinking_MI. To compute alignment scores, we require
estimates of the tangent space at each training point. These are obtained using a pre-trained VAE
decoder, which maps latent representations back to the image space. For each training image, we
compute the Jacobian of the decoder to extract the local tangent basis and pre-store it for downstream
alignment computation. However, this procedure is memory-intensive. For example, estimating and
storing tangent bases for approximately 2, 700 training images from the first 100 classes of CelebA
requires about 30 GB of disk space. Due to this storage constraint and the exploratory nature of the
analysis, we restrict our investigation to a 100-class subset of the full dataset.

To obtain models trained on this 100-class subset, we first adapt the original 1000-class model by
fine-tuning it on the corresponding subset. Fine-tuning is performed for 20 epochs using stochastic
gradient descent with an initial learning rate of 10−2, momentum of 0.9, weight decay of 10−4, and
batch size of 128. The learning rate is scheduled to decrease by a factor of 0.02 at epochs 10 and
15. This procedure yields a 100-class vanilla model. Subsequently, to obtain models with varying
levels of training-time gradient–manifold alignment, we continue fine-tuning the 100-class vanilla
model for 30 additional epochs using our proposed alignment-aware training objective. The learning
rate is fixed throughout this phase. To capture the evolution of training-time alignment scores, we
save model checkpoints at intermediate epochs. These models serve as the basis for evaluating the
correlation between alignment and model inversion vulnerability in later experiments.

(2) Evaluation of Proposed Methods. To evaluate our proposed methods, we adopt distinct training
configurations for models at different image resolutions. For high-resolution inputs (224× 224) from
the CelebA and FaceScrub datasets, we follow the setup from Struppek et al. [2022]. Models are
optimized using Adam [Kingma and Ba, 2015] with an initial learning rate of 10−3, β parameters set
to (0.9, 0.999), and a weight decay of 10−3. Training runs for 100 epochs with a batch size of 128,
and the learning rate is reduced by a factor of 0.1 at epochs 75 and 90. Input preprocessing includes
normalization (mean and standard deviation both set to 0.5), followed by a sequence of augmentations:
random cropping with a scale range of [0.85, 1.0] and fixed aspect ratio of 1.0, resizing to 224× 224,
and horizontal flipping with a probability of 0.5.

For low-resolution images (64 × 64) from CelebA, we follow the training protocol provided by
https://github.com/sutd-visual-computing-group/Re-thinking_MI. Specifically, we
use stochastic gradient descent (SGD) with an initial learning rate of 10−2, momentum of 0.9, and
weight decay of 10−4. Models are trained for 100 epochs with a batch size of 64, and the learning
rate is decayed by a factor of 0.1 at epochs 75 and 90.

D.3 Evaluation Models

For our PPA-based experiments, we follow the original implementation at https://github.com/
LukasStruppek/Plug-and-Play-Attacks to train Inception-v3 evaluation models, using the
training configurations specified in Struppek et al. [2022]. These models achieve test accuracies of
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96.53% on FaceScrub and 94.87% on CelebA. To compute K-nearest neighbor (KNN) distances,
which serve as a similarity metric between reconstructed and true samples in facial recognition tasks,
we adopt the pre-trained FaceNet model [Schroff et al., 2015], available at https://github.com/
timesler/facenet-pytorch.

For experiments on target models trained on 64× 64 resolution CelebA dataset, we use an evaluation
model from https://github.com/sutd-visual-computing-group/Re-thinking_MI. This
model is based on the face.evoLVe architecture [Wang et al., 2021b] with a modified ResNet-50
backbone, and achieves a reported test accuracy of 95.88%. Details on the training procedure are
available in Zhang et al. [2020].

D.4 Attack Parameters

High-Resolution Setting. In the high-resolution setting, we follow the Plug & Play Attack (PPA)
method, which comprises three stages: (1) latent code pre-selection, (2) latent code optimization, and
(3) result selection. During pre-selection, we sample 2000 latent codes per class and retain the top
100 candidates based on the target model’s response for both CelebA and FaceScrub datasets. In the
optimization stage, we perform 70 iterations of gradient-based latent code updates per class. The
final result selection stage is omitted in our implementation in order to include as many as samples
for evaluation. We focus on the first 100 classes, generating 100 reconstructed samples per class.

As for the parameters of PAA strategy, we use Gaussian perturbations of standard deviation σ set
to 5% of the synthesized images’ dynamic range. For parameters of TAA strategy, we apply three
geometrically constrained transformations: random resized cropping with scale factors spanning
[0.8, 1.0] and aspect ratios limited to [0.9, 1.1], horizontal flipping with probability p = 0.5, and
random rotations within ±5◦ angular displacement.

Low-Resolution Setting. In the low-resolution setting, we target the first 100 classes from CelebA as
the private dataset Dpri and generate 100 samples per identity using CelebA, FFHQ and FaceScrub as
auxiliary datasetsDaux. For instantiations of AlignMI, we maintain identical PAA and TAA parameter
configurations from the high-resolution setup unless explicitly stated. Implementation details differ
slightly across MIAs. For GMI (LOMMA) using StyleGAN, we directly sample and optimize 100
latent codes for 100 steps with a batch size of 20, and set the PAA’s Gaussian noise standard deviation
σ is set to 0.5% of the synthesized images’ dynamic range. For KEDMI (LOMMA) with DCGAN,
we process 100 samples per identity through 200 optimization steps with a batch size of 100. For
PLG-MI with a cGAN prior, the baseline includes a data augmentation pipeline comprising: random
resized cropping to 64 × 64 with scale in [0.8, 1.0] and fixed aspect ratio 1.0, color jittering with
brightness and contrast set to ±0.2, random horizontal flips (probability 0.5), and rotations within
±5◦. In our PAA and TAA configurations, we omit this augmentation pipeline to isolate the effect of
gradient–manifold alignment. Optimization for PLG-MI runs for 100 steps with a batch size of 20.

Due to the high computational cost of generative MIAs, we perform a single attack per target model.
To reduce randomness, we generate at least 100 inversion samples per class across all configurations.

D.5 Evaluation Metrics

Attack Accuracy (Attack Acc). We employ an evaluation model (generally more robust and powerful
than the target model) trained on the same dataset as the target model to verify whether reconstructed
images correctly represent the target class, following the evaluation method of Zhang et al. [2020].
This metric serves as an automated proxy for human evaluation, assessing how well the reconstructed
images capture the distinctive characteristics of the target class compared to other classes. The attack
accuracy is computed as the percentage of predictions matching the target class, reporting both top-1
(Acc@1) and top-5 (Acc@5) accuracy scores.

K-Nearest Neighbors Distance (KNN Dist). KNN distance quantifies reconstruction quality through
l2 distance computation in a model’s feature embedding space, measuring the similarity between
reconstructed images and their nearest original private training samples. This metric serves as a
quantitative indicator of visual fidelity, where smaller distances correspond to higher similarity
between generated and genuine training data. For high-resolution attacks in PPA [Struppek et al.,
2022], we extract features from FaceNet’s penultimate layer [Schroff et al., 2015], while for low-
resolution model inversion attacks, we use the evaluation model’s penultimate layer features.
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(a) KEDMI (LOMMA) (b) PLG-MI (c) Inversion-phase dynamics

Figure 6: Additional gradient-manifold alignment during inversion process. (a)Alignment
score distribution for KEDMI (LOMMA) using an inversion-specific GAN trained on CelebA. (b)
Corresponding results for PLG-MI using a conditional GAN. (c) Evolution of mean alignment scores
versus prediction confidence during inversion. Notably, while prediction confidence demonstrates
monotonic improvement throughout the inversion process, gradient-manifold alignment in additional
attack methods also remains stable and low, reinforcing the lack of correlation between confidence
and gradient–manifold alignment.

D.6 Experimental Details for Figure 3

Low-Resolution Setting. In the low-resolution experiments, we adopt a DCGAN trained on CelebA
as the generative prior. The latent space dimension of DCGAN is 100, corresponding to a random
baseline alignment score of approximately 0.090. The target classifier is a VGG16 model trained on
CelebA, and the inversion targets the first 25 classes, each containing 1, 000 images. For Fig. 3(a),
we run the inversion optimization for 1, 200 steps and record the inversion-time alignment scores of
the loss gradients every 10 steps for each reconstructed sample. The figure presents the distribution
of all collected alignment scores. In Fig. 3(c), we further analyze temporal dynamics by averaging
alignment scores across all classes at each step, illustrating how gradient–manifold alignment evolves
during optimization.

Additionally, we evaluate gradient–manifold alignment during the inversion process for other attack
methods, including KEDMI (LOMMA) and PLG-MI, in the low-resolution setting. The results
are present in Fig. 6. Both methods leverage CelebA as the generative prior and target a VGG16
classifier trained on CelebA. Specifically for KEDMI, we adopt a DCGAN with latent space dimen-
sion of DCGAN 100, corresponding to a random baseline alignment score approximately 0.090.
The inversion process targets the first 50 classes, each containing 500 images and proceeds 1, 200
optimization steps. For PLG-MI, we use a conditional GAN (cGAN) with 128 latent dimensions,
which corresponds to a random baseline alignment score approximately 0.102. The inversion process
executes 100 optimization iterations targeting the first 100 classes, each containing 100 images.

Interestingly, the PLG-MI method exhibits higher inversion-time alignment scores than GMI (LOM)
and KEDMI (LOM). This improvement can be attributed to its use of a conditional GAN, which
incorporates label information throughout the inversion process. The stronger alignment may partially
explain PLG-MI’s superior attack performance.

High-Resolution Setting. In the high-resolution experiments, we use a StyleGAN model trained
on FFHQ as the generative prior. The latent space has dimension 512, yielding a random baseline
alignment score of approximately 0.058. The target classifier is a ResNet18 model trained on CelebA,
with inversion targeting the first 50 classes, each containing 50 images. For Fig. 3(b), inversion is run
for 100 steps, with alignment scores recorded at 10 equally spaced intervals per reconstructed sample.
The figure shows the distribution of the recorded scores. In Fig. 3(c), we track temporal alignment by
averaging scores over all latent vectors at each interval, capturing how alignment develops throughout
the inversion process.

D.7 Experimental Details for Figure 4

Tangent Space Estimation. To compute training-time alignment scores, we estimate the tangent
space at each training sample using a pre-trained VAE from Stable Diffusion. Specifically, the VAE
encoder maps an input image x of shape 64× 64× 3 to a latent representation z of shape 8× 8× 4,
which is then decoded back to the image space by the VAE decoder. For each training image, we
compute the Jacobian of the decoder to obtain the local tangent basis, resulting in a Jacobian matrix of
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Figure 7: Original training samples (top row) and corresponding reconstructions (bottom row) from
the pre-trained VAE used for tangent space estimation. The visual similarity confirms the VAE’s
ability to approximate the natural image manifold reliably.

Vanilla 
Model

(a) (b)

Figure 8: Empirical evaluation of gradient–manifold alignment (enlarged version). (a) Test
accuracy vs. training-time alignment score (AStr) for models sampled during fine-tuning vanilla
models with the alignment-aware training objective. Insets show input gradient visualizations for
models with varying degrees of alignment. (b) Distribution of inversion-time alignment scores (ASinv)
for the vanilla model compared to the alignment-aware model.

shape 12,288× 256. This process is memory-intensive: for example, estimating and storing tangent
bases for approximately 2,700 training samples from the first 100 classes of CelebA consumes
roughly 30 GB of disk space. As shown in Fig. 7, the reconstructed images closely match the original
inputs, indicating that the pre-trained VAE, despite not being trained on the target dataset, offers a
reliable approximation of the natural image manifold.

Empirical evaluation of gradient-manifold alignment. To empirically evaluate the trade-off
between test accuracy and training-time alignment score as shown in Fig. 4(a) (or Fig. 8(a)), we
conducted experiments using two 100-class target models: VGG16 and FaceNet. The training
procedures for these models followed the same specifications detailed in Appendix D.2. During
training, we saved intermediate model checkpoints at various epochs to capture the evolution of
model performance under our alignment-aware objective.

For analyzing the distribution of inversion-time alignment scores presented in Fig. 4(b) (or Fig. 8(b)),
we select two 100-class FaceNet models as target models. The vanilla model achieves a test accuracy
of 96.53% with training-time alignment score AStr = 0.175, while the aligned model achieves a test
accuracy of 93.75% with AStr = 0.339. We use the GMI (LOM) attack method with StyleGAN as a
prior, targeting the first 25 classes and running the optimization for 100 steps with batch size 20 for
both the vanilla and aligned models.

In Fig. 4(c), we extend our evaluation to 1000-class VGG16 models, following the same training
protocol as described in Appendix D.2. We save checkpoints at intermediate training epochs to obtain
models with varying test accuracies. The alignment scores AStr are recorded throughout the training
process. Additionally, we compute the alignment scores ASinv using the GMI (LOM) attack with
StyleGAN, again targeting the first 25 classes and running the optimization for 100 steps.

28



Figure 9: Training-time alignment progression with alignment-aware training. Evolution of
training-time alignment score (AStr) and gradient visualizations during fine-tuning of FaceNet using
our alignment-aware objective. As alignment improves, loss gradients exhibit increasingly structured
and semantically meaningful patterns. (Best viewed with zoom.)

Figure 10: Comparison of inversion-time loss gradients. Visualization of loss gradients from the
vanilla model (top) and the alignment-aware model (bottom). The alignment-aware model produces
gradients that are sharper and more semantically aligned with facial structures, indicating stronger
alignment with the generator manifold. (Best viewed with zoom.)

E Additional Experimental Results

E.1 Additional Empirical Validation of the Hypothesis

We illustrate the fine-tuning progress of a FaceNet model optimized with our alignment-aware ob-
jective in Fig. 10. As fine-tuning proceeds, the training-time alignment score (AStr) consistently
increases, and corresponding gradient visualizations exhibit progressively clearer and more seman-
tically meaningful structures. This demonstrates the effectiveness of our alignment-aware training
strategy in promoting geometrically informative gradients.

For comparison, Fig. 10 also presents inversion-time loss gradient images from both the vanilla and
alignment-aware models. The gradients from the alignment-aware model reveal clearer, semantically
meaningful structures, highlighting improved alignment with the underlying generator manifold.

To further validate our hypothesis, we extend our experiments to include IR152 as the target model,
using the GMI (LOM) attack method. As shown in Fig. 11(a), the results are consistent with our
earlier findings in Fig. 4(a) (Sec. 6.2): as fine-tuning progresses, the training-time alignment score
(AStr) steadily increases, and corresponding gradient visualizations reveal increasingly semantically
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Figure 11: Additional empirical evaluation of gradient–manifold alignment. (a) Test accuracy vs.
training-time alignment score (AStr) for IR152 models sampled during fine-tuning vanilla models
with the alignment-aware training objective. Insets show input gradient visualizations for models
with varying degrees of alignment. (b) MIA success on vanilla and alignment-aware IR152 models
with different AStr.

Table 4: Comparison of inversion performance with PPA in the high-resolution setting. Dpri = CelebA
or FaceScrub, GANs are pre-trained on Daux = FFHQ. The symbol ↓ (or ↑) indicates that smaller (or
larger) values are preferred, and the green numbers represent the performance improvement. The
results are averaged over three independent runs.

CelebA FaceScrub
Target Model Method Acc@1↑ Acc@5↑ KNN Dist↓ Acc@1↑ Acc@5↑ KNN Dist↓

ResNet-18
PPA 85.63 ± 1.39 95.12 ± 0.80 0.693 ± 0.009 81.57 ± 0.25 94.85 ± 0.05 0.796 ± 0.003
+ PAA (ours) 88.75 ± 1.63 96.59 ± 0.75 0.669 ± 0.006 83.97 ± 0.29 95.78 ± 0.14 0.777 ± 0.003
+ TAA (ours) 91.68 ± 0.19 97.68 ± 0.04 0.662 ± 0.001 93.68 ± 0.05 98.84 ± 0.08 0.691 ± 0.001

DenseNet-121
PPA 82.22 ± 0.44 93.26 ± 0.39 0.708 ± 0.002 75.66 ± 0.46 90.91 ± 0.22 0.786 ± 0.002
+ PAA (ours) 85.64 ± 0.15 95.16 ± 0.50 0.684 ± 0.003 80.70 ± 0.22 93.40 ± 0.09 0.761 ± 0.003
+ TAA (ours) 87.88 ± 0.86 96.20 ± 0.41 0.687 ± 0.008 86.54 ± 0.73 95.12 ± 0.52 0.712 ± 0.004

ResNeSt-50
PPA 70.75 ± 0.41 87.43 ± 0.36 0.793 ± 0.001 71.58 ± 0.19 90.60 ± 0.28 0.827 ± 0.004
+ PAA (ours) 75.71 ± 0.06 90.48 ± 0.09 0.764 ± 0.002 73.38 ± 0.18 91.34 ± 0.16 0.807 ± 0.004
+ TAA (ours) 79.19 ± 0.63 92.28 ± 0.12 0.761 ± 0.002 84.38 ± 0.41 96.04 ± 0.21 0.753 ± 0.002

Table 5: Comparison of inversion performance with white-box MIAs in the low-resolution setting.
Target model f = VGG16 trained on Dpri = CelebA. GANs are trained on Daux = CelebA or FFHQ.

CelebA FFHQ
Method Acc@1↑ Acc@5↑ KNN Dist↓ Ratio↓ Acc@1↑ Acc@5↑ KNN Dist↓ Ratio↓
GMI (LOMMA) 94.12 98.93 1155.02 / 73.07 92.95 1288.08 /
+ PAA (ours) 94.65 (+0.53) 99.00 (+0.07) 1104.52 (-50.50) 10.79 72.11 (-0.96) 92.55 (-0.40) 1292.79 (+4.71) 11.11
+ TAA (ours) 96.36 (+2.24) 99.44 (+0.51) 1105.63 (-49.38) 4.76 81.25 (+8.18) 96.02 (+3.07) 1255.01 (-33.07) 12.38

KEDMI (LOMMA) 60.46 87.35 1275.10 / 26.32 52.65 1592.32 /
+ PAA (ours) 76.75 (+16.29) 95.55 (+8.20) 1266.46 (-8.65) 14.72 25.86 (-0.46) 52.74 (+0.09) 1595.91 (+3.59) 17.27
+ TAA (ours) 59.67 (-0.79) 86.83 (-0.52) 1364.61 (+89.51) 9.33 26.12 (-0.20) 52.95 (+0.30) 1595.83 (+3.51) 18.42

meaningful features. Notably, this rise in alignment is accompanied by a gradual decline in test
accuracy, reaffirming the trade-off between alignment and generalization.

Additionally, we evaluate model inversion performance across both vanilla and alignment-aware mod-
els with varying levels of AStr. As shown in Fig. 11(b), the trend mirrors Fig. 5: MIA vulnerability
increases with alignment up to a certain threshold, after which further increases in AStr reduce attack
success. This characteristic inverted V-shaped relationship supports our hypothesis and demonstrates
that the correlation between gradient–manifold alignment and inversion vulnerability holds across
different model architectures.

E.2 Additional Evaluations of Proposed Methods

Inversion-Time Alignment Score Comparison with PPA in High-Resolution Setting. Fig.12
shows the distribution of inversion-time alignment scores for the baseline method and our training-free
variants, PAA and TAA. These results are obtained using the PPA attack on a ResNet-18 model trained
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Table 6: Comparison of inversion performance with white-box MIAs in the low-resolution setting.
Target model f = FaceNet trained on Dpri = CelebA. GANs are trained on Daux = CelebA or FFHQ.

CelebA FFHQ
Method Acc@1↑ Acc@5↑ KNN Dist↓ Ratio↓ Acc@1↑ Acc@5↑ KNN Dist↓ Ratio↓
GMI (LOMMA) 93.66 98.25 1084.60 / 74.01 92.91 1279.53 /
+ PAA (ours) 93.73 (+0.07) 98.31 (+0.06) 1082.41 (-2.19) 11.64 74.36 (+0.35) 93.22 (+0.31) 1278.74 (-0.79) 11.27
+ TAA (ours) 96.74 (+3.08) 99.11 (+0.86) 1077.23 (-7.37) 12.60 84.90 (+10.89) 96.64 (+3.73) 1234.00 (-45.53) 15.20

KEDMI (LOMMA) 60.42 89.47 1331.94 / 30.33 61.20 1542.77 /
+ PAA (ours) 61.20 (+0.78) 89.50 (+0.03) 1342.33 (+10.39) 15.15 29.29 (-1.04) 61.05 (-0.15) 1540.16 (-2.61) 16.13
+ TAA (ours) 60.55 (+0.13) 89.50 (+0.03) 1336.16 (+4.22) 14.73 30.28 (-0.05) 61.43 (+0.23) 1540.33 (-2.44) 15.81

Table 7: Comparison of inversion performance with PLG-MI in the low-resolution setting. Target
model f = FaceNet trained on Dpri = CelebA. GANs are trained on Daux = FaceScrub or FFHQ.

FaceScrub FFHQ
Method Acc@1↑ Acc@5↑ KNN Dist↓ Ratio↓ Acc@1↑ Acc@5↑ KNN Dist↓ Ratio↓
PLG 32.06 58.17 1558.26 / 88.68 97.06 1267.12 /
+ PAA (ours) 29.93 (-2.13) 53.99 1557.11 (-1.15) 9.07 87.32 (-1.36) 96.37 1270.54 (+3.42) 9.04
+ TAA (ours) 35.99 (+3.93) 62.87 1539.27 (-18.99) 11.07 90.79 (+2.11) 97.56 1256.07 (-11.05) 11.07

on CelebA, with a StyleGAN generator pre-trained on FFHQ. Both PAA and TAA significantly shift
the alignment score distribution to the right compared to the vanilla baseline, indicating stronger
alignment between the loss gradients and the generator manifold. This enhanced alignment aligns
well with the improved gradient visualizations shown in Fig. 13.

Comparison with white-box MIAs in the low-resolution setting. In this experiment, we evaluate
the performance of two target models, namely VGG16 and FaceNet, under three attack methods: GMI
(LOMMA), KEDMI (LOMMA), and PLG-MI. Quantitative results are presented in Tabs. 5, 6, and 7.
Overall, AlignMI consistently outperforms baseline methods in most setups, achieving gains in both
attack accuracy and KNN distance across different auxiliary datasets. For example, when attacking
VGG16 using GMI (LOMMA), PAA increases top-1 accuracy from 94.12% to 94.65% on CelebA,
while TAA achieves an additional 2.54% improvement and reduces the KNN distance from 1155.02
to 1105.63. Similar trends are observed for KEDMI (LOMMA) and PLG-MI, demonstrating the
broad effectiveness of our proposed techniques. However, we also observe occasional performance
drops, particularly with PAA in certain KEDMI (LOMMA) and PLG-MI scenarios. This degradation
likely arises from the poor visual quality of reconstructions produced by certain low-resolution attacks,
especially under significant distribution shifts between the private and public auxiliary datasets. In
such cases, additional perturbations further compromise image fidelity, diminishing the effectiveness
of neighborhood sampling. As a result, the derived gradients become less informative, leading to
occasional failures in inversion.

Comparisons under SOTA MIA defenses. Our evaluation focuses on the high-resolution setting,
where we assess the effectiveness of our proposed training-free alignment enhancement methods, PAA
and TAA, when integrated with state-of-the-art (SOTA) generative model inversion attacks against
leading MIA defenses, including BiDO-HSIC [Peng et al., 2022], NegLS [Struppek et al., 2024], and
TL-DMI [Ho et al., 2024]. The results, summarized in Tab. 8, show that both PAA and TAA improve
inversion performance across all defense scenarios, with TAA consistently achieving the strongest
results. All attacks are conducted using the Plug & Play Attack (PPA) method, targeting a ResNet-152
classifier trained on Dpri = FaceScrub, with the generative prior provided by a StyleGAN model
trained on Daux = FFHQ. Detailed results are shown in Tab. 8.

For the BiDO-HSIC defense, the baseline inversion performance drops significantly, with top-1
accuracy (Acc@1) of 35.11%, top-5 accuracy (Acc@5) of 59.14%, and KNN distance of 1.031.
Integrating PAA yields moderate gains, raising Acc@1 to 39.06% and Acc@5 to 67.46%, while
reducing the KNN distance to 0.975. In contrast, TAA achieves substantial improvements, boosting
Acc@1 to 62.58% and Acc@5 to 84.09%, alongside a sharper drop in KNN distance to 0.855. This
suggests that TAA more effectively recovers semantically meaningful gradients that better align with
the generator manifold.

Under the stronger NegLS defense, which imposes stronger regularization and suppresses inversion
more aggressively, the baseline Acc@1 is just 8.40%. Although this setting presents a more chal-
lenging scenario, PAA still offers slight improvements, raising Acc@1 to 8.62% and reducing KNN
distance from 1.309 to 1.303. TAA further improves Acc@1 to 10.61% and reduces KNN distance

31



(a) (b)

Figure 12: Distribution of inversion-time alignment scores. (a) Comparison between baseline and
PAA method. (b) Comparison between baseline and TAA method. Each plot shows the distribution
of alignment scores between the inversion-time loss gradients and the generator manifold. The
measurement is performed using the PPA method with a StyleGAN generator trained on FFHQ, and
the target model is a ResNet-18 trained on CelebA. Both PAA and TAA lead to a rightward shift in
the score distribution, indicating stronger alignment with the generator manifold.

Table 8: Model inversion performance against SOTA defense methods in high-resolution settings.
Target model f = ResNet-152, trained on Dpri = FaceScrub. GAN is pre-trained on Daux = FFHQ.

Method Acc@1↑ Acc@5↑ KNN Dist↓

No Defense 57.89 81.25 0.893

BiDO-HSIC 35.11 59.14 1.031
+ PAA 39.06 (+3.95) 67.46 (+8.32) 0.975 (-0.056)
+ TAA 62.58 (+27.47) 84.09 (+24.95) 0.855 (-0.176)

NegLS 8.40 23.50 1.309
+ PAA 8.62 (+0.22) 23.67 (+0.17) 1.303 (-0.006)
+ TAA 10.61 (+2.21) 27.31 (+3.81) 1.278 (-0.031)

TL-DMI 25.14 51.72 1.026
+ PAA 34.93 (+9.79) 63.66 (+11.94) 1.022 (-0.004)
+ TAA 47.80 (+22.66) 75.51 (+23.79) 0.971 (-0.055)

to 1.278. While the absolute gains are smaller due to the strength of the defense, the consistent
improvements across all metrics indicate enhanced gradient informativeness.

Finally, the TL-DMI defense, which involves partial model freezing during fine-tuning, the baseline
attack achieves Acc@1 of 25.14%, Acc@5 of 51.72%, and KNN distance of 1.026. PAA improves
Acc@1 to 34.93% and Acc@5 to 63.66%, slightly reducing the KNN distance to 1.022. TAA again
shows superior performance, reaching Acc@1 of 47.80%, Acc@5 of 75.51%, and decreasing KNN
distance to 0.971.

Overall, across all three defenses, both PAA and TAA enhance inversion performance, with TAA
consistently outperforming PAA in all metrics. These results highlight the generality and robustness of
our alignment-enhancing framework. TAA, in particular, effectively boosts attack success rates while
recovering reconstructions that are perceptually and semantically closer to the true data distribution,
even under strong privacy-preserving defenses.

E.3 Ablation Study

In this subsection, we perform an ablation study to examine the sensitivity of our proposed AlignMI
approach to two key hyperparameters: (1) the number of samples K used to compute the smoothed,
alignment-enhanced gradients, and (2) the perturbation strength α used in the perturbation-averaged
alignment (PAA) method. All experiments are conducted using a DenseNet-121 target model trained
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Table 9: Ablation study on PAA sample size
K with α = 0.03. Higher K improves results
slightly, but gains saturate.

Method K Acc@1↑ Acc@5↑ KNN Dist↓

PPA - 77.00 92.44 0.807
+ PAA 20 79.56 93.24 0.804
+ PAA 60 78.64 92.84 0.804
+ PAA 100 78.60 93.32 0.802
+ PAA 150 79.16 93.44 0.797

Table 10: Ablation study on PAA sample size
K with α = 0.05. Higher K improves results
slightly, but gains saturate.

Method K Acc@1↑ Acc@5↑ KNN Dist↓

PPA - 77.77 92.73 0.798
+ PAA 20 82.52 94.48 0.789
+ PAA 60 82.04 94.08 0.789
+ PAA 100 81.92 94.55 0.788
+ PAA 150 82.28 94.16 0.788

Table 11: Ablation study on TAA sample size K.
Higher K yields marginal gains.

Method K Acc@1↑ Acc@5↑ KNN Dist↓
PPA - 77.77% 92.73% 0.798
+ TAA 20 87.64% 96.04% 0.748
+ TAA 60 88.28% 96.44% 0.746
+ TAA 100 88.44% 96.16% 0.745
+ TAA 150 88.16% 96.44% 0.745

Table 12: Ablation study on PAA perturbation
scale α at fixed K = 60. Increasing α improves
alignment but saturates.

Method α Acc@1↑ Acc@5↑ KNN Dist↓
PAA 0.01 74.72% 91.80% 0.822
PAA 0.03 78.64% 92.84% 0.804
PAA 0.05 82.04% 94.08% 0.789
PAA 0.10 82.84% 94.48% 0.780
PAA 0.15 79.16% 93.44% 0.797

on the FaceScrub dataset at 224× 224 resolution, with a StyleGAN generator pre-trained on FFHQ
serving as the prior model.

Effect of Sample Number K in PAA. We first investigate the influence of the sample number K
on PAA under two different perturbation strengths. As shown in Tabs. 9 and 10, we observe that
increasing K has a limited effect on attack accuracy, which remains relatively stable across settings.
However, the KNN distance continues to decrease slightly as K grows, indicating progressively finer
reconstruction fidelity. These findings suggest that while larger K offers marginal improvements,
even a relatively small sample number (e.g., K = 20) is sufficient to achieve substantial gains over the
baseline. This highlights the practicality of PAA in improving inversion performance with minimal
computational overhead.

Effect of Sample Number K in TAA. We conduct a similar evaluation for the TAA method.
As presented in Tab. 11, both attack accuracy and KNN distance improve as K increases, with
performance gains tapering off beyond K = 100. Notably, TAA achieves strong results even with
K = 20, outperforming the baseline by a significant margin. This again demonstrates that our
training-free alignment promotion strategy enhances inversion performance effectively, even with
limited sampling, thus making it computationally efficient.

Effect of Perturbation Strength α in PAA. Finally, we analyze the role of the perturbation strength
α in PAA. As shown in Tab. 12, increasing α initially boosts both attack accuracy and KNN distance,
with performance peaking around α = 0.1. However, beyond this threshold (e.g., α = 0.15),
both metrics begin to deteriorate, likely due to the perturbations introducing excessive noise that
destabilizes the model’s prediction and results in unreliable gradients. This suggests that careful
tuning of α is critical, and moderate values around 0.05 to 0.1 provide a favorable balance between
denoising and preserving informative signals.

E.4 Visualization of Gradient Images

In this subsection, we qualitatively demonstrate that both PAA and TAA produce loss gradients that
are better aligned with the generator manifold. Our analysis focuses on the high-resolution setting,
which enables high-quality visualizations of gradient structures. Figs. 13, 14, and 15 present gradient
visualizations from ResNet-18, DenseNet-121, and ResNeSt-50 models trained on CelebA. Each
figure compares gradient maps produced by the baseline, PAA, and TAA methods, using GANs
pre-trained on FFHQ. We also visualize the inversion-time loss gradient images for three attack
methods in the low-resolution setting (see Fig. 16), as a complementary comparison to Fig. 1(b).
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Figure 13: Visual comparison of inversion-time loss gradients for PPA in the high-resolution setting.
We illustrate reconstructed samples for ten classes in Dpri = CelebA using GANs pre-trained on Daux
= FFHQ. The target model is ResNet-18. (Best viewed with zoom.)

Figure 14: Visual comparison of inversion-time loss gradients for PPA in the high-resolution setting.
We illustrate reconstructed samples for ten classes in Dpri = CelebA using GANs pre-trained on Daux
= FFHQ. The target model is DenseNet-121. (Best viewed with zoom.)

Figure 15: Visual comparison of inversion-time loss gradients for PPA in the high-resolution setting.
We illustrate reconstructed samples for ten classes in Dpri = CelebA using GANs pre-trained on Daux
= FFHQ. The target model is ResNeSt-50. (Best viewed with zoom.)
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Figure 16: Visual of inversion-time loss gradients for three attack methods in the low-resolution
setting. The target model is FaceNet. (Best viewed with zoom.)

E.5 Visualization of Reconstructed Images

In this subsection, we present qualitative results of the baseline attack methods and our proposed
AlignMI approach. High-resolution reconstructions are shown in Figs. 17 and 18. Fig. 17 compares
reconstructed samples from the first ten classes using ResNet-18, DenseNet-121, and ResNeSt-50
trained on CelebA, with GANs pre-trained on FFHQ. Fig. 18 provides similar results for the same
target models trained on FaceScrub, also using FFHQ-pretrained GANs.

In low-resolution setting, we evaluate reconstruction quality by comparing samples from the first ten
classes generated by GMI (LOMMA) and KEDMI (LOMMA) attack methods. These experiments
employ VGG16 and FaceNet trained on CelebA as target models, with GANs pre-trained on both
CelebA and FFHQ datasets, as shown in Figs. 19, and 20 respectively. Additionally, we present
PLG-MI reconstructions on FaceNet using GANs trained on FFHQ and FaceScrub datasets in Fig. 21.
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Figure 17: Visual comparison in high-resolution settings. We illustrate reconstructed samples for the
first ten classes in Dpri = CelebA using GANs pre-trained on Daux = FFHQ.
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Figure 18: Visual comparison in high-resolution settings. We illustrate reconstructed samples for the
first ten classes in Dpri = FaceScrub using GANs pre-trained on Daux = FFHQ.
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Figure 19: Visual comparison in low-resolutions settings. We illustrate reconstructed samples for the
first ten classes in Dpri = CelebA using GANs trained from scratch on Daux = CelebA / FFHQ. The
target model is VGG16.
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Figure 20: Visual comparison in low-resolutions settings. We illustrate reconstructed samples for the
first ten classes in Dpri = CelebA using GANs trained from scratch on Daux = CelebA / FFHQ. The
target model is FaceNet.
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Figure 21: Visual comparison in low-resolutions settings. We illustrate reconstructed samples for
the first ten classes in Dpri = CelebA using GANs trained from scratch on Daux = FFHQ / FaceScrub.
The target model is FaceNet.
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