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Abstract. Implicit neural representation methods have shown impres-
sive advancements in learning 3D scenes from unstructured in-the-wild
photo collections but are still limited by the large computational cost
of volumetric rendering. Recently, 3D Gaussian Splatting emerged as
a much faster alternative with superior rendering quality and training
efficiency, especially for small-scale and object-centric scenarios. Never-
theless, this technique suffers from poor performance on unstructured
in-the-wild data. To tackle this, we extend over 3D Gaussian Splatting
to handle unstructured image collections. We achieve this by modeling
appearance to seize photometric variations in the rendered images. Ad-
ditionally, we introduce a new mechanism to train transient Gaussians to
handle the presence of scene occluders in an unsupervised manner. Ex-
periments on diverse photo collection scenes and multi-pass acquisition
of outdoor landmarks show the effectiveness of our method over prior
works achieving state-of-the-art results with improved efficiency.
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1 Introduction

Novel View Synthesis (NVS) and 3D scene reconstruction are long-standing,
challenging tasks in the realms of computer vision and computer graphics. Over
the past few years, Neural Radiance Fields (NeRF) [15] have demonstrated
groundbreaking results in rendering photorealistic views from novel viewpoints
using an implicit neural representation of the radiance and density fields in a
scene. Although NeRFs are very effective in static scenes, their performance
significantly degrades in dynamic scenarios (i.e. containing moving transient ob-
jects) or in the presence of changing conditions such as weather, exposure, and
lighting (i.e. in-the-wild datasets). To tackle these challenges, NeRF-W [14] pro-
posed an extension to NeRF enabling the reconstruction of outdoor landmarks
from in-the-wild images. They achieve this by learning the changing appearance
of the images through per-image embeddings. Furthermore, to handle the pres-
ence of occluders, the scene is decomposed into “static” and “transient” elements
being modeled by separate radiance fields. These modifications significantly im-
proved NeRF’s performance when confronted with appearance changes and tran-
sient occluders. More recent works [3, 21] improve transient object handling by
leveraging 2D visibility maps. Nonetheless, these methods still suffer from the
inherent cost of volumetric rendering.

Recently, 3D Gaussian Splatting (3DGS) [8] attracted considerable interest
thanks to its explicit representation resulting in faster training and rendering by
leveraging GPU-based rasterization. 3DGS achieves fast training and matches
visual quality obtained by the current SOTA NeRF methods [16]. This work
represents the scene as a large number of anisotropic 3D Gaussians with color
features and opacities. The Gaussians’ set is then used in a differentiable splat-
ting process to project the 3D Gaussians into a 2D image plane and blend them
to get the rendered image. Similar to the original NeRF [15], 3DGS suffers from
the same limitations regarding varying lighting conditions and the presence of
occluders in the training images.

In this work, we present SWAG, the first in-the-wild extension for 3DGS.
To achieve this, we propose to expand the capabilities of 3DGS and improve its
robustness in these scenarios. To this aim, we propose to capture the varying
appearance of each image using learned embeddings and leveraging a multilayer
perceptron (MLP), significantly improving our model’s capabilities. Second, we
learn an image-dependent opacity variation to each Gaussian that enables a
better handling of transient objects and a finer scene reconstruction as illustrated
in Figure 1.

We conduct a variety of experiments on the Phototourism dataset [6] and
NeRF-OSR [18] benchmark and show that not only do we improve 3DGS per-
formance in these scenarios, but we also achieve SOTA rendering quality with
significantly faster training and rendering speeds compared to previous works [3,
7, 14,21]. To summarize, our main contributions are as follows:

– We introduce a new method for reconstructing scenes from unconstrained
photo collections with varying appearances.
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– We design a specific training scheme that captures occluders and enables
transient object removal from a trained scene.

– We show that our method achieves SOTA performance in NVS in-the-wild
scenarios.

– We demonstrate SWAG’s abilities to generate new images with smooth visual
transitions from learned appearances and to remove, in an unsupervised
manner, transient objects from a captured scene.

2 Related Work

2.1 Neural Rendering in-the-wild

The abundance of in-the-wild unconstrained image data has encouraged adapt-
ing neural radiance fields to such cases. Early works like NeRF-W [14] have
proposed a disentanglement between static and transient occluders using two
appearance and transient per-image embeddings in addition to two radiance
fields for each component of the scene (i.e. static and transient). Ha-NeRF [3] on
the other hand uses a 2D image-dependent visibility map to eliminate occluders
instead of using a decoupled radiance field since transient phenomena are only
observed in individual 2D images. This simplification reduces the blurry artifacts
that NeRF-W [14] suffered from in the attempt to reconstruct transient phenom-
ena with a 3D transient field. Building upon previous methods, CR-NeRF [21]
enhances their performance by exploiting the interaction information from multi-
ple rays and fusing it into global information. Using a light-weight segmentation
network, this method learns a visibility map without the supervision of ground
truth segmentation masks to eliminate transient parts in 2D images. Another
recent work, RefinedFields [7], leverages K-Planes and generative priors for in-
the-wild scenarios. The learning is done through the alternation of two stages: a
scene fitting to optimize the K-Planes [4] representation and a scene enriching
phase that finetunes a pre-trained generative prior and infers a new K-Planes
representation. As presented, Implicit-field representations have found diverse
adaptations for in-the-wild scenarios. However, their time-consuming training
and inference pose a challenge to achieving real-time rendering. This constrains
their application in practical scenarios where fast rendering speed is crucial,
especially in diverse interactive 3D applications.

2.2 Point-Based Rendering

Although NeRF demonstrated exceptional capabilities in generating photoreal-
istic images, the demand for faster and more efficient rendering methods be-
came increasingly evident. Point-based rendering has emerged as a prominent
approach in computer graphics. It mainly revolves around the representation and
rendering of the scene using discrete primitives. Starting from the most elemen-
tary form, Point Sample Rendering [5] authors proposed to sample a fixed-size
formless set of points from a surface. Despite the developed strategies to ad-
equately sample objects or surfaces, point sample rendering still suffers from
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holes and discontinuity. To overcome the issue of 3D points sparsity, the follow-
ing works used different geometric primitives like discs [2] and surfels [23] that
have a larger extent compared to pixels. Differentiable point-based rendering
is the groundwork of these methods since it enables end-to-end training of 3D
primitives from images. Pulsar [10] introduced an efficient sphere-based differ-
entiable renderer where the scene is represented by a set of spheres with learned
positions, feature vectors, opacities, and radii. These parameters are optimized
to minimize the photometric reconstruction loss using an efficient differentiable
rendering. The rasterization is done using either a convolutional U-Net or a
per-pixel one-by-one convolutional network applied to a 2D screen space feature
map. The feature map is a blending function that combines each sphere chan-
nel information using weighting based on position, radius, and opacity. Recently
3DGS [8] used 3D Gaussians as primitives and introduced a fully differentiable
fast tile-based rasterizer for Gaussian splats allowing real-time rendering while
outperforming state-of-the-art visual quality. Despite the demonstrated capabil-
ity of 3DGS, there is still room for refining this method to enhance the quality of
rendered images. One observed issue with 3DGS [8] is the appearance of strong
artifacts when changing the sampling rate. Additionally, the rendering quality
declines significantly in low resolutions or far away from camera positions due to
the aliasing caused by the pixel size compared to the screen size and the Nyquist
frequency.

2.3 3DGS Rendering Improvement

To solve the aforementioned rendering issue, a multi-scale adaptation of 3DGS [20]
has been introduced. This work explains the aliasing phenomena by the splitting
of large amounts of Gaussians with a smaller extent than pixels in 3D regions
featuring high-frequency details. To render at a certain scale, authors filter out
too large or too small Gaussians. Additionally, small Gaussians are aggregated to
form larger ones selected on bigger scales during training to prevent missing areas
and low-frequency details. Motivated by Mip-NeRF’s [1] rendering quality, Mip-
Splatting [22] replaces the 2D dilation filter introduced in Surface splatting [23]
using 2D Mip filters that replicate box filters to solve the aliasing issue and uses
3D smoothing filters with a maximal sampling rate obtained from training im-
ages. One other issue with 3DGS is its performance deterioration in scenes that
may present variation in appearance. VastGaussian [12] introduced a decoupled
appearance modeling using a pixel-wise appearance embedding and a CNN to
predict a pixel-wise transformation for the rendered images. Hence these pre-
dicted transformations (multiplication, addition, and Gamma correction) work
well for large scenes but they are insufficient to model more varying appearances
that appear in-the-wild scenarios. Our work aims to extend in-the-wild 3DGS
scene representation beyond closed-world setups.
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3 Background

The scene in 3DGS [8] is represented by a set of 3D anisotropic Gaussians. Each
Gaussian is parameterized by its centroid x ∈ R3, scale S ∈ R3, rotation matrix
R ∈ R3×3, opacity α ∈ R and color c ∈ R3 encoded in spherical harmonic (SH)
coefficients. The 3D covariance matrix Σ of the 3D Gaussian is obtained using
its rotation matrix R and scale S:

Σ = RSSTRT . (1)

The 3D Gaussians are defined in world space following:

G(y) = e−
1
2 (y−x)TΣ−1(y−x). (2)

Given J, the Jacobian of the affine projective transformation and W, a viewing
transformation, the covariance matrix Σ′ in camera coordinates is as follows:

Σ′ = JWΣWTJT . (3)

These 3D Gaussians are projected to 2D splats and blended during a fast differ-
entiable α-blending process to get 2D rendered images. Each pixel y color value
C is calculated using N-ordered 2D splats using the formula:

C =
∑
i∈N

α′
ici

i−1∏
j=1

(1− α′
j), (4)

α′
i is the final opacity of the Gaussian obtained by:

α′
i = αi ∗ e−

1
2 (y

′−x′)TΣ′−1(y′−x′). (5)

where x′ and y′ are coordinates in the projected space.
Although 3D Gaussians can be arbitrarily initialized, a good prior is often

required for optimal results. Typically, the 3D Gaussians centers are initialized
using the sparse Structure from Motion (SfM) point cloud obtained from the set
of images. To avoid leaving huge holes in the scene, their corresponding covari-
ances are initialized to have isotropic Gaussians with initial radii equal to the
mean distance to neighboring points. During training, the 3D Gaussian features
are optimized such that the photometric difference between the rendered image
Ir and the ground truth one Igt is minimized with intervening controlling steps.
To control the Gaussians’ density and to address under- and over-distribution
issues, authors use an adaptive densification step where Gaussians with large
spatial gradients are split while transparent Gaussians that have very low opac-
ity are pruned.

Although 3DGS [8] works well on object-centric and small scenes, it struggles
with scenes presenting varying appearances and transient objects.
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Fig. 2: SWAG model architecture – In addition to the typical Gaussians’ features,
we also optimize a Hash Grid encoding their centers emb(x), a per-image embed-
ding vector lI and an MLP. This MLP takes as inputs the Gaussians’ colors c, the
associated image embedding lI , and their encoded centers emb(x) and outputs an
image-dependent color cI as well as an image-dependent opacity variation parameter
∆αI . This parameter is set as the location variable of a concrete distribution which
we sample to get the opacity variation ∆α̃I. Leveraging this opacity variation across
diverse training images enables identifying and excluding transient Gaussians within
the scene, as demonstrated by the grey Gaussians.

4 Method

In this section, we introduce SWAG, a novel 3DGS-based method for 3D scene
reconstruction from in-the-wild photo collections. We propose to adapt the 3D
Gaussians parameters to handle variable visual appearances and the presence of
occluders typically found in such unconstrained image collections.

In Section 4.1, we explain how SWAG handles appearance variations using
image-dependent embeddings injected into the Gaussian’s colors. In Section 4.2,
we explain how our proposal handles transient occluders by learning image-
dependent Gaussians’ opacities variations. Since our model’s knowledge about
the presence of occluders is embedded in the Gaussians opacities variation, it
easily enables a clear disentanglement between static and transient elements of
the scene. The overall architecture of our method is illustrated in Figure 2.

4.1 Appearance Variation Modeling

To adapt 3DGS to photometric variations, we associate, similarly to previous
methods [14, 19], a trainable embedding vector lI for each image. To inject the
appearance information, one naive solution would be to calculate a global trans-
formation per image to the 3D Gaussian colors or SH features. This strategy,
however, might be insufficient since it cannot model photometric features at the
local level in an image. To model local appearance variances in an image, one
possible way would be to predict a local transformation or directly a specific color
for each Gaussian on a per-image basis. However, such solution is intractable as
the number of training parameters will grow according to the number of Gaus-
sians times the number of images.



SWAG 7

In SWAG, we propose a more effective solution where we use an MLP that
takes as input a concatenation of the image embeddings and a positional en-
coding of the Gaussians’ centers. By using a positional encoding conditioned on
the center of the Gaussians, we are able to model local appearance variations
that occur in the image while maintaining a tractable number of parameters
to optimize. Initially, we considered estimating an affine color transformation
similar to Urban Radiance Fields [17] to be applied to each Gaussian color.
However, our initial results showed that affine color transformations alone can-
not model all appearance changes. To solve this problem, we directly predict
the Gaussian color from the MLP. We noticed that spatial embeddings coupled
with an MLP produce a smoothing effect on the predicted colors. Hence, to ren-
der view-dependent specularities and high-frequency details and counterbalance
this smoothing effect, we also add the Gaussian color obtained from the SH
coefficients as input to the MLP.

Our final solution employs an MLP Fθ that, for a given view, takes as input
the color of the 3D Gaussian c, the embedding vector of its center emb(x) and
the image embedding lI , and outputs the image-conditioned color cI. Accord-
ingly, for a 3D Gaussian, the image-dependent color cI is computed as follows:

cI = Fθ(c, emb(x), lI). (6)

4.2 Transient Gaussians Modeling

Our initial results of applying 3DGS to in-the-wild scenarios showed that Gaus-
sians representing transient objects produce blurred and elongated artifacts, due
to their optimization across all images, despite transients appearing in only a
few frames. Taking this observation into consideration, we introduce a learnable
image-dependent opacity variation term ∆α̃I to each Gaussian.

On the one hand, this opacity variation parameter allows Gaussians to re-
construct occluders present in some images. On the other hand, it enables those
same Gaussians to be transparent (i.e. not involved in the image rendering pro-
cess in other images) where these occluders are absent. During training, we
want to encourage this variation parameter to either fully mask (i.e. in the case
of occluders) or fully maintain (i.e. in the case of the static background) the
3D Gaussians’ opacities. For this purpose, we sample ∆α̃I using a Binary Con-
crete random variable [13]. This distribution is a continuous approximation of a
Bernoulli distribution concentrating most of the mass on the boundaries of the
interval [0, 1]. We return an additional output, ∆αI, of the previously introduced
MLP Fθ as the location parameter to the concrete function:

(cI, ∆αI) = Fθ(c, emb(x), lI), (7)

∆α̃I = sigmoid
[
1

T

(
log

(
|∆αI|

)
+ log(U)− log(1−U)

)]
, (8)

U ∼ Uniform(0, 1), (9)
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Fig. 3: Variance histogram analysis of the Gaussians’ opacity variation ∆α̃I w.r.t train-
ing images for a dynamic (i.e. containing transient objects) scene (top, Trevi Fountain
from Phototourism [6]); and a static scene (bottom, Locomotive from Tanks & Tem-
ples [9]). The left column views are rendered using only static Gaussians (i.e having
Var

[
∆α̃I

]
= 0), whereas right column views are rendered using all Gaussians.

where T is the temperature hyper-parameter. We do not use any annealing
on the temperature parameter, rather we set T = 0.1 to force, from the very
beginning of the training, the opacity variation to match a binary distribution.
During the evaluation, we fix U at 0.5. The final image-dependent 3D Gaussian
opacity is formulated as:

αI = max
(
α−∆α̃I, 0

)
. (10)

With our formulation of the opacity, we can naturally disentangle between
the transient and the static parts of the scene by defining transient Gaussians
as the ones having non-zero variance of their associated parameter ∆α̃I over
training images: Var

[
∆α̃I

]
̸= 0.

Figure 3 shows the histogram of Var
[
∆α̃I

]
on two scenes: one without tran-

sient content (Locomotive) and one with occluders (Trevi). We also show two
rendered images of each scene: the right image using all the Gaussians and the
left one using only Gaussians not detected as transient. The histogram shows
that for a static scene, we detected less than 4% of the Gaussians as transient
and around 96% of the Gaussians having Var

[
∆α̃I

]
= 0. Removing the 4% of

transient Gaussians does not affect the rendered image quality. For Trevi Foun-
tain, our model was able to represent transient objects using less than 20% of the
Gaussians while maintaining the majority of the Gaussians to reconstruct static
parts of the scene. Comparing the two rendered images shows that the transient
Gaussians correspond to the mass of tourists present near the fountain, while
removing the transient Gaussians resulted in an occluders-free rendering.

5 Experiments

5.1 Implementation details

Similar to 3DGS, we minimize the L1 loss combined with D-SSIM term to op-
timize the Gaussians parameters, the MLP Fθ weights, the Hash Encoder pa-
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Table 1: Quantitative results – Results on three real-world scenes from Photo-
tourism [6] and efficiency comparison among SoTA methods for NVS in-the-wild. Given
the significant gap between previous baselines [3,7,14,21] and 3DGS [8], we marginalize
on the different GPU configurations.

Bradenburg Gate Sacre Coeur Trevi Fountain Mean Efficiency
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ Train time (h) FPS

NeRF [15] 18.90 0.815 0.231 15.60 0.715 0.291 16.14 0.600 0.366 - -
NeRF-W [14] 24.17 0.890 0.167 19.20 0.807 0.191 18.97 0.698 0.265 400† <1†

Ha-NeRF [3] 24.04 0.877 0.139 20.02 0.801 0.171 20.18 0.690 0.222 452† 0.20†

CR-NeRF [21] 26.53 0.900 0.106 22.07 0.823 0.152 21.48 0.711 0.206 420† 0.25†

RefinedFields [7] 26.64 0.886 - 22.26 0.817 - 23.42 0.737 - 150† <1†

3DGS [8] 19.99 0.889 0.180 17.57 0.831 0.219 18.47 0.761 0.234 0.50∗ 181∗

SWAG (ours) 26.33 0.929 0.139 21.16 0.860 0.185 23.10 0.815 0.208 0.83∗ 15.29∗

† Results reported on [7]. ∗ Results computed using a high-tier GPU.

rameters, and the per-image embedding vectors. We fix the size of the latent
embedding vectors to n = 24. For the Hash encoding parameters, we set the
hash table size Th = 219, the finest resolution Nmax = 2048, the number of
levels L = 12 and the coarsest resolution Nmin = 16. The MLP we employ has
3 layers of 64 hidden units. Additional details on hyperparameters are provided
in the supplemetary material.

5.2 Datasets

Similar to SoTA in-the-wild reconstruction methods, we evaluate SWAG’s NVS
capabilities using the Phototourism dataset [6] and report our results on three
main touristic monuments: Brandenburg Gate, Sacre Coeur, and Trevi Foun-
tain. We also evaluate our method on the benchmark introduced in NeRF-
OSR [18] for outdoor scene relighting tasks. We report our performance us-
ing NeRF-MS’s [11] data split on 4 sites: stjohann (St. Johann, Saarbrücken),
lwp (Landwehrplatz, Saarbrücken), st (Staatstheater, Saarbrücken), and europa
(Galerie Europa, Saarbrücken) and the original NeRF-OSR [18]’s data split on
3 sites: stjohann, lwp and lk2 (Ludwigskirche, Saarbrücken). More details about
the datasets can be found in supplementary materials.

5.3 Evaluation

We provide visual comparisons with rendered images and report quantitative
results based on common rendering metrics from the literature: Peak Signal-to-
Noise Ratio (PSNR), Structural Similarity Index Measure (SSIM), and Learned
Perceptual Image Patch Similarity (LPIPS). Since only the embeddings associ-
ated with the training images are optimized during training, we follow NeRF-
W’s [14] evaluation approach: we optimize an embedding on the left half of each
test image and report metrics on the right half.
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Table 2: Quantitative results – Results on five sites from NeRF-OSR [18] outdoor
scenes benchmark.

stjohann lwp st europa
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

NeRF [15] 14.89 0.432 0.639 11.51 0.468 0.574 17.20 0.514 0.502 17.49 0.551 0.503
NeRF-W [14] 21.23 0.667 0.426 19.61 0.616 0.445 20.31 0.607 0.438 20.00 0.699 0.340
Ha-NeRF [3] 17.19 0.686 0.331 20.03 0.685 0.365 17.30 0.538 0.483 17.79 0.632 0.421
NeRF-MS [11] 22.84 0.793 0.235 21.90 0.719 0.336 20.68 0.630 0.402 21.03 0.721 0.294
3DGS [8] 16.77 0.741 0.268 11.76 0.609 0.414 17.16 0.629 0.406 20.18 0.782 0.252
SWAG (ours) 23.91 0.864 0.172 22.07 0.783 0.303 22.29 0.713 0.364 23.74 0.845 0.242

(a) Reported on NeRF-MS split [11]

lk2 st lwp
PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑

NeRF-OSR [18] 19.86 0.626 15.83 0.556 17.38 0.576
3DGS [8] 15.91 0.687 12.53 0.585 13.72 0.659
SWAG (ours) 19.59 0.756 18.73 0.721 18.61 0.753

(b) Reported on original benchmark split from NeRF-OSR [18]

5.4 Results

Table 1 shows quantitative results on three Phototourism scenes. Unsurprisingly,
optimizing 3DGS on in-the-wild photo collections showed poor results due to the
lack of image appearance dependency. The 3D Gaussians colors converge to a
mean color which makes the method unable to model visual changes caused by
weather, lightning conditions and different camera specifications. The presence
of transient objects also resulted in the persistence of artifacts. SWAG improves
3DGS performance and outperforms the baselines on SSIM across all datasets.
In particular, our proposal improves 3DGS’s PSNR by an average margin of
5.01 dB. SWAG outperforms NeRF-W across all datasets in terms of LPIPS,
PSNR, and SSIM and shows competitive performance with CR-NeRF and Re-
finedFields despite the priors these two methods use and requiring significantly
longer times to train.

Table 2 shows quantitative results on NeRF-OSR [18] benchmark. SWAG im-
proves 3DGS performance by an average PSNR margin of 5 dB and outperformed
all the other baselines regardless of the train/test split choices.

Figure 4 and Figure 5 show qualitative results of 3DGS and SWAG on Pho-
totourism scenes and four of NeRF-OSR sites. In some parts of the scene, 3DGS
presents artifacts and floaters either in under-observed part of the scene or in
areas occluded by transient objects. Adding to that, the rendered color is shifted
from the ground truth color as shown in Figure 4. SWAG produces visual appear-
ances close to the ground truth thanks to our per-image conditioning. Compared
to previous implicit methods [3,7,14,21], our proposal achieves one order of mag-
nitude faster training and guarantees real-time rendering as shown in Table 1.

5.5 Controllable appearance

Modeling the image appearance with an embedding vector enabled us to learn
a latent space that we can utilize to change the lighting and appearance of any
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Fig. 4: Qualitative experimental results on three real-world scenes from Photo-
tourism [6].s

viewpoint at inference time. On top of the training image embeddings shown
in Figure 6, we can sample vectors from the appearance space using interpolation
between the learned embeddings. These interpolations are smooth and natural
as shown in Figure 7. We encourage the readers to explore the supplementary
videos and appreciate more the naturalness of these interpolations.

5.6 Transient Objects Removal

As explained in Section 4.2, our method is able to localize 3D Gaussians that
represent transient objects and, consequently, is able to manipulate the scenes
omitting these objects. It should be noted that SWAG is thoughtfully designed
to model transient objects without allowing the Gaussians to vary their opacity
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Fig. 5: Qualitative experimental results on three real-world scenes from Photo-
tourism [6] and four NeRF-OSR [18] scenes. We demonstrate the capability of SWAG
to disentangle between static and transient parts of the scene.

to compensate for appearance variation. Indeed, according to our experiments,
it was observed that less than 20% (average on trained scenes) of the Gaussians
capture transient objects. Consequently, SWAG achieves a better reconstruction
of the static scene parts without having blurry elongated Gaussians that arise
in view-dependent appearances with 3DGS. The capabilities of our model of
disentangling static and dynamic Gaussians are clearly highlighted in Figure 5.
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Fig. 6: Appearance transfer – SWAG is able to render a scene at any viewpoint
with the visual appearance of any training image thanks to the learned appearance
embeddings.

Fig. 7: Appearance interpolation – Interpolations between the appearance embed-
dings of two training images (left, right).

5.7 Ablations

In this section, we compare two variants of our method to analyze the contribu-
tion of each component of SWAG:

– SWAG-A, a variation wherein the transient detection part of our model is
removed,

– SWAG-T, a variation wherein the image appearance color dependency is
omitted.

We compare the results of our model variation on Phototourism scenes and
we report the results in Table 3. SWAG-A enabled appearance modeling and

Table 3: Quantitative results – Results of two ablations of SWAG : SWAG-A and
SWAG-T on three real-world scenes from Phototourism [6].

Bradenburg Gate Sacre Coeur Trevi Fountain

PSNR ↑ SSIM↑ LPIPS ↓ PSNR ↑ SSIM↑ LPIPS ↓ PSNR ↑ SSIM↑ LPIPS ↓

SWAG 26.33 0.929 0.139 21.16 0.860 0.185 23.10 0.815 0.208
SWAG-A 26.44 0.928 0.141 21.02 0.855 0.183 22.35 0.801 0.223
SWAG-T 24.46 0.914 0.160 19.06 0.836 0.205 20.13 0.769 0.244
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Ground-truth 3DGS SWAG-A SWAG-T SWAG

Fig. 8: Ablation study – Visual comparison of 3DGS, SWAG, and the two variants
used in our ablation study: SWAG-T (no appearance) and SWAG-A (no transient).

closer colors to ground truth compared to 3DGS where colors shift away and
converge to an average color for all training images. Transient objects’ presence
still causes floaters in the scene alike 3DGS as shown in Figure 8. In contrast,
SWAG-T enables the elimination of these floaters and produces an occluders-free
scene while suffering from color alterations compared to ground truth like 3DGS.
Combining these two variations enables SWAG to model varying appearances
with the ability to reduce scene floaters.

5.8 Discussion

SWAG leverages an MLP, a hash grid encoder, and image embedding to adapt
3DGS to in-the-wild scenarios. While this empowered 3DGS’s reconstruction
capabilities in these conditions as it was demonstrated in our experiments, it al-
most doubles the training time and has 10 times longer inference time per frame
as shown Table 1 compared to 3DGS. Nonetheless, our method still requires sig-
nificantly less training time than all previous in-the-wild baselines and achieves
interactive rendering speed. Although SWAG succeeded in removing occluders
using transient Gaussians, some parts of the scene where transient objects’ pres-
ence is more frequent (eg. clouds in the sky and tourists on the roads) can suffer
from being detected as transient. Eliminating all the transient Gaussians can
leave some holes in these parts of the scene as seen in Figure 5 for the Trevi
Fountain scene where some parts of the fountain contain black spots. One way
to solve this is to remove Gaussians based on an adaptive threshold λ rather
than considering as static only Gaussian with zero variance: Var

[
∆α̃I

]
< λ,

but it requires manual tuning of this threshold λ.

6 Conclusion

In this paper, we presented SWAG, a method designed for tailoring 3DGS repre-
sentations to in-the-wild scenarios. SWAG incorporates appearance modeling in
the Gaussians’ colors and employs an adaptive opacity modulation to handle the
presence of transient objects. Extensive experiments demonstrate that SWAG
achieves state-of-the-art results on two challenging benchmarks while exhibiting
training times orders of magnitude faster than in-the-wild NVS baselines while
enabling real-time rendering. As a first step in conditioning 3DGS for in-the-wild
scene representations, this work suggests potential future research direction, such
as extending SWAG to dynamic scenes.
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