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Abstract1

In the era of foundation models and Large Language Models (LLMs), Euclidean2

space has been the de facto geometric setting for machine learning architectures.3

However, recent literature has demonstrated that this choice comes with funda-4

mental limitations. At a large scale, real-world data often exhibits inherently5

non-Euclidean structures, such as multi-way relationships, hierarchies, sym-6

metries, and non-isotropic scaling, in a variety of domains, such as languages,7

vision, and the natural sciences. It is challenging to effectively capture these8

structures within the constraints of Euclidean spaces. This position paper argues9

that moving beyond Euclidean geometry is not merely an optional enhancement10

but a necessity to maintain the scaling law for the next-generation of foundation11

models. By adopting these geometries, foundation models could more efficiently12

leverage the aforementioned structures. Task-aware adaptability that dynamically13

reconfigures embeddings to match the geometry of downstream applications14

could further enhance efficiency and expressivity. Our position is supported15

by a series of theoretical and empirical investigations of prevalent foundation16

models. Finally, we outline a roadmap for integrating non-Euclidean geometries17

into foundation models, including strategies for building geometric foundation18

models via fine-tuning, training from scratch, and hybrid approaches.19

1 Introduction20

Figure 1: Manifolds with corresponding
graph structures or underlying relationships,
which represent different types of token rela-
tionships: hierarchical (left), uniform (mid-
dle), and cyclical (right) dependencies.

Foundation models, such as Large Language Models21

(LLMs), have emerged as a cornerstone of current AI22

advancements due to their ability to generalize across di-23

verse tasks with minimal fine-tuning [15, 22, 36, 117].24

Euclidean geometry has been the default framework for25

designing such models, largely driven by the natural com-26

patibility of Euclidean geometry with fundamental neural27

network operations—such as linear transformations, con-28

volutions, and attention mechanisms—which can be exe-29

cuted efficiently using standard linear algebra in Euclidean30

space. However, real-world datasets often exhibit im-31

plicit non-Euclidean structures, such as the hierarchical32

organization of natural language—including concept tax-33

onomies and entailment relationships [83, 105, 138]—as well as hierarchical relationships among34

object classes, scenes, and their constituent categories in visual data [51, 108]. Furthermore, non-35

Euclidean characteristics are inherent in biological data, such as protein structures [145] and RNA-seq36

data [77]. Given the non-Euclidean characteristics of training data, along with the challenges faced by37

current foundation models—from hallucinations to computational inefficiencies—it becomes crucial38

to question whether Euclidean geometry should remain the default for foundation models.39

Position: The development of non-Euclidean foundation models is essential for effectively40

representing, modeling, and analyzing complex data structures and relationships in real-world41
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applications. Particularly, this paper advocates for the development of non-Euclidean foundation42

models at the scale of billions of parameters, which is on both a much larger scale and a much broader43

geometric scope than existing research that focuses almost entirely on low-dimensional settings within44

specific geometries, such as the hyperbolic space. Such research requires significant community45

efforts. Beyond proposing non-Euclidean counterparts of Euclidean operations, which is the current46

focus, we advocate building the full training infrastructure for this scale, developing and training47

large-scale non-Euclidean architectures, and analyzing their behavior, which often diverges from48

low-dimensional models. With arguments grounded in theoretical insights and experimental evidence,49

we contend that by aligning foundation models—whether visual, linguistic, or scientific—with the50

intrinsic geometries of their training data, we can improve three critical aspects of these models:51

representational capabilities, adaptability to diverse geometric structures, and scalability.52

Representational Capabilities. Euclidean space has limited capabilities to represent complex53

geometric structures with diverse local properties, resulting in significant distortion when embedding54

such data in low-dimensional Euclidean spaces [137]. In contrast, hyperbolic spaces, with their55

negative curvature, excel at representing hierarchical structures with minimal distortion in low56

dimensions [81, 122]. Similarly, spherical geometries, defined by positive curvature, are well-suited57

for modeling data with bounded structures and angular relationships [40, 41, 140].58

Adaptability. Incorporating non-Euclidean geometrical operations into foundation models provides59

substantially enhanced adaptability to the diverse geometric structures in training datasets, particularly60

in the case of large-scale datasets—as is typical for these models—where heterogeneity is inherent61

by design. This adaptability improves the models’ flexibility and transferability, as many instances of62

downstream tasks benefit from acknowledging the geometric structure in the data, such as knowl-63

edge graph completion [7, 147], social network analysis [73, 158], multi-label classification, drug64

discovery [113], user preferences recommendation [28, 156, 157], and code understanding [134].65

Scalability. Adapting foundation models to non-Euclidean geometry enables expressive lower-66

dimensional embeddings, reducing computational costs without sacrificing performance. A critical67

implication lies in the scaling laws of foundation models [66], where performance in Euclidean68

models follows a power-law scaling of the form L(N) ∝ N−α, with L and N being the loss and69

parameter count. This behavior reveals inherent inefficiencies in how Euclidean space handles70

increasing model complexity and data dimensionality. In contrast, Riemannian methods have shown71

promises to improve scaling by efficiently compressing information [20, 75]. For instance, hyperbolic72

spaces better captures long-range dependencies [138] and mixed-curvature approaches [55, 147]73

allow different model components to scale according to their optimal geometric properties.74

Roadmap. Moreover, we propose a roadmap for integrating non-Euclidean geometries into founda-75

tion models. This includes both adapting existing Euclidean models to incorporate these principles76

and developing foundation models from scratch. We also highlight key challenges and outline the77

steps required to advance this non-Euclidean vision, from architectural design to the creation of non-78

Euclidean libraries, given that existing frameworks such as DeepSpeed [118] and Flash Attention [33]79

are tailored exclusively for Euclidean models.80

2 Background and Preliminaries81

In this section, we give an overview of non-Euclidean spaces, particularly focusing on Riemannian82

manifolds. For more details please see [85] and Section A.83

2.1 Non-Euclidean Geometry Foundations84

Riemannian Manifolds. A smooth n-dimensional manifold M is a topological space that is locally85

Euclidean. Each point x is associated with a tangent space TxM, which is an n-dimensional vector86

space that acts as a first-order local approximation of M. A Riemannian metric g on M is a collection87

g := (gx)x∈M of positive definite bilinear forms gx(·, ·) : TxM× TxM → Rn, varying smoothly88

with x. gx induces the (sectional) curvature at point x, which measures how M deviates from flatness89

at x. A Riemannian manifold is a pairing (M, g). For example, Rn with the usual Euclidean inner90

product is a Riemannian manifold with constant curvature 0. gx can be seen as a generalization of91

inner products, where the norm of p ∈ TxM is ∥p∥g =
√
gx(p, p). The choice of g induces a global92

distance function d(·, ·) on M. A geodesic between x, y is a local distance minimizing smooth curve.93

In particular, the shortest paths are geodesics. With certain assumption on the structure of M, one94
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can define the exponential map expx : TxM → M for x ∈ M, and its inverse, the logarithmic95

map logx : M → TxM. Additionally, the parallel transport map PTx(v, w), where v, w ∈ TxM,96

generalizes translation, transporting w starting at x in the direction of v with no acceleration.97

2.2 Deep Learning in Non-Euclidean Spaces98

Recent years have witnessed an increasing interest in extending deep learning techniques to Rieman-99

nian manifolds. We discuss several advances for designing neural networks and Transformers in100

non-Euclidean geometries, as well as optimization on manifolds, with more details in Section A.101

Non-Euclidean Neural Networks. Several works have explored neural networks that leverage102

geodesic distance to perform neural network operations [17, 21, 79, 95]. Within hyperbolic learning,103

prior works have developed neural network layers [26, 47, 105, 125, 151], graph neural networks [23,104

92], vision models [10, 143], and residual neural networks [64]. In addition, extensive works have105

developed equivariant neural networks that encode spherical geometry as inductive bias [31, 32,106

34, 41, 42]. Neural networks for mixed curvature manifolds that encompass both hyperbolic and107

spherical models have also been proposed [6, 55]. Many Euclidean convex and stochastic optimization108

algorithms have been extended to manifold learning as well [11, 141, 149, 150, 164].109

Non-Euclidean Transformers. Significant advancements have been made toward Transformers110

in non-Euclidean spaces in recent studies. Prior works have developed attention mechanisms and111

additional essential operations, such as layer normalization, to develop Transformers in hyperbolic,112

spherical, and mixed curvature manifolds [26, 29, 56, 82, 125, 161].113

Nevertheless, there is a lack of works for non-Euclidean foundation models. While prior works114

have attempted or argued for incorporating geometric or topological information into certain aspects115

of model design [21, 59, 109], these prior works almost all focus on low-dimensional settings, with116

few works that consider pre-trained models [27], thus omitting the vast potential benefits to be gained117

from non-Euclidean foundation models.118

3 Foundation Models Should Embrace Non-Euclidean Geometries119

Euclidean Foundation Models. Foundation models are typically trained on massive corpora to120

learn transferable representations that serve as a basis for downstream tasks [15]. Transformer-based121

language models [22, 22, 36, 53, 115], large-scale vision models such as Vision Transformer (ViT)122

and ResNet [39, 62], and multimodal foundation models like CLIP [114] and DALL-E [117], have123

achieve state-of-the-art performances in a vast amount of tasks across numerous domains.124

3.1 Limitations of Euclidean Geometry for Foundation Models125

The Euclidean assumption is that relationships between data points can be meaningfully characterized126

using distances measured in a flat space. However, theoretical and experimental works have demon-127

strated that Euclidean geometry, with its isotropic nature and uniform scaling, fails to capture128

the complex structures of real-world data, resulting in significant distortions [3, 19, 58, 96, 97].129

As a result, high-quality, low-distortion embeddings are often only possible in high-dimensional130

Euclidean space. Specifically, embeddings of complex structured data, such as hierarchies or trees,131

provably incur high rates of distortion [18, 96]. In this section, we highlight how the flat nature of132

the Euclidean space results in limitations and challenges for foundational models.133

Non-Applicability of the Nash Embedding Theorem. The Nash Embedding Theorem states that134

any Riemannian manifold M of dimension n admits an isometric embedding f into R2n+1 [104],135

seemingly to imply that non-Euclidean spaces would only reduce the embedding dimension by half.136

However, the isometric embedding here is defined to preserve the Riemannian metric, meaning that it137

is locally distance preserving—the length of any path is preserved. However, for the shortest path138

between points x, y ∈ M, its image under f is not necessarily the shortest path (i.e., Euclidean139

straight line) between f(x) and f(y). Conversely, measuring the embedding distortion is concerned140

with whether a map is globally distance preserving w.r.t the ambient space, or when the shortest141

path between x and y remains the shortest path between f(x) and f(y), which is defined by iso-142

metric embeddings between metric (ambient) spaces. Note that an isometric embedding between143

Riemannian manifolds is in general not an isometric embedding between metric spaces.144
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We are concerned with global distance-preserving embeddings for foundational models, as the145

distance between any pair of token embeddings is crucial for model training. Thus, the Nash146

Embedding Theorem is not applicable since global distortion could still arise from isometric147

embeddings between Riemannian manifolds. For this reason, by “isometry”, we refer to those148

between metric spaces. See Section A.2 for more details. As the Nash Embedding Theorem is not149

applicable, Euclidean embeddings suffer from several limitations, which we detail below.150

Dimensionality. Euclidean space requires high dimensionality to embed complex structures with151

low distortion, which ties directly to high demand for model size and computational resources. The152

following theorem shows the distortion-dimension tradeoff for Euclidean embeddings even in the153

simple case of unweighted token relationships, in the form of complete graphs.154

Theorem 3.1. (Matoušek [98]) Let X be an n-point metric space with uniform distance 1, i.e., an155

unweighted complete graph with n nodes. For ϵ > 0, the minimal d such that X can be embedded156

into Rd with distortion (1 + ϵ) is d = Ω
(

log(n)
ϵ2 log(1/ϵ)

)
157

For any p < 2, ϵ2 log(1/ϵ) tends to 0 faster than ϵp as ϵ → 0. As a result, Theorem 3.1 implies that d158

grows near-quadratically w.r.t. inverse distortion. Furthermore, any unweighted graph with n nodes159

can be isometrically embedded into an unweighted complete graph with n nodes. Thus Theorem 3.1160

implies the same dimensionality issue for embedding any unweighted graph in Euclidean space.161

Distortion. Non-trivial distortion could exist regardless of the dimension of the Euclidean space in162

the cases of more complex structures. The following theorem implies that a wide range of spaces163

cannot be isometrically embedded into Euclidean space, based on Markov convexity (Section A.3).164

Theorem 3.2. [84] Let (X, dX), (Y, dY ) be metric spaces. For every p ∈ N, denote Πp(X),Πp(Y )165

the Markov p-convexity constant of X and Y respectively. Let cY (X) = inf{dist(f) : f : X → Y }166

denote the minimum distortion of embedding X in Y . Then cY (X) ≥ Πp(X)
Πp(Y ) .167

When X models hierarchical token relationships, e.g., X = B2k is a complete binary tree of depth168

2k, the distortion for embedding binary trees of depth in any Euclidean space is at least Ω(1) ·
√
log k.169

When X represents circular or periodic dependencies in tokens, e.g., X is a ball of radius r in a170

vertex-transitive graph, the minimal distortion of embedding X into Rn for any n is Ω(
√
log r) [84].171

Moreover, non-trivial distortion exists when embedding other forms of topological space as well,172

including the sphere Sk ⊆ Rk+1, as shown in the following theorem.173

Theorem 3.3. [119] Let (X, dX) be a metric space with X = {a, b, c, d} and dX(a, b) = dX(a, c) =174

dX(a, d) = 2L and dX(b, d) = dX(c, d) = L for L ∈ R+. Then X admits no isometric embedding175

into Rn for any n.176

As these points can be isometrically embedded into Sk, Theorem 3.3 shows that Sk cannot be177

isometrically embedded into Rn for any n ∈ N, resulting in distortion when encoding rotational178

equivariance. In contrast, non-Euclidean geometry can provide a more natural representation of179

complex topological structures, reducing distortion and dimensionality of the embedding space.180

For instance, [122] showed that every finite tree admits an embedding into the hyperbolic plane H2181

with 1 + ϵ multiplicative distortion for any ϵ > 0, leading to O(1) distortion with low dimensionality.182

Take-away. The implications of the previous theoretical discussion are numerous: (1) Limited scala-183

bility. Theorem 3.1 highlights the distortion-dimension trade-off for Euclidean foundation models184

when embedding complex structures, which is reflected in the computational resources required in185

these models. Non-Euclidean geometry produces higher quality embeddings in significantly lower186

dimensions, offering enhanced model scalability; (2) Performance bottleneck. Theorem 3.2 and187

3.3 demonstrate that even in the case of an abundance of compute resources, the linear assumption188

in Euclidean foundation models could still incur significant distortion regardless of the embedding189

dimension for a wide range of topological structures, resulting in a performance upper bound. These190

theoretical results are validated in Section 3.2.191

3.2 Non-Euclidean Geometry in Foundation Models192

In this section, we empirically assess embedding distortions for different geometries to validate our193

claims in Section 3.1 and demonstrate that non-Euclidean geometry is more suitable. We then analyze194

token embeddings in foundation models, showing that structures that align with non-Euclidean195

geometry are prevalent, highlighting the need for alternative geometric frameworks.196
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Table 1: δ-Hyperbolicity of the token embedding in various LLMs across several datasets. The
bottom 2 rows show the δ-hyperbolicity values of several metric spaces for reference.

Model arXiv C4 Common Crawl GitHub StackExchange Wikipedia

RoBERTa-Base [93] 0.15± 0.06 0.18± 0.04 0.17± 0.04 0.12± 0.04 0.17± 0.07 0.07± 0.05
LLaMA3.1-8B [53] 0.15± 0.05 0.16± 0.07 0.15± 0.06 0.12± 0.05 0.18± 0.06 0.10± 0.04
GPT-NeoX-20B [14] 0.14± 0.03 0.17± 0.06 0.15± 0.05 0.11± 0.04 0.14± 0.04 0.09± 0.03
Gemma2-9B [136] 0.17± 0.06 0.19± 0.04 0.20± 0.05 0.15± 0.05 0.18± 0.04 0.15± 0.03

Metric Space Sphere Space Dense Graph PubMed Graph Poincaré Space Tree Graph -
Reference δ values 0.99± 0.01 0.63± 0.01 0.40± 0.04 0.14± 0.01 0.0 -

Figure 2: Token frequency v.s. token count (left 2) and token norm vs token count (right 2) for
LLaMa3.1-8B and LLaMaGen. The datasets are chosen to be within the training corpus. The token-
frequency figures show the scale-free properties of the token inputs. The token norms figures reflect
this property for learned token embeddings to some extent, with token count decreasing exponentially
for high normed tokens at the right tail. However, the Euclidean embeddings stil do not fully capture
this property and deviate from it at the left tail. More statistics are shown in Section B.

Figure 3: Average (point-wise) distortion on
canonical graphs with 96 nodes, comparing four
spaces with total dimension 6. The least dis-
tortion is achieved by the space with the most
suitable geometry.

Geometry Tree Cycle Ring of Trees
|E| = 95, |V | = 96 |E| = 96, |V | = 96 |E| = 96, |V | = 96

R6 0.1036 0.1042 0.1060
H−1,6 0.0454 0.2356 0.0736
S1,6 0.1440 0.0011 0.1365
H−1,3 × S1,3 0.0624 0.1337 0.0686

Empirical Validation. We empirically vali-197

date our claim that Euclidean space fails to cap-198

ture complex structures faithfully and that non-199

Euclidean spaces are better suited for producing200

high-quality embeddings. Table 3 compares the201

average (point-wise) distortion of four geomet-202

ric spaces (R6, H−1,6, S1,6, and H−1,3 × S1,3)203

in representing three canonical graphs (Tree, Cy-204

cle, and Ring of Trees) with 96 nodes, each cor-205

responding to a different type of intrinsic token206

relationships (hierarchical, cyclical, and both). We intentionally dismissed invariance from ker-207

nel designs—both Euclidean and non-Euclidean, e.g. orthogonal invariance (see Section 3.3)—to208

isolate the representational capacity of the spaces. The most suitable geometry varies by graph209

type—Lorentzian space (H−1,6) for trees, spherical space (S1,6) for cycles, and mixed geometry210

(H−1,3 × S1,3) for rings of trees—emphasizing the importance of selecting an appropriate geometry211

to minimize distortion.212

Figure 4: Distortion for embedding a Tree
with 96 nodes for varying dimensionality (log
scale). Non-Euclidean geometry achieves
smaller distortion with significantly fewer di-
mensions and has better scaling.

We also compute the distortion value against varying di-213

mensionality. An example is shown in Figure 4 for the214

case of a tree with 96 nodes, plotted on log-scale for vis-215

ibility. The hybrid manifold is a product of hyperbolic216

and spherical spaces, each with half the dimension. The217

4-dimensional hyperbolic space achieves a significantly218

smaller distortion than Euclidean embeddings with 50 di-219

mensions. This reflects Takeaway 1 in Section 3.1: non-220

Euclidean geometry achieves superior performance with221

significantly fewer dimensions. Distortion also continues222

to decrease for hyperbolic and hybrid spaces but plateaus223

for Euclidean space, reflecting Takeaway 2, where Eu-224

clidean space has theoretical upper bounds for embedding225

trees but non-Euclidean geometry has the potential to con-226

tinue the performance scaling law at high dimensionality.227

See Section B for additional plots of other graph types.228

Hierarchies in Token Embeddings. Based on the above results validating Euclidean embeddings’229

limitations, we further show that these structures which Euclidean spaces struggles to embed is230
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prevalent in foundation models. To explore the intrinsic structure within the representations of231

foundation models, we utilize δ-hyperbolicity [54], which quantifies the extent to which a metric232

space deviates globally from a tree metric (see Section C). Each token is treated as a point in a discrete233

metric space X , and a graph is constructed based on similarity scores between each pair. We evaluate234

the hyperbolicity of token embeddings in LLMs, where lower values suggest a tree-like structure. As235

shown in Table 1, the consistently low δ-hyperbolicity values suggest hierarchical structures within236

each prompt across diverse datasets.237

We also analyze the global token embedding distribution in LLMs and pre-trained vision models using238

datasets included in the models’ training corpus [53, 132, 139]. Figure 2 plots token input frequency239

distributions and their occurrences in the dataset on a log scale, revealing a scale-free structure among240

the token embeddings. This scale-free organization suggests an underlying hierarchical structure [9],241

where a small number of high-frequency tokens act as hubs within the semantic network. The figure242

also shows token norm distributions for learned embeddings, where the count for high-norm embed-243

dings decreases exponentially at the right tail, reinforcing the scale-free property. The non-Euclidean244

structures in token distribution are exhibited to some extent even in Euclidean models are most245

likely attributed to the models being optimized during training to maximize representational quality.246

However, the scale-free properties are still not yet fully captured by the Euclidean foundational model,247

where the count of embeddings with small norms still increases. See Section B for more statistics.248

Additional Structures. In addition to hierarchical structure, data may exhibit other structural249

characteristics, such as cycles and loops. Many real-world tasks, such as 3D shape analysis [41, 42],250

medical imaging [12, 154], and physics-informed machine learning [2, 31, 90, 91], can benefit from251

encoding data geometry as inductive bias. Euclidean operations, such as convolutional layers, encode252

only translation invariance [43], resulting in performance limitations for these tasks.253

3.3 The Necessity of Non-Euclidean Geometry for Foundation Models254

Here we further explore how non-Euclidean geometry could improve foundation model performance.255

(1) Addressing the limitations in capturing intrinsic token structures. Recent research shows that256

the attention mechanism plays a pivotal role in the expressive capacity of LLMs [1, 8, 126, 144].257

Lemma 3.4 (Balestriero et al. [8]). Let X ∈ RT×D(ℓ) be the input to the ℓ-th258

layer of an LLM, where T is sequence length and D(ℓ) is feature dimension. Atten-259

tion head h’s output at position i is in the convex hull of the first i rows of XVh,(ℓ):260

Headh,(ℓ)(X)i ∈ Hull
{
(Vh,(ℓ))

⊤xj | j = 1, . . . , i
}
. with bounded effective dimension: dimeff ≤261

#
{

Attnh,(ℓ)(X)i,j > 0 | j ∈ {1, . . . , i}
}
. Here, Attnh,(ℓ)(X) is the attention matrix for head h at262

layer ℓ: Attnh,(ℓ)(X) = softmaxcausal(XQh,(ℓ)K
⊤
h,(ℓ)X

⊤).263

This lemma highlights that next-token prediction in LLMs is strongly influenced by relationships264

encoded in previous tokens. As shown in Table 1, tokens exhibits non-Euclidean characteristics.265

Consequently, the standard Euclidean attention mechanism does not faithfully capture hierarchical266

syntax, periodic dependencies, and other complex token relationships, as demonstrated in Section 3.1.267

Utilizing non-Euclidean attention mechanisms instead could better capture previous token relation-268

ships by aligning with the intrinsic data structure, thus enhancing next-token prediction. For example,269

hyperbolic geometry compresses distances exponentially, ensuring that distant but structurally related270

tokens (e.g., a root concept and its distant co-occurrences in a prompt) remain meaningfully close,271

enabling attention mechanisms to efficiently capture long-range dependencies and hierarchies.272

(2) Alleviating distortion-dimension trade-offs. Recent studies examined how Euclidean-based273

LLMs encode hierarchies geometrically [110, 111], where a mapping function λ maps input text x274

to a vector λ(x) ∈ Rd, and an un-embedding layer assigns γ(y) ∈ Rd to each token y. The token275

probability distribution is given by P (y | x) = exp(λ(x)⊤γ(y))∑
y′∈Vocab exp(λ(x)

⊤γ(y′))
. To unify the different spaces,276

the embedding and unembedding spaces can be reformulated using transformations g(y) = A(γ(y)−277

γ̄0), ℓ(x) = A−⊤λ(x), where the Euclidean inner product serves as the causal inner product. This278

framework shows that Euclidean LLMs encode hierarchical concepts orthogonally, where parent279

(e.g., animal) and child (e.g., bird, mammal) vectors are perpendicular. Yet, since provides only d280

orthogonal dimensions, Euclidean spaces must rely on high dimensionality to capture the expansive281

semantic hierarchies of language [58]. Non-Euclidean spaces offer a more efficient alternative,282

preserving hierarchical relationships while significantly reducing dimensionality [105, 106].283
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Figure 5: Roadmap for integrating non-Euclidean geometries into foundation models, includes
(a) fine-tuning existing Euclidean foundation models, (b) pretraining from scratch, and (c) hybrid
architectures. Four strategies are shown in (a), labeled with circled numbers 1-4, respectively:
geometric prompt tuning, geometric low-rank adaptation, geometric knowledge distillation, and
geometric transfer learning. All learnable components are highlighted in red in (a) and (c).

(3) Improved multi-modal heterogeneity modeling. Data from different modalities vary signifi-284

cantly due to contextual factors, use cases, cultural differences, and different interpretations of the285

same information. This complexity intensifies in multi-modal data, where each modality has distinct286

complex structures [52, 69, 88, 89, 152]. For instance, latent modality gap and distinct modality287

structures exist in the latent space due to initialization and the contrastive learning process, impacting288

downstream tasks [89]. Different modalities also exist on separate manifolds [146], making a unified289

Euclidean foundation model highly redundant in parameters and requiring varying degrees of prun-290

ing for different modalities. Thus, Euclidean space struggles to capture multi-modal cross-domain291

relationships, as its flat structure lacks the flexibility needed for multi-faceted interactions in the data.292

Non-Euclidean spaces exhibit much more geometric flexibility to enable multiple manifolds that293

encode different data distributions [48, 49, 153]. For instance, hyperbolic geometry excels in294

vision-language foundation models by effectively capturing hierarchical relationships [35, 108, 116],295

improving performance in tasks such as image-video-skeleton [87] and video-audio applications [67]296

while enhancing representation interpretability—higher-level hierarchical concepts lie closer to the297

origin with more specific concepts residing in more peripheral regions, enabling geodesic reasoning298

when navigating through concept hierarchies.299

4 Towards Non-Euclidean Foundation Models300

We propose a roadmap that explores three progressive approaches to incorporate non-Euclidean301

geometry in foundation models: fine-tuning existing Euclidean models, building non-Euclidean302

models from scratch, and developing a hybrid framework combining both for optimal performance.303

These methods could be evaluated with standard304

4.1 Fine-tuning Existing Euclidean Foundation Models305

Off-the-shelf pre-trained Euclidean foundation models are strong starting points as they already306

encode rich information. An efficient strategy is to adapt them to non-Euclidean spaces, thereby307

retaining their original capabilities and enabling generalization to data with non-Euclidean structures.308

We propose four strategies, shown in Figure 5(a): (1) Geometric prompt tuning; (2) Geometric309

low-rank adaptation; (3) Geometric knowledge distillation; and (4) Geometric transfer learning.310

(1) Geometric Prompt Tuning. Prompt tuning offers a parameter-efficient alternative to full fine-311

tuning by introducing trainable, task-specific prompt tokens to the input, mitigating catastrophic312

forgetting while requiring fewer trainable parameters. [60, 76]. Geometric prompts can be optimized313
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through non-Euclidean spaces to better align with the data geometry to and adapt to downstream314

tasks. For instance, trainable prompt and token embeddings could be introduced to better capture the315

topological relationships between prompts and text inputs.316

(2) Geometric Low-Rank Adaptation. Low-Rank Adaptation (LoRA) offers an efficient way to317

adjust the model parameter space for downstream tasks [68]. To equip the pre-trained model with318

non-Euclidean geometry through geometric low-rank adaptation, low-rank matrix multiplications319

could be performed directly on the manifold after projecting the input into non-Euclidean spaces,320

which better models the underlying geometric structure of the data [159].321

(3) Geometric Knowledge Distillation. Distilling knowledge into non-Euclidean spaces refers to322

transferring knowledge from a large, complex teacher model to a smaller, more efficient student323

model by utilizing manifold properties to teach the student to better inherit the teacher model’s324

geometric structure. An example is minimizing the gap between each layer’s output of both models,325

especially in high-dimensional spaces [61, 155] and resource-limited applications.326

(4) Geometric Transfer Learning. Geometric transfer learning aims to help foundation models learn327

across domains with aligned geometries, ensuring a much more effective and consistent knowledge328

transfer. Geometry alignment objectives can be designed to supervise the transfer of geometric329

knowledge, such as hyperbolic contrastive learning for recommendation [94, 162], preserving the330

intrinsic structure of the target domain while retaining geometry-agnostic prior knowledge.331

4.2 Pretraining from Scratch332

Pretraining non-Euclidean foundation models requires addressing unique challenges. We outline333

key components for adapting models to complex curvature-aware structures; see also Figure 5(b). A334

detailed mathematical formulation is presented in Table 3 in the Appendix.335

Curvature Estimation. A manifold’s curvature determines its intrinsic geometric properties, such as336

distance metrics and learning dynamics. Curvature estimation methods vary based on data types. For337

graph data (e.g., networks, proteins), curvature can be derived from topological properties, such as338

Ollivier-Ricci curvature or Gromov hyperbolicity [50, 70, 107, 159]. For non-graph data (e.g., texts,339

images), curvature can be estimated from learned embeddings [4, 74] or techniques like Isomap [137]340

and UMAP [100]. One could also design learnable curvature within training pipelines using second-341

order statistics [49], reinforcement learning [46], and self-supervised learning [129, 130].342

Non-Euclidean Attention Mechanism. In non-Euclidean spaces, attention scores can be defined343

based on negative manifold distance −dM(x, y) between queries and keys instead of dot products [26,344

29, 56, 125], with closer node pairs receiving higher attention weights. To aggregate attention,345

unified manifold centroids or tangent space operations can be used [29, 55]. Linear attention346

mechanisms [161] can be employed to improve computational efficiency by approximating traditional347

attention through unified tangent space operations.348

Other Important Modules. Traditional Euclidean positional encodings [128, 144] do not preserve349

the manifold structure in non-Euclidean spaces. Several approaches for non-Euclidean positional350

encoding [26, 44, 161] were proposed to represent token positions while maintaining geometric351

integrity. Residual connections should be formulated using isometric operations [10, 64, 143] to352

preserve geometric information across layers. Layer and batch normalization must also be adapted to353

account for curvature [10, 143, 161]. Loss function must also satisfy geometric constraints, such as354

computing the probability distribution over tokens based on the manifold distance instead.355

4.3 Hybrid Architectures356

Hybrid architectures take a step further by merging both Euclidean and non-Euclidean foundation357

model architectures to provide a more universal inductive bias. We illustrate two promising strategies,358

also depicted in Figure 5(c).359

Dynamic Geometry Adaptation. An intuitive way for hybrid modeling is to design an efficient and360

geometry-aware mechanism that shifts dynamically between manifolds. Unified product manifold361

frameworks [131] could enable layers to integrate diverse learnable curvature values that adapt to362

fine-grained geometric structures. Mixture of Experts (MoE) [167] provides a natural framework for363

hybrid paradigms to use a geometry-aware sparse routing network by selecting the most appropriate364

geometry considering input structure [57], addressing issues of distortion and heterogeneity.365
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Multi-Manifold Attention. Multi-manifold attention could lead to more versatile underlying depen-366

dencies [71, 80], where the input is embedded into a collection of manifolds (including Euclidean)367

to represent differences in geometric structure across the dataset. These geometric attention maps are368

then fused to produce a highly discriminative map for improved attention guidance.369

5 Alternative Views, Implementation Challenges, and Potential Solutions370

Engineering Overhead. While non-Euclidean geometries have clear theoretical benefits, their371

operations can introduce significant engineering overhead that may offset efficiency gains. However,372

as mentioned earlier in the paper, non-Euclidean models require fewer dimensions to embed complex373

structures, as seen in our discussion in Section 3.1 and 3.2. This enables the potential for non-374

Euclidean models to match the performance of Euclidean models with fewer parameters to offset375

the computational overhead while offering additional benefits, such as the potential to continue the376

scaling law relationship between parameters and model performance.377

Nevertheless, designing efficient non-Euclidean operations is therefore a critical direction for future378

work. In particular, tangent-space-enabled methods [23, 47, 143] incur significant computation379

overhead due to multiple mappings to and from the tangent bundle. In comparison, methods that380

operate directly on the manifold [26, 64, 161], while still computationally more expensive than381

Euclidean methods, typically have similar computational complexity as their Euclidean counterparts.382

Thus, they could be promising for managing the computational efficiency of non-Euclidean foundation383

models. Additionally, it is essential to develop libraries, such as [63] that optimize these computations,384

with efficient implementations of tensor operations that encode the underlying geometry, geometric385

optimization techniques tailored to non-Euclidean spaces, and multi-node training architectures such386

as non-Euclidean flash attention to account for architectural differences as a result.387

Learning Inductive Bias with Euclidean Models. Another family of views is to let Euclidean388

foundation models learn geometric properties rather than hard-coding inductive biases. One argu-389

ment holds that with increasing hardware capacity, scaling Euclidean models to higher dimensions390

could reduce distortion and capture geometry, as seen in CNNs and ViTs [39]. A complementary391

argument is that improved data quality and quantity might allow Euclidean models to learn sufficient392

geometric structure. However, as shown in Theorem 3.2 and 3.3, many desirable geometric biases393

cannot be faithfully learned by Euclidean foundation models. Previous works have also empirically394

shown that non-Euclidean models outperform Euclidean models even with scaled parameter counts,395

such as for equivariant and non-equivariant models [20]. Additionally, in many domains, such as396

molecular structures or rare languages, data scarcity results in brute-force scaling being ineffective.397

Non-Euclidean geometries, on the other hand, can capture important relationships even in lower-398

dimensional settings [122], making them efficient in data requirements, offering better performance399

scalability w.r.t. model size, and are more reliable for domains with limited high-quality data.400

Distortion-Performance Connection. Additional views include gaps in analyzing the link between401

embedding quality and downstream foundation model performance. Prior work suggests that man-402

ifolds better capturing data structure can improve graph tasks and word embeddings [55]. Yet, to403

our knowledge, no conclusive studies connect distortion directly to downstream performance—a404

direction we advocate in this paper. This is challenging as it could require prior knowledge of the405

ground-truth data geometry, compute resources to train multiple foundation models, and isolating the406

effects of distortion. Future works in this aspect would provide valuable insights to support better407

development of non-Euclidean methods for foundation models. Additional analysis that could aid in408

this direction include analyzing embedding distribution in non-Euclidean models.409

6 Conclusion410

Foundation models benefit from embracing non-Euclidean geometry to resolve their inherent mis-411

match with the non-Euclidean nature of real-world data. Non-Euclidean geometries reduce distortion412

for embedding complex structures and relationships while enabling efficient representations, which413

is critical for trillion-parameter scaling. Aligning architectures with data geometry could mitigate414

hallucinations, boost efficiency, and unlock heterogeneous scaling. We encourage the community to415

consider three directions: unified curvature-adaptive foundation models, geometry-aware benchmarks,416

and studying manifold-emergent capability links. Embracing this paradigm will catalyze AI systems417

that better reflect the rich geometries of human knowledge and physical reality.418
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A Comprehensive Background and Related Works843

A.1 Riemannian Geometry and Non-Euclidean Foundations844

Riemannian Manifolds. A smooth n-dimensional manifold M is a topological space in which each845

point x ∈ M has a neighborhood Ux ⊆ M that is locally Euclidean, meaning that there exists a846

homeomorphism between Ux and an open subset of Rn.847

Tangent Space. Each point x ∈ M is associated with a tangent space TxM, which is an n-848

dimensional vector space serving as a first-order local approximation of M at x. This space849

encapsulates the possible directions in which one can move away from x on the manifold.850

Riemannian Metric. A Riemannian metric g on M is a collection of positive-definite bilinear851

forms gx(·, ·) : TxM× TxM → R, smoothly varying with x. The metric gx induces the sectional852

curvature at each point, which measures the extent to which the manifold deviates from flatness at x.853

A Riemannian manifold is then defined as the pair (M, g). For instance, Rn with the usual Euclidean854

inner product is a Riemannian manifold with zero curvature. The metric gx generalizes the notion of855

inner products, with the norm of a vector p ∈ TxM given by ∥p∥g =
√
gx(p, p). The choice of the856

Riemannian metric also induces a global distance function d(·, ·) on M.857

Geodesic. A geodesic between two points x and y is a smooth curve that locally minimizes the858

distance between these points. In particular, the shortest path between x and y is a geodesic.859

Exponential Map. Under certain conditions, one can define the exponential map expx : TxM → M,860

which lifts points from the tangent space TxM to the manifold M, by associating a vector in TxM861

to a point on M along a geodesic.862

Logarithmic Map. The logarithmic map logx : M → TxM is the inverse of the exponential map,863

provided certain assumptions on M hold.864

Geodesics and Geodesic Operations. The Riemannian metric gx can be viewed as a generalization865

of the inner product, where the norm of a vector p ∈ TxM is defined by ∥p∥g =
√
gx(p, p). The866

choice of g induces a global distance function d(·, ·) on M, where geodesics are the locally distance-867

minimizing curves. The length of a geodesic between two points determines the geodesic distance.868

The exponential map expx maps a vector v ∈ TxM to a point on M along the geodesic starting869

at x. The logarithmic map logx is the inverse of this process. Additionally, the parallel transport870

map PTx(v, w) transports vectors along geodesics, providing a canonical way to move vectors in871

a manner consistent with the underlying geometric structure. It canonically transports a vector w872

along a geodesic emanating from x with initial velocity v and zero acceleration. This generalizes the873

classical notion of translation in Euclidean space.874

Hyperbolic Spaces. Hyperbolic spaces are Riemannian manifolds with constant negative curvature,875

i.e., with curvature −K < 0. Common models for hyperbolic space include the Poincaré ball model876

PK,n and the Lorentz hyperboloid LK,n, which have been extensively studied in the context of877

deep learning [47, 105]. For points x,y ∈ LK,n, their inner product ⟨x,y⟩L is given by ⟨x,y⟩L =878

−xtyt + xT
s ys = xT gKn y with |∥x∥|L :=

√
|⟨x,x⟩L| being the Lorentzian norm. Formally, Ln is879

the point set Ln = {x ∈ Rn+1 : ⟨x,x⟩L = 1/K, xt > 0}. Pn,K is the n-dimensional sphere Sn880

with radius 1/
√
K, with the Riemannian metric gPx = λ2

xg
E , where λx := 2

1−c∥x∥2 and gE is the881

Euclidean metric. Other models, such as the Klein model, also exist. These models are isometric,882

meaning that there is a smooth correspondence between points in different models that preserves883

distances, angles, and geodesics. This property allows for the selection of the most suitable model for884

a given application.885

Spherical Spaces. Spherical spaces are Riemannian manifolds with constant positive curvature, i.e.,886

with curvature K > 0. An n-dimensional spherical space SK,n is an n-dimensional sphere of radius887

K− 1
2 , equipped with the Riemannian metric induced by the Euclidean metric on Rn+1.888

Mixed Curvature Spaces. A mixed curvature space M is defined as a product manifold consisting889

of Euclidean, spherical, and hyperbolic spaces. The Riemannian metric and geodesic operations for890

such a manifold are defined component-wise, enabling effective computational implementation for891

downstream tasks.892

Generalized Riemannian Manifolds. Generalizations of Riemannian manifolds can be obtained893

by relaxing some of the assumptions in their classical definition. One notable generalization is the894
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pseudo-Riemannian manifold, in which the metric g is an indefinite bilinear form, allowing for both895

positive and negative signs. This generalization is useful in contexts such as relativistic physics,896

where spacetime is modeled as a pseudo-Riemannian manifold.897

A.2 Non-Applicability of the Nash Embedding Theorem898

The Nash Embedding Theorem roughly states that any Riemannian manifold of dimension n admits899

an isometric embedding into R2n+1 [104]. While it may appear as if this allows for Euclidean900

embeddings of complex structures with no distortion and only twice the dimension, this is in fact a901

confusion in vocabulary between the notion of isometric embeddings between those of Riemannian902

manifolds and those of metric spaces.903

Definition A.1. Let (M, g), (M′, g′) be Riemannian manifolds. An isometric embedding of Rie-904

mannian manifolds is a smooth map f : M → M′ such that g = f∗g′. Let (X, dX), (Y, dY )905

be metrics spaces. An isometric embedding of metric spaces is a map f : X → Y such that906

dX(a, b) = dY (f(a), f(b)) for all a, b ∈ X .907

Hence in the former, which is also the isometric embedding afforded by the Nash Embedding908

Theorem, the map f preserves the Riemannian metric, i.e. the inner product on the tangent bundle. As909

a result, the isometry is locally distance preserving, in the sense that length of any path is preserved910

under f . However, given points x, y connected by a shortest path γ, the straight line path connecting911

f(x), f(y) in the co-domain is not necessarily f(γ) (note that f need not to be surjective). As a912

result, measuring the distortion of embeddings is concerned with whether f is globally distance913

preserving, or whether the shortest distance between f(x) and f(y) is the length of f(γ), which is914

defined by isometric embeddings between metric spaces. Note that an isometric embedding of915

Riemannian manifolds is in general not an isometric embedding of metric spaces. For instance,916

given the sphere S1, its usual Riemannian metric is inherited from the Riemannian metric for R2, i.e.917

the usual inner product. The identity map is then an isometric embedding S1 ↪→ R2 as Riemannian918

manifolds. However, the distance between points on the sphere does not coincide with the Euclidean919

distance of their image. As an example, antipodal points have distance π in S1 but distance 1 in R2.920

In the context of foundational models, we are concerned with globally distance preserving embeddings,921

as computing the distance between any pairs of token embeddings is crucial for model training. As922

a result, the Nash Embedding Theorem is not applicable since global distortion could still arise923

from isometries between Riemannian manifolds. For this reason, by "isometry", we refer to those924

between metric spaces unless otherwise specified, which captures the notion of distortion critical for925

foundational model embeddings.926

Definition A.2. Let (X, dX), (Y, dY ) be metric spaces equipped with the respective distance metrics927

and f : X → Y be a map. The bi-Lipschitz distortion of f is dist(f) = ∥f∥Lip∥f−1∥Lip, where928

∥f∥Lip is the (possibly infinite) Lipschitz-constant of f . For a pair of points (a, b) ∈ X2, the929

point-wise distortion is given by |dX(a,b)−dY (f(a)−f(b))|
dX(a,b) .930

Both notions of distortion measure the deviation of f from an isometry between metric spaces. Note931

that the minimum distortion in the case of bi-Lipschitz distortion is 1.932

A.3 Markov Convexity933

In this section we provide the relevant background on notion of Markov convexity. Let (X, dX) be a934

metric space. Then the Markov p–convexity constant Π (for a fixed positive integer p) of the metric935

space X is a universal constant (or ∞) define as follows:936

Definition A.3. Π is the smallest constant s.t. for any Markov chain on (Xt)t≥0 on a state space Ω,937

and every map f : Ω → X , and for any m ∈ N, we have938

∞∑
n=0

1

2np

∑
t∈Z

E
[
d
(
f(Xt), f(Xt+2n)

)p] ≤ Πp
∑
t∈Z

E
[
d
(
f(Xt), f(Xt+1)

)p]

Roughly speaking, when Π < ∞, the p-th moment of one-step increments dominates the p-th939

moments of exponential length steps. Intuitively, measures how tightly local behaviors in X control940

and estimate global behaviors on the space, with lower values Π showing tighter control.941
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A.4 Non-Euclidean Structure in the Real World942

Non-Euclidean Structures in Natural Language Processing. Language exhibits inherently hierar-943

chical structures - from concept taxonomies to entailment relationships - that challenge traditional944

Euclidean representations. These hierarchical relationships between linguistic units naturally manifest945

on non-Euclidean manifolds, particularly in hyperbolic space, which has emerged as a powerful946

framework for natural language processing [37, 86]. Foundational work has demonstrated that hyper-947

bolic embeddings can effectively capture word-level semantics [138] and concept hierarchies [83],948

leveraging the exponential volume growth of hyperbolic space to model tree-like linguistic structures.949

The success of hyperbolic representations has sparked various advanced applications: from question950

answering systems [135], privacy-preserving text representations [45], to multi-document summa-951

rization that captures document-level discourse structure [127]. Recent work has further extended952

these approaches to cross-lingual settings [123] and contextual language models [24], demonstrating953

the broad utility of non-Euclidean geometries in modern natural language processing.954

Non-Euclidean Structures in Computer Vision. Similar to NLP, many computer vision tasks in-955

volve data that naturally resides in intricate manifolds that are challenging to model using conventional956

Euclidean space [101]. For instance, visual entities often form inherent hierarchical relationships957

among object classes, between scenes and their constituent categories [51, 108], or scenes at varying958

levels of granularity [74]. In these scenarios, hyperbolic geometry provides a compelling alternative959

to the Euclidean representations in representing the exponential growth of hierarchical structures with960

minimal distortion [121]. Its advantages have been demonstrated across a wide range of applications,961

including image segmentation [4], action classification [25] video prediction [133], deformable 3D962

surfaces [95]. In parallel, hyperspherical learning has become integral to modern contrastive learning963

with cosine similarity, underpining tasks ranging from self-supervised learning [40] to long-tailed964

classification [72] and few-shot learning [140].965

Non-Euclidean Structures in Complex Networks. Networks, whether they represent social interac-966

tions, user purchasing preferences, or transportation systems, often exhibit complex, non-Euclidean967

relationships that traditional Euclidean models fail to capture effectively. Social networks, for ex-968

ample, are best described by graph structures where nodes (individuals) are connected by edges969

(relationships) that can be directional, weighted, or even exhibit hierarchical properties. These970

networks typically involve intricate dependencies and nonlinear relationships, requiring geometric971

frameworks beyond Euclidean space to model effectively.972

Non-Euclidean Structures in Natural Sciences. In natural science, many systems exhibit intricate973

structures that Euclidean space struggles to capture effectively. In biology, non-Euclidean geometries974

are integral to analyzing and modeling complex organic structures, such as protein folding [145],975

single-cell RNA-seq data [13, 38, 77], and phylogenetic trees [99], where hyperbolic and spherical976

geometries are commonly observed. In neuroscience, hyperbolic geometry is shown to be more effec-977

tive than Euclidean counterpart in modeling the brain’s cortical folding [142], brain surface [124], and978

hippocampal spatial representations [165], aiding in the study of spatial organization and connectivity.979

A.5 Deep Learning with Non-Euclidean Geometries980

Recent years have witnessed an increasing interest in extending deep learning techniques to Rieman-981

nian manifolds. Here we discuss in further detail the advances for designing neural networks and982

Transformers in non-Euclidean geometries, as well as optimization on manifolds.983

Geodesic Neural Networks. Geodesic neural networks leverage geodesic, particularly geodesic984

distances, to perform neural operations that preserve geometric structure on manifold-structured985

data [21]. Several works have developed geodesic convolutional layers by applying filters to local986

patches in geodesic polar coordinates [95], learning directionally sensitive filters along principal987

curvature directions [17], or learnable kernel functions that operate on local coordinate systems [103].988

More recent works such as GDGNN [79] have integrated geodesic operations with graph representa-989

tions.990

Hyperbolic Neural Networks. Hyperbolic neural networks exploit the geometry of hyperbolic991

space to learn embeddings that reflect hierarchical relationships more effectively than their Euclidean992

counterparts [105]. HNN [47] and HNN++[125] developed many basic operations, such as hyper-993

bolic linear and convolutional layers, and multinomial logistic regression (MLR). HGCN [23] and994

HGNN [92] were then among the first to develop hyperbolic graph neural networks (GNNs). More995
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recently, HyboNet [26] proposed a framework of hyperbolic neural networks that does not depend996

on the Euclidean tangent spaces; Poincaré ResNet [143] and HCNN [10] developed components for997

hyperbolic vision models; LResNet [64] proposed an efficient and stable residual connection method.998

Spherical Neural Networks. Spherical neural networks are designed for data that naturally reside999

on spheres or benefit from spherical symmetry. Spherical CNNs [31, 41] extended convolutions1000

and pooling to preserve rotational symmetries. SphereNet [32] introduced a framework for learning1001

spherical image representations by encoding distortion invariance into convolutional filters. Deep-1002

Sphere [34] proposed a graph-based approach. SWSCNN [43] later proposed a fully spherical CNN1003

that allows for anisotropic filters.1004

Mix-curvature Neural Networks. Mix-curvature neural networks uses product spaces of the1005

aforementioned manifolds to better model data that have local neighborhoods exhibiting different1006

geometric properties. [55] developed the first learning framework on product spaces, introducing1007

fundamental techniques such as mean and loss functions for embedding optimization. κ-GCN [6] then1008

extended learning on product spaces to GCNs, introducing a unified and differentiable Gyrovector1009

spaces framework to constant curvature spaces beyond hyperbolic manifolds.1010

Non-Euclidean Transformers. Significant advancements have been made toward Transformers in1011

non-Euclidean spaces in recent studies. Within hyperbolic learning, several works have proposed1012

hyperbolic self-attention mechanisms [26, 56, 125] and hyperbolic linear attentions [161], enabling1013

constructions of hyperbolic Transformers. Hyperbolic fine-tuning methods have also been developed1014

for LLMs [160]. Recent works have also proposed hyperbolic vision Transformers [44]. Attention1015

mechanisms have been developed for spherical spaces as well [82]. Further, Transformers have been1016

developed for mixed curvature manifolds as well [29].1017

Optimization on manifolds. Learning on manifolds often times require optimizing parameters with1018

manifold constraints. Many classical convex optimization algorithms have been extended to the1019

manifold-valued setting [5, 141, 150, 163]. Stochastic optimization on manifolds has been studied1020

extensivley [11, 16, 149, 164], which includes extensions of algorithms such as SGD and Adam,1021

which are suitable for training models on geometric domains.1022

B Additional Statistics and Dataset Details1023

In this section we give details regarding the datasets we used, as well as the show more statistic1024

results for more LLMs. We also show the distortion v.s. dimensionality plot for all graph here.1025

B.1 Distortion v.s. Dimensionality1026

In this section we provide more plots of the distortion of embedding graphs into manifold of vary-1027

ing dimensions. The plots are shown in Figure 6. In all cases, non-Euclidean geometry achieves1028

significantly smaller distortion with significantly fewer dimensions, reflecting Takeaway 1 in Sec-1029

tion 3.1. The distortion for Euclidean embeddings always plateaus, demonstrating that it is not suited1030

for embeddings each structures regardless of its dimension. On the other hand, the distortion for1031

non-Euclidean embeddings is still being reduced with increased dimensionality for 2 of the structures.1032

This reflects Takeaway 2 in Section 3.1.1033

B.2 Dataset Details1034

For the evaluation of token embedding distribution in LLMs, we incorporated a wide range of datasets,1035

including a subset of the RedPajama dataset [148] encompassing the arXiv, C4, Common Crawl,1036

GitHub, Wikipedia, and StackExchange datasets; math reasoning datasets such as GSM8K [30],1037

MATH50K [65],MAWPS [78], and SVAMP [112]; and common sense reasoning datasets, including1038

BoolQ, WinoGrande [120], and OpenBookQA [102].1039

B.3 More Statistics1040

In Figure 7 we show the statistics for token embeddings for more LLMs, including GPT-NeoX-1041

20B [14], OPT-13B [166], RoBERT-Base [93], Gemma2-9B [136], LLaMa3.1-8B [53], and LLaMa-1042

13B [139]. The top 2 rows show distribution of the norm of the token embeddings and the bottom1043

2 rows show the distribution of the frequency of each token embedding. The token frequency1044
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((a)) Tree ((b)) Cycle

((c)) Ring of Trees

Figure 6: Distortion of embedding a complete tree, cycle, and ring of tree into manifolds of different
dimensions (log scale). Each graph has 96 nodes. Euclidean embeddings is shown in blue. In all
cases, non-Euclidean geometry achieves significantly smaller distortion with significantly fewer
dimensions. The distortion for Euclidean embeddings always plateaus, demonstrating that it is not
suited for embeddings each structures regardless of its dimension.

Table 2: Hyperbolicity values δ for different metric spaces.

Sphere Space Dense Graph PubMed Graph Poincare Space Tree Graph

δ 0.99± 0.01 0.62± 0.01 0.40± 0.04 0.14± 0.01 0.0

distribution demonstrate scale-free property with power law decay, whereas the token norm show1045

rapid decreases in token count for higher normed tokens at the right tail. However, still none of the1046

Euclidean foundational models fully capture the underlying scale-free property of the distribution,1047

with all of them having an initial increase in token count against token norm for small normed token1048

embeddings.1049

C δ-Hyperbolicity Computation1050

Given any four points a, b, c, and w in a metric space, the Gromov product [a, c]w at w is bounded1051

below by the minimum of the Gromov products [a, b]w and [b, c]w, minus a slack term δ:1052

[a, c]w ≥ min([a, b]w, [b, c]w)− δ. (1)

The Gromov product between a and b with respect to w is defined as:1053

[a, b]w =
1

2
(d(a,w) + d(b, w)− d(a, b)) . (2)

A metric space X is said to be δ-hyperbolic if this inequality holds for all choices of a, b, c, and w.1054

In geodesic metric spaces, δ-hyperbolicity implies that geodesic triangles satisfy the δ-slim property,1055

meaning that any point on one side of a geodesic triangle is at most a distance of δ from some point1056

on one of the other two sides.1057
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Figure 7: Token embeddings statistics for GPT-NeoX-20B, OPT-13B, RoBERT-Base, Gemma2-
9B, LLaMa3.1-8B, and LLaMa-13B. The top 2 rows show distribution of the norm of the token
embeddings and the bottom 2 rows show the distribution of the frequency of each token embedding.
The token frequency distribution demonstrate scale-free property with power law decay, whereas the
token norm show rapid decreases in token count for higher normed tokens at the right tail.

.

In an exact tree metric, where the sides of any triangle intersect at a single point, the hyperbolicity1058

constant δ is zero. This follows from the fact that the four-point condition holds as an equality for all1059

points in the space.1060

D Foundational Operations for Pretraining Non-Euclidean Foundation1061

Models1062

Table 3 systematically compares foundational operations in Euclidean space with their adaptations to1063

non-Euclidean manifold spaces, highlighting critical geometric modifications required for pretraining1064

curvature-aware foundation models. Below, we explain the key components and their mathematical1065

formulations:1066

Curvature (K). In Euclidean space, curvature is fixed at K = 0, reflecting flat geometry. In manifold1067

spaces, curvature K ∈ R is a learnable or estimated parameter that defines the intrinsic geometry1068

(hyperbolic K < 0, spherical K > 0, or mixed). This value influences all subsequent operations,1069

requiring dynamic adjustments to distance metrics and parameter updates. Curvature estimation1070
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Table 3: Geometric Foundation Model Operations: Euclidean vs. Manifold Formulations.
PTM:Parallel transport preserving vector properties during translation; expµM

: Exponential map
from tangent space at Fréchet mean µM; logµM

: Inverse exponential map projecting to tangent
space; Ret: Retraction mapping for parameter updates; Proj: Tangent space projection operator

Operation Euclidean Space Manifold Space
Curvature (K) K = 0 K ∈ R

Attention Score αqk = softmax
(

q·k⊤
√
dk

)
αM
qk = softmax

(
−d2

M(q,k)√
dk

)
Rotary PE QRoPE

i = Qi Rot(pi); KRoPE
i = Ki Rot(pi) QRoPEM

i = PTM(Qi,pi); KRoPEM
i = PTM(Ki,pi)

Residual Connection x(l+1) = x(l) + f(x(l)) x(l+1) = expx(l)(λ · f(x(l)))

Layer Norm x̂ = x−µ
σ x̂ = expµM

(
logµM

(x)

σM

)
Cross-Entropy Loss L = −

∑
t log pt L = −

∑
t log

exp(−dM(zt,z
∗))∑

t′ exp(−d2
M(zt,zt′ ))

Optimization θt+1 = θt − η∇θJ(θ) θt+1 = Retθt

(
−ηProjTθtM

∇J
)

FFN y = W2σ(W1x+ b1) + b2 y = exp0 (W2σ(log0(W1 ⊗ x⊕ b1)))

Attention Aggregation h =
∑

i αivi h = WeightedExpSum({vi}, {αi})

methods (e.g., Ollivier-Ricci for graphs or learned embeddings for non-graph data) ensure geometric1071

consistency across tasks.1072

Attention Mechanism. Euclidean attention computes similarity via dot products αqk =1073

softmax
(

q·k⊤
√
dk

)
, while manifold attention replaces this with geodesic distance: αM

qk =1074

softmax
(

−d2
M(q,k)√
dk

)
. The negative squared distance prioritizes proximity on the manifold, pre-1075

serving geometric relevance. Aggregation uses weighted Fréchet means (via exponential maps) or1076

tangent space projections to combine features without violating curvature constraints.1077

Positional Encoding (Rotary PE). Euclidean positional encodings apply rotation matrices Rot(pi)1078

to query/key vectors. For manifolds, parallel transport PTM replaces rotations, translating positional1079

shifts along geodesics while preserving vector orientation relative to the manifold’s curvature. This1080

ensures positional relationships respect intrinsic geometry.1081

Residual Connections. Standard residuals x(l+1) = x(l) + f(x(l)) are replaced by manifold1082

equivalents: x(l+1) = expx(l)(λ · f(x(l))). Here, the exponential map exp projects tangent space1083

updates f(x(l)) onto the manifold, scaled by λ, to preserve geometric stability across layers.1084

Layer Normalization. Euclidean layer norm standardizes features via x̂ = x−µ
σ . On manifolds,1085

operations occur in the tangent space at the Fréchet mean µM: x̂ = expµM

(
logµM

(x)

σM

)
, where1086

logµM
maps points to the tangent space for normalization before reprojection.1087

Cross-Entropy Loss. The manifold loss L = −
∑

t log
exp(−dM(zt,z

∗))∑
t′ exp(−d2

M(zt,zt′ ))
replaces Euclidean1088

dot products with geodesic distances, ensuring probabilities reflect the manifold’s geometry. This1089

penalizes deviations in the curved space rather than in a flat embedding.1090

Optimization. Euclidean SGD θt+1 = θt − η∇θJ(θ) is adapted via retractions Retθt , which map1091

gradient steps −ηProjTθtM
∇J from the tangent space back to the manifold, ensuring updates respect1092

curvature constraints.1093

Feed-Forward Network (FFN). Manifold FFNs y = exp0 (W2σ(log0(W1 ⊗ x⊕ b1))) use Möbius1094

operations (⊗,⊕) for linear transformations and biases, followed by activation in the tangent space.1095

The exponential map exp0 ensures outputs remain on the manifold.1096

Attention Aggregation. Instead of weighted sums h =
∑

i αivi, manifolds use WeightedExpSum,1097

which computes Fréchet means of values vi weighted by αi, ensuring aggregated features lie on the1098

manifold.1099

These adaptations collectively enable pretraining in non-Euclidean spaces by preserving geometric1100

integrity. Operations like parallel transport, exponential/log maps, and retractions ensure compat-1101

ibility with curvature, while specialized normalization and loss functions align learning dynamics1102
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with the manifold’s intrinsic structure. The table underscores the necessity of redefining core com-1103

ponents—from attention to optimization—to build effective foundation models for hyperbolic and1104

mixed-curvature geometries.1105
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