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Abstract
Thompson sampling (TS) is widely used in se-
quential decision making due to its ease of use
and appealing empirical performance. However,
many existing analytical and empirical results
for TS rely on restrictive assumptions on re-
ward distributions, such as belonging to conju-
gate families, which limits their applicability in
realistic scenarios. Moreover, sequential deci-
sion making problems are often carried out in a
batched manner, either due to the inherent nature
of the problem or to serve the purpose of reduc-
ing communication and computation costs. In
this work, we jointly study these problems in two
popular settings, namely, stochastic multi-armed
bandits (MABs) and infinite-horizon reinforce-
ment learning (RL), where TS is used to learn
the unknown reward distributions and transition
dynamics, respectively. We propose batched
Langevin Thompson Sampling algorithms that
leverage MCMC methods to sample from ap-
proximate posteriors with only logarithmic com-
munication costs in terms of batches. Our al-
gorithms are computationally efficient and main-
tain the same order-optimal regret guarantees of
O(log T ) for stochastic MABs, and O(

√
T ) for

RL. We complement our theoretical findings with
experimental results.

1. Introduction
Modern machine learning often needs to balance compu-
tation and communication budgets with statistical guar-
antees. Existing analyses of sequential decision making
have been primarily focused on the statistical aspects of
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the problems (Tian et al., 2020), less is known about their
computation and communication aspects. In particular, re-
gret minimization in multi-armed bandits (MABs) and re-
inforcement learning (RL) (Jaksch et al., 2010; Wu et al.,
2022; Jung et al., 2019) is often studied under the common
assumptions that computation can be performed perfectly
in time, and that communication always happens in real-
time (Li et al., 2022; Jin et al., 2018; Haarnoja et al., 2018).

A question of particular importance is whether optimal
decisions can still be made under reasonable computa-
tion and communication budgets. In this work, we study
the exploration-exploitation problem with low computation
and communication costs using Thompson Sampling (TS)
(Thompson, 1933) (a.k.a. posterior sampling). To allow
sampling from distributions that deviate from the standard
restrictive assumptions, and to enable its deployment in set-
tings where computing the exact posterior is challenging,
we employ Markov Chain Monte Carlo (MCMC) methods.

TS operates by maintaining a posterior distribution over
the unknown and is widely used owing to its strong em-
pirical performance (Chapelle and Li, 2011). However, the
theoretical understanding of TS in bandits typically relied
on the restrictive conjugacy assumptions between priors
and reward distributions. Recently, approximate TS meth-
ods for general posterior distributions start to be studied
(Mazumdar et al., 2020; Xu et al., 2022), where MCMC al-
gorithms are used in conjunction with TS to expand its ap-
plicability in fully-sequential settings. On the other hand,
to the best of our knowledge, how to provably incorporate
MCMC with posterior sampling in RL domains remains to
be untackled.

Moreover, previous analyses of TS have been restricted to
the fully-sequential settings, where feedback or reward is
assumed to be immediately observable upon taking actions
(i.e. before making the next decision). Nevertheless, it
fails to account for the practical settings when delays take
place in communication, or when feedback is only avail-
able in an aggregate or batched manner. Examples include
clinical trials where feedback about the efficacy of medi-
cation is only available after a nontrivial amount of time,
recommender systems where feedback from multiple users
comes all at once and marketing campaigns (Schwartz
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TS-based Algorithms Batching
Scheme

MCMC
Method Regret # of Batches

Stochastic
MAB

(Karbasi et al., 2021) Dynamic - O(log T ) O(log T )

(Mazumdar et al., 2020) - SGLD, ULA O(log T ) O(T )

This paper (Algorithm 2) Dynamic SGLD O(log T ) O(log T )

TS for RL
(PSRL)

(Osband et al., 2013) - - O(
√
T ) O(T/H)

(Ouyang et al., 2017) Dynamic - O(
√
T ) O(

√
T )

(Theocharous et al., 2017b) Static - O(
√
T ) O(log T )

This paper (Algorithm 3) Static SGLD, MLD O(
√
T ) O(log T )

Table 1: We compare our methods with existing TS-based algorithms in terms of batching schemes and MCMC methods adopted for
approximation. Performance is measured by regret, while communication cost is quantified with the number of batches. Here, T is
the time horizon, H is the fixed episode length in episodic MDP settings. Our methods achieve optimal performance, while reducing
computation and communication costs due to batching, and are applicable in broader regimes.

et al., 2017). This issue has been studied in literature by
considering static or dynamic batching schemes and by de-
signing algorithms that acquire feedback in batches, where
the learner typically receives reward information only at the
end of the batch (Karbasi et al., 2021; Kalkanli and Ozgur,
2021; Vernade et al., 2020; Zhang et al., 2020). Nonethe-
less, the analysis of approximate TS in batched settings is
unavailable for both bandits and RL.

In this paper, we tackle these challenges by incorporat-
ing TS with Langevin Monte Carlo (LMC) and batching
schemes in stochastic MABs and infinite-horizon RL. Our
algorithms are applicable to a broad class of distributions
with only logarithmic rounds of communication between
the learner and the environment, thus being robust to con-
straints on communication. We compare our results with
other works in Table 1, and summarize our main contribu-
tions as follows:

• For stochastic MABs with time horizon T , we present
Langevin Thompson Sampling (BLTS, Algorithm 2)
along with Theorem 3, which achieves the optimal
O(log T ) regret with O(log T ) batches1. The main
technical contribution here is to show that when feed-
back is obtained in a batched manner where the poste-
rior concentration is weaker (Theorem 1), the conver-
gence guarantee of SGLD continues to hold.

• For large-scale infinite-horizon MDPs, we present
Langevin Posterior Sampling for RL (LPSRL, Algo-
rithm 3) along with Theorem 4 to show that SGLD
with a static policy-switching2 scheme achieves the
optimal O(

√
T ) Bayesian regret with O(log T ) pol-

icy switches. For tabular MDPs, we show that LPSRL
incorporated with the Mirrored Langevin Dynamics
(MLD) achieves the optimal O(

√
T ) Bayesian regret

with O(log T ) policy switches. The use of approx-

1A T round game can be thought of as T many batches each of size 1.
2In MDP settings, the notion of a batch is more appropriately thought of as a policy-switch.

imate sampling leads to an additive error where the
true model and the sampled model are no longer iden-
tically distributed. This error can be properly handled
with the convergence guarantees of LMC methods.

• Experiments are performed to demonstrate the effec-
tiveness of our algorithms, which maintain the order-
optimal regret with significantly lower communica-
tion costs compared to existing exact TS methods.

2. Problem Setting
In this section, we introduce the problem setting with rele-
vant background information.

2.1. Stochastic Multi-armed Bandits

We consider the N -armed stochastic multi-armed bandit
problem, where the set of arms is denoted by A = [N ] =
{1, 2, . . . , N}. Let T be the time horizon of the game. At
t = 1, 2, . . . , T , the learner chooses an arm at ∈ A and
receives a real-valued reward rat

drawn from a fixed, un-
known, parametric distribution corresponding to arm at. In
the standard fully-sequential setup, the learner observes re-
wards immediately. Here, we consider the more general
batched setting, where the learner observes the rewards for
all timesteps within a batch at the end of it. We use Bk to
denote the starting time of the k-th batch, B(t) to represent
the starting time of the batch that contains time t, and K as
the total number of batches. The learner observes the set
of rewards {rat

}Bk+1−1
t=Bk

at the end of the k-th batch. Note
that the batched setting reduces to the fully-sequential set-
ting when the number of batches is T , each with size 1.

Suppose for each arm a, there exists a parametric reward
distribution parameterized by θa ∈ Rd such that the true
reward distribution is given by pa(r) = pa(r|θ∗a), where θ∗a
is an unknown parameter3. To ensure meaningful results,

3Our results hold for the more general case of θa ∈ Rda , but for simplicity of exposition,
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we impose the following assumptions on the reward distri-
butions for all a ∈ A:

• Assumption 1: log pa(r|θa) is L-smooth and m-
strongly concave in θa.

• Assumption 2: pa(r|θ∗a) is ν strongly log-concave in
r and∇θ log pa(r|θ∗a) is L-Lipschitz in r.

• Assumption 3: The prior λa(θa) is concave with L-
Lipschitz gradients for all θa.

• Assumption 4: Joint Lipschitz smoothness of (the bi-
variate) log pa(r|θa) in r and θa.

These properties include log-concavity and Lipschitz
smoothness of the parametric families and prior distribu-
tions, which are standard assumptions in existing literature
Mazumdar et al. (2020) and are satisfied by models like
Gaussian bandits (Honda and Takemura, 2013). For the
sake of brevity, We provide the mathematical statements of
these assumptions in Appendix B.

Let µa denote the expected value of the true reward distri-
bution for arm a. The goal of the learner is to minimize the
expected regret, which is defined as follows:

R(T ) := E

[
T∑

t=1

µ∗ − µat

]
=
∑
a∈A

∆aE [ka(T )] , (1)

where µ∗ = maxa∈A µa, ∆a = µ∗ − µa, and ka(t) repre-
sents the number of times arm a has been played up to time
t. Without loss of generality, we will assume that arm 1 is
the best arm. We discuss the MAB setting in Section 5.

2.2. Infinite-horizon Markov Decision Processes

We focus on average-reward MDPs with infinite horizon
(Jaksch et al., 2010; Wei et al., 2021), which is under-
explored compared to the episodic setting. It is a more
realistic model for real-world tasks, such as robotics and
financial-market decision making, where state reset is not
possible. Specifically, we consider an undiscounted weakly
communicating MDP (S,A, p,R) with infinite time hori-
zon4 (Ouyang et al., 2017; Theocharous et al., 2017b),
where S is the state space, A is the action space, p repre-
sents the parameterized transition dynamics, andR : S×A
→ R is the reward function. We assume that θ ∈ Rd pa-
rameterizes the transition dynamics and there exists a true
unknown θ∗ governing the next state of the learner. At each
time t, the learner is in state st, takes action at, and transits
into the next state st+1, which is drawn from p(·|st, at, θ∗).

We consider two sub-settings based on the parameteriza-
tion of the transition dynamics: the General Parameteriza-

we consider the ambient dimension for the parameters of each arm to be the same.
4It is known that weakly communicating MDPs satisfy the Bellman Optimality.

tion and the Simplex Parameterization. These sub-settings
require different assumptions and setups, which we elabo-
rate on in their respective sections (Section 6.2 and Section
6.3). In the MDP context, the notion of batch is more ap-
propriately thought of as a policy switch. Therefore, Bk

now represents the starting time of the k-th policy switch,
and we additionally define Tk as the number of time steps
between policy switch k and k + 1. We consider station-
ary and deterministic policies, which are mappings from
S → A. Let πk be the policy followed by the learner af-
ter the k-th policy switch. When the decision to update
and obtain the k-th policy is made, the learner uses the ob-
served data {st, at,R(st, at), st+1}

Bk+1−1
t=Bk

collected after
the (k − 1)-th policy switch to sample from the updated
posterior and compute πk. The goal of the learner is to
maximize the long-term average reward:

Jπ(θ) = E

[
lim sup
T→∞

1

T

T∑
t=1

R(st, at)

]
.

Similar to other works (Ouyang et al., 2017; Osband et al.,
2013; Theocharous et al., 2017b), we measure the perfor-
mance using Bayesian regret5 defined by:

RB(T ) := E

[
T∑

t=1

(Jπ∗
(θ∗)−R(st, at))

]
, (2)

where Jπ∗
(θ∗) denotes the average long-term reward after

running the optimal policy under the true model.

It is known that weakly communicating MDPs satisfy the
following Bellman optimality (Bertsekas, 2012; Ouyang
et al., 2017; Wei et al., 2021) in infinite-horizon setting,
and there exists some positive number H such that the span
(Definition 2) satisfies sp(h(θ)) ≤ H for all θ ∈ Rd.

Lemma 1 (Bellman Optimality). There exist optimal av-
erage reward J ∈ R and a bounded measurable function
h : S → R, such that for any s,∈ S, θ ∈ Rd, the Bellman
optimality equation holds:

J(θ) + h(s, θ) = max
a∈A

{
R(s, a) + Es′∼p(·|s,a;θ)[h(s

′, θ)]
}
. (3)

Here J(θ) = maxπJ
π(θ) under θ and is independent

of initial state. Function hπ(s, θ) = limT→∞ E[
∑T

t=1

(R(st, π(st))− Jπ(st))|s1 = s] quantifies the bias of pol-
icy π w.r.t the average-reward under θ, and h(s, θ) =
hπ∗

(s, θ), where π∗ = argmaxπ J
π(θ).

Definition 2. For any θ ∈ Rd, span of an MDP is de-
fined as sp(h(θ)) := sups,s′∈S |h(s, θ) − h(s′, θ)| =
maxs∈Sh(s, θ)−mins∈Sh(s, θ).

5In Bayesian regret, expectation is taken w.r.t the prior distribution of the true parameter θ∗ ,
the randomness of algorithm and transition dynamics.
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3. Related Work
Under the conjugacy assumptions on rewards, asymptotic
convergence of TS was studied in stochastic MABs by
Granmo (2010) and May et al. (2012). Later, finite-time
analyses with O(log T ) problem-dependent regret bound
were provided (Agrawal and Goyal, 2012; Kaufmann et al.,
2012; Agrawal and Goyal, 2013). However, in practice, ex-
act posteriors are intractable for all but the simplest mod-
els (Riquelme et al., 2018), necessitating the use of ap-
proximate sampling methods with TS in complex prob-
lem domains. Recent progress has been made in under-
standing approximate TS in fully-sequential MABs (Lu
and Van Roy, 2017; Mazumdar et al., 2020; Zhang, 2022;
Xu et al., 2022). On the other hand, the question of learn-
ing with TS in the presence of batched data has evolved
along a separate trajectory of works (Karbasi et al., 2021;
Kalkanli and Ozgur, 2021; Vernade et al., 2020; Zhang
et al., 2020). However, provably performing Langevin TS
in batched settings remains unexplored, and in this paper,
we aim at bridging these lines.

Moving to the more complex decision-making frameworks
based on MDPs, TS is employed in model-based meth-
ods to learn transition models, which is known as Poste-
rior Sampling for Reinforcement Learning (PSRL) (Strens,
2000). When exact posteriors are intractable, MCMC
methods have been empirically studied for performing
Bayesian inference in policy and reward spaces in RL
(Brown et al., 2020; Imani et al., 2018; Bojun, 2020; Guez
et al., 2014). MCMC is a family of approximate poste-
rior inference methods that enables sampling without exact
knowledge of posteriors (Ma et al., 2015; Welling and Teh,
2011). However, it is unclear how to provably incorporate
MCMC methods in learning transition models for RL.

Furthermore, the analysis of undiscounted infinite-horizon
MDPs (Abbasi-Yadkori and Szepesvári, 2015; Osband and
Van Roy, 2016; Ouyang et al., 2017; Wei et al., 2020; 2021)
poses greater challenges compared to the well-studied
episodic MDPs with finite horizon and fixed episode length
(Osband et al., 2013). Previous works on infinite-horizon
settings include model-based methods that estimate envi-
ronment dynamics and switch policies when the number
of visits to state-action pairs doubles (Jaksch et al., 2010;
Tossou et al., 2019; Agrawal and Jia, 2017; Bartlett and
Tewari, 2012). Nevertheless, under such dynamic schemes,
the number of policy switches can be as large as O(

√
T ),

making it computationally heavy and infeasible for con-
tinuous states and actions. To enable TS with logarith-
mic policy switches while maintaining optimal regret, we
build upon an algorithmically-independent static scheme as
in Theocharous et al. (2017b), and incorporate Langevin
Monte Carlo (LMC) methods to sample from inexact pos-
teriors.

4. SGLD for Langevin Thompson sampling
In the MAB and MDP settings, θ parameterizes the un-
known reward or transition distributions respectively. TS
maintains a distribution over the parameters and updates
the distribution to (the new) posterior upon receiving new
data. Given p(X|θ), prior λ(θ), and n data samples
{Xi}ni=1

6, let ρn be the posterior distribution after re-
ceiving n data samples which satisfies: ρ(θ|{Xi}ni=1) ∝
exp(

∑n
i=1 log p(Xi|θ) + log λ(θ)). In addition, con-

sider the scaled posterior ρn[γ] for some scaling pa-
rameter γ, which represents the density proportional to
exp(γ(

∑n
i=1 log p(Xi|θ) + log λ(θ))).

The introduction of MCMC methods arises from the need
for sampling from intractable posteriors in the absence
of conjugacy assumptions. We resort to a gradient-
based MCMC method that performs noisy updates based
on Langevin dynamics: Stochastic Gradient Langevin
Dynamics (SGLD). Algorithm 1 presents SGLD with
bached data to generate samples from an approxima-
tion of the true posterior. For a detailed exposition,
please refer to (Welling and Teh, 2011; Ma et al., 2015)
and Appendix A. Algorithm 1 takes all available data
{Xs}ns=1 at the start of a batch b as input, subsamples
data, performs gradient updates by computing ∇Û(θ) =
− n

|D|
∑

Xs∈D∇ log p(Xs|θ)−∇ log λ(θ), and outputs the
posterior for batch b.

Algorithm 1 SGLD with Batched Data
Input: prior λ(θ), data {Xs}ns=1, sample from last batch

θb−1, total iterations N , learning rate η, parameters
L, scaling parameter γ.

Initialization: θ0 ← θb−1

for i = 1, . . . , N do
Subsample D ⊆ {Xs}ns=1

Compute∇Û(θiη) over D
Sample θ(i+1)η ∼ N (θiη − η∇Û(θiη), 2ηI)

Output: θb ∼ N
(
θNη,

1
nLγ I

)
In the batched setting, new data is received at the end of a
batch, or when making the decision to perform a new policy
switch. Due to the way that the learner receives new data
and the fact that the batch data size may increase exponen-
tially7, the posterior concentrates slower. This differs from
the fully-sequential problem where the distribution shift of
successive true posteriors is small owing to data being re-
ceived in an iterative manner. We show that in batched
settings, with only constant computational complexity in
terms of iterations, SGLD is able to provide strong conver-
gence guarantee as in the fully-sequential setting (Mazum-
dar et al., 2020). Theorem 1 shows the convergence of

6Here data {Xi}ni=1 can be rewards for some arms or actual transitions of state-action pairs
depending on the setting.

7Data received in batch k can be doubled compared to the previous batch.
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SGLD in the Wasserstein-p distance can be achieved with
a constant number of iterations and data.

Theorem 1 (SGLD convergence). Suppose that the para-
metric reward/transition families, priors, and true re-
ward/transition distributions satisfy Assumptions 1-4. Let
κ := max{L/m,L/ν}, |D| = O(κ2), η = O(1/nκL),
and N = O(κ2), then for any δ ∈ (0, 1), the following
holds with probability ≥ 1− δ:

Wp (ρ̃n, ρn) ≤
√

12

nm
(d+ logQ+ (32 + 8dκ2)p)1/2

for all p ≥ 2, and where Q := maxθ
λ(θ)
λ(θ∗) measures the

quality of prior distribution.

ρn denotes the true posterior corresponding to n data sam-
ples and ρ̃n is the approximate posterior outputted by Algo-
rithm 1. We also note that similar concentration bounds can
be achieved by using the Unadjusted Langevin Algorithm
(ULA) for batched data, which adopts full-batch gradient
evaluations and therefore leads to a growing iteration com-
plexity. The proofs of Theorem 1 are adapted to the batched
setting, which differs from (Mazumdar et al., 2020).

5. Batched Langevin Thompson Sampling for
Bandits

In this section, we introduce Langevin Thompson Sam-
pling for batched stochastic MAB setting in Algorithm 2,
namely, BLTS. It leverages SGLD and batching schemes to
learn a wide class of unknown reward distributions while
reducing communication and computation costs. We have
previously discussed the results of SGLD in Section 4 for
both MABs and MDPs. Here, we focus on the batching
strategy in Algorithm 2 for bandits, and discuss the result-
ing regret guarantee.

5.1. Dynamic Doubling Batching Scheme

BLTS keeps track of the number of times each arm a has
been played until time t with ka(t). Initially, all {ka}a∈A
are set to 0. The size of each batch is determined by
{ka}a∈A and the corresponding integers {la}a∈A. Once
ka reaches 2la for some arm a, BLTS makes the decision
to terminate the current batch, collects all rewards from the
batch in a single request, and increases la by 1. BLTS thus
starts a new batch whenever an arm is played twice as many
times as in the previous batch, which results in growing
batch sizes. As the decision to move onto the next batch
depends on the sequence of arms that is played, it is con-
sidered as “dynamic”. This batching scheme is similar to
the one used in Karbasi et al. (2021). The total number of
batches that BLTS carries out satisfies the following theo-
rem, and its proof can be found in Appendix D.

Theorem 2. BLTS ensures that the total number of batches

is at most O(N log T ) where N = |A|.

Gao et al. (2019) showed that Ω(log T/ log log T ) batches
are required to achieve the optimal logarithmic dependence
in time horizon T for a batched MAB problem. This shows
that the dependence on T in the number of batches BLTS
requires is at most a factor of log log T off the optimal. We
now state and discuss the BLTS algorithm.

5.2. Regret of BLTS Algorithm

In Algorithm 2, denote by θka the output of Algorithm 1 for
arm a at batch k. At the end of each batch, new data is
acquired all at once and the posterior is being updated. It
is important to note that upon receiving new data when we
run Algorithm 1 for each arm, only that arm’s data is fed
into Algorithm 1. For each a ∈ A, assume the existence of
linear map αa such that EX∼pa(X|θa)[X] = α⊺

a θa ∀θa ∈
Rd, where ∥αa∥ is bounded. Theorem 3 shows the regret
guarantee of BLTS.

Theorem 3. Assume that the parametric reward families,
priors, and true reward distributions satisfy Assumptions 1
through 4 for each arm a ∈ A. Then with the SGLD param-
eters specified as per Algorithm 1 and with γ = O(1/dκ3)
(for κ := max{L/m,L/ν}), BLTS satisfies:

R(T ) ≤
∑
a>1

C
√
Q1

m∆a

(
d+ logQ1 + dκ2 log T + d2κ2

)
+

C

m∆a

(
d+ logQa + d2κ2 log T

)
+ 4∆a,

where C is a constant and Qa := maxθ
λa(θ)
λa(θ∗) . The total

number of SGLD iterations used by BLTS is O(κ2NlogT ).

Discussion We show that BLTS achieves the optimal
O
(

log T
△

)
regret bound with exponentially fewer rounds of

communication between the learner and the environment.
Result of Theorem 3 relies on both the statistical guarantee
provided by SGLD and the design of our batching scheme.
In bached setting, one must carefully consider the trade-off
between batch size and the number of batches. While it is
desirable to reuse the existing posterior for sampling within
a batch, the batching scheme must also ensure new data is
collected in time to avoid significant distribution shifts. In
addition, the use of SGLD allows BLTS to be applicable
in a wide range of general settings with a low computation
cost of O(κ2N log T ).

In the regret bound of Theorem 3, Qa measures the quality
of prior for arm a. Specifically, if the prior is properly cen-
tered such that its mode is at θ∗a, or if the prior is uninfor-
mative or flat everywhere, then logQa = 0. In Section 7,
we show that using either favorable priors or uninformative
priors provides similar empirical performance as existing
methods.
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Algorithm 2 Batched Langevin Thompson Sampling
(BLTS)
Input: priors λa(θ) ∀a ∈ A, scaling parameter γ, inputs

for SGLD subroutine N, η, L.
Initialization: ka ← 0, la ← 0, na ← 0, ρ̃a,k = ρ̃a,0 =
λa ∀a ∈ A, batch index k ← 0.

for t = 1, . . . , T do
Sample θa,t ∼ N

(
θka ,

1
naLγ I

)
∀a ∈ A

Choose action at = argmaxa∈A α⊺
aθa,t

Update ka(t) ← ka(t) + 1

if kat
= 2la(t) then

la(t) ← la(t) + 1
Terminate batch k and observe rewards {rai

}ti=Bk

for a ∈ A do
Update na with the number of new samples
Run Algorithm 1 to obtain ρ̃a,k+1 and θk+1

a
Update batch index k ← k + 1

6. Batched Langevin Posterior Sampling For
RL

In RL frameworks, posterior sampling is commonly used
in model-based methods to learn unknown transition dy-
namics and is known as PSRL8. In infinite-horizon settings,
PSRL operates by sampling a model and solving for an op-
timal policy based on the sampled MDP at the beginning of
each policy switch. The learner then follows the same pol-
icy until the next policy switch. In this context, the concept
of a batch corresponds to a policy switch.

Previous analyses of PSRL have primarily focused on tran-
sition distributions that conform to well-behaved conjugate
families. Handling transitions that deviate from these fam-
ilies and computing the corresponding posteriors has been
heuristically left to MCMC methods. Here, we provably
extend PSRL with LMC and introduce Langevin Poste-
rior Sampling for RL (LPSRL, Algorithm 3) using a static
doubling policy-switch scheme. Analyses of PSRL have
crucially relied on the true transition dynamics θ∗ and the
sampled MDPs being identically distributed (Osband et al.,
2013; Osband and Van Roy, 2016; Russo and Van Roy,
2014; Ouyang et al., 2017; Theocharous et al., 2017b).
However, when the dynamics are sampled from an approx-
imation of the true posterior, this fails to hold. To address
the issue, we introduce the Langevin posterior sampling
lemma (Lemma 3), which shows approximate sampling
yields an additive error in the Wasserstein-1 distance.

Lemma 3. (Langevin Posterior Sampling). Let tk be the
beginning time of policy-switch k, Htk := {sτ , aτ}tkτ=1 be
the history of observed states and actions till time tk, and
θk ∼ ρ̃tk be the sampled model from the approximate pos-
terior ρ̃tk at time tk. Then, for any σ(Htk)-measurable

8We also depart from using TS for the RL setting and stick to the more popular posterior
sampling terminology for RL.

function f that is 1-Lipschitz, it holds that:

∣∣∣E[f(θ∗)|Htk ]− E[f(θk)|Htk ]
∣∣∣ ≤W1(ρ̃tk , ρtk). (4)

By the tower rule,
∣∣∣E[f(θ∗)]− E[f(θk)]

∣∣∣ ≤W1(ρ̃tk , ρtk).

As demonstrated later, this error term can be effectively
controlled and does not impact the overall regret (Theorems
4 and 6). It only requires the average reward function Jπ(θ)
to be 1-Lipschitz, as specified in Assumption 59. Let us
consider the parameterization of the transition dynamics p
with θ ∈ Rd, where θ∗ ∈ Rd denotes the true (unknown)
parameter governing the dynamics. We explore two distinct
settings based on these parameterizations:

• General Parameterization (Section 6.2): In this set-
ting, we consider modeling the full transition dynam-
ics using θ∗ ∈ Rd, where d ≪ |S||A|. This parame-
terization can be particularly useful for tackling large-
scale MDPs with large (or even continuous) state and
action spaces. Towards this end, we consider S ∼= R.
Examples of General Parameterization include lin-
ear MDPs with feature mappings (Jin et al., 2020),
RL with general function approximation (Yang et al.,
2020), and the low-dimensional structures that govern
the transition (Gopalan and Mannor, 2015; Yang and
Wang, 2020). We provide a real-world example that
adopts such parameterization in Appendix E.3.

Despite Theocharous et al. (2017b) studies a similar
setting, their work confines the parameter space to R.
To accommodate a broader class of MDPs, we gen-
eralize the parameter space to Rd. As suggested by
Theorem 4, our algorithm retains the optimal O(

√
T )

regret with O(log T ) policy switches, making it appli-
cable to a wide range of general transition dynamics.

• Simplex Parameterization (Section 6.3): Here, we
consider the classical tabular MDPs with finite states
and actions. For each state-action pair, there exists a
probability simplex ∆|S| that encodes the likelihood
of transitioning into each state. Hence, in this case,
θ∗ ∈ Rd with d = |S|2|A|. This structure necessitates
sampling transition dynamics from constrained distri-
butions, which naturally leads us to instantiate LPSRL
with the Mirrored Langevin Dynamics (Hsieh et al.,
2018) (See Appendix A for more discussions). As
proven in Theorem 6, LPSRL with MLD achieves the
optimal O(

√
T ) regret with O(log T ) policy switches

for general transition dynamics subject to the proba-
bility simplex constraints.

9Mathematical statement is in Appendix B.
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6.1. The LPSRL Algorithm

LPSRL (Algorithm 3) use SamplingAlg as a subroutine,
where SGLD and MLD are invoked respectively depend-
ing on the parameterization. Unlike the BLTS algorithm in
bandit settings, LPSRL adopts a static doubling batching
scheme, in which the decision to move onto the next batch
is independent of the dynamic statistics of the algorithm,
and thus is algorithmically independent.

Let tk be the starting time of policy-switch k and let
Tk := 2k−1 represent the total number of time steps be-
tween policy-switch k and k + 1. At the beginning of each
policy-switch k, we utilize SamplingAlg to obtain an
approximate posterior distribution ρ̃tk and sample dynam-
ics θk from ρ̃tk . A policy πk is then computed for θk with
any planning algorithm10. The learner follows πk to se-
lect actions and transit into new states during the remaining
time steps before the next policy switch. New Data is col-
lected all at once at the end of k. Once the total number of
time steps is being doubled, i.e., t reaches tk + Tk − 1, the
posterior is updated using the latest data D, and the above
process is repeated.

Algorithm 3 Langevin PSRL (LPSRL)
Input: MCMC scheme SamplingAlg initiated with

prior λ(θ).
Initialization: time step t← 1, D ← ∅

for batch k = 1, . . . ,KT do
Tk ← 2k−1

tk ← 2k−1

Run SamplingAlg and sample θk from posterior:
θk ∼ ρ̃tk(θ|D)
Compute optimal policy πk based on θk

for t = tk, tk + 1, · · · , tk + Tk − 1 do
Choose action at ∼ πk
Generate immediate rewardR(st, at), transit into
new state st+1

D ← D ∪ {st, at,R(st, at), st+1}tk+Tk−1
t=tk

6.2. General Parametrization

In RL context, to study the performance of LPSRL instan-
tiated with SGLD as SamplingAlg, Assumptions 1-4
are required to hold on the (unknown) transition dynam-
ics, rather than the (unknown) rewards as in the bandit set-
ting. Additionally, similar to Theocharous et al. (2017b),
the General Parameterization requires p(·|θ) to be Lips-
chitz in θ (Assumption 6). Mathematical statements of all
assumptions are in Appendix B. We now state the main the-
orem for LPSRL under the General Parameterization.

Theorem 4. Under Assumptions 1 − 6, by instantiating
SamplingAlg with SGLD and setting the hyperparam-
eters as per Theorem 1, with p = 2, the regret of LPSRL

10We assume the optimality of policies and focus on learning the transitions. When only sub-
optimal policies are available in our setting, it can be shown that small approximation errors in
policies only contribute additive non-leading terms to regret. See details in (Ouyang et al., 2017).

(Algorithm 3) satisfies:

RB(T ) ≤ CH log T

√
T

m
(d+ logQ+ (32 + 8dκ2)p)1/2,

where C is some positive constant, H is the upper bound
of the MDP span, and Q denotes the quality of the
prior. The total number of iterations required for SGLD
is O(κ2 log T ).

Discussion. LPSRL with SGLD maintains the same
order-optimal regret as exact PSRL in (Theocharous et al.,
2017b). Similar to Theorem 3, the regret bound has explicit
dependence on the quality of prior imposed to transitions,
where logQ = 0 when prior is properly centered with its
mode at θ∗, or when it is uninformative or flat. Let θk,∗ be
the true posterior in policy-switch k. Our result relies on
θ∗ and θk,∗ being identically distributed, and the conver-
gence of SGLD in O(log T ) iterations to control the addi-
tive cumulative error in

∑KT

k=1 TkW1(ρ̃tk , ρtk) arising from
approximate sampling.

6.3. Simplex Parametrization

We now consider the tabular setting where θ∗ specifi-
cally models a collection of |A| transition matrices in
[0, 1]|S|×|S|. Each row of the transition matrices lies in a
probability simplex ∆|S|, specifying the transition proba-
bilities for each corresponding state-action pair. In particu-
lar, if the learner is in state s ∈ S and takes action a ∈ A,
then it lands in state s′ with p(s′) = p(s′|s, a, θ∗). In or-
der to run LPSRL on constrained space, we need to sample
from probability simplexes and therefore appeal to the Mir-
rored Langevin Dynamics (MLD) (Hsieh et al., 2018) by
using the entropic mirror map, which satisfies the require-
ments set forth by Theorem 2 in Hsieh et al. (2018). Under
Assumptions 5 and 6, we have the following convergence
guarantee for MLD and regret bound for LPSRL under the
Simplex Parameterization.

Theorem 5. At the beginning of each policy-switch k, for
each state-action pair (s, a) ∈ S × A, sample transition
probabilities over ∆|S| using MLD with the entropic mir-
ror map. Let ntk be the number of data samples for any
(s, a) at time tk, then with step size chosen per Cheng and
Bartlett (2018), running MLD with O(ntk) iterations guar-

antees that W2(ρ̃tk , ρtk) = Õ
(√
|S|/ntk

)
.

Theorem 6. Suppose Assumptions 5 and 6 are satisfied,
then by instantiating SamplingAlg with MLD (Algo-
rithm 4), there exists some positive constant C such that
the regret of LPSRL (Algorithm 3) in the Simplex Parame-
terization is bounded by

RB(T ) ≤ CH|S|
√
|A|T log(|S||A|T ),
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where C is some positive constant, H is the upper bound
of the MDP span. The total number of iterations required
for MLD is O(|S|2|A|2T ).

Discussion. In simplex parameterization, instantiating
LPSRL with MLD achieves the same order-optimal regret,
but the computational complexity in terms of iterations for
MLD is linear in T as opposed to log T for SGLD in the
General Parameterization. Nevertheless, given that the sim-
plex parameterization implies simpler structures, we natu-
rally have fewer assumptions for the theory to hold.

7. Experiments
In this section, we perform empirical studies in simulated
environments for bandit and RL to corroborate our theo-
retical findings. By comparing the actual regret (average
rewards) and the number of batches for interaction (max-
imum policy switches), we show Langevin TS algorithms
empowered by LMC methods achieve appealing statistical
accuracy with low communication cost. For additional ex-
perimental details, please refer to Appendix F.

7.1. Langevin TS in Bandits

We first study how Langevin TS behaves in learning the
true reward distributions of log-concave bandits with differ-
ent priors and batching schemes. Specifically, we construct
two bandit environments11 with Gaussian and Laplace re-
ward distributions, respectively. While both environments
are instances of log-concave families, Laplace bandits do
not belong to conjugate families.

7.1.1. GAUSSIAN BANDITS

We simulate a Gaussian bandit environment with N = 15
arms. The existence of closed-form posteriors in Gaussian
bandits allows us to benchmark against existing exact TS
algorithms. More specifically, we instantiate Langevin TS
with SGLD (SGLD-TS), and perform the following tasks:

• Compare SGLD-TS against both frequentist and
Bayesian methods, including UCB1, Bayes-UCB, de-
caying ϵ-greedy, and exact TS.

• Apply informative priors and uninformative priors for
Bayesian methods based on the availability of prior
knowledge in reward distributions.

• Examine all methods under three batching schemes:
fully-sequential mode, dynamic batch, static batch.

Results and Discussion. Figure 1(a) illustrates the cumu-
lative regret for SGLD-TS and Exact-TS with favorable
priors. Table 2 reports the regret upon convergence along

11Our theories apply to bandits with a more general family of reward distributions.

SGLD-
TS

Exact-
TS UCB1 Bayes-

UCB Batches

Fully
sequential

99.66±
13.09

99.07±
12.23

154.13+
−4.10

160.55±
25.75

650.0±
0.0

Static
batch

148.52±
39.28

145.94±
31.46

155.17±
5.06

231.80±
52.11

9.0±
0.0

Dynamic
batch

99.80±
15.62

98.71±
12.10

153.31±
3.83

214.43±
0.5

22.93±
1.50

Table 2: Average regret with the standard deviation under differ-
ent batching schemes. The last column quantifies communica-
tion cost w.r.t the total number of batches for interaction. BLTS
(SGLD-TS under dynamic batching scheme) achieves order-
optimal regret with low communication cost.

with the total number of batches in interaction. Note that
SGLD-TS equipped with dynamic batching scheme imple-
ments Algorithm 2 (BLTS). Empirical results demonstrate
that SGLD-TS is comparable to Exact-TS under all batch-
ing schemes, and is empirically more appealing compared
to UCB1 as well as Bayes-UCB. While static batch incurs
slightly lower communication costs compared to dynamic
batch, results show that all methods under dynamic batch
scheme are more robust with smaller standard deviation.
Our BLTS algorithm thus well balances the trade-off be-
tween statistical performance, communication, and com-
putational efficiency by achieving the order-optimal regret
with a small number of batches.

7.1.2. LAPLACE BANDITS

To demonstrate the applicability of Langevin TS in scenar-
ios where posteriors are intractable, we construct a Laplace
bandit environment with N = 10 arms. It is important to
note that Laplace reward distributions do not have conju-
gate priors, rendering exact TS inapplicable in this setting.
Therefore, we compare the performance of SGLD-TS with
favorable priors against UCB1. Results presented in Figure
1(b) reveal that, similar to the Gaussian bandits, SGLD-TS
with dynamic batching scheme achieves comparable per-
formance as in the fully-sequential setting and significantly
outperforms UCB1, highlighting its capability to handle di-
verse environments. In addition, the static batching scheme
exhibits larger deviations compared to the dynamic batch-
ing, which aligns with results in Table 2.

7.2. Langevin PSRL in Average-reward MDPs

In MDP setting, we consider a variant of RiverSwim en-
vironment (Strehl and Littman, 2008), which is a common
testbed for provable RL methods. Specifically, it models
an agent swimming in the river with five states, two ac-
tions (|S| = 5, |A| = 2). In this tabular case, LPSRL (Al-
gorithm 3) employs MLD (Algorithm 4 in Appendix A)
as SamplingAlg, namely, MLD-PSRL. We benchmark
the performance of MLD-PSRL against other mainstream

8
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Figure 1: (a) Regret in Gaussian Bandits (N = 15): expected regret is reported over 10 experiments with informative priors. Results
show SGLD-TS under dynamic batching scheme achieves optimal performance as in the sequential case without using approximate
sampling. Results with uninformative priors yield the same conclusions (See Appendix F). (b) Regret in Laplace Bandits (N = 10): re-
gret is reported over 10 experiments with informative priors. As in Gaussian Bandits, SGLD-TS with dynamic batching scheme achieves
optimal regret and outperforms UCB1. (c) Average reward in RiverSwim: expected average reward is reported over 10 experiments.
MLD-PSRL achieves optimal average reward upon convergence with a small number of policy switches.

model-based RL methods, including TSDE (Ouyang et al.,
2017), DS-PSRL (Theocharous et al., 2017b) and DB-
PSRL (exact-PSRL(Strens, 2000) with dynamic batch).
Note that MLD-PSRL and DS-PSRL adopt the static dou-
bling policy switch scheme discussed in section 6. Dy-
namic doubling policy switch scheme adopted by both DB-
PSRL and TSDE is akin to the one we use in bandit set-
ting, but based on the visiting counts of state-action pairs.
We simulate 10 different runs of experiment, and report the
average rewards obtained by each method in Figure 1(c).
Mechanisms used by each method are summarized in Ta-
ble 3, along with the average rewards achieved and maxi-
mum number of policy switches incurred.

MLD-
PSRL

DS-
PSRL

DB-
PSRL TSDE Optimal

policy
Static ps

√ √

Dynamic ps
√ √

Linear growth
√

Avg. reward 4.01±
0.11

4.02±
0.08

2.41±
0.91

4.01±
0.17

4.15±
0.04

Max. switches 12.0±
0.0

12.0±
0.0

15.33±
1.70

94.0±
3.56

-

Table 3: We report the average reward and the maximum num-
ber of policy switches all methods over 10 different runs. MLD-
PSRL instantiates Alogrithm 3 in Section 6, which achieves order-
optimal performance with small number of policy switches.

Results and Discussion. We demonstrate that MLD-PSRL
achieves comparable performance compared to existing
PSRL methods while significantly reducing communica-
tion costs through the use of static policy switches. In
contrast, as illustrated in Figure 4 (Appendix F) and Ta-
ble 3, TSDE achieves near-optimal performance but re-
quires high communication costs. Additionally, our empir-
ical results reveal that the static policy switch in the MDP
setting outperforms the dynamic policy switch alone. This
observation aligns with existing findings that frequent pol-
icy switches in MDPs can harm performance. Moreover,
compared to DS-PSRL, MLD-PSRL is applicable to more
general frameworks when closed-form posterior distribu-

tions are not available12.

8. Conclusion
In this paper, we jointly address two challenges in the de-
sign and analysis of Thompson sampling (TS) methods.
Firstly, when dealing with posteriors that do not belong to
conjugate families, it is necessary to generate approximate
samples within a reasonable computational budget. Sec-
ondly, when interacting with the environment in a batched
manner, it is important to limit the amount of communica-
tion required. These challenges are critical in real-world
deployments of TS, as closed-form posteriors and fully-
sequential interactions are rare. In stochastic MABs, ap-
proximate TS and batched interactions are studied inde-
pendently. We bridge the two lines of work by providing
a Langevin TS algorithm that works for a wide class of re-
ward distributions with only logarithmic communication.
In the case of undiscounted infinite-horizon MDP settings,
to the best of our knowledge, we are the first to provably
incorporate approximate sampling with the TS paradigm.
This enhances the applicability of TS for RL problems with
low communication costs. Finally, we conclude with exper-
iments to demonstrate the appealing empirical performance
of the Langevin TS algorithms.
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Appendices

A. MCMC Methods
A.1. Unconstrained Approximate Sampling

Suppose a target distribution ρ is parameterized by θ ∈ Rd, and observed data {Xi}ni=1 are independently identically
distributed. A posterior distribution defined up to a normalization factor can be expressed via the Gibbs distribution form:

ρ(θ|X1, . . . , Xn) ∝ λ(θ)

n∏
i=1

p(Xi; θ) = exp (−U(θ)) ,

where λ(θ) is the prior distribution of θ, p(Xi; θ) is the likelihood function, and U(θ) := − log (λ(θ)) −∑n
i=1 log (p(Xi; θ)) is the energy function.

Typical MCMC methods require computations over the whole dataset, which is inefficient in large-scale online learning.
To overcome this issue, we adopt SGLD (Welling and Teh, 2011) as one of the approximate sampling methods, which
is developed upon stochastic optimization over mini-batch data D ⊆ {Xi}ni=1. The update rule is based on the Euler-
Murayama discretization of the Langevin stochastic differential equation (SDE):

dθt =
1

2

(
∇ log (λ(θ0)) +

n

|D|
∑
i∈D

∇ log (p(xi; θt))

)
dt+

√
2dBt,

where Bt is a Brownian motion. To further improve computation, we reuse samples from previous batches to warm start
the Markov chains (Algorithm 1). The resulting dependent structure in samples will complicate our analysis.

A.2. Constrained Approximate Sampling

While the convergence of SGLD methods is well-studied, it is only applicable to unconstrained settings. To enable sam-
pling from constrained non log-concave distributions, such as probability simplex in transition dynamics of MDPs, repa-
rameterization can be used in conjunction with SGLD. Alternatively, one can adopt MLD (Hsieh et al., 2018) which
utilizes mirror maps for sampling from a dual unconstrained space (Algorithm 4). Let the probability measure of θ be
dρ = e−U(θ)dθ, where dom(U ) is constrained. Suppose there exist a mirror map h that maps ρ to some unconstrained
distribution dν = e−W (ω)dω, denoted by ∇h#ρ = ν. Then MLD has the following SDE:{

dωt = −(∇W ◦ ∇h)(θt)dt+
√
2dBt

θt = ∇h∗(ωt)
, (5)

where h∗ is the dual of h, and (∇h)−1 = ∇h∗.

Algorithm 4 Mirrored Langevin Dynamics (MLD)
Input: S,A, mirror map h, observed transitions {Xs}ns=1, total iterations N
for i = 1, . . . , N do

Subsample D ⊆ {Xs}ns=1

Sample ωi+1 ∼ ∇h#e−U from the unconstrained dual space
Compute constrained sample θi+1 = ∇h∗(ωi+1)

Output: θN

In tabular settings of MDP, MLD needs to be run against each row of the |A|×|S|matrices to generate a sampled transition
from simplex ∆|S| for each state-action pair. In this case, entropic mirror map will be adopted as h, which is given by

h(θ) =

|S|∑
i=1

θi log θi + (1−
|S|∑
i=1

θi) log(1−
|S|∑
i=1

θi), where 0 log 0 := 0. (6)
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B. Assumptions
Here we explicitly mention all of the assumptions required in the paper. Assumptions 1-4 are required for SGLD to
converge (Algorithm 1 and Theorem 1), Assumptions 5 and 6 are required in Section 6.

Assumption 1 (Assumption on the family p(S|θ) for approximate sampling). Assume that log p(s|θ) is L-smooth and
m-strongly concave over θ:

− log p(s|θ′)−∇θ log p(s|θ′)⊤(θ − θ′) +
m

2
∥θ − θ′∥2 ≤ − log p(s|θ)

≤ − log p(s|θ′)−∇θ log p(s|θ′)⊤(θ − θ′) +
L

2
∥θ − θ′∥2 ∀θ, θ′ ∈ Rd, s ∈ S

Assumption 2 (Assumption on true reward/transition distribution p(S|θ∗)). Assume that p(S; θ∗) is strongly log-concave
in S with some parameter ν, and that∇θ log p(s|θ∗) is L-Lipschitz in S:

−(∇s log p(s|θ∗)−∇s log p(s
′|θ∗))⊤(s− s′) ≥ ν ∥s− s′∥2 , ∀s, s′ ∈ R

∥∇θ log p(s|θ∗)−∇θ log p(s
′|θ∗)∥ ≤ L ∥s− s′∥ , ∀s, s′ ∈ R

Assumption 3 (Assumption on the prior distribution). Assume that log λ(θ) is concave with L-Lipschitz gradients for all
θ ∈ Rd:

∥∇θλ(θ)−∇θλ(θ
′)∥ ≤ L ∥θ − θ′∥ , ∀θ, θ′ ∈ Rd

Assumption 4 (Joint Lipschitz smoothness of log p(S|θ)).

∥∇θ log p(s|θ)−∇θ log p(s
′|θ)∥ ≤ L ∥θ − θ′∥+ L ∥s− s′∥ , ∀θ, θ′ ∈ Rd, s, s′ ∈ R

Assumption 5 (1- Lipschitzness of J(θ) in θ). The optimal average-reward function J satisfies

∥J(θ)− J(θ′)∥ ≤ ∥θ − θ′∥, ∀θ, θ′ ∈ Rd

where J(θ) = maxπ J
π(θ).

Assumption 6 (Lipschitzness of transition in θ for RL). There exists a constant Lp such that the transition for each
state-action pair is Lp-Lipschtiz in parameter space:

∥p(·|s, a, θ)− p(·|s, a, θ′)∥ ≤ Lp ∥θ − θ′∥ , ∀θ, θ′ ∈ Rd, s, a ∈ S ×A

C. Convergence of SGLD with Batched Data
In this section, we prove the convergence of SGLD in sequential decision making frameworks under the batch scheme,
which is stated with precise hyperparameters as Theorem 7. We first state the supporting lemmas, followed by the proof of
the convergence theorem.

Lemma C.4 (Lemma 5 in (Mazumdar et al., 2020)). Denote Û as the stochastic estimator of U . Then for stochastic
gradient estimate with k data points, we have,

E
[∥∥∥∇Û(θ)−∇U(θ)

∥∥∥p ∣∣θ] ≤ 2
np/2

kp/2

(√
dpL∗

a√
νa

)p

.
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Lemma C.5 (Lemma 6 from (Mazumdar et al., 2020)). For a fixed arm a with n samples, suppose we run Algorithm 1
with step size η ≤ m̂

32L̂2
for N iterations to generate samples from posterior ρ∗n ∝ exp(−U), in which U is m̂−strongly

convex and L̂−Lipschitz smooth. If at each step i ∈ [N ], the p-th moment between the true gradient and the stochastic

gradient satisfies E
[
∥∇U(θiη)−∇Û(θiη)∥p | θiη

]
≤ ∆p, then:

W p
p (ρ̃iη,n, ρ

∗
n) ≤

(
1− m̂

8
η

)pi

W p
p (ρ0, ρ

∗
n) + 25p

L̂p

m̂p
(dp)p/2(η)p/2 + 22p+3∆p

m̂p

where ρ0 = ρ̃0η,n.
Theorem 7 (SGLD convergence). Fix an arm a ∈ A and suppose that Assumptions 1-4 are met for it. Let κ :=
max{L/m,L/ν}, nk be the number of available rewards for arm a when running SGLD for the k-th time, ρa,nk

be
the exact posterior of arm a after observing nk samples, and ρ̃a,nk

be the corresponding approximate posterior obtained
by SGLD. If Eθ∼ρa,nk

[∥θ − θ∗∥p]1/p ≤ D̃√
nk

is satisfied by the posterior, then with mini-batch size s = 32L2

mν = O(κ2),

step size η = mnk

32L2(nk+1)2 = O( 1
Lκnk

), and the number of steps N = 1280L2(nk+1)2

m2n2
k

= O(κ2), SGLD in Algorithm 1
converges in Wasserstein-p distance:

Wp (ρ̃a,nk
, ρa,nk

) ≤ 2D̃
√
nk

, ∀D̃ ≥
√

32dp

m
, p ≥ 2.

Proof of Theorem 7 The proof follows similarly to that of Theorem 6 in (Mazumdar et al., 2020). Compared to the
analysis in (Mazumdar et al., 2020), our proof is based on induction on the batches, as opposed to induction on the number
of samples, as for us, SGLD is only executed at the end of the batch. Let Bk be the k-th batch. Now for the base case, i.e.
when k = 1, we have that nk = 1. And therefore the claim follows by the initialization of the algorithm (this is similar to
the fully sequential case in (Mazumdar et al., 2020)).

Now, suppose that the claim holds for batch k − 1. That is, suppose that all the necessary conditions are met and that
Wp

(
ρ̃a,nk−1

, ρa,nk−1

)
≤ 2D̃√

nk−1
.

Taking the initial condition ρ0 = ρ̃a,nk−1
in Lemma C.5, we get that:

W p
p (ρ̃iη,nk

, ρ∗nk
) ≤

(
1− m̂

8
η

)pi

W p
p (ρ̃a,nk−1

, ρ∗nk
) + 25p

L̂p

m̂p
(dp)p/2(η)p/2 + 22p+3∆p

m̂p
.

Now we know that:

Wp(ρ
∗
nk
, ρ̃a,nk−1

) ≤Wp(ρ
∗
nk
, ρ∗nk−1

) +Wp(ρ
∗
nk−1

, ρ̃a,nk−1
)

≤ D̃
√
nk

+
D̃

√
nk−1

+
2D̃
√
nk−1

≤ 8D̃
√
nk

where the first inequality follows from triangle inequality, the second one follows from the assumption on the posterior and
the induction hypothesis, and the last one just upper bounds the expression while also using the fact that nk ≤ 2nk−1. This
shows us that we can get the same upper bound as is seen in the fully sequential proof. The main point to note is that the
proof has enough looseness in it, so that despite collecting at most double the data, the same bounds hold. With the choice
of hyperparameters, taking i = N and using Lemma C.4 leads us to the conclusion that Wp (ρ̃a,nk

, ρa,nk
) ≤ 2D̃√

nk
.

■

We now state the concentration results provided by SGLD in Lemma C.6, which shows the probability that the sampled
parameters (from the approximate posterior) are far away from the true dynamics is small. Lemma C.6 extends Lemma 11
in (Mazumdar et al., 2020) to the batched settings.
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Lemma C.6 (Concentration of SGLD in bandits). For a fixed arm a ∈ A, say that it is pulled nk−1 times till batch k − 1
and nk times till batch k (where nk ≤ 2nk−1). Suppose that Assumptions 1-4 are satisfied, then for δ ∈ (0, 1), with
parameters as specified in Theorem 7, the sampled parameter θka generated in the k-th batch satisfies,

Pθk
a∼ρ̃a,nk

[γ]

(
∥θka − θ∗a∥2 >

√
36e

nkm

(
d+ logQa + 2σ log 1/δ + 2(σ +

md

18Lγ
) log 1/δ

) ∣∣∣∣∣ Zk−1

)
< δ,

where Zk−1 = {
∥∥θk−1

a − θ∗a
∥∥
2
≤ C(nk) }, C(nk) =

√
18e
nkm

(d+ logQa + 2σ log 1/δ)0.5, σ = 16 + 4dL2

νm .

Proof of Lemma C.6 The proof follows exactly as Lemma 11 from (Mazumdar et al., 2020) by replacing the notations in
fully-sequential settings by those in batched settings, i.e., θa,t by θka , θa,t−1 by θk−1

a .

■

D. Proofs of Langevin Thompson Sampling in Multi-armed Bandits
In this section, we provide the regret proofs of BLTS algorithm in the stochastic multi-armed bandit (MAB) setting, which
are discussed in Section 5. In particular, we discuss the information exchange guarantees under dynamic batching scheme
and its communication cost. We then utilize the convergence of SGLD in Appendix C and the above results to prove the
problem-dependent regret bound in MAB setting.

D.1. Notations

We first introduce the notation being used in this section, which is summarized in Table 4.

Symbol Meaning

A set of arms in bandit environment

N number of arms in bandit environment, i.e., |A|

T time horizon

K total number of batches

B(t) starting time of the batch containing timestep t

Bk starting time of the k-th batch

la
trigger of dynamic batches (a batch is formed when ka(t) = 2la ), a monotonically-increasing

integer for arm a

ka(t) the number of times that arm a has been pulled up to time t

pa(r|θa) reward distribution of arm a parameterized by θa ∈ Rd

θa parameter of reward distribution for arm a ∈ A

µa expected reward of arm a, µa := E[ra|θ∗a]

µ̂a estimated expected reward of arm a, µ̂a := E[∥θa∥]

Qa quality of prior for arm a, Qa := maxθ
pa(θ)
pa(θ∗a)

κ condition number of parameterized reward distribution, κ := max{L/m,L/ν}

λa(θa) prior distribution over θa ∈ Rd

U energy function of posterior distribution ρ : ρ ∝ e−U

L Lipschitz constant of the true reward distribution and likelihood families pa(r|θ∗) in r

m strong log-concavity parameter of pa(r; θ) in θ for all r

ν strong log-concavity parameter of pa(r; θ) in r

Table 4: Notations in multi-armed bandit setting.
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D.2. Communication cost of Dynamic Doubling Batching Scheme

In batched setting, striking a balance between batch size and the number of batches is critical to achieving optimal per-
formance. More specifically, it is crucial to balance the number of actions taken within each batch, with the frequency of
starting new batches to collect new data and update the posteriors. According to Lemma D.1, dynamic doubling batching
scheme guarantees an arm that has been pulled k times has at least k/2 observed rewards, indicating that communication
between the learner and the environment is sufficient under this batching scheme.

Lemma D.1. Let t be the current time step, B(t) be the starting time of the current batch, ka(t) be the number of times
that arm a has been pulled up to time t. For all a ∈ A, the dynamic batch scheme ensures:

1

2
ka(t) ≤ ka(B(t)) ≤ ka(t).

Proof of Lemma D.1 By the mechanism of our batch scheme, a new batch will begin when the number of times of any
arm a ∈ A being pulled is doubled. It implies that the number of times that an arm is pulled within a batch is less than the
number of times that it has been pulled at the beginning of this batch. At any time step t ≤ T :

ka(t)− ka(B(t)) ≤ ka(B(t)),

which gives 1
2ka(t) ≤ ka(B(t)). On the other hand, ka(B(t)) ≤ ka(t) holds due to the fact that B(t) ≤ t.

■

Next, we show that by employing the dynamic doubling batching scheme, BATS algorithm achieves optimal performance
using only logarithmic rounds of communication (measured in terms of batches).

Theorem 2. BLTS ensures that the total number of batches is at most O(N log T ) where N = |A|.

Proof of Theorem 2 Denote by Bk the starting time of the k-th batch, and let la(Bk) be the trigger integer for arm a
at time Bk, K be the total number of rounds to interact with environment, namely, batches. Then for each arm a ∈ A,
ka(T ) ≤ T , and

ka(T ) =

K−1∑
k=1

ka(Bk+1)− ka(Bk) ≤
K−1∑
k=1

ka(Bk) =

K−1∑
k=1

2la(Bk)−1 ≤
K−1∑
l=0

2l,

where the second and third step result from the dynamic batching scheme. Thus for each arm a, we have

K ≤ log(T + 1).

The proof is then completed by multiplying the above result by N arms. ■

D.3. Regret Proofs in Multi-armed Bandit

With the convergence properties shown in Appendix C, we proceed to prove the regret guarantee of Langevin TS with
SGLD. The general idea of our regret proof is to upper bound the total number of times that the sub-optimal arms are
pulled over time horizon T . We remark that the dependence of approximate samples across batches complicates our
analysis of TS compared to the existing analyses in bandit literature.

We first decompose the expected regret according to the events of concentration in approximate samples θa,t and the events
of estimation accuracy in expected rewards of sub-optimal arms.

For approximate samples θ, define event Eθ,a(Bk) = {∥θa,k − θ∗a∥ < C(nk)} , which is guaranteed to happen with prob-
ability at least (1 − δ2) by Lemma C.6 for some δ2 ∈ [0, 1]. Let Eθ,a(T ) =

⋂T
t=1 Eθ,a(t), Eθ,a(K) =

⋂K
k=1 Eθ,a(Bk),

where K is the total number of batches. Without loss of generality, we take ∥αa∥ = 1 for all arms in EX∼pa(X|θa)[X] =
α⊺
a θa ≤ ∥θa∥ in the subsequent proofs

Let µ̂a(t) be the estimate of the expected reward for arm a at time step t, and denote the filtration up to time B(t) as
FB(t) := {a(τ), ra(τ),ka(B(τ)) | τ ≤ B(t)}. For any sub-optimal arm a ̸= 1, define event Eµ,a(t) = {µ̂a(t) ≥ µ1 − ϵ}
with probability pa,ka(B(t))(t) := P(µ̂a(t) ≥ µ1 − ϵ|FB(t)) for some ϵ ∈ (0, 1), which signifies the estimation of arm a is
close to the true optimal expected reward.
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Lemma D.2 (Regret Decomposition). Let µa be the true expected reward of arm a, µ∗ = maxa∈A µa, ∆a := µ∗ − µa.
The expected regret of Langevin TS with SGLD satisfies:

RT ≤
∑
a∈A

(
R1 +R2 + 2

)
∆a,

where R1 := E
[∑T

t=1 I(a(t) = a,Ec
µ,a(t)) | Eθ,a(K) ∩ Eθ,1(K)

]
, R2 := E

[∑T
t=1 I(a(t) = a,Eµ,a(t)) | Eθ,a(K) ∩ Eθ,1(K)

]
.

Proof of Lemma D.2. Recall that

RT =
∑
a∈A

∆a · E [ka(T )] , ∆a = µ∗ − µa.

For any sub-optimal arm a ̸= 1, consider the event space Fθ = {{Eθ,a(T )∩Eθ,1(T )}, {Eθ,a(T )∩Eθ,1(T )}C}, in which
Eθ,a(T ) ∩ Eθ,1(T ) denotes the event that all approximate samples of arm a and optimal arm 1 are concentrated.

To bound the regret, we bound the largest number of times that each sub-optimal arm will be played:

E [ka(T )] = E

[
T∑

t=1

I(a(t) = a,Eµ,a(t) ∪ Ec
µ,a(t), Eθ,a(T ) ∩ Eθ,1(T ))

]
+ E

[
T∑

t=1

I(a(t) = a, (Eθ,a(T ) ∩ Eθ,1(T ))
c
)

]

≤ E

[
T∑

t=1

I(a(t) = a,Eµ,a(t) ∪ Ec
µ,a(t)) | Eθ,a(T ) ∩ Eθ,1(T )

]
+ E

[
T∑

t=1

I(a(t) = a, (Eθ,a(T ) ∩ Eθ,1(T ))
c
)

]
.

where the second inequality results from P (Eθ,a(T ) ∩ Eθ,1(T )) ≤ 1.

For any arm a ∈ A in each batch, approximate samples are independently generated from the identical approximate dis-
tribution ρ̃a(θa|Ra). Thus, approximate samples for arm a are independent within the same batch, while being dependent
across different batches, implying{

P(Eθ,a(T )) =
∏T

t=1 P(Eθ,a(t)|Eθ,a(1), . . . , Eθ,a(t− 1)) =
∏K−1

k=1 P(Eθ,a(Bk+1)|Eθ,a(Bk))
Tk+1

P(Ec
θ,a(T )) = P(

⋃T
t=1 E

c
θ,a(t)) =

∑T
t=1 P(Ec

θ,a(t)) =
∑K

k=1 TkP(Ec
θ,a(Bk))

,

where Tk := Bk+1−Bk is the number of time steps in the k-th batch, namely, the length of the batch. By Lemma C.6, for
each arm a in batch Bk, P(Ec

θ,a(Bk)) ≤ δ2, (1− δ2) ≤ P(Eθ,a(Bk)) ≤ 1, which gives:{
P[Eθ,a(T ) ∩ Eθ,1(T )] ≤ P[Eθ,a(K) ∩ Eθ,1(K)]

P[Ec
θ,a(T ) ∪ Ec

θ,1(T )] ≤ P[Ec
θ,a(T )] + P[Ec

θ,1(T )] ≤ 2δ2
∑T

k=1 Tk = 2δ2T
.

Setting δ2 = 1/T 2 gives,

E

[
T∑

t=1

I(a(t) = a, (Eθ,a(T ) ∩ Eθ,1(T ))
c
)

]
= E

[
T∑

t=1

I(a(t) = a) | Eθ,a(T )
c ∪ Ec

θ,1(T )

]
P
[
Ec

θ,a(T ) ∪ Ec
θ,1(T )

]
≤ 2δ2TE

[
ka(T ) | Eθ,a(T )

c ∪ Eθ,1(T )
c

]
≤ 2δ2T

2 ≤ 2.

Plugging in the results to the definition of regret yields,

R(T ) ≤
∑
a∈A

∆a ·

(
E

[
T∑

t=1

I(a(t) = a,Eµ,a(t) ∪ Ec
µ,a(t))

∣∣∣ Eθ,a(T ) ∩ Eθ,1(T )

]
+ 2

)

≤
∑
a∈A

∆a ·

(
E

[
T∑

t=1

I(a(t) = a,Eµ,a(t) ∪ Ec
µ,a(t))

∣∣∣ Eθ,a(K) ∩ Eθ,1(K)

]
+ 2

)

≤
∑
a∈A

∆a ·

(
E

[
T∑

t=1

I(a(t) = a,Eµ,a(t))
∣∣∣ Eθ,a(K) ∩ Eθ,1(K)

]
︸ ︷︷ ︸

R1

+E

[
T∑

t=1

I(a(t) = a,Ec
µ,a(t))

∣∣∣ Eθ,a(K) ∩ Eθ,1(K)

]
︸ ︷︷ ︸

R2

+2

)
.

■
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We then proceed to bound R1 and R2 respectively in Lemma D.3 and Lemma D.4, the key to maintaining optimal regret is
to maximize the probability of pulling the optimal arm by ensuring the event Eµ,a(t) takes place with low probability for
all sub-optimal arms.

Lemma D.3 (Bound term R1). It can be shown that,

R1 ≤ E

[
T∑

t=1

(
1

p1,k1(B(t))(t)
− 1

) ∣∣∣∣ Eθ,1(K)

]
.

Proof of lemma D.3. Note that arm a is played at time t if and only if µ̂a′ ≤ µ̂a, ∀a′ ∈ A. Thus for a sub-optimal arm a,
the following event relationship holds: {a(t) = a,Ec

µ,a(t)} = {a(t) = a,Ec
µ,a(t),∩a′ ̸=aE

c
µ,a′(t)} ⊆ {∩a′∈AE

c
µ,a′(t)},

and {Eµ,1(t),∩a′ ̸=1E
c
µ,a′(t)} = {a(t) = 1, Eµ,1(t),∩a′ ̸=1E

c
µ,a′(t)} ⊆ {a(t) = 1}. We then have,{

P
[
a(t) = a,Ec

µ,a(t) | FB(t)

]
≤ P

[⋂
a′∈A Ec

µ,a′(t) | FB(t)

]
= P

[⋂
a′ ̸=1 E

c
µ,a′(t) | FB(t)

](
1− P

[
Eµ,1(t) | FB(t)

])
P
[
a(t) = 1 | FB(t)

]
≥ P

[
Eµ,1(t) | FB(t)

]
P
[⋂

a′ ̸=1 E
c
µ,a′(t) | FB(t)

]
Recall that p1,k1(B(t))(t) := P[Eµ,1(t) | FB(t)]. Combining the above two equations shows that the probability of pulling
a sub-optimal arm a is bounded by the probability of pulling the optimal arm with an exponentially decaying coefficient:

P
[
a(t) = a,Ec

µ,a(t) | FB(t)

]
≤
(

1

p1,k1(B(t))(t)
− 1

)
P
[
a(t) = 1 | FB(t)

]
. (7)

Therefore, R1 is upper bounded accordingly:

R1 = E

[
T∑

t=1

E
[
I(a(t) = a,Ec

µ,a(t) | FB(t)

] ∣∣∣∣ Eθ,a(K)
⋂

Eθ,1(K)

]

= E

[
T∑

t=1

P
[
a(t) = a,Ec

µ,a(t) | FB(t)

] ∣∣∣∣ Eθ,a(K)
⋂

Eθ,1(K)

]

≤ E

[
T∑

t=1

(
1

p1,k1(B(t))(t)
− 1

)
P
[
a(t) = 1 | FB(t)

] ∣∣∣∣ Eθ,a(K)
⋂

Eθ,1(K)

]

= E

[
T∑

t=1

(
1

p1,k1(B(t))(t)
− 1

)
I
[
a(t) = 1

] ∣∣∣∣Eθ,1(K)

]

≤ E

[
T∑

t=1

(
1

p1,k1(B(t))(t)
− 1

) ∣∣∣∣ Eθ,1(K)

]
.

■

Lemma D.4 (Bound term R2). It can be shown that,

R2 ≤ 1 + E

[
T∑

t=1

I
(
pa,ka(B(t))(t) >

1

T

) ∣∣∣∣ Eθ,a(K)

]
.

Proof of Lemma D.4. The proof closely follows (Agrawal and Goyal, 2012). Let T := {t | pa,ka(B(t))(t) >
1
T }. R2 term

can be rewritten as:

R2 = E

[∑
t∈T

I(a(t) = a,Eµ,a(t))

∣∣∣∣ Eθ,a(K)
⋂

Eθ,1(K)

]
+ E

[∑
t/∈T

I(a(t) = a,Eµ,a(t))

∣∣∣∣ Eθ,a(K)
⋂

Eθ,1(K)

]

≤ E

[∑
t∈T

I(a(t) = a)

∣∣∣∣ Eθ,a(K)
⋂

Eθ,1(K)

]
︸ ︷︷ ︸

I

+E

[∑
t/∈T

I(Eµ,a(t))

∣∣∣∣ Eθ,a(K)
⋂

Eθ,1(K)

]
︸ ︷︷ ︸

II

.
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It follows that the first term satisfies,

I = E

[
T∑

t=1

I(a(t) = a, pa,ka(B(t))(t) >
1

T
)

∣∣∣∣ Eθ,a(K)

]
≤ E

[
T∑

t=1

I(pa,ka(B(t))(t) >
1

T
)

∣∣∣∣ Eθ,a(K)

]
,

and the second term satisfies,

II = E

[∑
t/∈T

E
[
I(Eµ,a(t))

∣∣ FB(t)

] ∣∣∣∣ Eθ,a(K)
⋂

Eθ,1(K)

]
= E

[∑
t/∈T

pa,ka(B(t))(t)

∣∣∣∣ Eθ,a(T )
⋂

Eθ,1(T )

]
≤ 1,

where the last inequality holds as pa,ka(B(t))(t) ≤ 1/T for t /∈ T . ■

Lemma D.5. Assume that the prior and reward distributions satisfy Assumptions 1-4. Then at each time step t ≤ T , if
there are k1(B(t)) observed rewards for arm 1, then Algorithm 1 ensures:

E
[

1

p1,k1(B(t))(t)

]
≤ 36

√
Q1,

where Q1 = maxθ∈Rd
p1(θ)
p1(θ∗

1 )
measures the quality of the prior distribution, Q1 ≥ 1.

Proof of Lemma D.5 For completeness, we provide the proof of this lemma, which closely follows the proof of Lemma
18 in (Mazumdar et al., 2020).

For each arm a, upon running SGLD with batched data in batch k, by Cauchy-Schwartz inequality, we have,

P
(
αT
a (θ

k
a − θa,Nη) ≥ αT

1 (θ
∗
a − θa,Nη)− ϵ

)
≥ P (Z ≥ ∥θ∗a − θa,Nη∥) ,

where Z ∼ N (0, 1
nLγ I). Let σ2 = 1

nLγ I , by anti-concentration of Gaussian random variables, for the optimal arm 1,

p1,k1(B(t))(t) ≥
√

1

2π

{
σt

t2+σ2 e
− t2

2σ2 , t > σ;

0.34, otherwise.

Taking expectations of both sides and by Cauchy-Schwartz inequality,

E
[

1

p1,k1(B(t))(t)

]
≤ 3
√
2π +

√
2πnLγ

√
E [∥θ∗1 − θ1,Nh∥2]

√
E
[
enLγ∥θ∗

1−θ1,Nh∥2
]
+
√
2πE

[
e

nLγ
2 ∥θ∗

1−θ1,Nh∥2
]
.

By the convergence guarantee of SGLD in Theorem 7,

E
[
∥θ∗1 − θ1,Nh∥2

]
≤ 18

mn

(
d+ logQ+ 32 +

8dL2

νm

)
.

Note that ∥θ∗1 − θ1,Nh∥2 is a sub-Gaussian random variable, when γ ≤ m
32Lσ ,

E[enLγ∥θ∗
1−θ1,Nh∥2

] ≤ 3/2
(
e

4nLγD
m + 2.5

)
.

Combining the above results together completes the proof. ■

With Lemma D.5, we now proceed to prove the terms in R1 and R2 that lead us to the final regret bound.

Lemma D.6. Assume that Assumptions 1-4 are satisfied. Let σ = 16+ 4dL2

νm , γ = m
32Lσ . running Algorithm 2 with samples

generated from approximate posteriors using Algorithm 1, we have,

E

[
T∑

t=1

(
1

p1,k1(B(t))(t)
− 1

) ∣∣∣∣ Eθ,1(K)

]
≤ 20736e

m∆2
a

√
Q1

(
d+ logQ1 + 4σ log T + 12dσ log 2

)
+ 1. (8)

E

[
T∑

t=1

I
(
pa,ka(B(t))(t) >

1

T

) ∣∣∣∣ Eθ,a(K)

]
≤ 576e

m∆2
a

(
d+ logQa + 10dσ log(T )

)
. (9)
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Proof of lemma D.6. For ease of notation, let the number of observed rewards in batch k for arm a ∈ A be nk. By
definition,

p1,nk
= P

(
µ̂1(t) ≥ µ1 − ϵ

∣∣FB(t)

)
≥ 1− P

(
∥θ1 − θ∗1∥ > ϵ

∣∣FB(t)

)
With concentration property of approximate samples in Lemma C.6, it suggests the increasing number of observed rewards
for the optimal arm leads to the increasing probability of being optimal. Thus by Lemma D.1, at any time step t ≤ T ,

p1,k1(B(t))(t) ≥ p
1,

k1(t)
2

(t).

Concentration is achieved only when sufficient number of rewards is observed, we thus require:

Pθ1∼ρ̃1,nk
[γ] (∥θ1 − θ∗1∥ ≥ ϵ) ≤ exp

(
− 1

6dσ

(
mnkϵ

2

36e
− D̄1

))
, (10)

where D̄1 = d+ logQ1 +4σ log T, σ = 16+ 4dL2

νm . Choose ϵ = (µ1−µa)/2 = ∆a/2, and consider the time step t when
arm 1 satisfies:

k1(t) = 2⌈log2 2l⌉, where l =
144e

m∆2
a

(
D̄1 + 6dσ log 2

)
.

As k1(t) ≥ 2l, the number of observed rewards is guaranteed to be at least 36e
mϵ2 D̄, and Pθ1∼ρ̃1,nk

[γ] (∥θ1 − θ∗1∥ ≥ ϵ) ≤ 1/2.
Thus, the individual term in R1 follows:

E

[
T∑

t=1

(
1

p1,k1(B(t))(t)
− 1

) ∣∣∣∣ Eθ,1(K)

]

≤ E

[
T∑

t=1

(
1

p
1,

k1(t)
2

(t)
− 1

) ∣∣∣∣ Eθ,1(K)

]

≤ E

 T−1∑
k1(t)=0

(
1

p
1,

k1(t)
2

(t)
− 1

) ∣∣∣∣ Eθ,1(K)


≤ E

2⌈log2 2l⌉∑
k1(t)=0

(
1

p
1,

k1(t)
2

(t)
− 1

) ∣∣∣∣ Eθ,1(K)

+ E

 T−1∑
k1(t)=2⌈log2 2l⌉+1

(
1

p
1,

k1(t)
2

(t)
− 1

) ∣∣∣∣ Eθ,1(K)

 . (11)

In early stage when concentration has not been achieved, using results from Lemma D.5,

E

2⌈log2 2l⌉∑
k1(t)=0

(
1

p
1,

k1(t)
2

(t)
− 1

) ∣∣∣∣ Eθ,1(K)

 ≤ 2⌈log2 2l⌉36
√
B1 ≤ 2 · 2l · 36

√
B1. (12)

When sufficient rewards for the optimal arm has been accumulated,

E

 T−1∑
k1(t)=2⌈log2 2l⌉+1

(
1

p
1,

k1(t)
2

(t)
− 1

) ∣∣∣∣ Eθ,1(K)


≤ E

 T−1∑
k1(t)=0

(
1

p
1,

k1(t)
2

(t)
− 1

) ∣∣∣∣ Eθ,1(K)


≤

T−1∑
k1(t)=0

1

exp
(
− 1

6dσ1

(
m1ϵ2

36e ·
k1(t)
2

)) − 1

≤
∫ ∞

z=0

 1

exp
(
− mϵ2

432edσ1
z
) − 1

 dz
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≤ 2 · 144e
m∆2

a

· 6dσ log 2 + 1. (13)

Substituting equation (12) and (13) back to (11) yields,

E

[
T∑

t=1

(
1

p1,k1(B(t))(t)
− 1

) ∣∣∣∣ Eθ,1(K)

]
≤ 4l · 36

√
Q1 + 2 · 144e

m∆2
a

· 6dσ log 2 + 1

≤ 36
√
Q1

576e

m∆2
a

(
D̄1 + 12dσ log 2

)
+ 1.

Similarly, for R2 term with event Eµ,a(t) = {µ̂a(t) ≥ µ1 − ϵ}, let ϵ = (µ1 − µa)/2 = ∆a/2,

pa,ka(B(t))(t) = P(µ̂a(t)− µa ≥ µ1 − µa − ϵ|FB(t))

= P(µ̂a(t)− µa ≥
∆a

2
|FB(t))

≤ P(µ̂a(t)− µa ≥
∆a

2
|F ka(t)

2
)

= p
a,

ka(t)
2

(t),

which gives

E

[
T∑

t=1

I
(
pa,ka(B(t))(t) >

1

T

) ∣∣∣∣ Eθ,a(K)

]

≤ E

[
T∑

t=1

I
(
P(µ̂a(t)− µa ≥

∆a

2
|F ka(t)

2
) >

1

T

) ∣∣∣∣ Eθ,a(K)

]

≤ E

[
T∑

t=1

I
(
P(|µ̂a(t)− µa| ≥

∆a

2
|F ka(t)

2
) >

1

T

) ∣∣∣∣ Eθ,a(K)

]

≤ E

[
T∑

t=1

I
(
Pθa∼ρ̃

a,
ka(t)

2

(
∥θa − θ∗a∥ ≥

∆a

2

)
>

1

T

) ∣∣∣∣ Eθ,a(K)

]
.

With the same form of posterior as in equation 10, Pθa∼ρ̃
a,

ka(t)
2

(
∥θa − θ∗a∥ ≥ ∆a

2

)
≤ 1

T for arm a ̸= 1 holds, when

ka(t) > 2 · 2 · 144e
m∆2

a

(
D̄a + 6dσ log(T )

)
.

Here, the number of observed rewards is guaranteed to be at least 2⌈log2 l⌉, where l = 144e
m∆2

a

(
D̄a+6dσ log(T )

)
. Therefore,

using the fact that d > 1, we have,

E

[
T∑

t=1

I
(
pa,ka(B(t))(t) >

1

T

) ∣∣∣∣ Eθ,a(K)

]
≤ 576e

ma∆2
a

(
D̄a + 6dσa log(T )

)
.

■

We are ready to prove the final regret bound by combining results from the above Lemmas.

Theorem 3. Assume that the parametric reward families, priors, and true reward distributions satisfy Assumptions 1
through 4 for each arm a ∈ A. Then with the SGLD parameters specified as per Algorithm 1 and with γ = O(1/dκ3) (for
κ := max{L/m,L/ν}), BLTS satisfies:

R(T ) ≤
∑
a>1

C
√
Q1

m∆a

(
d+ logQ1 + dκ2 log T + d2κ2

)
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+
C

m∆a

(
d+ logQa + d2κ2 log T

)
+ 4∆a,

where C is a constant and Qa := maxθ
λa(θ)
λa(θ∗) . The total number of SGLD iterations used by BLTS is O(κ2NlogT ).

Proof of Theorem 3. The proof is a direct result by combining Lemma D.2, D.3, D.4,D.6, which gives,

RT ≤
∑
a∈A

∆a ·

(
R1 +R2 + 2

)

≤

(∑
a∈A

4 · 36
√

Q1
144e

m∆a

(
d+ logQ1 + 4

(
16 +

4dL2

mν

)
(log T + 3d log 2)

)
+∆a

+∆a + 4
144e

m∆a

(
d+ logQa + 10d

(
16 +

4dL2

mν

)
log(T )

)
+ 2∆a

)

≤
∑
a>1

C
√
Q1

m∆a

(
d+ logQ1 + dκ2 log T + d2κ2

)
+

C

m∆a

(
d+ logQa + d2κ2 log T

)
+ 4∆a.

■

E. Proofs of Langevin Posterior Sampling for Reinforcement Learning
In this section, we will present the regret proofs for Langevin Posterior Sampling algorithms in RL frameworks under
different types of parameterization, and conclude with a real-world example where the General Parameterization from
Section 6.2 is applicable.

E.1. Communication cost of Static Doubling Batching Scheme

We first show that under the static doubling batching scheme in RL setting, LPSRL algorithm achieves optimal performance
using only logarithmic rounds of communication (measured in terms of batches, or equivalently policy switches).
Theorem 8. Let Tk be the number of time steps between the (k − 1)-th policy switch and the k-th policy switch, and KT

be the total number of policy switches for time horizon T . LPSRL ensures that

KT ≤ log T + 1.

Proof of Theorem 8. By design of Algorithm 3,at the k-th policy switch, Tk = 2k−1. Since the total number of time steps
is determined by time horizon T , we can easily obtain KT = ⌈log T ⌉. ■

E.2. Regret Proofs in Average-reward MDPs

In this section, we proceed to prove the theorems in Section 6. To focus on the problem of model estimation, our results
are developed under the optimality of policies13.

While analyses of Bayes regret in existing works of PSRL crucially depend on the true transition dynamics θ∗ being iden-
tically distributed as those of sampled MDP (Russo and Van Roy, 2014), we show that in Langevin PSRL, sampling from
the approximate posterior instead of the true posterior will introduce a bias that can be upper bounded using Wasserstein-1
distance.
Lemma 3. (Langevin Posterior Sampling). Let tk be the beginning time of policy-switch k, Htk := {sτ , aτ}tkτ=1 be the
history of observed states and actions till time tk, and θk ∼ ρ̃tk be the sampled model from the approximate posterior ρ̃tk
at time tk. Then, for any σ(Htk)-measurable function f that is 1-Lipschitz, it holds that:∣∣∣E[f(θ∗)|Htk ]− E[f(θk)|Htk ]

∣∣∣ ≤W1(ρ̃tk , ρtk). (4)

By the tower rule,
∣∣∣E[f(θ∗)]− E[f(θk)]

∣∣∣ ≤W1(ρ̃tk , ρtk).
13If only suboptimal policies are available in our setting, it can be shown that small approximation errors in policies only contribute additive non-leading terms to regret. See details in (Ouyang et al.,

2017).
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Proof of Lemma 3 Notice that both ρ̃tk and ρtk are measurable with respect to σ(Htk). Therefore, condition on history
Htk , the only randomness under the expectation comes from the sampling procedure for approximate posterior, which
gives,

E[f(θk)|Htk ] =

∫
Rd

f(θ)ρ̃tk(dθ)

=

∫
Rd

f(θ)(ρ̃tk − ρtk + ρtk − δ(θ∗) + δ(θ∗))(dθ)

≤ E[f(θk,∗)|Htk ]− E[f(θ∗)|Htk ] + E[f(θ∗)|Htk ] +W1(ρ̃tk , ρtk)

= E[f(θ∗)|Htk ] +W1(ρ̃tk , ρtk). (14)

The third inequality follows from the fact that givenHtk , ρtk is the posterior of θk,∗ and the definition of dual representation
for W1 with respect to the 1-Lipschitz function f . The last equality follows from the standard posterior sampling lemma
in the Bayesian setting (Osband et al., 2013; Osband and Van Roy, 2014), which suggests that at time tk, given the sigma-
algebra σ(Htk), θ

k,∗ and θ∗ are identically distributed:

E[f(θk,∗)|Htk ] = E[f(θ∗)|Htk ].

Following the same argument, condition onHtk , we also have,

E[f(θ∗)|Htk ] = E[f(θk,∗)|Htk ] =

∫
Rd

f(θ)(ρtk + ρ̃tk − ρ̃tk)(dθ) ≤ E[f(θk)|Htk ] +W1(ρ̃tk , ρtk). (15)

Combining Equation (14) and (15) yields Equation (4). Applying the tower rule concludes the proof. ■

Corollary 1 (Tabular Langevin Posterior Sampling). In tabular settings with finite states and actions, by running an
approximate sampling method for each (s, a) ∈ S ×A at time tk, it holds that for each policy switch k ∈ [KT ],∣∣∣E[f(θ∗)|Htk ]− E[f(θk)|Htk ]

∣∣∣ ≤ ∑
(s,a)∈S×A

W1(ρ̃tk(s, a), ρtk(s, a)),

where ρ̃tk(s, a) are the corresponding true posterior and approximate posterior for (s, a) at time tk.

Proof of Corollary 1 Since we run the approximate sampling algorithm for each state-action pair at the beginning of each
policy switch k, the total approximation error is equal to the sum of approximation error for each (s, a). ■

We first provide a general regret decomposition in Lemma E.2, which holds for any undiscounted weakly-communicating
MDPs with infinite horizon, where approximate sampling is adopted and the transition is Lipschitiz.

Lemma E.2 (Regret decomposition.). For a weakly-communicating MDP with infinite time-horizon T , the Bayesian regret
of Algorithm 3 instantiated with any approximate sampling method can be decomposed as follows:

RB(T ) ≤ E
[ KT∑
k=1

TkW1(ρ̃tk , ρtk)
]
+H(log T + 1) +HLpE

[ KT∑
k=1

tk+1−1∑
t=tk

∥∥θ∗ − θk
∥∥ ], (16)

where Lp is a Lipschitz constant, and H is the upper bound of span of MDP.

Proof of Lemma E.2 We adopt the greedy policy with respect to the sampled model, which gives at = argmaxa∈A

r(st, a) at each time step t. By Bellman Optimality equation in Lemma 1,

Jπk(θk) + hπk(s, θk) = R(st, at) +
∫
s′∈S

p(s′|st, at; θk)hπk(s′, θk)ds′, ∀t ∈ [tk, tk+1 − 1]. (17)

We then follow the standard analyses in RL literature (Osband et al., 2013; Osband and Van Roy, 2014) to decompose the
regret into sum of Bellman errors. Plug in Equation (17) into the definition of Bayesian regret, we have,

RB(T ) = E

[
T∑

t=1

Jπ∗
(θ∗)−R(st, at)

]
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= E

[
KT∑
k=1

tk+1−1∑
t=tk

Jπ∗
(θ∗)−R(st, πk(st))

]

= E
[ KT∑
k=1

tk+1−1∑
t=tk

J∗(θ∗)− Jπk(θk)
]

︸ ︷︷ ︸
(i)

+E

[
KT∑
k=1

tk+1−1∑
t=tk

(∫
s′∈S

p(s′|st, πk(st); θ
k)hπk(s′, θk)ds′ − hπk(st, θ

k)

)]
︸ ︷︷ ︸

(ii)

(18)

Term (i). By the property of approximate posterior sampling in Lemma 3 and the non-negativity of Wasserstein distance,

(i) ≤ |(i)| ≤ E
[ KT∑
k=1

tk+1−1∑
t=tk

∣∣∣J∗(θ∗)− Jπk(θk)
∣∣∣] ≤ E

[ KT∑
k=1

tk+1−1∑
t=tk

W1(ρtk , ρ̃tk)
]
= E

[ KT∑
k=1

TkW1(ρ̃tk , ρtk)
]
. (19)

We remark that this term differs from the exact PSRL where no approximate sampling method is used. To ensure the final
regret is properly bounded, approximate sampling method being used must provide sufficient statistical guarantee of ρ̃tk
and ρtk in terms of Wasserstein-1 distance.

Term (ii). We further decompose term (ii) into the model estimation errors.

(ii) = E
[ KT∑
k=1

tk+1−1∑
t=tk

(∫
s′∈S

p(s′|st, πk(st); θ
k)hπk(s′, θk)ds′ − hπk(st, θ

k) + hπk(st+1, θ
k)− hπk(st+1, θ

k)
)]

= E
[ KT∑
k=1

tk+1−1∑
t=tk

(
hπk(st+1, θ

k)− hπk(st, θ
k)
)]

︸ ︷︷ ︸
∆h

+ E
[ KT∑
k=1

tk+1−1∑
t=tk

∫
s′∈S

(
p(s′|st, πk(st), θ

k)− p(s′|st, πk(st), θ
∗)
)
hπk(s′, θk)ds′

]
︸ ︷︷ ︸

∆err

.

To bound ∆h, note that for each k ∈ [1,KT ], sp(h(θk)) ≤ H , and by Theorem 8,

∆h = E
[ KT∑
k=1

tk+1−1∑
t=tk

(
hπk(st+1, θ

k)− hπk(st, θ
k)
)]

= E
[ KT∑
k=1

(
hπk(stk+1

, θk)− hπk(stk , θk)
)]

≤ E
[
sp(h(θk))KT

]
≤ H(log T + 1). (20)

Thus, combining Equation (18),(19), (20), and by Lemma E.3, we conclude the proof.

■

Lemma E.3 (Bound estimation error). Let ∆err = E
[∑KT

k=1

∑tk+1−1
t=tk

∫
s′∈S

(
p(s′|st, πk(st), θ

k)− p(s′|st, πk(st), θ
∗)
)

hπk(s′, θk)ds′
]
. Suppose Assumption 6 holds, then

∆err ≤ HLpE
[ KT∑
k=1

tk+1−1∑
t=tk

∥∥θ∗ − θk
∥∥ ]. (21)
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Proof of Lemma E.3 Recall that πk is the optimal policy under θk, thus h(·, θk) = hπk(·, θk), and span is properly
bounded in weakly-communicating MDPs: sp(h(θ)) ≤ H for any θ ∈ Rd. Then by Assumption 6 and Cauchy-Schwartz
inequality, ∫

s′∈S

(
p(s′|st, πk(st), θ

k)− p(s′|st, πk(st), θ
∗)
)
hπk(s′, θk)ds′

≤
∥∥p(·|st, πk(st), θ

k)− p(·|st, πk(st), θ
∗)
∥∥∥∥h(·, θk)∥∥∞

= HLp

∥∥θ∗ − θk
∥∥ .

Plugging the result into the definition of ∆err concludes the proof. ■

The above regret decomposition in Lemma E.2 holds regardless of the approximate sampling methods being employed. To
derive the final regret bounds, we discuss in the context of General Parmeteration and Simple parameterization respectively.

E.2.1. GENERAL PARAMETRIZATION

The first term in Equation (16) corresponds to the accumulating approximation error over the time horizon T due to the
use of approximate sampling method. Upper bounding this term relies on the statistical guarantee provided by the adopted
approximate sampling method, which is the main novelty of LPSRL. In this section, we focus on the regret guarantee under
the general parameterization.

To maintain the sub-linear regret guarantee, the convergence guarantee provided by SGLD is required to effectively upper
bound the approximation error in the first term of Lemma E.2.
Lemma E.4. Suppose Assumptions 1-4 are satisfied. Under the general parameterization of MDP, by instantiating LPSRL
with SGLD, it holds that for any p ≥ 2,

KT∑
k=1

TkW1(ρ̃tk , ρtk) ≤
√

24T (log T + 1)

m
(d+ logQ+ (32 + 8dκ2)p)1/2 . (22)

Proof of Lemma E.4 By design of Algorithm 3 and the convergence guarantee of SGLD in Theorem 1, we have,

KT∑
k=1

TkW1(ρ̃tk , ρtk) ≤
log T+1∑
k=1

2k−1Wp(ρ̃tk , ρtk)

≤
log T+1∑
k=1

2k−1

√
12

2k−1m
(d+ logQ+ (32 + 8dκ2)p)1/2

=

√
12

m
(d+ logQ+ (32 + 8dκ2)p)1/2

log T+1∑
k=1

√
2k−1

≤
√

24T (log T + 1)

m
(d+ logQ+ (32 + 8dκ2)p)1/2.

Here, the first inequality follows from the fact that Wp ≥ Wq for any p ≥ q. The second equality directly follows from
Theorem 1, and the last inequality follows from the Cauchy-Schwartz inequality.

■

To further upper bound ∆err in Lemma E.3 under the General Parameterization, we establish the following concentration
guarantee provided by SGLD under the static doubling batching scheme adopted by LPSRL.
Lemma E.5 (Concentration of SGLD). For any policy-switch k ∈ [KT ], instantiating LPSRL with SGLD guarantees that

E
[
Tk∥θ∗ − θk∥2

]
≤ 960d

m
log T.

Proof of Lemma E.5 At time tk, denote θk,∗ the parameter sampling from the true posterior ρtk , and ntk the total number
of available observations. By the triangle inequality,∥∥θ∗ − θk

∥∥2 ≤ 3(
∥∥θ∗ − θk,∗

∥∥2 + ∥∥θk,∗ − θk
∥∥2).
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Taking expectation and multiplying both sides by 2k−1 yields,

E[Tk∥θ∗ − θk∥2] ≤ 3E[Tk∥θ∗ − θk,∗∥2] + 3E[Tk∥θk,∗ − θk∥2]. (23)

Under the General parameterization, we follow Assumption A2 in (Theocharous et al., 2017b) to focus on the MDPs that
have proper concentration, which suggests the true parameter θ∗ and the mode of the posterior θk,∗ satisfies

E
[
∥θ∗ − θk,∗∥2

]
≤ 32d

mntk

log T.

We provide an example in Appendix E.3 to show this assumption can be easily satisfied in practice. Let D̃2 := 32d
m log T ,

then by Theorem 7 adapted to the MDP setting (i.e. with a change in notation), we have,

W 2
2 (ρ̃tk , ρtk) ≤

4D̃2

ntk

.

Note that ntk =
∑k−1

k′=1 Tk′ and by design of Algorithm 3, ntk ≤ Tk ≤ 2ntk . Combining the above results and Equation
(23), we have

E
[
Tk∥θ∗ − θk∥2

]
≤ 30D̃2 ≤ 960d

m
log T, ∀D̃2 ≥ 32d

m
log T.

■

With all the above results, we are now ready to prove the main theorem for LPSRL with SGLD.

Theorem 4. Under Assumptions 1 − 6, by instantiating SamplingAlg with SGLD and setting the hyperparameters as
per Theorem 1, with p = 2, the regret of LPSRL (Algorithm 3) satisfies:

RB(T ) ≤ CH log T

√
T

m
(d+ logQ+ (32 + 8dκ2)p)1/2,

where C is some positive constant, H is the upper bound of the MDP span, and Q denotes the quality of the prior. The
total number of iterations required for SGLD is O(κ2 log T ).

Proof of Theorem 4 First we further upper bound ∆err using the concentration guarantee provided by SGLD. We first
note that by Cauchy–Schwarz inequality,

KT∑
k=1

tk+1−1∑
t=tk

∥∥θ∗ − θk
∥∥ =

T∑
t=1

∥∥θ∗ − θk
∥∥ ≤

√√√√T

T∑
t=1

∥θ∗ − θk∥2 =

√√√√T

KT∑
k=1

Tk ∥θ∗ − θk∥2. (24)

Combining Equation (21) in Lemma E.3 and (24), by Theorem 8, Lemma E.3 and E.5, we have,

∆err ≤ HLp

√√√√TE
[ KT∑
k=1

Tk ∥θ∗ − θk∥2
]

≤ HLp

√
TKT max

k
E
[
Tk ∥θ∗ − θk∥2

]
≤ HLp

√
960d

m
TlogT (log T + 1)

≤ H(log T + 1)

√
960d

m
T . (25)

Then combining Lemma E.2, E.4 and Equation 25, we have,

RB(T ) ≤ H(log T + 1) +H(log T + 1)

√
960d

m
T +

√
24T (log T + 1)

m
(d+ logQ+ (32 + 8dκ2)p)1/2
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≤ (1 +
√
960 +

√
24)H(log T + 1)

√
T

m
(d+ logQ+ (32 + 8dκ2)p)1/2

≤ 38H(log T + 1)

√
T

m
(d+ logQ+ (32 + 8dκ2)p)1/2.

■

E.2.2. SIMPLEX PARAMETRIZATION

We now discuss the performance of LPSRL under simplex parametrization. Similar to the General Parameterization, the
regret guarantee of LPSRL relies on the convergence guarantee of MLD, which is presented in the following theorem.

Theorem 5. At the beginning of each policy-switch k, for each state-action pair (s, a) ∈ S × A, sample transition
probabilities over ∆|S| using MLD with the entropic mirror map. Let ntk be the number of data samples for any (s, a) at
time tk, then with step size chosen per Cheng and Bartlett (2018), running MLD with O(ntk) iterations guarantees that

W2(ρ̃tk , ρtk) = Õ
(√
|S|/ntk

)
.

Proof of Theorem 5 Theorem 5 follows from Theorems 2 and 3 from Hsieh et al. (2018) with step sizes given as per
Theorem 3 from Cheng and Bartlett (2018). ■

Instantiating Algorithm 3 with MLD provides the following statistical guarantee to control the approximation error in terms
of the Wasserstein-1 distance.

Lemma E.6. Under the simplex parameterization of MDPs, we run MLD for each state-action pair (s, a) ∈ S ×A at the
beginning of each policy-switch k ∈ [KT ] for Õ(|S||A|ntk) iterations. Suppose Assumption 5 and 6 are satisfied, then by
instantiating LPSRL (Algorithm 3) with MLD (Algorithm 4) as SamplingAlg, we have,

KT∑
k=1

TkW1(ρ̃tk , ρtk) ≤ |S|
√
8|A|T log T . (26)

Proof of Lemma E.6 By Corollary 1, in tabular settings, the error term in the Wasserstein-1 distance can be further de-
composed in terms of state-action pairs, suggesting

W1(ρ̃tk , ρtk) =
∑

(s,a)∈S×A

W1(ρ̃tk(s, a), ρtk(s, a)).

Then by design of Algorithm 3, we have,

KT∑
k=1

TkW1(ρ̃tk , ρtk) =

KT∑
k=1

Tk

∑
s,a

W1(ρ̃tk(s, a), ρtk(s, a))

≤
log T+1∑
k=1

Tk

∑
s,a

W2(ρ̃tk(s, a), ρtk(s, a))

≤
log T+1∑
k=1

Tk|S||A|max
s,a

W2(ρ̃tk(s, a), ρtk(s, a)), (27)

where the first inequality follows from the fact that Wp ≥Wq for any p ≥ q.

The convergence guarantee provided by Theorem 5 for MLD suggests, for each state-action pair (s, a) ∈ S × A, upon
running MLD for Õ(|S||A|ntk) iterations, where ntk is the number of data available for (s, a) at time tk, we have

W2(ρ̃tk(s, a), ρtk(s, a)) ≤

√
1

|A|ntk

. (28)
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At time tk, let ntk be the total number of available observations, which gives ntk =
∑k−1

k′=1 Tk′ and tk = ntk + 1. By
design of Algorithm 3, ntk ≤ Tk ≤ 2ntk . Then combining Equation (27) and (28) gives,

KT∑
k=1

Tk

∑
s,a

W1(ρ̃tk(s, a), ρtk(s, a)) ≤
log T+1∑
k=1

|S|
√
2|A|Tk

≤
log T+1∑
k=1

|S|
√
|A|2k

≤ |S|

√√√√|A|(log T + 1)

log T+1∑
k=1

2k

≤ |S|
√
8|A|T log T ,

where the third inequality follows from the Cauchy-Schwarz inequality.

■

Lemma E.6 suggests the approximation error in the first term of Lemma E.2 can be effectively bounded when instantiating
SamplingAlg with MLD.
Lemma E.7 (Concentration of MLD). For any policy-switch k ∈ [KT ], we run MLD (Algorithm 4) for each state-action
pair (s, a) ∈ S ×A at time tk for Õ(|S||A|ntk) iterations. Then instantiating LPSRL with MLD guarantees that

E[Tk∥θk,∗ − θk∥2] ≤ 2|S|2|A|.

Proof of Lemma E.7 By tower’s rule and the triangle inequality, we have

E
[
Tk∥θk,∗ − θk∥2

]
= E

[
E
[
Tk∥θk,∗ − θk∥2

] ∣∣∣Htk

]
≤ E

[
TkW

2
2 (ρ̃tk , ρtk)

∣∣∣Htk

]
≤ E

[
Tk(|S||A|)2 max

s,a
W 2

2 (ρ̃tk(s, a), ρtk(s, a))
∣∣∣Htk

]
. (29)

where the last inequality follows from the fact that in tabular setting, W 2
2 (ρ̃tk , ρtk) =

(∑
s,a W2(ρ̃tk(s, a), ρtk(s, a))

)2
.

By the convergence guarantee of MLD in Theorem 5, for each state-action pair (s, a) ∈ S × A, upon running MLD for
Õ(|S||A|ntk) iterations, we have

W2(ρ̃tk(s, a), ρtk(s, a)) ≤

√
1

|A|ntk

. (30)

Combining Equation (29) and (30) and the fact that ntk ≤ Tk ≤ 2ntk concludes the proof.

■

With the concentration guarantee between sample θk and θk,∗, as well as the concentration guarantee between θk,∗ and θ∗

in exact PSRL, we are able to effectively upper bound the model estimation error ∆err in tabular settings.
Lemma E.8 (Bound ∆err in tabular settings). With the definition of model estimation error ∆err in Lemma E.3, in tabular
setting, the following upper bound holds for ∆err,

∆err ≤ 66H|S|
√
|A|T log(2|S||A|T ), (31)

where Lp is the Lipschitz constant for transition dynamics.

Proof of Lemma E.8 By the triangle inequality and Lemma E.3,

∆err ≤ HLpE
[ KT∑
k=1

tk+1−1∑
t=tk

∥∥θ∗ − θk
∥∥ ] ≤ HLp

(
E
[ KT∑
k=1

tk+1−1∑
t=tk

∥∥θ∗ − θk,∗
∥∥ ]+ E

[ KT∑
k=1

tk+1−1∑
t=tk

∥∥θk,∗ − θk
∥∥ ]) . (32)
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Bound The first term. The first term can be upper bounded using standard concentration results of exact PSRL algorithms
in Bayesian settings. Define the event

Eθ =
{
θ : ∀(s, a) ∈ S ×A,

∥∥∥θ(·|s, a)− θ̂k(·|s, a)
∥∥∥
1
≤ βk(s, a)

}
, (33)

where θ̂k is the empirical distribution at the beginning of policy switch k, βk(s, a) :=
√

14|S| log(2|S||A|tkT )
max(1,ntk

(s,a)) following

(Jaksch et al., 2010; Ouyang et al., 2017; Osband et al., 2013) by setting δ = 1/T . Then event Eθ happens with probability
at least 1− δ. Note that for any vector x, ∥x∥2 ≤ ∥x∥1, and by the triangle inequality, we have∥∥θ∗ − θk,∗

∥∥ ≤∑
s′∈S

∣∣∣θ∗(·|s, a)− θk,∗(·|s, a)
∣∣∣ ≤ 2(βk(st, at) + 1{θ∗ /∈Eθ}).

At any time t ∈ [tk, tk + Tk − 1], nt ≤ 2ntk for any state-action pair (st, at), and by the fact that tk ≤ T , we have

E
[ KT∑
k=1

tk+1−1∑
t=tk

βk(st, at)
]
≤

KT∑
k=1

tk+1−1∑
t=tk

√
28|S| log(2|S||A|tkT )
max(1, nt(st, at))

≤
T∑

t=1

√
56|S| log(2|S||A|T )
max(1, nt(st, at))

. (34)

It then suffices to bound
∑T

t=1 1/
√

max(1, ntst, at). Note that

T∑
t=1

1√
max(1, nt(st, at))

=
∑
(s,a)

T∑
t=1

1(st,at)=(s,a)√
max(1, nt(s, a))

≤ 4
∑
(s,a)

∫ nT+1(s,a)

z=0

z−1/2dz

≤ 4

√
|S||A|

∑
(s,a)

nT+1(s, a)

≤ 4
√
|S||A|T . (35)

On the other hand, by definition of βk(s, a), P(θ∗ /∈ Eθ}) ≤ 1/(Tt6k), which yields

E

[
KT∑
k=1

tk+1−1∑
t=tk

1{θ∗ /∈Eθ}

]
≤ E

[
KT∑
k=1

TkP(θ∗ /∈ Eθ})

]
≤

∞∑
k=1

k−6 ≤
∞∑
k=1

k−2 ≤ 2. (36)

Combining Equation (34), (35) and (36), we have,

HLpE
[ KT∑
k=1

tk+1−1∑
t=tk

∥∥θ∗ − θk,∗
∥∥ ] ≤ 64HLp|S|

√
|A|T log(2|S||A|T ) (37)

Bound the second term. The second term arises from the use of approximate sampling. Note that by Cauchy–Schwarz
inequality, this term in Equation (32) satisfies,

KT∑
k=1

tk+1−1∑
t=tk

∥∥θk,∗ − θk
∥∥ =

T∑
t=1

∥∥θk,∗ − θk
∥∥ ≤

√√√√T

T∑
t=1

∥θk,∗ − θk∥2 =

√√√√T

KT∑
k=1

Tk ∥θk,∗ − θk∥2. (38)

It then relies on the concentration guarantee provided by MLD for LPSRL under the static policy switch scheme. By
Lemma E.7, we have,

HLp

√√√√TE
[ KT∑
k=1

Tk ∥θ∗ − θk∥2
]
≤ HLp

√
TKT max

k
E
[
Tk ∥θ∗ − θk∥2

]
≤ HLp|S|

√
4|A|T log T . (39)

Combining Equation (37) and (39) concludes the proof.

■
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With all the above results, we now proceed to prove the regret bound for LPSRL with MLD.

Theorem 6. Suppose Assumptions 5 and 6 are satisfied, then by instantiating SamplingAlg with MLD (Algorithm 4),
there exists some positive constant C such that the regret of LPSRL (Algorithm 3) in the Simplex Parameterization is
bounded by

RB(T ) ≤ CH|S|
√
|A|T log(|S||A|T ),

where C is some positive constant, H is the upper bound of the MDP span. The total number of iterations required for
MLD is O(|S|2|A|2T ).

Proof of Theorem 6 By Lemma E.2, E.6 and E.8, we have

RB(T ) ≤ H(log T + 1) + 66H|S|
√
|A|T log(2|S||A|T ) + |S|

√
8|A|T log T

≤ 2H log T + 66H|S|
√
|A|T log(2|S||A|T ) + 4|S|

√
|A|T log T

≤ 72H|S|
√
|A|T log(2|S||A|T ).

By Lemma E.6, for each state-action pair (s, a) ∈ S × A and policy-switch k ∈ [KT ], the number of iterations required
for MLD is O(|S||A|2k−1). This suggests that for each state-action pair, the total number of iterations required for MLD
is O(|S||A|T ) along the time horizon T . Summing over all possible state-action pairs, the computational cost of running
MLD in terms of the total number of iterations is O(|S|2|A|2T ). ■

E.3. General Parameterization Example

Following (Theocharous et al., 2017a;b) we consider a points of interest (POI) recommender system where the system
recommends a sequence of points that could be of interest to a particular tourist or individual. We will let the points
of interest be denoted by points on R. Following the perturbation model in (Theocharous et al., 2017a;b), the transition
probabilities are p(s|θ) = p(s)1/θ if the chosen action is s and it is p(s)/z(θ) otherwise. Here s is a state or a POI and

z(θ) =
∑

x̸=s p(x)

1−p(s)1/θ
. Furthermore, to fully specify p we consider p(s|θ) = 1√

2π
e−s2/2θ. One can see that Assumptions 1-4

are satisfied due to the Gaussian-like nature of the transition dynamics and the satisfiability of Assumption 5 follows from
Lemma 5 in (Theocharous et al., 2017b).

F. Experimental Details
F.1. Additional Discussions of Langevin TS in Gaussian Bandits

Figure 2: Left:(a) Expected regret for informative priors. Right:(b) Expected regret for uninformative priors. Results are reported over
10 experiments. In both scenarios, SGLD-TS under dynamic scheme achieves optimal performance as in sequential case without using
approximate sampling.

In this section, we present additional empirical results for the Gaussian bandit experiments. In particular, we examine
both informative priors and uninformative priors for Gaussian bandits with N = 15 arms, where each arm is associated
with distinct expected rewards. We set the true expected rewards of all arms to be evenly spaced in the interval [1, 20],

31



Langevin Thompson Sampling with Logarithmic Communication: Bandits and Reinforcement Learning

Figure 3: Left:(a) expected communication cost of three batching schemes: fully-sequential mode, dynamic batch, and static batch.
Right:(b) expected communication cost under dynamic batching scheme for Gaussian bandits.

and the ordering of values is shuffled before assigning to arms. All arms share the same standard deviation of 0.5. We
investigate the performance of SGLD-TS against UCB1, Bayes-UCB, and exact-TS under different interaction schemes:
fully-sequential mode, dynamic batch scheme, and static batch scheme.

In the first setting, we assume prior knowledge of the ordering of expected rewards and apply informative priors to facilitate
the learning process. Gaussian priors are adopted with means evenly spaced in [14, 20], and inverted variance (i.e., preci-
sion) set to 0.375. The priors are assigned according to the ordering of the true reward distributions. Note that the exact
knowledge of the true expected values is not required. In TS algorithms, the selection of arms at each time step is based
on sampled values, therefore efficient learning is essential even with the knowledge of the correct ordering. The expected
regret of all methods is reported over 10 experiments and results are illustrated in Figure 2(a). Results of both Figure 1(a)
and Figure 2(a) demonstrate that SGLD-TS achieves optimal performance similar to exact-TS with conjugate families. Its
appealing empirical performance in comparison to other popular methods (e.g., UCB1 and Bayes-UCB), along with its
ability to handle complex posteriors using MCMC algorithms, make it a promising solution for challenging problem do-
mains. Additionally, the introduction of the dynamic batch scheme ensures the computational efficiency of SGLD-TS. As
depicted in Figure 3(a)(b) and Table 2 (column labeled ”batches”), communication cost is significantly reduced from linear
to logarithmic dependence on the time horizon, as suggested by Theorem 2. Furthermore, in bandit environments, our
dynamic batch scheme exhibits greater robustness compared to the static batch scheme for both frequentist and Bayesian
methods.

Furthermore, we explore the setting where prior information is absent, and uninformative priors are employed. In this case,
we adopt the same Gaussian priors as N (14.0, 8.0) for all arms. Similar to the first setting, the same conclusion can be
drawn for SGLD-TS from Figure 2(b).

F.2. Experimental Setup for Langevin TS in Laplace Bandits

In order to demonstrate the performance of Langevin TS in a broader class of general bandit environments where closed-
form posteriors are not available and exact TS is not applicable, we construct a Laplace bandit environment consisting of
N = 10 arms. Specifically, we set the expected rewards to be evenly spaced in the interval [1, 10], and shuffle the ordering
before assigning each arm a value. The reward distribution of each arm shares the same standard deviation of 0.8. We
adopt favorable priors to incorporate the knowledge of the true ordering in Laplace bandits. It is important to note that
our objective is to learn the expected rewards, and arm selection at each time step is based on the sampled values rather
than the ordering. In particular, we adopt Gaussian priors with means evenly spaced in [4, 10] (ordered according to prior
knowledge). The inverted variance (i.e., precision) for all Gaussian priors is set to 0.875. We conduct the experiments 10
times and report the cumulative regrets in Figure 1(b).

By employing Langevin TS in the Laplace bandit environment, we aim to showcase the algorithm’s effectiveness and
versatility in scenarios where posteriors are intractable and exact TS cannot be directly applied.
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Figure 4: Number of interactions in RiverSwim over 10 experiments. Static policy switch scheme requires the least number of commu-
nication.

F.3. Experimental Setup for Langevin PSRL

In MDP setting, we consider a variant of RiverSwim environment being frequently used empirically (Strehl and Littman,
2008), in which the agent swimming in the river is modeled with five states, and two available actions: left and right. If the
agent swims rightwards along the river current, the attempt to transit to the right is going to succeed with a large probability
of p = 0.8. If the agent swims leftwards against the current, the transition probability to the left is small with p = 0.2.
Rewards are zero unless the agent is in the leftmost state (r = 2.0) or the rightmost state (r = 10.0). The agent is assumed
to start from the leftmost state. We implement MLD-PSRL and exact-PSRL under two policy switch schemes, one is the
static doubling scheme discussed in section 6, and the other is the dynamic doubling scheme based on the visiting counts
of state-action pairs. To ensure the performance of TSDE, we adopt its original policy switch criteria based on the linear
growth restriction on episode length and dynamic doubling scheme. We run experiments 10 times, and report the average
rewards of each method in Figure 1(c).

G. Societal Impacts
Our work focuses on sequential decision making in general reward/transition settings and with reduced communication
costs. It is a theoretical work and there is no negative societal impact.
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