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Abstract
Large Language Models (LLMs) have distin-001
guished themselves with outstanding perfor-002
mance in complex language modeling tasks,003
yet they come with significant computational004
and storage challenges. This paper explores the005
potential of quantization to mitigate these chal-006
lenges. We systematically study the combined007
application of three well-known post-training008
techniques, SmoothQuant, AWQ, and GPTQ,009
and provide a comprehensive analysis of their010
interactions and implications for advancing011
LLM quantization. We enhance the versatility012
of these techniques by enabling quantization013
to microscaling (MX) formats, expanding their014
applicability beyond their initial fixed-point for-015
mat targets. We show that combining different016
PTQ methods enables us to quantize models017
to 4-bit weights and 8-bit activations using the018
MXINT format with negligible accuracy loss019
compared to the uncompressed baseline.020

1 Introduction021

Large Language Models (LLMs) have emerged as022

extremely powerful tools to comprehend and gen-023

erate natural language. However, their intensive024

computational demand and energy consumption025

make widespread adoption of these models in ev-026

eryday tasks to be challenging. One way to address027

these challenges is post-training quantization, a028

technique that involves reducing the precision of029

model parameters and/or activations from the origi-030

nal bit-width to formats with fewer bits. Quantiza-031

tion can significantly reduce the memory footprint032

and computational requirements of these models,033

making them more accessible and deployable on034

a wider range of hardware, including mobile and035

edge devices. However, previous work has shown036

that the activations of LLMs with more than 3B037

parameters are difficult to quantize due to the emer-038

gence of outliers with large magnitude, which leads039

to significant accuracy degradation (Dettmers et al.,040

2022). To address this issue, Xiao et al. proposed041

SmoothQuant, a quantization method that smooths 042

out the activation outliers by migrating the quanti- 043

zation difficulty from activations to weights with 044

a mathematically equivalent transformation (Xiao 045

et al., 2023). Lin et al., proposed AWQ, a weight 046

only quantization algorithm that mitigates the quan- 047

tization error by channel-wise scaling of the salient 048

weights (Lin et al., 2023). Similarly, Frantar et al. 049

proposed GPTQ, a scalable one-shot quantization 050

method that utilizes approximate second-order in- 051

formation to quantize weights (Frantar et al., 2022). 052

In this work, we systematically study the combined 053

application of these three algorithms and provide a 054

comprehensive analysis of their interactions and im- 055

plications for advancing LLM quantization to vari- 056

ous fixed-point and microscaling (MX) formats. 057

Microscaling format. The microscaling (MX) 058

format for neural net computation was proposed 059

by prior work, first as MSFP (Rouhani et al., 2020) 060

and later subsumed by an emerging industry stan- 061

dard microscaling formats (Rouhani et al., 2023b). 062

Specifically, MXINT8 is a microscaling format 063

that enables high-accuracy inference using half 064

the memory footprint and twice the throughput 065

of FP16. It is an emerging industry standard en- 066

dorsed by Microsoft, AMD, Arm, Intel, Meta, and 067

NVIDIA (Rouhani et al., 2023b) and is already see- 068

ing adoption in today’s hardware products, such 069

as the Qualcomm cloud AI100 Accelerator (Qual- 070

comm, 2024). 071

The MX format, as outlined in this paper, is char- 072

acterized by three key components: 1) the scale 073

factor data type, 2) the data type and precision of 074

individual elements, and 3) the scaling block size. 075

The scale factor is applied uniformly across a block 076

of individual elements. This paper specifically fo- 077

cuses on MX formats employing the INT data type 078

for individual elements, thus termed MXINT. See 079

Section A of the appendix for more details on the 080

microscaling format. 081
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Notation. Throughout the paper we denote a mi-082

croscaling (MX) format with scaling block size083

of b, 8-bit shared scaling factor, and d bits per el-084

ement by MXINTd-b. For example, MXINT6-64085

represents an MX format with 6 bits per element,086

8 bits shared exponent across 64 values within a087

block. Similarly, a fixed-point value with i integer088

bits and no fractional bits is denoted by INTi. For089

instance, INT4 specifies a fixed-point value with 4090

integer bits and no fractional bits.091

Contributions.092

• We adopt SmoothQuant, AWQ, and GPTQ093

to support quantization to microscaling (MX)094

data formats, extending their compatibility be-095

yond the originally targeted fixed-point for-096

mats in the proposed methods.097

• We study the interaction of SmoothQuant,098

AWQ, and GPTQ to quantize state-of-the-art099

models like Llama2 and Llama3, offering a100

comprehensive analysis of their impact on101

advancing LLM quantization. Our findings102

demonstrate that SmoothQuant and GPTQ, as103

well as AWQ and GPTQ, are synergistic, es-104

pecially at more restrictive bit-widths.105

2 Quantization algorithms adaptation106

methodology107

Various Post-Training Quantization (PTQ) tech-108

niques have emerged to reduce memory bandwidth109

requirements during LLM inference by quantiz-110

ing weights and/or activations to lower precisions111

while maintaining accuracy. In this work, we ex-112

amine the interaction of three well-known PTQ113

algorithms for LLMs: GPTQ (Frantar et al., 2022),114

SmoothQuant (Xiao et al., 2023), and AWQ (Lin115

et al., 2023). GPTQ is a weight-only quantiza-116

tion technique that reduces quantization error by117

quantizing the weight matrix column-wise and se-118

quentially updating the unquantized weights using119

second-order activation Hessians to mitigate the120

error. SmoothQuant scales both activations and121

weights to smooth the activation’s dynamic range,122

transferring some of the quantization challenges123

from activations to weights. AWQ scales weights124

according to activation magnitudes for improved125

quantization. For further details on these three al-126

gorithms, please refer to Section B of the appendix.127

The remainder of this section details the generaliza-128

tion of GPTQ, AWQ, and SmoothQuant to support129

microscaling (MX) quantization, extending their130

Algorithm 1 Enhanced GPTQ: Quantize W given
inverse Hessian H−1 = (2XXT + λI)−1, block
size b1, and micro-block size b2.
1: Input: W ▷ Weight matrix
2: Input: drow ▷ Row dimension of W
3: Input: dcol ▷ Column dimension of W
4: Input: b1 ▷ Block size
5: Input: b2 ▷ Micro-block size
6: Input: H−1 ▷ Hessian inverse information
7: Variable: E ▷ Quantization error matrix
8: Output: Q ▷ Quantized weight matrix
9: Initialize: Q← 0drow×dcol

10: Initialize: E← 0drow×dcol

11: Initialize: H−1 ← Cholesky(H−1)T

12: for i = 0, b1, 2b1, ... do
13: for j = i, i+ b2, i+ 2b2, ..., i+ b1 − 1 do
14: k ← j + b2 ▷ Helper index
15: Q:,j:k ← quant(W:,j:k)

16: E:,j:k ← (W:,j:k −Q:,j:k)([H
−1]j:k,j:k)

−1

17: W:,k: ←W:,k: − E:,j:k[H−1]j:k,k:
18: end for
19: W:,i+b1: ←W:,i+b1: − E:,i:i+b1 [H

−1]i:i+b1,i+b1:

20: end for
21: Return: Q

compatibility beyond the originally targeted fixed- 131

point formats in the initially proposed methods. 132

2.1 GPTQ adaptation to MX format 133

To make GPTQ compatible with the MX format, 134

we modify the algorithm to quantize and update 135

weight values block-wise instead of the originally 136

proposed column-wise updates. Algorithm 1 il- 137

lustrates the quantization procedure: The weight 138

matrix is divided into blocks (Line 4: b1), which 139

are further subdivided into micro-blocks (Line 5: 140

b2). Blocks of consecutive micro-blocks are quan- 141

tized at each step using inverse Hessian information 142

stored in the Cholesky decomposition (Lines 13- 143

18), and the remaining weights are updated at the 144

end of the step (Line 19). This quantization process 145

is applied recursively to different weight blocks un- 146

til the entire weight matrix is quantized (Line 12). 147

Note that for quantizing weight matrix to a specific 148

MX format, the micro-block size in the algorithm, 149

b2, should be a multiple of the block size of the MX 150

format. For more details on the GPTQ algorithm 151

please refer to Section B.1 of the appendix. 152

2.2 SmoothQuant and AWQ adaptation to 153

MX format 154

For quantization to the MX format using 155

SmoothQuant and AWQ, we directly calculate per- 156

channel scaling factors to mitigate outliers in acti- 157

vations and/or weights, similar to the approaches 158

proposed in the original paper, and skip the addi- 159
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Act - Wgt bit-width Format Method Llama2-7B Llama2-13B Llama3-8B
16-16 FP16, FP16 N/A 5.12 4.57 5.54

RTN 5.13 4.58 5.55
GPTQ 5.13 4.58 5.55
SmoothQuant 5.12 4.58 5.55
AWQ 5.12 4.58 5.55
SmoothQuant+ 5.12 4.58 5.55

MXINT8-128, MXINT8-128

AWQ+ 5.12 4.58 5.55
RTN 5.15 4.60 5.62
GPTQ 5.15 4.60 5.62
SmoothQuant 5.15 4.60 5.62
AWQ 5.17 4.62 5.85
SmoothQuant+ 5.15 4.60 5.62

8-8

INT8, INT8

AWQ+ 5.17 4.62 5.84
RTN 5.55 4.82 7.13
GPTQ 5.45 4.76 6.98
SmoothQuant 5.60 4.93 7.05
AWQ 5.43 4.77 6.37
SmoothQuant+ 5.48 4.84 6.51

MXINT8-128, MXINT4-128

AWQ+ 5.37 4.73 6.16
RTN 5.91 4.97 8.44
GPTQ 5.67 4.85 18.64
SmoothQuant 6.34 5.56 9.13
AWQ 5.61 4.85 7.33
SmoothQuant+ 5.78 5.12 7.32

8-4

INT8, INT4

AWQ+ 5.53 4.80 7.06

Table 1: Perplexity score on WikiText-2-test for the Llama2-7B, Llama2-13B, and Llama3-8B models, when
quantized to fixed-point and MX formats using different post-training quantization techniques. Act, Wgt, and
RTN denote activation, weight, and round to nearest, respectively. +: GPTQ weight quantization is used. We used
per-channel affine quantization for the fixed-point formats.

tional calibration phase required for quantization160

to fixed-point formats (Xiao et al., 2023; Lin et al.,161

2023). Sections B.2 and B.3 of the appendix pro-162

vide more details on the SmoothQuant and AWQ163

algorithms, respectively.164

3 Challenges in Studying PTQ165

Algorithms Interactions166

This section highlights the challenges encountered167

when applying the post-training quantization algo-168

rithms studied. We found that some algorithms are169

incompatible, and for those that are compatible,170

the order of application is crucial. For instance,171

both AWQ and SmoothQuant aim to moderate172

the dynamic range of weight values by calculat-173

ing scaling factors based on activation and weight174

tensors. However, despite using different formu-175

las to calculate these scaling factors, we did not176

observe any benefit from combining the two algo-177

rithms. In contrast, GPTQ paired with either AWQ178

or SmoothQuant proved to be synergistic. When179

combining GPTQ with SmoothQuant or AWQ, it180

is essential to first smooth the weight range using181

SmoothQuant or AWQ, then apply GPTQ to the182

smoothed weights. Reversing this order results in a183

significant performance degradation. Section 4 pro-184

vides more details on the quantization results using185

different combinations of these PTQ algorithms. 186

4 Experiments 187

Setup. We evaluate the impact of the 188

SmoothQuant, AWQ, and GPTQ techniques 189

on quantization of Llama2 and Llama3 models. 190

We employ various fixed-point and MX formats 191

with different bit-widths for our assessment and 192

report the perplexity of the quantized models on 193

WikiText-2 (Merity et al., 2016). Moreover, we 194

study the impact of applying GPTQ, SmoothQuant, 195

and AWQ individually, as well as the combined 196

effects of GPTQ with AWQ and GPTQ with 197

SmoothQuant. For more details on experiment 198

setup refer to Section C. 199

Results. Table 1 illustrates perplexity of the quan- 200

tized Llama models (Touvron et al., 2023; Meta, 201

2024) with three different sizes on WikiText-2-test 202

using various MX and fixed-point formats. For 203

all three models, aggressive quantization to small 204

bit-widths penalizes the model performance, while 205

quantizing to higher bit-widths has negligible effect 206

on perplexity. For example, quantizing Llama3-8B 207

to MXINT8 preserves the baseline perplexity while 208

quantizing to MXINT4 increases perplexity by 29% 209

to 7.13. Moreover, quantization results using dif- 210

ferent MX format delivers better perplexity com- 211
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Weight Format Weight Memory (GB) Perplexity
FP16 12.35 5.12
INT8 6.18 5.15
MXINT8 6.22 5.12
INT4 3.10 5.55
MXINT4 3.13 5.91

Table 2: Weight Memory and Perplexity score on
WikiText-2-test for Llama2-7B when quantized to 8-bit
and 4-bit fixed-point and microscaling formats.

pared to the fixed-point formats with the same212

bit-width. For instance, quantizing Llama2-7B to213

INT4 increases perplexity to 5.91. Enabling AWQ,214

and GPTQ jointly, reduces it to 5.53, while us-215

ing MXINT4 and enabling AWQ and GPTQ we216

can achieve perplexity of 5.37. Additionally, we217

found that in all cases except for the quantization of218

both activations and weights to INT8, AWQ shows219

superior results compared to SmoothQuant. For220

the studied models and quantization formats, both221

SmoothQuant and GPTQ, as well as AWQ and222

GPTQ, are synergistic, an effect most prominent in223

more aggressive quantizations.224

Similarly, we assess the impact of GPTQ,225

SmoothQuant, and AWQ on the quantization of226

the Llama2, and Llama3 models (Touvron et al.,227

2023) using MX formats with the block size of 16.228

We observe similar trends to those identified in this229

section. Detailed results of the experiment can be230

found in the Table 3 of the appendix.231

Weight memory footprint study. The objective232

of a quantization method is to reduce the model233

size while preserving its accuracy. In this exper-234

iment, we quantize Llama2-7B to 4-bit and 8-bit235

data widths, measuring both the weight memory236

footprint and model perplexity on the WikiText-2-237

test dataset (Table 2). When quantizing Llama2-238

7B to MXINT8, we achieved a perplexity of 5.12,239

matching the baseline, while reducing the mem-240

ory footprint by approximately 2×, from 12.35241

GB to 6.22 GB. INT8 quantization closely follows,242

achieving a perplexity of 5.15 and memory foot-243

print of 6.18 GB. With more aggressive quanti-244

zation to 4-bit, both MXINT4 and INT4 formats245

reduced the memory footprint by around 4×. How-246

ever, the performance gap between these two for-247

mats increases to 6.5%, with MXINT4 showing248

superior performance.249

5 Related Work250

Model quantization methods. There are two251

primary categories of quantization techniques:252

Quantization-Aware Training (QAT), which253

leverages backpropagation to update quantized 254

weights (Bengio et al., 2013; Choi et al., 2018; 255

Nagel et al., 2021; Gholami et al., 2022; Liu et al., 256

2024), and Post-Training Quantization (PTQ), 257

which typically requires no additional training. 258

Quantization-aware training methods cannot easily 259

scale up to quantize giant LLMs. Consequently, 260

PTQ methods are commonly employed for 261

quantizing LLMs (Jacob et al., 2018; Nagel et al., 262

2020; Wang et al., 2020; Hubara et al., 2021; Li 263

et al., 2021; Deng et al., 2023). 264

Large Language Model quantization. With the 265

recent open-source releases of language models 266

like Llama (Touvron et al., 2023), researchers 267

are developing cost-effective quantization meth- 268

ods to compress these models for inference: 269

LLM.int8() proposes to preserve activation out- 270

liers in higher precision using a mixed INT8/FP16 271

decomposition (Dettmers et al., 2022). Similarly, 272

SpQR (Dettmers et al., 2023) and OWQ (Lee et al., 273

2024) propose to retain outlier features that are diffi- 274

cult to quantize in full-precision, while AWQ (Lin 275

et al., 2023) mitigates the quantization error for 276

the outliers using grid-searched channel-wise scal- 277

ing. QuaRot utilizes Hadamard matrices to effec- 278

tively rotate LLMs and eliminate outliers in the 279

activations and KV cache (Ashkboos et al., 2024). 280

Lee et al., explored the combined use of AWQ, 281

SmoothQuant, and GPTQ for quantizing LLMs, 282

focusing solely on fixed-point data types in their 283

study (Lee et al., 2023). 284

6 Conclusion 285

To summarize, we demonstrated that for the stud- 286

ied models, quantizations using different MX for- 287

mats deliver better perplexity compared to fixed- 288

point formats with the same bit-width when the per- 289

channel affine quantization scheme is employed. 290

Particularly, for quantization to MXINT8, none of 291

GPTQ, AWQ, or SmoothQuant is necessary to pre- 292

serve the baseline accuracy. Notably, we found that 293

for Llama2 and Llama3, when quantized to MX 294

formats, AWQ is superior to SmoothQuant. More- 295

over, AWQ and GPTQ are synergistic, especially, 296

with more aggressive quantization to 4-bit. 297

Throughout the paper, we have shown that by uti- 298

lizing AWQ, and GPTQ and applying MX formats 299

we can quantize the Llama2 and Llama3 models to 300

4-bit weights and 8-bit activations, with minimal 301

perplexity degradation. 302
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7 Limitations303

With quantization of LLMs, we make the mod-304

els accessible to more people, which generally305

comes with security risks, such as potential misuse306

for generating harmful content. This highlights307

the need for further investigation into responsi-308

ble AI practices. On the technical side, due to309

space and computational resource constraints, we310

have only reported results for text generation with311

Llama2 and Llama3 models up to 13B parameters312

on the WikiText-2 dataset. Further investigation313

of broader models, datasets, and tasks remains for314

future work.315
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A Microscaling data format 464

The Microscaling (MX) data format, initially intro- 465

duced in 2020 as Microsoft Floating Point (MSFP, 466

Rouhani et al. 2020), has since evolved and gained 467

widespread adoption among leading industry play- 468

ers, including Microsoft, AMD, Intel, Meta, Nvidia, 469

and Qualcomm (Rouhani et al., 2023b). 470

The core concept of the MX format is centered 471

around the MX block, where a vector of k numbers 472

share a single scale (X) while retaining individual 473

elements {Pi}ki=1, as shown in Figure 1. The actual 474

value for each of the k numbers in the block can be 475

represented as vi = XPi (Rouhani et al., 2023b). 476

The data format for the single scale and the data 477

format for individual elements can be independent 478

of each other, while the data format for individual 479

elements needs to be consistent across the k ele- 480

ments in the block (Rouhani et al., 2023a). An MX 481

block can be represented in (w + kd) bits, where 482

w is the number of bits for shared scale X and d 483

is the number of bits for each individual element. 484

Consequently, the MX format is characterized by 485

three main components: 486

1. Data type of scale X 487

2. Data type of elements Pi 488

3. Scaling block size k 489

Figure 1: Illustration of an MX block.

The MX format has proven to be highly ef- 490

fective in addressing the challenges of balancing 491

hardware efficiency, model accuracy, and user ex- 492

perience in machine learning applications. Ac- 493

cording to empirical results, 8-bit MX formats 494

can perform inference directly on FP32 pretrained 495

models with minimal accuracy loss, eliminating 496

the need for additional calibration or finetuning 497
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(Rouhani et al., 2023b). Furthermore, when using498

6-bit MX formats, the inference accuracy remains499

close to that of FP32 models, especially after apply-500

ing quantization-aware fine-tuning or post-training501

quantization methods (Rouhani et al., 2023b). Re-502

markably, the MX format also enables the train-503

ing of large transformer models using sub-8-bit504

precision for weights, activations, and gradients,505

achieving accuracy comparable to FP32 without506

requiring changes to the training process (Rouhani507

et al., 2023b).508

B Post training quantization algorithms509

B.1 GPTQ510

GPTQ is a post-training quantization (PTQ)511

method that uses second-order Hessian informa-512

tion for weight quantization in LLMs (Frantar et al.,513

2022). It employs layer-wise quantization for each514

layer l in the network, seeking quantized weights515

Ŵl that make the outputs (ŴlXl) closely approxi-516

mate those of the original weights (WlXl). In other517

words, GPTQ aims to find (Frantar et al., 2022):518

argminŴl
||WlXl − ŴlXl||22 (1)519

To solve equation 1, GPTQ quantizes each row520

of the weight matrix, W, independently, focus-521

ing on a single weight per row at a time. It con-522

sistently updates all not-yet-quantized weights to523

offset the error introduced by quantizing a single524

weight. Since the objective function in equation 1525

is quadratic, its Hessian H can be calculated using526

the following formula, where F denotes the set of527

remaining full-precision weights:528

HF = 2XF XT
F (2)529

Given H, the next to be quantized weight, wq,530

and the corresponding update of all remaining531

weights in F , δF , are given by the following for-532

mulas, where quant(w) rounds w to the nearest533

quantized value (Frantar et al., 2022):534

wq = argminwq

(wq − quant(wq))
2

[H−1
F ]qq

δq = −wq − quant(wq)

[H−1
F ]qq

.(H−1
F ):,q

(3)535

For all rows of W, GPTQ quantizes weights in536

the same order. This accelerates the process, as537

certain computations need to be performed only538

once for each column rather than once for each539

weight. Additionally, the vectorized implementa-540

tion of GPTQ enables processing multiple rows of541

W simultaneously. For more details on the GPTQ542

algorithm refer to Frantar et al.’s work (Frantar 543

et al., 2022). 544

B.2 SmoothQuant 545

SmoothQuant (SQ) is a quantization method 546

that targets both activations and weights of a 547

model (Xiao et al., 2023). In this approach, the ac- 548

tivation of a linear layer is scaled by a per-channel 549

smoothing factor s ∈ RCi to minimize quantiza- 550

tion errors. Simultaneously, the weight of the layer 551

is adjusted in the opposite direction to maintain the 552

mathematical equivalence of the linear layer: 553

Y = (Xdiag(s)−1) · (diag(s)W) = X̂Ŵ (4) 554

In Equation 4, X is the original input activa- 555

tion with outliers, and X̂ = Xdiag(s)−1 is the 556

smoothed activation. To minimize the quantization 557

error of the input activation, the smoothing factor is 558

selected such that all channels of the smoothed in- 559

put activation have the same maximum magnitude. 560

Accordingly, s is set to: 561

sj = max(|Xj |), j = 1, 2, ..., Ci (5) 562

Where Ci is the number of input channels in 563

the input activation and j corresponds to jth input 564

channel. Note that since the range of activations 565

varies for different input samples, the maximum 566

value of each channel is estimated using 128 cal- 567

ibration samples from the calibration dataset (see 568

Section C for more details). By dividing the input 569

activation by the the scaling factor of Equation 5, 570

all channels of the scaled input activation would 571

have the same range, making quantization of the 572

scaled tensor to be very easy. However, this will mi- 573

grate the difficulty of the quantization completely 574

to the weight side of a linear layer. To address this 575

issue, Xiao et al. proposed a scaling formula that 576

balances the quantization difficulty of activations 577

and weights: 578

sj = max(|Xj |)α/max(|Wj |)1−α, j = 1, 2, ..., Ci (6) 579

Where α is a hyper-parameter that controls how 580

much quantization difficulty we want to migrate 581

from activations to weights. For more details on 582

the SmoothQuant algorithm refer to Xiao et al.’s 583

work (Xiao et al., 2023). 584

B.3 AWQ 585

Activation-aware Weight Quantization (AWQ), is 586

a weight-only quantization method for LLMs (Lin 587

et al., 2023). In this algorithm, a small fraction (i.e., 588
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Format Method Llama2-7B Llama2-13B Llama3-8B
A:FP16, W:FP16 N/A 5.12 4.57 5.54

RTN 5.12 4.58 5.54
GPTQ 5.12 4.58 5.54
SmoothQuant 5.12 4.57 5.54
AWQ 5.12 4.58 5.54

A:MXINT8-16

SmoothQuant+ 5.12 4.57 5.54
W:MXINT8-16

AWQ+ 5.12 4.58 5.54
RTN 5.40 4.72 6.18
GPTQ 5.41 4.68 5.93
SmoothQuant 5.33 4.74 6.14
AWQ 5.30 4.70 6.03

A:MXINT8-16

SmoothQuant+ 5.28 4.69 5.95
W:MXINT4-16

AWQ+ 5.27 4.68 5.90

Table 3: Perplexity score on WikiText-2-test for the Llama models, when quantized to MX formats with the block
size of 16 using different post-training quantization techniques. A, W, and RTN denote activation, weight, and round
to nearest, respectively. +: GPTQ weight quantization is used.

0.1%-1%) of salient weight channels are scaled up589

to reduce their relative quantization error:590

Y = XW ≈ XŴ ≈ (X/s)( ˆsW) (7)591

In Equation 7, s is a per-channel scaling factor592

for the salient weights. To determine the salient593

weights, AWQ refers to the activation distribution594

instead of the weight distribution, as weight chan-595

nels corresponding to the outlier activations are596

more salient than other weights. The per-channel597

scaling factor is calculated using the following for-598

mula:599

s = sαX, α ∈ [0, 1] (8)600

Where sX is the average magnitude of activation601

(per-channel), and α is a hyper-parameter which602

balances the protection of salient and non-salient603

channels. For more details on AWQ refer to Lin’s604

et al. work (Lin et al., 2023)605

C Experiment Setup606

Models. We evaluated various quantization meth-607

ods using the Llama2, and Llama3 families (Tou-608

vron et al., 2023; Meta, 2024). These LLMs are609

widely accepted in the machine learning commu-610

nity for their superior performance compared to611

other open-source LLMs (Dettmers et al., 2022;612

Frantar et al., 2022; Xiao et al., 2023; Lin et al.,613

2023). Llama also serves as the foundation for614

many popular open-source models such as Al-615

paca (Taori et al., 2023), Vicuna (Chiang et al.,616

2023), and Stable Beluga (Stability AI, 2023).617

Datasets. Following previous work (Dettmers618

et al., 2022; Xiao et al., 2023; Frantar et al., 2022;619

Lin et al., 2023; Dettmers and Zettlemoyer, 2023;620

Yao et al., 2022), we measured the perplexity of621

quantized language models on WikiText-2 (Merity622

et al., 2016) as perplexity can stably reflect the 623

performance of LLMs (Dettmers and Zettlemoyer, 624

2023; Lin et al., 2023). Unless otherwise stated, 625

the test split of the dataset is used to evaluate the 626

models. 627

Quantization formats. We evaluated models us- 628

ing different microscaling and fixed-point quanti- 629

zation formats. For the fixed-point quantization, 630

we calibrated the models using 128 random in- 631

put sentences from WikiText-2-train to estimate 632

the dynamic range of activations. We utilized 633

MinMaxObserver to find the range of activations, 634

and calculated the zero-point and the scale parame- 635

ters for the activations and weights in per-channel 636

granularity levels. For the MXINT format, unless 637

otherwise specified, the blocking dimension of a 638

given tensor is the last dimension. 639

Activation smoothing. We calculated the per- 640

channel scaling factor for activations and weights 641

using the formula stated in Equation 4. As in the 642

previous work, we consistently use a migration 643

strength (α) value of 0.5 across all models through- 644

out the paper. To calculate the scaling factors, we 645

gathered the statistics of activations using 128 ran- 646

dom sentences from the WikiText-2-train dataset. 647

Once we calculated the scaling factors, we used the 648

same values to evaluate the models with different 649

quantization formats. 650

Targeted layers. Similar to the previous 651

work (Xiao et al., 2023), we apply smoothing 652

on the input activation of the self-attention and 653

the feed-forward layers of LLMs. Unless stated 654

otherwise, we transform all Linear layers to the 655

specified quantization format while keeping the 656

activation/weight in the original format for other 657

layers including GELU, Softmax, and LayerNorm. 658
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