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ABSTRACT

Object detection remains one of the most notorious open problems in computer
vision. Despite large strides in accuracy and speed in recent years, modern object
detectors have started to saturate on popular benchmarks. How far can we push
the detection accuracy with the current deep learning tools and tricks? In this
work, by employing two popular state-of-the-art object detection benchmarks,
MMDetection and Detectron2, and analyzing more than 15 models over 4
large-scale datasets, we systematically determine the upper bound in AP, which is
91.6% on PASCAL VOC (test2007), 78.2% on MS COCO (val2017), and 58.9%
on OpenImages (V4 validation set), regardless of the IOU. These numbers are
much higher than the mAP of the best model (e.g., 58% on MS COCO according
to the most recent results). Interestingly, the gap seems to be almost closed at
IOU=0.5. We also analyze the role of context in object recognition and detection
and find that the canonical object size leads to the best recognition accuracy.
Finally, we carefully characterize the sources of errors in deep object detectors and
find that classification error (confusion with other classes and misses) explains the
largest fraction of errors and weighs more than localization error. Further, models
frequently miss small objects, more often than medium and large ones. Our work
taps into the tight relationship between object recognition and detection and offers
insights to build better object detectors. Similar analyses can also be conducted
for other tasks in computer vision such as for instance segmentation and object
tracking. The code is available at [TBA].

1 INTRODUCTION AND MOTIVATION
Object recognition is believed to be solved in computer vision witnessed by the below human-
level error rate of the state of the art models (∼3% top-5 error on ImageNet vs. ∼5% human
error rate; See Hu et al. (2018b) and Russakovsky et al. (2015)). Despite this so-called
“superhuman” performance, deep object recognition models fail miserably on slightly transformed
images (Szegedy et al., 2014; Goodfellow et al., 2014; Azulay & Weiss, 2018; Hendrycks &
Dietterich, 2019). Unlike object recognition, however, object detection1 remains largely unsolved
(64% mean Average Precision at 75% overlap on COCOval2017; Fig. 1) and results are far below
the theoretical upper bound (mAP=1). Object detection is much more challenging than object
recognition not only because precise localization is needed but also because objects can undergo
drastic transformations such as in-plane and in-depth rotation, blur, lighting, and partial occlusions.
Also, there is a larger variation in object scale in detection datasets than recognition datasets2.

Several years of active and extensive research on object detection has resulted in the accumulation
of an overwhelming amount of knowledge regarding model backbones, tips and tricks for model
training, optimization, data collection, augmentation, annotation, model evaluation, and comparison
to a point that separating the wheat from the chaff is very difficult (Zou et al., 2019; Zhang et al.,
2019). As an example, truly understanding and implementing average precision (AP) is frustratingly
difficult (See Appendix A). A quick Google search returns several blogs and codes with discrepant
explanations of AP. To make matters even worse, it is not quite clear whether AP has started to
saturate, whether progress is significant, and more importantly how far we can improve following
the current path, making one wonder maybe we have reached the peak in performance using deep
learning. Further, we do not know exactly what is holding us back from making progress in object

1The best published results over COCO test-dev2019 dataset are 61%, 79%, 68%, 74%, 64%, and
44% corresponding to AP, AP50, AP75, APl, APm, and APs, respectively. Please refer to https://
competitions.codalab.org/competitions/20794#results for the latest results on COCO.

2The median scale of the object relative to the image in ImageNet vs. COCO is 554 and 106, respectively.
Therefore, most object instances in COCO are smaller than 1% of the image area (Singh & Davis, 2018).
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Figure 1: Upper bound AP (in red) and scores of the best models using the COCO evaluation tool
(in orange; FCOS on VOC and FASHION datasets, and Hybrid Task Cascade on COCO). The black
solid line on the COCO panel belongs to the winning entry on the latest (2019) challenge on COCO
val2019 provided at https://competitions.codalab.org/competitions/20794#results
(this result was not available at the time of this study). See also https://paperswithcode.com/sota/
object-detection-on-coco-minival. Notice that the gap at AP50 is almost closed on COCO. There
is, however, still a large gap between the performance of the state of the art object detection models and the
empirical upper bound. The gap is wider over higher IOU thresholds and small objects. See Fig. 11 in Appx D.

detection, compared to human-level (although debatable) accuracy in object recognition. As such,
detection can be considered as a crucial task to assess the promises and limits of deep learning.

To shed light upon the above matters, we carefully and systematically approximate the empirical
upper bound in AP. We argue that the upper bound AP (UAP) is the score of the best object
recognition model that is trained on the training target bounding boxes and is then used to label the
test target boxes (Sections 3 and 4). We investigate whether the visual context surrounding a target
object or its overlapping bounding boxes can improve UAP, and how they impact object detection in
general (Section 5). Finally, we identify the bottlenecks in deep object detectors by characterizing
the type of errors they make and measure the impact of each error type on performance (Section
6). In a nutshell, we find that there is a large gap between the performance of the state of the
art object detection models and the empirical upper bound as shown in Fig. 1. The gap is wider at
higher IOU thresholds and over small objects. Interestingly, using the latest results on COCO dataset
(Fig. 1), the gap is very narrow at IOU=0.5 (∼2% absolute AP). This suggests that at least using
the recent models, maybe classification is solved and focus should be shifted towards localization.
This, however, needs to be investigated further with the newer error analysis tools (e.g., Bolya et al.
(2020)). The computed empirical upper bound entails that there is a hope to reach this peak with
the current tools if we can find smarter ways to adopt the object recognition models and backbones
for object detection. Over the models that we analyzed here, it seems that recognition remains the
major bottleneck in object detection and it is more critical over small objects. In other words, object
detection models inherit the critical limitation of CNNs which is the lack of invariance to natural
image corruptions and transformations (e.g., noise, blur, scale), as well as adversarial perturbations.

2 RELATED WORK

We discuss three lines of related works. The first one includes works that strive to understand
detection approaches, identify their shortcomings, and pinpoint where more research is needed.
Parikh & Zitnick (2011) aimed to find the weakest links in person detectors by replacing different
components in a pipeline (e.g., part detection, non-maxima-suppression) with human annotations.
Mottaghi et al. (2015) proposed human-machine CRFs for identifying bottlenecks in scene
understanding models. Hoiem et al. (2012) inspected detection models in terms of their localization
errors and confusion with other classes and the background over the PASCAL VOC dataset. They
also conducted a meta-analysis to measure the impact of object properties such as color, texture, and
real-world size on detection performance. Such an analysis, however, has not been conducted over
deep object detectors (done here). To overcome the shortcomings of the Hoiem et al. and COCO
analysis tools, recently Bolya et al. (2020) proposed to analyze the models by emphasizing the order
in which the errors are analyzed. Russakovsky et al. (2013) analyzed the ImageNet localization
task and emphasized on fine-grained recognition. Zhang et al. (2016) measured how far we are
from solving pedestrian detection. Vondrick et al. (2013) proposed a method for visualizing object
detection features to gain insights into their functioning. Some other related works include Li et al.
(2019), Zhu et al. (2012), Zhang et al. (2014), Goldman et al. (2019), and Petsiuk et al. (2020).

The second line concerns the research in comparing object detection models. Some works
have analyzed and reported statistics and performances over benchmark datasets such as PASCAL
VOC (Everingham et al., 2010; 2015), MS COCO (Lin et al., 2014), CityScapes (Cordts et al.,
2016), and OpenImages (Kuznetsova et al., 2018). Recently, Huang et al. (2017) performed a
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speed/accuracy trade-off analysis of modern object detectors. Dollar et al. (2011) and Borji et al.
(2015) compared person detection and salient object detection models, respectively. Michaelis et al.
(2019) assessed detection models on degraded images and observed about 30–60% performance
drop, which could be mitigated by data augmentation. To resolve the issues with the AP score, some
works have attempted to introduce alternative (e.g., Hall et al. (2018)) or complementary evaluation
measures (e.g., Oksuz et al. (2018); Rezatofighi et al. (2019)). A large number of works have
also assessed object recognition models and their robustness (e.g., Hendrycks & Dietterich (2019);
Azulay & Weiss (2018); Recht et al. (2019); Mishkin et al. (2017)).

Works in the third line study the role of context in visual recognition and object detection
(e.g., Bar (2004); Wolf & Bileschi (2006); Zhu et al. (2016); Marat & Itti (2012); Heitz & Koller
(2008); Torralba & Sinha (2001); Rabinovich et al. (2007); Rosenfeld et al. (2018); Galleguillos &
Belongie (2010)). Heitz & Koller (2008) proposed a probabilistic framework to capture contextual
information between “stuff” and “things” to improve detection. Barnea & Ben-Shahar (2019)
utilized co-occurrence relations among objects to improve the detection scores. Divvala et al. (2009)
explored different types of context in recognition. Please see also Heitz & Koller (2008), Chen et al.
(2018), Song et al. (2011), Hu et al. (2018a), Marat & Itti (2012), and Alamri & Pugeault (2019).

3 EXPERIMENTAL SETUP

Benchmarks. We establish our analysis based on two recent large-scale object detection
benchmarks: MMDetection3 (Chen et al., 2019b) and Detectron24. The former evaluates
more than 25 models. The latter includes several variants of FastRCNN (Girshick, 2015). In both
benchmarks, all MS COCO models have been trained on train2017 and evaluated on val2017. Here,
we use MMDetection to train and test additional models on a new dataset of clothing items.

Models. We consider major object detection models including several variants of the RCNN such
as FasterRCNN (Ren et al., 2015), MaskRCNN (He et al., 2017), RetinaNet (Lin et al., 2017),
GridRCNN (Lu et al., 2019), LibraRCNN (Pang et al., 2019), CascadeRCNN (Cai & Vasconcelos,
2018), MaskScoringRCNN (Huang et al., 2019), GAFasterRCNN (Zhu et al., 2019), and Hybrid
Task Cascade (Chen et al., 2019a), as well as SSD (Liu et al., 2016), FCOS (Tian et al., 2019), and
CenterNet (Zhou et al., 2019). Different backbones for each model are also taken into account.

Datasets. Four datasets including PASCAL VOC (Everingham et al., 2015), our home-brewed
FASHION dataset, MS COCO (Lin et al., 2014), and OpenImages (Kuznetsova et al., 2018) are
employed. Over VOC, we use trainval0712 for training (16,551 images, 47,223 boxes) and test2007
(4,952 images, 14,976 boxes) for testing. This dataset has 20 object categories. Our FASHION
dataset covers 40 categories of clothing items (39 + humans). Trainval, and test sets of this dataset
contain 206,530 images (776,172 boxes) and 51,650 images (193,689 boxes), respectively. Fig. 4
displays samples from this dataset (See Appendix B for more samples and statistics). This is a
challenging dataset since clothing items are non-rigid as opposed to most of the MS COCO and
VOC objects. MS COCO has 80 categories. It has carried the torch for benchmarking advances in
object detection for the past 7 years. We use train2017 for training (118,287 images, 860,001 boxes)
and val2017 (5,000 images, 36,781 boxes) for testing. Finally, we use the OpenImages V4 dataset,
used in the Kaggle competition5. It has 500 classes and contains 1,743,042 images (12,195,144
boxes) for training and 41,620 images (226,811 boxes) for validation (used here for testing).

Metrics. We use the COCO evaluation tool to measure AP at IOU thresholds of 0.5, 0.75, and
0.5:0.05:0.95. APs are calculated per class and are then averaged. We also report breakdown APs
over small (area≤ 322 pixels), medium (322 <area≤ 962), and large (area> 962) objects.

4 CHARACTERIZING THE EMPIRICAL UPPER BOUND IN AP
We define the empirical upper bound in AP as the score of the object detector that a) has access to
the true location of the objects, and b) ground truth bounding boxes are labeled by the best object
classifier. This way we essentially assume that the localization problem is solved and what remains is
only object recognition. Beware that we do not mean to undermine the importance of the localization
component. What we intend to convey is that assuming no further progress in object recognition

3https://github.com/open-mmlab/mmdetection
4https://github.com/facebookresearch/detectron2
5https://www.kaggle.com/c/open-images-2019-object-detection
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Figure 2: Top: Illustration of the
context surrounding an object,
Bottom: Object recognition
accuracy. Top rows: testing
on the canonical object size
(used in the rest of the paper;
See Appendix C for confusion
matrices.). Bottom rows: training
and testing are the same, for
example, a classifier is trained
on the object-only case 0.6 and
is then tested on the object-only
case 0.6. The best accuracy in
each row is highlighted in bold.

object only context onlyobject + context

and investing all of our efforts in solving the localization problem can lead us to this upper bound
and not beyond that. Knowing the upper bound can help us to better coordinate our efforts. This
object detector, however, might not give us the upper bound AP due to the subtleties involved in AP
calculation. Specifically, it might be possible to improve upon this detector in at least two ways:
a) by exploiting the local scene context around an object to improve the classification accuracy and
thus better UAP, and/or b) by searching among the bounding boxes around the target object (those
with a certain overlap with it) and see whether any of them can be classified better, compared to
the target box itself. This does not matter for determining the UAP at the perfect IOU (=1) but may
affect UAP at IOUs lower than one. We carefully investigate these challenges in the following.

4.1 UTILITY OF THE SURROUNDING CONTEXT

We trained ResNet152 (He et al., 2016) on target bounding boxes in 3 settings as shown in Fig. 2: 1)
object only, 2) object + context, and 3) context only. Standard data augmentation
techniques including color jittering, random horizontal flip, and random rotation (10 degrees) were
applied. Boxes were resized to 224 × 224 pixels and models were trained for 15 epochs. Trained
models were then tested on the original object boxes. Results (top-1 accuracy) are shown in Fig. 2
(bottom panel). We find that the canonical object size results in the best classification accuracy
over all four datasets. Enlarging or shrinking the object bounding box lowers the performance.
The context-only scenario results in a high classification score but still performs below other cases.
Stretching the context to the whole scene drops the performance significantly. Training and testing
models in the same condition (second row in the table; e.g., both on object+context) results in high
accuracy on that specific condition but does not lead to better overall accuracy on objects.
4.2 SEARCHING FOR THE BEST LABEL

Essentially the problem definition here is how best we can classify a target box by utilizing all
the available information in the scene. This is different from recognition models where they treat
objects in isolation. Notice that recognition accuracy is not the same as AP since detection scores
also matter in the AP calculation (i.e., detections are ranked). Having the best classifier in hand, we
are ready to approximate the UAP. Before delving into details lets recap how AP is calculated.

AP calculation. For each category, detections on all images are sorted according to their
confidences. Starting from the top of this list, the target with the highest IOU with each detection is
considered. We have a true positive (TP/hit) if the IOU is ≥ thresh, and if the target has not been
assigned before. We have a false positive (FP) if IOU< thresh (i.e., localization error) or if the
target has been assigned (i.e., duplicate; two predictions on the same target). A target box can be
matched with only one detection (the one with the highest confidence score and IOU≥ thresh). If a
detection has IOU≥ thresh with two targets, it is assigned to the one with the highest IOU which is
not assigned already. Scanning the sorted detection list again, a precision for each recall is obtained
and is used to draw the Recall-Precision (RP) curve and to compute the AP. See also Appendix A.

Strategies for labeling the boxes. We explore two strategies in pursuit of the empirical upper bound
in AP. In the first one, we apply the best classifier from the previous section to the target bounding
boxes. The detector built in this fashion gives the same AP regardless of the IOU threshold since our
detections are target boxes. As we argued above, it is not possible to improve this detector at IOU=1.
However, if we are interested in upper bound at a lower IOU threshold (γ), then it might be possible
to do better by searching among the candidate boxes near a target box and choose the one that can be
classified better than the target box, or by aggregating the information from all nearby boxes. Thus,
in our second strategy, we sample boxes around an object and either apply the original classifier
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Figure 3: A: Illustration of
our setup for finding boxes
with IOU ≥ γ with the target
box (corresponding to αβ =
2γ/(1 + γ); αβ = 2/3 for
IOU = 0.5), B: The solutions
are 4 curves represented by Eqs.
4 to 7. Four sample rectangles
are shown with dashed lines.
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(trained on the canonical object size) or train and test new classifiers on the surrounding boxes. In
any case, we always keep the target box but change its label and/or its classification confidence.
First, let’s take a look at our box sampling strategy, which is illustrated in Fig. 3.

Sampling boxes at IOU threshold ≥ γ. We are interested in finding the coordinates of the top-left
corner of all rectangles6 with IOU ≥ γ

(
γ ≤ 1

)
with the ground-truth bounding box. We use the

coordinate system centered at the top-left corner P of the target box (the PQRS rectangle; shown
in black) which can be easily converted to the image level coordinate frame. Let’s first find the
relationship between the coordinates of the point marked with * (< u, v >) and overlap threshold
γ. According to the illustration in Fig. 3.A, we have:

R1 = uv, R2 = UV, IOU = γ, IOU =
R1

2R2−R1 (1)

From these equations and assuming u = αU and v = βV , it is easy to derive the following
equations:

R1 = αUβV , R1 =
2γ

1 + γ
R2 (2)

and from there we obtain:
αβ =

2γ

1 + γ
, (αβ =

2

3
for γ = 0.5) (3)

The same equation governs the coordinates of the bottom-left, top-left, and top-right corners of the
rectangles intersecting with the target box at points Q, R, and S, respectively (in the coordinate
frames centered at each of these points, in order). Calculating the top-left corner of these rectangles
(in their corresponding coordinate frames) and representing them in the coordinate frame of the
image, we arrive at the following four equations (notice that these are curves not lines):

ZP :
〈
(α− 1)U + xP , (β − 1)V + yP

〉
(4)

ZQ :
〈
(1− α)U + xP , (β − 1)V + yP

〉
(5)

ZR :
〈
(1− α)U + xP , (1− β)V + yP

〉
(6)

ZS :
〈
(α− 1)U + xP , (1− β)V + yP

〉
(7)

∀ α, β ≤ 1, s.t. αβ =
2γ

1 + γ
(8)

Dataset Acc. Most Confident Box Most Frequent Label
AP APl APm APs AP APl APm APs

VOC 93.7 88.7 91.7 81.4 63.8 89.1 92.0 82.9 60
FASHION 87.4 68.1 68.6 61.9 49.5 67.7 68.2 60.7 47.8
COCO 84.8 76.9 81.8 80.6 62.8 76.4 82.0 80.4 60.7

Table 1: Upper bound AP according to our second strategy
(i.e., searching for the best bounding box or object label near a target
box; among boxes with IOU ≥ 0.5). Notice that upper bound for
AP, AP0.5, and AP0.75 are all the same. Underlined numbers show
where we could improve upon the first strategy.

Using above equations, we sample
m (here m=4) rectangles with
IOU ≥ γ (Fig. 3.B) and label
them with the label of the target
box. We then train a new classifier
(same ResNet152 as above) on these
boxes. This is effectively a new data
augmentation technique. Notice that
UAP is the direct consequence of the
classification accuracy, meaning if
we can classify objects better, we can reach a higher UAP. To estimate UAP, we samplem rectangles
around a target box (with IOU ≥ γ), and then label the target box with a) the label (and confidence)
of the bounding box with the highest classification score (i.e., the most confident box), or b) the
most frequent label among the nearby boxes (with the maximum confidence score among them).

4.3 UPPER BOUND AP RESULTS

Here, we report classification scores, upper bound APs, the score of the models (mean AP over all
IOUs; unless specified otherwise), and the breakdown AP over categories. See also Appendix E.

6Here, we assume that all boxes have the same width and height as the target box. The solution can be easily
extended to the case where rectangles are non-homogeneous.
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Figure 4: Top: UAP
and Model APs over the
PASCAL VOC dataset using
VOC (left) and COCO AP
evaluation codes (right).
Categories are sorted
according to the average
model AP. Bar charts on
the top show classification
accuracy. Solid red and
dashed black lines represent
upper bound AP, and the
best model AP, respectively.
Bottom: UAP and model
APs over the Fashion dataset.
On some rare occasions
(e.g., tunics; often small
objects), UAP is lower
than the model AP possibly
because our classifier has
to elicit a decision for any
box, thus it may generate
more false positives than a
model that misses objects
(i.e., we do not have misses).
This may result in a lower
precision for some classes
for our UAP than a model,
but our setup has a higher
recall. See also Appendix E.
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Comparison of strategies. Summary results of the first strategy are shown in Fig. 1. As expected
UAPs over all IOUs are the same and are much better than the model APs. Contrary to our
expectation, the second strategy did not lead to higher UAPs, except in a few cases (over medium
and small objects over the FASHION dataset using the most confident boxes), as shown in Table 1.
Applying the original classifier, instead of training new ones on surrounding boxes, or sampling
only boxes with higher IOU thresholds (e.g., γ = 0.9) did not improve the results. Also, setting the
confidence of the detections to 1 lowered the UAP. We attribute the failure of the second strategy to
the fact that the surrounding boxes may contain additional visual content which may introduce noise
in the labels. This leads to lower classification accuracy and hence a lower UAP. Therefore, in what
follows we only discuss the results using the first strategy.

PASCAL VOC. Fig. 4 (top) shows results using both VOC and MS COCO evaluation tools. The
VOC evaluation code is based on IOU=0.5 and calculates the area under the PR curve slightly
differently than the COCO code. For VOC, we adopt the code from the CenterNet repository. We
have trained and tested 5 models on VOC dataset including FasterRCNN, FCOS, SSD512, and two
variants of CenterNet. The classification accuracy over VOC is very high (94.8%). Consequently,
the UAP is high (91.6% using the MS COCO code). FCOS model does the best here with the AP of
47.9% (right panel in Fig. 4; dashed lines). As can be seen, there is a large gap between the AP of the
best model and the UAP on this dataset (∼45 AP units). Models behave similarly across categories.

FASHION. Results are shown in Fig. 4 (bottom). The best classification accuracy on this dataset is
88.8% (Fig. 2). The UAP is 71.2% and the AP of the best model is 59.7% (FCOS). Interestingly,
FCOS performs very close to the upper bound at IOU=0.5 (Fig. 1). Models perform better here than
over the VOC. The FASHION UAP is lower than the VOC UAP perhaps because classification
is more challenging on the FASHION dataset. The gap between UAP and model AP here,
however, is much narrower than VOC. This could be partly because FASHION scenes have less
clutter and larger objects than the VOC scenes. While per-class UAP is above the AP of the
best model on all VOC classes, over the FASHION dataset UAP falls below the best model AP
over five categories (messenger bags, tunics, long sleeve shirts, blouses,
rompers). Looking at the classification scores, we find that these categories are hard to classify.

MS COCO. Borrowing the MMDetection benchmark and adding the results from CenterNet to it,
we end up comparing 15 models (71 in total; the combination of models and backbones). The
best models on this dataset are Hybrid Task Cascade model (Chen et al., 2019a) and Cascade
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Figure 5: Detection APs over MS COCO dataset borrowed from the Detectron2 benchmark. The black dash
line corresponds to the best model among the models we analyzed (the score shown with “*”). The black solid
line shows the most recent results (the score shown with “+”). See Appx. D for results over the MMDetection.

MaskRCNN (Cai & Vasconcelos, 2018), with APs of 46.9% and 45.7%, respectively. See also
Fig. 11 in Appx. D. The UAP on COCO is about 78.2% which is about 35% (absolute difference)
above the AP of the best model (∼20 above the most recent model). Recall that UAP does not depend
on the IOU threshold since detected boxes are ground-truth targets. The gap is much smaller at AP50
which is about 10%7. The UAP over small objects is much lower than the UAP over large objects.
This also holds for models. The gap between the UAP and model AP over small objects is about 35
AP unit which is much wider than the corresponding gap over medium or large objects. Breakdown
APs over object categories are shown in Fig. 5. For this, we use the Detectron2 benchmark which
reports per-category results mainly over RCNN model family. We noticed that aggregate scores
on MMDetection and Detectron2 are quite consistent. Among 18 variants of FasterRCNN and
MaskRCNN, the best model has the AP of 44.3 (shown by the dashed line) which is lower than
the best available model on COCO (58%; Fig. 1) and the UAP. Among the 80 object categories,
only three (snowboard, toothbrush, toaster) have UAPs below the best model APs.

Open Images. This dataset (Kuznetsova et al., 2018) is the latest endeavor in object detection and
is much more challenging than its predecessors. Our classifier achieves 69.0% top-1 accuracy on
the validation set of OpenImages V4 which is lower than the other three datasets. We obtain the
UAP of 58.9%, using the TensorFlow evaluation code for computing the AP score on this dataset,
which is slightly different than the COCO AP calculation tool (here we discarded grouping and
super-category). We are not aware of any model scores on this particular set of OpenImages V4.
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Figure 6: Correlation between the classification accuracy and
upper bound AP. The higher the accuracy, the better the UAP.

UAP vs. classification accuracy.
We found that there is a linear
positive correlation (R2 = 0.81 on
MS COCO) between the UAP and
the classification accuracy as shown in
Fig. 6. The higher the classification
accuracy, the higher the UAP. We
did not find a correlation between the
accuracy and model APs, nor between
the object size and accuracy (or UAP).

5 ANALYSIS OF CONTEXT
We did not find a significant benefit from the context in classifying objects and measuring UAP. How
important is context in detecting objects? To find out, we generated three types of stimuli in which
a single object 1) was placed in a white background (white BG), 2) was placed in a white noise
background (noise BG), or 3) cropped off the image (crop). The number of generated images is
equal to the number of objects (carried out over COCO), thus results in these cases are comparable.

7The best available scores on COCOval2017 are shown in Fig. 1. Interestingly, the gap at AP50 is almost
closed (∼2). There is, however, still a large gap at AP over all IOUs, and also over medium and small objects.
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Figure 7: Top: Sample images placed
in white and white noise backgrounds
as well as the cropped objects (which
were shown to the models in isolation).
Please see also Appendix G for more
samples. Bottom: Performance of four
object detectors. Models perform very
poorly on cropped objects, especially
on small objects. This finding agrees
with Rosenfeld et al. (2018) where they
found that object detectors fail to detect
objects out of their contexts (e.g., an
elephant in the living room).

crop

According to Fig. 7, models perform about the same over white BG and noise BG cases but much
lower than when applied to the original images (See Fig. 1). This suggests that detectors are
indeed relying on context (but perhaps in a different manner than humans). This explains why they
sometimes miss objects out of their context as shown in Rosenfeld et al. (2018). Models performed
terribly over the cropped (and resized to meet the required input size) objects. We also tested the
models on objects that were cropped and resized such that their smallest dimension became 300
pixels (while preserving the aspect ratio). The performance was still very poor (See Appendix F).
This indicates that detectors are overfitted to the scale of objects seen during training. In all of three
cases, models are hindered much more on small objects than over medium or large ones.
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Figure 8: Quantifying the contribution of error types in
models using the COCO analysis tool (@ IOU=0.5).

To pinpoint the shortcomings of models,
we follow the analysis by Hoiem et al.
(2012) over deep object detectors. We
start from the original detection set and
progressively measure the impact of fixing
different error types on mAP (@IOU=0.5).
As Fig. 8 shows, over the MS COCO
dataset, confusion with the background
(BG) and misses (FN) account for most
of the errors across the three models.
Over VOC, a fewer number of objects are
missed compared to COCO. Also, objects
are less confused with each other on this
dataset since categories are fewer and are
more distinct. Over the FASHION dataset,
confusion with similar and other classes
plays a significant role (more than other
datasets) since several object categories
resemble each other (e.g., henleys vs. polos or slippers vs. sandals). Among models, it seems that
MaskRCNN misses more objects that others, while CenterNet often confuses background regions
as objects. Fig. 15 (Appendix G) shows the breakdown of errors over small, medium, and large
objects. As expected, models obtain a much higher mAP over large objects than small ones. A lot
of background regions, however, are still classified as large objects. Small objects are missed more
frequently followed by medium and large ones, in order.

7 EPILOGUE
We found that a) considering the most recent results, models still perform significantly below what is
empirically possible, and b) the performance gap is wider over small objects, and models are highly
accustomed to the scales of objects seen during training. Our finding that the gap at IOU=.5 is
almost closed, suggests that perhaps the bottleneck in object detection has shifted from recognition
(witnessed by our analysis in Fig. 8) to localization (using the latest results). However, this requires
the use of newer and more effective error analysis tools (such as the one proposed by Bolya et al.
(2020)) for further inspection. We did not find a significant benefit from the surrounding context
of an object or its nearby overlapping boxes to improve the UAP. A further investigation of this
with extensive data augmentation and optimization may increase UAP but is unlikely to change it
drastically. We invite researchers to periodically, as better recognition models emerge, update the
upper bound in detection scores, and also scores on other tasks that depend on object recognition.
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A AVERAGE PRECISION (AP) CALCULATION

A step by step explanation for AP calculation8:

Firstly, AP is a “per-class” measure. For a class, the 5 step process to compute the AP is as follows:

1. For the entire dataset, sort all the detections labeled with the same class with respect to
their confidence scores.

2. Now, go over this sorted detection list and check whether each detection can be assigned
to a ground-truth. The assignment (or labeling as a True Positive) is based on Intersection
Over Union (IoU) of the detection with a ground truth. There is a true positive validation
threshold in terms of IoU and it is generally 0.5. In this step, note that a ground truth can be
matched with only one detection (and this detection is the one with the highest confidence
score since we go over a sorted list).

3. At the end of the previous step, we have identified the True Positive (TP) detection boxes,
False Positive (FP) detection boxes and False Negative (FN) ground truth boxes. So, by
going over the sorted detection list again, we can find precision for each recall to draw the
Recall-Precision (RP) curve. The blue curve in Fig. 9 is the RP curve.

4. To discard the wiggles of the RP curve, at some recall point interpolate the blue curve to
the highest precision possible at the positive side of this recall point. Thus, the red curve,
called the interpolated RP curve, is obtained.

5. Finally, there are 3 different methods to compute the AP using the interpolated RP curve:
• “area under the curve approach”: simply compute the area under this curve to find the

AP. This is used in ImageNet Object Detection Challenge.
• “arithmetic average approach”: divide the recall domain into evenly spaced slices,

check precision values at these recall values and get their average. Older Pascal VOC
metric used to compute the AP in this way by using 11 recall points.

• MS COCO style AP: It is an extended version of the arithmetic average approach. It
uses 101 recall points and computes AP for 10 different TP validation threshold(0.5,
0.55, 0.6,. . . ,0.95) in terms of IoU in order to implicitly include localization error. So
indeed, it is “the arithmetic average of the arithmetic average approach” on different
TP validation thresholds.

Mean Average Precision (mAP in short) is the performance measure that is assigned to an
object detector (not to a single class). In all three cases, mAP is the average of APs over
classes.

Figure 9: Illustration of AP calculation.

8Modified from https://medium.com/@kemal.oksz/which-one-to-measure-the-performance-of-object-
detectors-ap-or-olrp-936d072a6eb0
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B SAMPLE IMAGES AND STATISTICS FROM THE FASHION DATASET

Test

Train Test

A

B

C

Train

Figure 10: Statistics of the FASHION dataset. A) Sample images along with predictions by the FCOS model,
B) Percentage of annotated bounding boxes and images in train and test sets, and C) Aspect ratio, object size,
and number of objects per image.
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C CONFUSION MATRICES OF THE CLASSIFIERS TRAINED AND TESTED ON
THE ORIGINAL IMAGE SIZE (CORRESPONDING TO TABLE 1).
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D UAP AND MODEL APS ON MMDETECTION BENCHMARK

Figure 11: APs over COCO dataset borrowed from the MMDetection benchmark. We add CenterNet results
to MMDetection.
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E SUMMARY OF UAP AND MODEL APS OVER DATASETS

Score VOC FASHION COCO
Avg. Prec. (AP) @[ IoU=0.50:0.95 — area= all — maxDets=100 ] 0.916 47.3 47.9 0.712 0.541 0.597 0.782 0.364 0.428
Avg. Prec. (AP) @[ IoU=0.50 — area= all — maxDets=100 ] 0.916 71.3 71.0 0.712 0.698 0.711 0.782 0.584 0.626
Avg. Prec. (AP) @[ IoU=0.75 — area= all — maxDets=100 ] 0.916 52.6 51.4 0.712 0.614 0.647 0.782 0.391 0.457
Avg. Prec. (AP) @[ IoU=0.50:0.95 — area= small — maxDets=100 ] 0.707 08.6 11.1 0.457 0.108 0.182 0.635 0.215 0.265
Avg. Prec. (AP) @[ IoU=0.50:0.95 — area=medium — maxDets=100 ] 0.861 30.7 32.1 0.614 0.315 0.376 0.816 0.400 0.469
Avg. Prec. (AP) @[ IoU=0.50:0.95 — area= large — maxDets=100 ] 0.941 58.1 58.4 0.721 0.570 0.627 0.846 0.466 0.545
Avg. Rec. (AR) @[ IoU=0.50:0.95 — area= all — maxDets= 1 ] 0.579 40.3 41.2 0.662 0.618 0.692 0.483 0.304 0.345
Avg. Rec. (AR) @[ IoU=0.50:0.95 — area= all — maxDets= 10 ] 0.908 53.8 58.5 0.767 0.712 0.822 0.797 0.489 0.552
Avg. Rec. (AR) @[ IoU=0.50:0.95 — area= all — maxDets=100 ] 0.930 54.1 59.5 0.774 0.714 0.824 0.812 0.514 0.582
Avg. Rec. (AR) @[ IoU=0.50:0.95 — area= small — maxDets=100 ] 0.736 11.2 19.5 0.504 0.194 0.303 0.663 0.324 0.388
Avg. Rec. (AR) @[ IoU=0.50:0.95 — area=medium — maxDets=100 ] 0.877 36.9 45.2 0.660 0.499 0.639 0.843 0.554 0.628
Avg. Rec. (AR) @[ IoU=0.50:0.95 — area= large — maxDets=100 ] 0.954 65.7 70.2 0.782 0.742 0.850 0.893 0.645 0.735

Table 2: Precision and recall upper bounds over the three datasets (all scores). Columns under each model in
order are UAP, worst model score and best model score among models we tried.
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F RESULTS OF CONTEXT ANALYSIS

Figure 12: A state-of-the-art object detector (Faster-RCNN; trained on COCO dataset) is able to detect multiple
objects in a living-room (a), but it fails to detect a transplanted object (elephant) out of its context. Rosenfeld
et al. (2018) showed that a transplanted object a) may occasionally become undetected or be detected with sharp
changes in confidence, b) may be classified as another object, and/or c) cause other objects to switch identity,
bounding box, or disappear (image reproduced from (Rosenfeld et al., 2018)).

Figure 13: Sample images used in the context analysis experiments. Top row) single objects in white
background, single objects in white noise background, Bottom row) cropped objected (no resizing), cropped
and resized objects (width=300).
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Figure 14: Complete results of the context analysis experiments.
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G ERROR DIAGNOSIS BASED ON OBJECT SIZE
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Figure 15: Error analysis of models based on the object size over the MS COCO dataset.
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H DETAILED UAP AND MODEL AP OVER DATASETS

% ---------------- Per-category upper-bound AP results -------------

% COCO dataset
˜˜˜˜ Mean and per-category AP @ IoU=[0.50,0.95] ˜˜˜˜
78.2
person:96.7
bicycle:85.0
car:86.8
motorcycle:89.4
airplane:94.4
bus:81.8
train:89.0
truck:57.3
boat:78.5
traffic light:83.9
fire hydrant:88.7
stop sign:92.1
parking meter:75.0
bench:64.0
bird:75.8
cat:89.6
dog:81.6
horse:84.5
sheep:84.6
cow:82.4
elephant:93.6
bear:80.6
zebra:97.9
giraffe:97.0
backpack:51.6
umbrella:85.0
handbag:62.1
tie:76.5
suitcase:67.3
frisbee:87.2
skis:84.9
snowboard:60.1
sports ball:79.3
kite:80.6
baseball bat:80.0
baseball glove:67.0
skateboard:86.5
surfboard:76.7
tennis racket:87.9
bottle:83.2
wine glass:72.8
cup:72.7
fork:74.8
knife:65.4
spoon:59.0
bowl:79.4
banana:85.2
apple:68.1
sandwich:57.5
orange:79.7
broccoli:94.0
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carrot:81.1
hot dog:63.0
pizza:82.9
donut:79.0
cake:67.6
chair:76.7
couch:59.9
potted plant:86.7
bed:70.2
dining table:74.1
toilet:83.7
tv:88.0
laptop:76.1
mouse:82.8
remote:79.8
keyboard:86.6
cell phone:69.6
microwave:83.6
oven:79.1
toaster:50.0
sink:85.3
refrigerator:85.4
book:85.2
clock:88.4
vase:64.5
scissors:73.7
teddy bear:81.9
hair drier:49.4
toothbrush:62.1

˜˜˜˜ Summary metrics ˜˜˜˜
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.782
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.782
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.782
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.635
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.816
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.846
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.483
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.797
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.812
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.663
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.843
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.893

--------------------------------------------------------------------------------------------

% FASHION dataset
˜˜˜˜ Mean and per-category AP @ IoU=[0.50,0.95] ˜˜˜˜
71.2
suitcoats_blazers:79.3
hoodies:56.1
shoes:88.5
messengerbags:32.3
jeans:79.2
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tanks_camis:77.6
tunics:25.4
coats_jackets:74.3
sunhats_cowboyhats:94.5
handbags:86.4
scarves_wraps:74.7
sweaters:58.6
dresses:92.1
pants:71.8
clutches:76.8
shorts:85.8
leggings:59.1
boots:79.8
jumpsuits:75.2
sandals:64.5
tees:72.4
beanieknitcaps:91.4
slippers:53.1
blouses:48.0
skirts:92.5
glasses:97.7
watches:97.6
henleys:16.6
buttondowns:77.2
berets:66.0
longsleeveshirts:42.8
ties:95.6
backpacks:88.9
rompers:59.1
baseballcaps:84.0
overalls:63.9
vests:67.1
polos:80.3
cardigans:22.4
humans:97.9

˜˜˜˜ Summary metrics ˜˜˜˜
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.712
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.712
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.712
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.457
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.614
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.721
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.662
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.767
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.774
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.504
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.660
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.782

--------------------------------------------------------------------------------------------
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% PASCAL VOC dataset
˜˜˜˜ Mean and per-category AP @ IoU=[0.50,0.95] ˜˜˜˜
91.6
aeroplane:97.9
bicycle:94.4
bird:87.8
boat:89.6
bottle:93.6
bus:92.4
car:96.6
cat:94.7
chair:88.4
cow:87.6
diningtable:86.9
dog:89.6
horse:88.9
motorbike:92.4
person:96.7
pottedplant:94.9
sheep:93.0
sofa:74.8
train:96.0
tvmonitor:95.0

˜˜˜˜ Summary metrics ˜˜˜˜
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.916
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.916
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.916
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.707
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.861
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.941
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.579
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.908
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.930
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.736
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.877
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.954
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---------------- Performance of the models on the original images -------------

---------------- COCO dataset -------------

% FasterRCNN
˜˜˜˜ Mean and per-category AP @ IoU=[0.50,0.95] ˜˜˜˜
36.4
person:51.2
bicycle:27.1
car:40.5
motorcycle:38.0
airplane:58.6
bus:58.4
train:53.5
truck:30.6
boat:25.3
traffic light:26.0
fire hydrant:62.0
stop sign:63.4
parking meter:42.2
bench:20.6
bird:31.2
cat:55.3
dog:53.3
horse:51.6
sheep:45.4
cow:51.3
elephant:56.2
bear:60.2
zebra:60.6
giraffe:61.1
backpack:14.2
umbrella:32.5
handbag:11.5
tie:29.4
suitcase:32.6
frisbee:60.5
skis:19.8
snowboard:28.7
sports ball:41.2
kite:37.6
baseball bat:22.0
baseball glove:31.9
skateboard:44.4
surfboard:33.0
tennis racket:41.3
bottle:36.1
wine glass:32.3
cup:38.5
fork:25.0
knife:12.9
spoon:11.6
bowl:38.7
banana:19.6
apple:17.9
sandwich:31.5
orange:28.3
broccoli:21.6
carrot:18.6
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hot dog:26.1
pizza:45.4
donut:41.7
cake:32.1
chair:23.4
couch:35.4
potted plant:24.1
bed:33.4
dining table:23.0
toilet:51.3
tv:51.3
laptop:53.2
mouse:57.8
remote:25.4
keyboard:47.3
cell phone:32.0
microwave:51.6
oven:26.5
toaster:42.8
sink:33.0
refrigerator:43.9
book:13.6
clock:47.9
vase:33.3
scissors:19.4
teddy bear:40.1
hair drier:3.3
toothbrush:16.2

˜˜˜˜ Summary metrics ˜˜˜˜
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.364

Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.584

Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.391

Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.215

Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.400

Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.466

Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.304

Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.489

Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.514

Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.324

Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.554

Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.645

--------------------------------------------------------------------------------------------
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% FCOS
˜˜˜˜ Mean and per-category AP @ IoU=[0.50,0.95] ˜˜˜˜
42.8
person:55.2
bicycle:31.1
car:44.1
motorcycle:40.9
airplane:66.8
bus:69.2
train:65.4
truck:40.0
boat:27.9
traffic light:27.7
fire hydrant:68.8
stop sign:66.8
parking meter:48.9
bench:24.4
bird:39.0
cat:72.7
dog:66.0
horse:60.5
sheep:52.7
cow:61.1
elephant:65.8
bear:75.2
zebra:68.3
giraffe:68.5
backpack:17.5
umbrella:40.2
handbag:17.7
tie:33.4
suitcase:41.2
frisbee:67.6
skis:22.8
snowboard:33.9
sports ball:45.2
kite:42.7
baseball bat:28.2
baseball glove:37.8
skateboard:54.7
surfboard:37.0
tennis racket:49.2
bottle:40.3
wine glass:38.5
cup:45.1
fork:32.8
knife:16.9
spoon:15.8
bowl:41.1
banana:22.1
apple:22.4
sandwich:34.6
orange:32.2
broccoli:20.9
carrot:21.5
hot dog:34.5
pizza:53.5
donut:49.8
cake:38.3
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chair:29.8
couch:42.7
potted plant:27.7
bed:39.6
dining table:24.5
toilet:61.7
tv:56.4
laptop:59.8
mouse:62.0
remote:34.0
keyboard:48.8
cell phone:38.0
microwave:60.3
oven:36.2
toaster:49.2
sink:36.6
refrigerator:56.5
book:14.4
clock:50.8
vase:37.7
scissors:30.6
teddy bear:50.8
hair drier:17.8
toothbrush:23.4

˜˜˜˜ Summary metrics ˜˜˜˜
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.428

Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.626

Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.457

Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.265

Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.469

Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.545

Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.345

Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.552

Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.582

Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.388

Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.628

Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.735

--------------------------------------------------------------------------------------------
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% RetinaNet
˜˜˜˜ Mean and per-category AP @ IoU=[0.50,0.95] ˜˜˜˜
40
person:51.7
bicycle:30.4
car:41.3
motorcycle:42.4
airplane:61.6
bus:65.0
train:61.9
truck:37.8
boat:25.7
traffic light:26.5
fire hydrant:65.8
stop sign:65.1
parking meter:50.0
bench:24.5
bird:34.4
cat:68.3
dog:65.4
horse:58.2
sheep:50.4
cow:56.4
elephant:62.8
bear:70.0
zebra:64.0
giraffe:64.7
backpack:17.8
umbrella:38.0
handbag:15.8
tie:30.0
suitcase:36.0
frisbee:64.3
skis:20.4
snowboard:25.5
sports ball:42.8
kite:38.4
baseball bat:25.5
baseball glove:34.6
skateboard:51.6
surfboard:33.7
tennis racket:46.5
bottle:36.7
wine glass:36.1
cup:43.2
fork:28.6
knife:14.3
spoon:14.0
bowl:40.7
banana:24.1
apple:21.6
sandwich:34.9
orange:31.1
broccoli:21.9
carrot:19.9
hot dog:32.7
pizza:49.9
donut:45.4
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cake:36.3
chair:26.7
couch:42.1
potted plant:25.0
bed:41.0
dining table:25.9
toilet:60.4
tv:56.7
laptop:58.5
mouse:62.0
remote:29.0
keyboard:47.4
cell phone:36.7
microwave:56.1
oven:33.1
toaster:21.5
sink:36.4
refrigerator:51.2
book:14.0
clock:50.1
vase:35.7
scissors:31.1
teddy bear:44.0
hair drier:3.7
toothbrush:17.5

˜˜˜˜ Summary metrics ˜˜˜˜
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.400

Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.609

Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.430

Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.235

Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.444

Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.526

Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.328

Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.522

Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.555

Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.361

Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.599

Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.704

--------------------------------------------------------------------------------------------
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% SSD
˜˜˜˜ Mean and per-category AP @ IoU=[0.50,0.95] ˜˜˜˜
29.3
person:40.4
bicycle:22.0
car:30.5
motorcycle:31.5
airplane:50.1
bus:55.9
train:55.7
truck:27.8
boat:16.3
traffic light:14.7
fire hydrant:49.7
stop sign:50.6
parking meter:35.0
bench:16.3
bird:23.7
cat:53.0
dog:51.6
horse:46.8
sheep:37.9
cow:42.6
elephant:52.9
bear:60.3
zebra:55.1
giraffe:54.2
backpack:7.7
umbrella:28.1
handbag:6.7
tie:17.6
suitcase:21.9
frisbee:41.7
skis:13.3
snowboard:20.2
sports ball:29.7
kite:26.2
baseball bat:14.9
baseball glove:21.2
skateboard:35.9
surfboard:23.5
tennis racket:30.2
bottle:20.3
wine glass:20.4
cup:28.6
fork:15.1
knife:6.2
spoon:5.6
bowl:31.3
banana:14.8
apple:13.9
sandwich:28.5
orange:23.4
broccoli:17.0
carrot:13.0
hot dog:24.0
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pizza:41.2
donut:32.3
cake:25.8
chair:17.3
couch:33.7
potted plant:16.6
bed:35.8
dining table:22.8
toilet:51.3
tv:46.7
laptop:49.4
mouse:44.3
remote:12.5
keyboard:37.8
cell phone:24.3
microwave:46.4
oven:27.8
toaster:7.0
sink:25.4
refrigerator:40.5
book:7.4
clock:37.8
vase:22.8
scissors:22.6
teddy bear:33.9
hair drier:0.2
toothbrush:7.1

˜˜˜˜ Summary metrics ˜˜˜˜
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.293

Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.492

Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.308

Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.118

Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.341

Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.447

Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.264

Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.400

Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.425

Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.173

Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.488

Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.607

--------------------------------------------------------------------------------------------
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% ---------------- FASHION dataset -------------

% FCOS
˜˜˜˜ Mean and per-category AP @ IoU=[0.50,0.95] ˜˜˜˜
59.7
suitcoats_blazers:74.2
hoodies:53.9
shoes:72.0
messengerbags:36.3
jeans:69.4
tanks_camis:63.9
tunics:43.3
coats_jackets:63.7
sunhats_cowboyhats:80.8
handbags:59.1
scarves_wraps:39.6
sweaters:57.9
dresses:88.1
pants:68.5
clutches:55.8
shorts:66.0
leggings:51.9
boots:70.3
jumpsuits:69.9
sandals:64.7
tees:66.4
beanieknitcaps:72.7
slippers:51.2
blouses:58.3
skirts:85.6
glasses:69.8
watches:57.9
henleys:5.0
buttondowns:65.3
berets:39.7
longsleeveshirts:51.6
ties:59.3
backpacks:74.9
rompers:63.1
baseballcaps:57.4
overalls:49.3
vests:34.4
polos:75.2
cardigans:13.2
humans:88.1

˜˜˜˜ Summary metrics ˜˜˜˜
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.597

Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.711

Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.647

Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.182

Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.376
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Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.627

Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.692

Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.822

Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.824

Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.303

Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.639

Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.850

--------------------------------------------------------------------------------------------

% MaskRCNN
˜˜˜˜ Mean and per-category AP @ IoU=[0.50,0.95] ˜˜˜˜
54.1
suitcoats_blazers:72.8
hoodies:47.0
shoes:66.1
messengerbags:29.3
jeans:64.8
tanks_camis:57.6
tunics:40.3
coats_jackets:65.8
sunhats_cowboyhats:71.9
handbags:52.1
scarves_wraps:31.9
sweaters:54.1
dresses:83.9
pants:62.0
clutches:46.9
shorts:59.1
leggings:43.4
boots:62.2
jumpsuits:66.4
sandals:57.8
tees:60.6
beanieknitcaps:60.7
slippers:42.1
blouses:52.6
skirts:78.8
glasses:64.7
watches:51.3
henleys:7.7
buttondowns:60.6
berets:24.8
longsleeveshirts:45.5
ties:56.6
backpacks:66.2
rompers:54.2
baseballcaps:48.5

34



Under review as a conference paper at ICLR 2021

overalls:43.9
vests:37.0
polos:68.3
cardigans:19.3
humans:86.2

˜˜˜˜ Summary metrics ˜˜˜˜
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.541

Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.698

Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.614

Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.108

Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.315

Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.570

Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.618

Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.712

Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.714

Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.194

Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.499

Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.742

--------------------------------------------------------------------------------------------

% CenterNet
˜˜˜˜ Mean and per-category AP @ IoU=[0.50,0.95] ˜˜˜˜
54
suitcoats_blazers:72.4
hoodies:48.8
shoes:65.2
messengerbags:25.1
jeans:63.8
tanks_camis:58.8
tunics:39.8
coats_jackets:66.2
sunhats_cowboyhats:71.7
handbags:56.5
scarves_wraps:36.0
sweaters:55.4
dresses:78.4
pants:58.5
clutches:48.2
shorts:59.5
leggings:40.0
boots:62.5
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jumpsuits:60.1
sandals:53.5
tees:62.4
beanieknitcaps:58.0
slippers:41.9
blouses:51.8
skirts:80.7
glasses:62.7
watches:47.4
henleys:9.7
buttondowns:61.5
berets:33.6
longsleeveshirts:45.6
ties:54.7
backpacks:68.8
rompers:59.7
baseballcaps:49.8
overalls:46.0
vests:36.0
polos:67.0
cardigans:20.8
humans:79.8

˜˜˜˜ Summary metrics ˜˜˜˜
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.540
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.681
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.589
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.124
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.318
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.568
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.649
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.815
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.817
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.269
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.577
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.846
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.303
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.639
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.850
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% ---------------- VOC results using COCO evaluation code -------------

% Upper bound
Average Precision (AP) @[ IoU=50:95 | area= all | maxDets=100 ] = 91.6
Average Precision (AP) @[ IoU=50 | area= all | maxDets=100 ] = 91.6
Average Precision (AP) @[ IoU=75 | area= all | maxDets=100 ] = 91.6
Average Precision (AP) @[ IoU=50:95 | area= small | maxDets=100 ] = 70.7
Average Precision (AP) @[ IoU=50:95 | area=medium | maxDets=100 ] = 86.1
Average Precision (AP) @[ IoU=50:95 | area= large | maxDets=100 ] = 94.1
Average Recall (AR) @[ IoU=50:95 | area= all | maxDets= 1 ] = 57.9
Average Recall (AR) @[ IoU=50:95 | area= all | maxDets= 10 ] = 90.8
Average Recall (AR) @[ IoU=50:95 | area= all | maxDets=100 ] = 93.0
Average Recall (AR) @[ IoU=50:95 | area= small | maxDets=100 ] = 73.6
Average Recall (AR) @[ IoU=50:95 | area=medium | maxDets=100 ] = 87.7
Average Recall (AR) @[ IoU=50:95 | area= large | maxDets=100 ] = 95.4

% CenterNet
Average Precision (AP) @[ IoU=50:95 | area= all | maxDets=100 ] = 47.8
Average Precision (AP) @[ IoU=50 | area= all | maxDets=100 ] = 72.7
Average Precision (AP) @[ IoU=75 | area= all | maxDets=100 ] = 51.3
Average Precision (AP) @[ IoU=50:95 | area= small | maxDets=100 ] = 07.4
Average Precision (AP) @[ IoU=50:95 | area=medium | maxDets=100 ] = 26.2
Average Precision (AP) @[ IoU=50:95 | area= large | maxDets=100 ] = 61.0
Average Recall (AR) @[ IoU=50:95 | area= all | maxDets= 1 ] = 40.2
Average Recall (AR) @[ IoU=50:95 | area= all | maxDets= 10 ] = 57.2
Average Recall (AR) @[ IoU=50:95 | area= all | maxDets=100 ] = 58.4
Average Recall (AR) @[ IoU=50:95 | area= small | maxDets=100 ] = 18.6
Average Recall (AR) @[ IoU=50:95 | area=medium | maxDets=100 ] = 40.9
Average Recall (AR) @[ IoU=50:95 | area= large | maxDets=100 ] = 70.5

% FCOS
Average Precision (AP) @[ IoU=50:95 | area= all | maxDets=100 ] = 47.9
Average Precision (AP) @[ IoU=50 | area= all | maxDets=100 ] = 71.0
Average Precision (AP) @[ IoU=75 | area= all | maxDets=100 ] = 51.4
Average Precision (AP) @[ IoU=50:95 | area= small | maxDets=100 ] = 11.1
Average Precision (AP) @[ IoU=50:95 | area=medium | maxDets=100 ] = 32.1
Average Precision (AP) @[ IoU=50:95 | area= large | maxDets=100 ] = 58.4
Average Recall (AR) @[ IoU=50:95 | area= all | maxDets= 1 ] = 41.2
Average Recall (AR) @[ IoU=50:95 | area= all | maxDets= 10 ] = 58.5
Average Recall (AR) @[ IoU=50:95 | area= all | maxDets=100 ] = 59.5
Average Recall (AR) @[ IoU=50:95 | area= small | maxDets=100 ] = 19.5
Average Recall (AR) @[ IoU=50:95 | area=medium | maxDets=100 ] = 45.2
Average Recall (AR) @[ IoU=50:95 | area= large | maxDets=100 ] = 70.2

% MASK RCNN / FasterRCNN
Average Precision (AP) @[ IoU=50:95 | area= all | maxDets=100 ] = 47.3
Average Precision (AP) @[ IoU=50 | area= all | maxDets=100 ] = 71.3
Average Precision (AP) @[ IoU=75 | area= all | maxDets=100 ] = 52.6
Average Precision (AP) @[ IoU=50:95 | area= small | maxDets=100 ] = 08.6
Average Precision (AP) @[ IoU=50:95 | area=medium | maxDets=100 ] = 30.7
Average Precision (AP) @[ IoU=50:95 | area= large | maxDets=100 ] = 58.1
Average Recall (AR) @[ IoU=50:95 | area= all | maxDets= 1 ] = 40.3
Average Recall (AR) @[ IoU=50:95 | area= all | maxDets= 10 ] = 53.8
Average Recall (AR) @[ IoU=50:95 | area= all | maxDets=100 ] = 54.1
Average Recall (AR) @[ IoU=50:95 | area= small | maxDets=100 ] = 11.2
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Average Recall (AR) @[ IoU=50:95 | area=medium | maxDets=100 ] = 36.9
Average Recall (AR) @[ IoU=50:95 | area= large | maxDets=100 ] = 65.7

% ---------------- VOC results using VOC evaluation code -------------

% Upper bound
Evaluating detections
VOC07 metric? Yes
AP for aeroplane = 0.9091
AP for bicycle = 0.9033
AP for bird = 0.9065
AP for boat = 0.8951
AP for bottle = 0.9056
AP for bus = 0.9039
AP for car = 0.9052
AP for cat = 0.9062
AP for chair = 0.8722
AP for cow = 0.8933
AP for diningtable = 0.8968
AP for dog = 0.8950
AP for horse = 0.8969
AP for motorbike = 0.9054
AP for person = 0.9066
AP for pottedplant = 0.9085
AP for sheep = 0.9035
AP for sofa = 0.7672
AP for train = 0.9087
AP for tvmonitor = 0.9012
Mean AP = 0.8945

% FCOS
Evaluating detections
VOC07 metric? Yes
AP for aeroplane = 0.8701
AP for bicycle = 0.8454
AP for bird = 0.7722
AP for boat = 0.6895
AP for bottle = 0.6709
AP for bus = 0.8371
AP for car = 0.8716
AP for cat = 0.8704
AP for chair = 0.6213
AP for cow = 0.8362
AP for diningtable = 0.6900
AP for dog = 0.8572
AP for horse = 0.8414
AP for motorbike = 0.7966
AP for person = 0.8430
AP for pottedplant = 0.5464
AP for sheep = 0.8107
AP for sofa = 0.7679
AP for train = 0.8454
AP for tvmonitor = 0.7735
Mean AP = 0.7829
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% FasterRcnn
Evaluating detections
VOC07 metric? Yes
AP for aeroplane = 0.8147
AP for bicycle = 0.8656
AP for bird = 0.7855
AP for boat = 0.6552
AP for bottle = 0.6848
AP for bus = 0.8660
AP for car = 0.8821
AP for cat = 0.8811
AP for chair = 0.6376
AP for cow = 0.8527
AP for diningtable = 0.7977
AP for dog = 0.8691
AP for horse = 0.8816
AP for motorbike = 0.8602
AP for person = 0.8008
AP for pottedplant = 0.5136
AP for sheep = 0.7870
AP for sofa = 0.8221
AP for train = 0.8543
AP for tvmonitor = 0.7778
Mean AP = 0.7945

% SSD12
Evaluating detections
VOC07 metric? Yes
AP for aeroplane = 0.8388
AP for bicycle = 0.8619
AP for bird = 0.8119
AP for boat = 0.7161
AP for bottle = 0.6090
AP for bus = 0.8730
AP for car = 0.8910
AP for cat = 0.8951
AP for chair = 0.6361
AP for cow = 0.8652
AP for diningtable = 0.7550
AP for dog = 0.8681
AP for horse = 0.8772
AP for motorbike = 0.8373
AP for person = 0.8215
AP for pottedplant = 0.5666
AP for sheep = 0.8127
AP for sofa = 0.7970
AP for train = 0.8723
AP for tvmonitor = 0.7855
Mean AP = 0.7996
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