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ABSTRACT

With significant efforts in recent studies, LLM-as-a-Judge has become a cost-
effective alternative to human evaluation for assessing the text generation quality
in a wide range of tasks. However, there still remains a reliability gap between
LLM-as-a-Judge and human evaluation. One important reason is the lack of guided
oracles in the evaluation process. Motivated by the role of reference pervasively
used in classic text evaluation, we introduce REVISEVAL, a novel text generation
evaluation paradigm via the response-adapted references. REVISEVAL is driven
by the key observation that an ideal reference should maintain the necessary rel-
evance to the response to be evaluated. Specifically, REVISEVAL leverages the
text revision capabilities of large language models (LLMs) to adaptively revise the
response, then treat the revised text as the reference (response-adapted reference)
for the subsequent evaluation. Extensive experiments demonstrate that REVISEVAL
outperforms traditional reference-free and reference-based evaluation paradigms
that use LLM-as-a-Judge across NLG tasks and open-ended instruction-following
tasks. More importantly, our response-adapted references can further boost the
classical text metrics, e.g., BLEU and BERTScore, compared to traditional refer-
ences and even rival the LLM-as-a-Judge. A detailed analysis is also conducted to
confirm REVISEVAL’s effectiveness in bias reduction, the impact of inference cost,
and reference relevance.

1 INTRODUCTION

As the large language model (LLM) already exhibits strong alignment with humans (Gilardi et al.,
2023; OpenAI et al., 2024), LLM-as-a-Judge (Chang et al., 2024; Li et al., 2024b; Gao et al., 2024b),
aka. LLM-evaluator, has emerged as a viable alternative to human evaluation in assessing text
generation quality. Given the task instruction and the corresponding model-generated responses,
LLMs are prompted to predict preferences or scores for these responses. Despite considerable efforts
have been made, such as chain-of-thought (Zheng et al., 2023), specialized rubrics (Liu et al., 2023),
and extensive evaluation-specific training datasets (Li et al., 2024a; Wang et al., 2024c;b), human
evaluation remains the gold standard in text quality assessment (Zeng et al., 2024) and LLM-as-a-
Judge struggles with particular biases (Huang et al., 2024) and being vulnerable to the misleading
context (Dubois et al., 2024; Chen et al., 2024). One important reason is the lack of an oracle to direct
the evaluation process. Fortunately, classical text evaluation metrics, like BLEU (Papineni et al.,
2002) and ROUGE (Lin, 2004), offer valuable prompts in mitigating such a gap: given an appropriate
reference, i.e., the ground-truth answer to the task, calculating the similarity between the references
and the model-generated responses can achieve a satisfactory correlation with human evaluations.
Furthermore, several studies highlight the reference could prevent being overly sensitive to semantic
deficiency (Sheng et al., 2024) and overcoming bias (Deutsch et al., 2022) in certain cases.

However, straightforward leveraging references in LLM-as-a-Judge can also be challenging. In
addition to the availability of high-quality references (Rei et al., 2021), previous works (Mehri &
Eskenazi, 2020; Gómez-Rodríguez & Williams, 2023; Guan & Huang, 2020) find that pre-existing
references introduce noise across various text evaluation tasks due to the one-to-many problem,
where for a given task input, there exist many diverse yet valid responses. In this case, particular
pre-existing references could negatively penalize many appropriate but dissimilar responses in the
evaluation process (Ji et al., 2022). Thus, we hypothesize that an effective reference should be closely
relevant to the response to be evaluated. We further verify this on MT-Bench (Zheng et al., 2023), an
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Figure 1: Performance comparison of ref-
erence-free and reference-based evaluation
paradigms across different similarity groups
in MT-Bench, using GPT-4-as-a-Judge. In the
reference-based evaluation, the GPT-4 direct
response is used as the reference, and the eval-
uated response with a higher BERTScore with
the reference is regarded as the preferred one.
As the similarity between the reference and the
response increases, the human agreement ac-
curacy of the reference-based evaluation sig-
nificantly improves, while the reference-free
evaluation maintains relatively consistent per-
formance across all similarity levels.

open-ended instruction-following dataset. As shown in Figure 1, we use GPT-4 direct responses to
the instructions as the references and quantify relevance by the similarity between the references and
the responses using BERTScore (Zhang et al., 2020). We find that higher relevance simulates greater
utility from the reference, resulting in more effective evaluations than a reference-free evaluator.

Motivated by the above findings, we deem that an effective reference should maintain high quality
while ensuring relevance to the response, which led us to consider that revising the response
adaptively could be a good candidate for this reference (Guo et al., 2024). Therefore, we propose a
novel evaluation paradigm REVISE-AND-EVALUATION, abbreviated as REVISEVAL. Specifically,
given the (instruction, response) pair, REVISEVAL first revise the response using the instruction and
evaluation rubric, resulting in the response-adapted reference. REVISEVAL further leverages this
generated response-adapted reference to guide final evaluation (e.g., scoring or pairwise comparison).
By revising the original response, we can ensure that the generated reference is both high-quality
and closely relevant to the original content. The comparison between the original and revised
responses offers valuable insights for evaluation. Orthogonal to previous work that only focuses
on the discrimination abilities of LLMs, REVISEVAL stands out by fully utilizing the generative
potential by revision.

We conduct comprehensive experiments to validate the effectiveness of our proposed REVISEVAL.
Using both proprietary and open-source LLMs, REVISEVAL consistently achieves better evaluation
performance compared to reference-free and reference-based evaluation paradigms in both NLG
tasks and open-ended instruction-following tasks. Moreover, we seek to verify the effectiveness of
the response-adapted references in the classic metrics, e.g., BERT and BERTScore, showing that each
metric exceeds itself by up to 3%-10% accuracy compared to using direct response as references. We
then combine LLM-as-a-reviser with multiple classic metrics and find that it outperforms LLM-as-a-
Judge (reference-free setting) by over 1.5% on average when using weak LLMs and is comparable
when using GPT-4. Finally, we analyze how our paradigm achieves overall superiority. In reducing
verbosity and positional bias, our approach offers clear advantages in adversarially designed LLMBar
and swapping position testing. Merely increasing inference cost of reference-free evaluation still lags
behind REVISEVAL, demonstrating our method’s efficiency does not rely on naively accumulating
cost. Meanwhile, we validate the relationship between reference relevance and efficiency using
response-adapted references.

2 RELATED WORK

2.1 EVALUATION OF LARGE LANGUAGE MODELS

Instruction-tuned LLMs (Ouyang et al., 2022; Dubey et al., 2024; Team et al., 2023) have revolu-
tionized the field of natural language processing (NLP) due to their ability to handle a wide range
of language-related tasks. Unlike traditional NLP tasks, such as Machine Translation and Summa-
rization, which can be evaluated using N-gram-based metrics like BLEU (Papineni et al., 2002),
ROUGE (Lin, 2004), and METEOR (Banerjee & Lavie, 2005) by comparing responses with reference
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texts, LLMs excel at open-ended language generation tasks (e.g., story generation and open-ended
instruction-following generation), where no single reference response exists. Consequently, several
studies embrace the potential of LLM-as-a-Judge and shift toward reference-free metrics, advocating
the abandonment of conventional reference-based evaluation methods (Sheng et al., 2024; Chen
et al., 2023). In this paper, we re-visit the significance of reference in LLM evaluation. Furthermore,
to address the challenge of the absence of a single standard answer in certain evaluation tasks, we
propose leveraging LLMs to generate response-adapted intermediate references, thereby improving
the evaluation performance of both traditional metrics and LLM-as-a-Judge.

2.2 LLM-AS-A-JUDGE

Recent progress in NLP has introduced model-based evaluation metrics like BERTScore (Zhang et al.,
2020) and BARTScore (Yuan et al., 2021). However, these methods also depend on the availability of
human-annotated references, which can be expensive, time-consuming, and labor-intensive (Zheng
et al., 2023). With the emergence of large language models (LLMs), several studies (Zheng et al.,
2023; Dubois et al., 2024) have harnessed their robust evaluation capabilities for assessing natural
language generation (NLG), particularly by employing proprietary models like GPT-4 (OpenAI et al.,
2024). To avoid information leakage caused by external API calls, some efforts advocate finetuning
LLMs with evaluation data to obtain evaluator models (Vu et al., 2024; Li et al., 2024a; Wang
et al., 2024c; Kim et al., 2024b). A wide variety of techniques are used to enhance the performance
of LLM-as-a-Judge, such as Chain-of-Thoughts (CoT; Wei et al. (2022)) to first generate concise
reasoning and then the final decision, adding pre-defined rules (Zeng et al., 2024) in prompts to list
some general rules for LLM-as-a-Judge to follow explicitly, and swapping the two responses to avoid
positional bias (Wang et al., 2024a). Zheng et al. (2023) found that, even with the use of a CoT
prompt, LLM-as-a-Judge can still be misled by the surrounding context, particularly by erroneous
response text. Therefore, they propose a reference-guided method where the LLM-as-a-Judge’s
response is first generated independently based on the given instruction and then presented as a
reference answer within the evaluation prompt. To the best of our knowledge, we are the first to
generate response-adapted references from both the instruction and the response to be evaluated.

3 METHODOLOGY

In this section, we introduce our novel evaluation paradigm, REVISEVAL, which enhances the
evaluation by generating response-adapted references. Illustrated in Figure 2, REVISEVAL consists of
two components, response-adapted reference generation and reference-based evaluation, which
we will discuss in Sec. 3.1 and 3.2, respectively.

Supposing y is the response generated by a model for a given task instruction x, REVISEVAL
assesses the quality of y on a specific rubric a. Firstly, in the generation phase, conditioned on
(x, a), REVISEVAL deploys a LLM reviser R to revise y to generate a response-adapted reference r⋆.
Secondly, in the evaluation phase, taking the (x, a, y) and generated r⋆ as input, REVISEVAL adopts
LLM-as-a-Judge FE to assess y using r⋆ as the reference. Besides, we further expand REVISEVAL
to support traditional reference-based metrics FM . The evaluation objective is to ensure that the
automated evaluations align closely with human evaluations, which is introduced in Appendix G.

3.1 RESPONSE-ADAPTED REFERENCE GENERATION

LLMs have already demonstrated their surprising revision capabilities in various tasks, including
improving specific attribution (e.g., writing style and grammar) of passages (Gao et al., 2023),
correcting hallucination (Akyurek et al., 2023), post-editing the generated story (Yang et al., 2022)
and generating higher-quality revised responses to complement preference pairs for DPO (Guo et al.,
2024; Yoon et al., 2024; Jiang et al., 2024b; Xu et al., 2024). Thus, unlike previous works treating
LLMs as discriminators (Hu et al., 2024), we leverage the revision capabilities of LLMs to unlock the
generative potential to offer richer and more valuable insights for evaluation. REVISEVAL deploys
LLMs to revise the response y from the instruction x on a evaluation rubric a,

r⋆ = R(y|x, a), (1)

where r⋆ is the generated response-adapted reference for the subsequent evaluation. Notably, when
REVISEVAL must give the preference on two responses, y1 and y2, in pairwise comparison, we
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Metrics

(b) Our proposed evaluation pipeline

You will be given one model-
generated output written for the 
instruction and source input. 
Please revise this output to be 
more {aspect}. 

**Instruction:
{instruction}
{input}

**Model-generated 
Output:**{Hypothesis Text}

xHypothesis Text
LLM as Revisor

Revised 
Output

Revision

Dynamic 
Reference

LLM as Evaluator

Please act as an impartial judge and 
evaluate the quality of the response to 
the instruction with source input 
displayed below. Your evaluation should 
consider the following aspect: {aspect}.
Begin your evaluation by comparing the 
Output with the Reference output and 
provide a short explanation. 
Instruction: {instruction}
{input}
Model-generated Output: 
{Hypothesis Text}
Reference output: {Revised Output}

Metrics

BLEU

BERTScore

BARTScore

. . .

Response 𝒚
he brought apples from his class . 

he dropped the apples . he began 

to throw them back up . he had a 

hard time .

Instruction 𝒙

Generate a reasonable ending for 

the following story.

Source: my 2 year old cousin was 

eating an apple .

He had brought apples from 

his class, but accidentally

dropped them. Struggling, 

he attempted to pick them up

and in the process, …

LLM-as-a-

Judge  𝓕𝑬

Evaluation Prompt

LLM-as-a-

Reviser  𝓡

Human Reference ො𝒓

he walked around between 

everyone at the party . he 

started coughing and 

choking . everyone 

panicked…

Human 

Annotation

##Please act as an impartial 
judge and evaluate the 
quality of the response to 
the instruction with source 
input displayed below. Your 
evaluation should consider 
the following rubric: 
{𝒂:rubric}. 
Begin your evaluation by 
comparing the Model-generated 
Output with the Reference 
output and provide a short 
explanation.

##Please act as a powerful revisor to revise the response 
generated by an AI assistant to the instruction displayed 
below. Your revision should focus on {𝒂:rubric}...... 

Revision Prompt

Score Rating

Pairwise 

Comparison

Metric

𝓕𝑴

Similarity Score

BLEU

BERTScore BARTScore

ROUGE

…

METEOR

Response-adapted 

Reference  𝒓∗

(i) Response-adapted Reference Generation (ii) Reference-based Evaluation

Figure 2: Illustration of our proposed REVISEVAL. Given an instance (x, y, a), we use REVISEVAL
to assess y in rubric a. In REVISEVAL, (i) reviser generates a response-adapted reference r⋆ by
revising the y to enhance the (ii) following LLM-as-a-Judge, even classic text metrics. Here,

::
...

represents retained segments during the generating response-adapted reference process.

randomly select one for primary text to be revised while using the other as revision guidance. We
remind reviser that this revision guidance may not be perfect and should be used with caution in the
revision prompt,

r⋆ =

{
R(y1|y2, x, a) if C = 1

R(y2|y1, x, a) if C = 2
(2)

where C is a random variable that decides which response is chosen for revision. C can be either 1
or 2, with each having an equal chance of occurring. Notably, we discuss other possible revision
strategies in Appendix I.2, which are less effective comparably. Introducing a qualified reference
can reliably guide the evaluation process, for instance, acting as an “anchor” to reduce biases. Our
strategy, which incorporates revision guidance and randomly sampling one as the primary text for
revising, further reinforces fairness. This will be validated in Sec. 4.2 and 4.5.

3.2 REFERENCE-BASED EVALUATION

In the evaluation phase, REVISEVAL supports LLM-as-a-Judge FE in a reference-based setting and
remains compatible with previous metrics FM .

LLM-as-a-Judge. With powerful generalization capabilities, LLMs can serve as discriminators for
evaluation, referred to as LLM-as-a-Judge. In this case, the evaluation can be operated using FE ,

s = FE(y|x, a, r⋆). (3)

This can be easily accomplished by simply using a general prompt for inference, where we clarify
the instruction, response, response-adapted reference, and evaluation rubric in the prompt, as shown
in Appendix A. Moreover, we implement this for open-source LLMs through finetuning evaluation
data in this task format, with the detailed process provided in Appendix C.

Metrics. Once we get the reference r⋆, we can also implement classic metrics, regardless of
statistical n-gram or model-based metrics. The evaluation score s is:

s = FM (y, r⋆|[x, a]). (4)
More specifically, when FM are n-gram metrics, e.g., BLEU, ROUGE, and METEOR, we can directly
compute the similarity between y and r⋆; when FM are model-based metrics, e.g., BERTScore and
BARTScore, we can optionally input x and a to the metrics. The effectiveness of metrics heavily
relies on the reference. When the response-adapted reference is appropriate, even a simple metric can
revive its evaluation functionality in open-ended tasks. We validate this point in Sec. 4.3 and 4.4.

4 EXPERIMENTS

In this section, we first present the comprehensive experimental settings in Sec. 4.1 and evaluate the
REVISEVAL in LLM-as-a-Judge across various tasks in Sec. 4.2; we then verify the effectiveness of
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Table 1: Kendall (τ ) and Spearman (ρ) correlation results comparing reference-free, reference-based,
and REVISEVAL methods across natural language generation tasks. This table demonstrates that,
without human-annotated references, our proposed REVISEVAL substantially outperforms reference-
free and reference-based methods involving both open-source and proprietary LLM-as-a-Judge.

Methods SUMMARIZATION TRANSLATION DATA2TEXT STORY GENERATION Avg.
τ /ρ τ /ρ τ /ρ τ /ρ τ /ρ

N-gram Metrics

BLEU 10.66/14.42 14.50/19.73 23.13/33.29 -1.93/-2.70 11.59/16.19
ROUGE 10.81/14.85 13.19/17.83 24.74/35.49 -1.53/2.34 11.80/17.63
METEOR 12.37/16.72 16.52/18.80 25.58/36.27 -1.87/-2.65 13.15/17.29

Model-based Metrics

BERTScore 17.50/23.83 31.57/42.41 30.74/43.75 16.00/23.79 23.95/33.45
BARTScore 29.12/35.50 7.01/12.83 22.32/34.33 14.15/33.48 18.15/29.04
UniEval 35.89/47.52 16.08/21.90 28.56/38.38 31.22/44.46 27.94/38.07
GPTScore 28.20/37.41 6.50/8.90 19.81/28.82 16.36/23.91 17.72/24.76
InstructScore-7B 20.86/38.68 40.44/50.43 30.21/38.54 13.50/16.13 26.25/35.94
TIGERScore-7B 28.79/35.11 33.65/41.50 32.44/42.39 29.72/39.26 31.15/39.56
Llama-3.1 8B-Inst 27.49/31.02 19.59/23.54 28.46/36.24 26.13/29.97 25.42/30.19

Open-Source LLM-as-a-Judge

Ref-Free 27.83/31.89 30.84/38.66 38.75/49.32 25.74/31.72 30.79/37.90
Ref-Based 34.09/39.53 35.76/41.12 39.24/50.87 8.79/10.44 29.47/35.49
REVISEVAL (Ours) 32.41/37.73 33.14/39.66 39.02/49.92 25.95/32.11 32.63/39.86

Proprietary LLM-as-a-Judge

Ref-Free 31.82/38.98 34.62/43.38 37.99/49.50 23.81/33.29 32.06/41.29
Ref-Based 32.56/40.01 41.47/45.29 37.35/49.02 17.58/24.86 32.24/39.80
REVISEVAL (Ours) 33.63/41.15 40.72/45.32 37.90/50.93 25.11/35.26 34.34/43.17

classic text evaluation metrics when using response-adapted references in Sec. 4.3; building on above
findings, we compare two evaluation paradigms, combining LLM-as-a-reviser with multiple metrics
and LLM-as-a-Judge, when using weak LLM in Sec. 4.4; finally, we conduct detailed comparative
analysis of REVISEVAL in Sec. 4.5, such as bias reduction, inference cost and reference relevance.

4.1 EVALUATION SETTINGS

Evaluation benchmarks. We evaluate our approach on multiple classic NLG benchmarks by
measuring the correlation between the evaluators/metrics and human annotations in a scoring rating
task. We follow the experimental setting of Jiang et al. (2024a) and select four representative NLG
tasks and corresponding benchmarks: Data-to-Text (WebNLG), Machine Translation (WMT-22 (zh-
en)), Text Summarization (SummEval), and Story Generation (OpenMEVA), and Table 10 shows
the details of these benchmarks. Additionally, we test our approach on the more challenging open-
ended instruction-following benchmarks (MT-Bench, Alpacafarm, and LLMBar), which primarily
rely on pairwise comparison task. Unlike the NLG benchmarks, these preference benchmarks
contain more general instructions covering a broader range of tasks with more diverse responses
and use accuracy to measure the evaluation performance. Remarkably, in NLG tasks, “ref-based”
evaluation relies on human-annotated references as its foundation. In contrast, open-ended instruction-
following tasks lack pre-existing references, so “ref-based” evaluation uses machine-generated
responses as references to conduct ablation studies verifying the effectiveness of ours references.

Base LLMs and metrics. Our proposed REVISEVAL aims to improve evaluation performance
across both LLM-as-a-Judge and classic metrics, offering enhanced results. For proprietary LLMs,
we adopt GPT-4 as the base model and focus on implementing our paradigm during the inference
stage. For open-source LLMs, we implement our method via finetuning the Llama 3.1-8B model.
Following the Jiang et al. (2024a)’s setting on open-source models, we distill the evaluation outputs
generated by GPT-4 when inputting task instructions and corresponding evaluated responses, and
tune them in our models. Notably, our training data has no overlap with evaluation benchmarks. For
classic metrics, we cover various metrics, like n-gram based BLEU, ROUGE, METEOR and model
based BERTScore, MOVERScore (Zhao et al., 2019), BARTScore, which rely heavily on references.
We validate our method by assessing the utility of reference texts.
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Table 2: Accuracy of LLM-as-a-Judge on instruction-following preference tasks. Our proposed
REVISEVAL considerably enhances the performance of both open-source and proprietary LLM-as-a-
Judge across various general evaluation tasks. Here, D.R. denotes Direct Response to instruction.

Methods # of Training Samples MT-BENCH ALPACAFARM LLMBAR Avg.

Open-Source LLM-as-a-Judge

JudgeLM-7B (Zhu et al., 2023) 100,000 64.1 53.9 36.3 51.4
PandaLM-7B (Wang et al., 2024c) 300,000 75.0 54.9 31.7 53.9
Auto-J-13B (Li et al., 2024a) 4,396 75.2 64.6 36.0 58.6
Prometheus-7B (Kim et al., 2024a) 100,000 52.8 33.5 30.1 38.8
Prometheus-2-7B (Kim et al., 2024b) 300,000 55.0 37.3 26.3 39.5

Llama 3.1-8B-Tuned
–Ref-Free 9,800 67.4 61.1 51.1 59.9
–Ref-Based (Llama-D.R.) 9,800 74.9 61.5 58.9 65.1
–Ref-Based (GPT-4-D.R.) 9,800 78.0 65.5 63.0 68.8
–REVISEVAL (Llama-as-a-Reviser) 9,800 75.2 64.7 57.8 65.9
–REVISEVAL (GPT-4-as-a-Reviser) 9,800 79.3 67.1 64.9 70.4

Proprietary LLM-as-a-Judge (GPT-4)

Ref-Free - 81.2 70.9 72.6 74.9
Ref-Based (GPT-4-D.R.) - 81.5 67.7 79.9 76.4
REVISEVAL (GPT-4-as-a-Reviser) - 83.0 72.9 79.0 78.1

We ensure that our approach maintains versatility and fairness across models, with further details on
prompts, inference, finetuning, and baselines in the Appendix A, B, C, D, E and F.

4.2 ENHANCING LLM-AS-A-JUDGE PERFORMANCE

We present the main results of our proposed REVISEVAL across NLG evaluation tasks and instruction-
following preference benchmarks in Table 1 and 2. We summarize the conclusions below.

REVISEVAL achieves stronger performance across various NLG tasks. For the powerful pro-
prietary LLMs, REVISEVAL outperforms reference-free and human-annotated reference-based eval-
uation across tasks with approximately 0.02 in Kendall correlation on average, as demonstrated in
Table 1. Notably, in story generation, high-quality human references hinder evaluation for LLM-as-a-
Judge, which decreases by 0.06 compared to the reference-free method in the Kendall correlation.
In contrast, REVISEVAL shows that generated response-adapted reference can still greatly enhance
evaluation by about 0.08 in Kendall than human reference-based evaluation. An exception is machine
translation, where REVISEVAL aligns closely with reference-based methods, and we analyze this
result exists a consistent rationale about reference relevance in Sec 4.5.

For the open-source LLMs, REVISEVAL not only outperforms the reference-free method but also
beats the reference-based methods by over 0.03 on average in Kendall correlation. Especially in
story generation, the reference-based approach is consistent with the above conclusion, trailing by
approximately 0.17 in Kendall compared to our REVISEVAL. Furthermore, the LLM with specialized
finetuning also performs better than the LLM with general instruction finetuning (i.e., Llama 3.1-8B
Inst) on NLG evaluation tasks, leading by about 0.02 in Kendall.

REVISEVAL excels on open-ended instruction-following preference benchmarks. As shown
in Table 2, whether implemented on open-source or proprietary models, REVISEVAL consistently
surpasses all baselines by at least 6.3% on average. The details of these baselines are listed in
Appendix F, and they are tuned with tens of thousands of data for the LLM-as-a-Judge. On the same
base LLM, REVISEVAL exceeds reference-free evaluation by 3%-6%. We compare REVISEVAL to
reference-based evaluations followed by Zheng et al. (2023)’s setup, whose reference is the LLM’s
direct response to the instruction. Our approach performs better than reference-based evaluation on
average when both references are generated by the same base LLMs. Furthermore, using GPT-4 as the
reviser boosts Llama 3.1-8B-as-a-Judge by over 4.5% compared to Llama-as-a-Reviser, highlighting
the importance of reference quality.

LLM-as-a-Judge can be biased toward longer, verbose answers (Saito et al., 2023; Dubois et al.,
2024) or answers that match a similar format (Huang et al., 2024). LLMBar (Zeng et al., 2024) is a
challenging benchmark to meta-evaluate such superficial quality biases. As demonstrated in Table 2,
these baselines, even after tuning > 100K samples, struggle to exceed 50% accuracy, exposing
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Figure 3: Comparative analysis of reference-based metrics performance using references generated
by HUMAN/GPT-4 and REVISEVAL on NLG and instruction following benchmarks. REVISEVAL
greatly enhance traditional ref-based metrics, even achieving them comparable to GPT-4-as-a-Judge.

bias challenge. By using response-adapted references from REVISEVAL, the weak open-source
LLM-as-a-Judge’s performance improves substantially by about 6%, showing REVISEVAL can
address superficial quality bias. On proprietary LLM, REVISEVAL achieves a 3.2% improvement in
accuracy compared to reference-free evaluation. Our proposed response-adapted references perform
slightly worse than direct responses from the same model. This is likely because LLMBar emphasizes
“instruction-following precision,” where a single golden response exists for the instruction.

In summary, REVISEVAL consistently outperforms traditional ref-free and ref-based methods, and
our revision provides guidance for LLM evaluation by utilizing the generative advantages of LLM.

4.3 INVESTIGATION ABOUT RESPONSE-ADAPTED REFERENCES

Table 3: Mean rating for responses and
generated references in LLMBar. The
detailed rating is in Table 14. Here, Re-
sponses 1 and 2 correspond to the posi-
tion of the response in each pair, and the
rating range is in [1, 5].

Text Mean Rating

Response 1 3.19
Response 2 3.25
References (Ours) 4.75

Revision Quality. As a post-editing mechanism to en-
hance text quality, we expect the revision to correct errors
within the text, including subtle errors (e.g., grammar),
as well as higher-level issues (e.g., instruction following
precision and factual/logical correctness). LLMBar is an
appropriate testbed for conducting detailed case studies
and quality assessments. We directly use LLM to score
the quality of the responses to be evaluated and the cor-
responding response-adapted references, focusing on cor-
rectness. Table 3 demonstrates that our response-adapted
references effectively improve response accuracies. Ad-
ditionally, the case studies are presented in Appendix J.1;
we test REVISEVAL on JudgeBench (Tan et al., 2024) in
Appendix K, focusing on factual/logical correctness and
on RewardBench (Lambert et al., 2024) in Appendix N, for more challenging domains.

References Effectiveness. Traditional reference-based metrics rely heavily on references, directly
validating whether the references are effective. Therefore, we use response-adapted references with
these metrics to observe evaluation performance across NLG and instruction-following benchmarks.
We extend classic reference-based metrics to support pairwise comparisons by using an indicator
function to determine preference between y1 and y2 based on their respective metric scores. We use
human references in NLG tasks and GPT-4 direct responses in instruction-following benchmarks
as the baseline references, comparing them with ours. As shown in Figure 3, REVISEVAL enables
each classic metric to substantially surpass its performance based on baseline references across
all tasks, particularly in more complex open-ended tasks like story generation and AlpacaFarm.
Additionally, using references generated by GPT-4 as-a-Reviser combined with classic metrics can
yield comparable evaluation performance to GPT-4’s reference-free evaluation. Furthermore, we test
response-adapted references in a multi-reference setting, with results detailed in Appendix L and M.

4.4 POTENTIAL EVALUATION PARADIGM FOR WEAK LARGE LANGUAGE MODELS

We observe that 1) in the Sec. 4.2, all weak LLMs still exhibit a notable gap compared to GPT-4-
as-a-Judge, even after extensive training with high-quality, evaluation-specific data, and 2) in the
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Table 4: Comparative analysis of weak LLM-as-a-Judge and weak LLM-as-a-Reviser+classic
metrics on instruction-following tasks. Under the same finetuning training resources, a weak LLM-
as-a-Reviser combined with classic metrics can produce better results.

Metrics MT-BENCH ALPACAFARM LLMBAR Avg.

LLM-as-a-Reviser
BLEU 64.5 63.9 51.6 60.0
ROUGE 62.0 63.5 51.6 59.0
METEOR 66.4 67.7 46.3 60.1
BERTScore 62.3 62.3 54.4 59.7
MOVERScore 61.5 68.3 51.6 60.5
BARTScore 66.9 61.9 51.3 60.0
MAJORITY VOTING 63.4 68.5 52.5 61.4

LLM-as-a-Judge 67.4 61.1 51.1 59.9

Sec. 4.3, classic metrics combined with response-adapted references generated by GPT-4 can achieve
performance close to the reference-free GPT-4-as-a-Judge. Thus, should we consider a potential
evaluation paradigm of “weak LLM-as-a-Reviser + metrics” instead of “weak LLMs-as-a-Judge”?

To explore this, we compare “Llama-as-a-Judge” with “Llama-as-a-Reviser + metrics,” as shown in
Table 4. When using references generated by “Llama-as-a-Reviser”, we find that BLEU, METEOR,
MOVERScore, and BARTScore can surpass “Llama-as-a-Judge” on average across 3 tasks. Further-
more, we apply a majority voting across multiple metrics, outperforming “Llama-as-a-Judge” over
1.5% on average. This suggests that instead of continuously training weak LLMs to improve their
evaluative discrimination capabilities, leveraging their generation abilities for revision may be more
effective. Without extra inference costs, this approach can lead to better evaluation outcomes. We
offer a general guideline: majority voting is recommended as it provides a stable superior evaluation
approach, recognizing that no single metric outperforms others across all benchmarks.

Table 5: Positional bias analysis in pair comparison evaluations when applying different evaluation
paradigms. This table presents the ratio of changed evaluation results after swapping the response
position. A lower proportion indicates less positional bias.REVISEVAL stands out as the best,
exhibiting the lowest bias among all paradigms.

Paradigms MT-BENCH ALPACAFARM LLMBAR

LLAMA 3.1-8B GPT-4 LLAMA 3.1-8B GPT-4 LLAMA 3.1-8B GPT-4

Ref-Free 49.1 10.3 61.1 20.0 44.6 17.9
Ref-Based 22.8 6.5 34.1 22.2 32.5 11.2
REVISEVAL 20.5 5.9 30.1 19.9 30.3 7.9

4.5 COMPARATIVE ANALYSIS TO OTHER EVALUATION PARADIGMS

Positional bias analysis. Positional bias (Wang et al., 2024a; Zheng et al., 2023; Wu & Aji, 2023;
Chen et al., 2024) occurs when human or LLM evaluators tend to favor one side in a pairwise
comparison, regardless of answer quality. We investigate this bias by swapping answer positions
and taking the LLM to re-evaluate, as shown in Table 5. The results indicate that reference-based
evaluation decisions have less variation than reference-free ones. REVISEVAL is generally 2%-4%
lower on the reference-based evaluation, showing better consistency. This result is probably because
REVISEVAL provides references more closely aligned with the answers, further minimizing bias.

The impact analysis of inference cost. Compared to the reference-free approach, REVISEVAL
requires two cycles of inference (i.e., revision and evaluation). To show the impact of extra inference
cost, we further conduct three cycles of reference-free evaluations using extra different temperatures
(0.3 and 0.7), followed by majority voting (see Table 6). For GPT-4, additional evaluation cycles
slightly improve accuracy but still lag behind ours by 1%-4%. For weak LLMs, more cycles led to
worse performance. The above results indicate that our approach provides more valuable guidance.
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Table 6: Ablation study on the impact of inference cost. Increasing evaluation cycles to match or
exceed REVISEVAL’s inference cost in reference-free did not improve accuracy. This shows that
REVISEVAL’s superior performance is not from twice inference.

Inference Cost MT-BENCH ALPACAFARM LLMBAR

LLAMA 3.1-8B GPT-4 LLAMA 3.1-8B GPT-4 LLAMA 3.1-8B GPT-4

1-Cycle Ref-Free 67.4 81.2 61.1 70.9 51.1 72.6
3-Cycle Ref-Free 64.1 81.2 54.9 71.9 53.2 74.9

REVISEVAL (2-Cycle) 71.3 83.0 64.7 72.9 54.9 79.0

Table 7: Comparative analysis of how reference-based evaluation effectiveness varies with changes
in the similarity between the response and reference texts across different constructing reference
strategies. Here, Effectiveness, Pref/Pfree, refers to the performance ratio between reference-based
and reference-free evaluation, where P denotes the evaluation performance, e.g., Acc and Corr;
similarity is still measured by BERTScore.

Reference Source WMT-22(EN-ZH) WEBNLG MT-BENCH SUMMEVAL ALPACAFARM ROC

Similarity Human/GPT-4 65.12 59.09 25.00 23.51 13.04 12.86
RevisEval 63.03 (-3.3%) 76.41 (+29.3%) 30.29 (+21.2%) 35.63 (+51.6%) 35.72 (+173.9%) 27.57 (+114.4%)

Effectiveness Human/GPT-4 1.20 0.98 1.00 1.02 0.95 0.74
RevisEval 1.18 (-0.02) 1.00 (+0.02) 1.02 (+0.02) 1.06 (+0.04) 1.03 (+0.08) 1.05 (+0.31)

Evaluation performance improves with increased relevance between reference and responses.
It’s been observed that the less relevant a reference is to the response, the less effective it is for
evaluation in previous work and Figure 1. We further verify whether this trend holds true with our
method. We define effectiveness to describe whether reference-based evaluation is more effective
than reference-free evaluation. As shown in Table 7, the increasing similarity between reference
and evaluated responses generally leads to better evaluation effectiveness. This explains why our
method doesn’t perform as well in translation, where human references are already highly similar
to the response. For other tasks, human or GPT-4 direct-response references have lower similarity
than references of REVISEVAL, leading to a lower effectiveness. Additionally, for different tasks,
the similarity between the human/GPT-4 reference and the evaluated response varies, reflecting
the open-ended generative degree of this task. A lower similarity indicates a greater diversity of
potential valid responses. In this context, as the task becomes more open-ended, the effectiveness of
REVISEVAL shows a greater improvement than the human/GPT-4 reference.

5 CASE STUDY: HOW DOES IT WORK?

We show two representative examples in Table 8, one from the instruction-following task (Alpaca-
Farm) and the other from the NLG evaluation task (story generation). The reference-free evaluation
tends to be influenced by verbose text, often leading to incorrect judgments, e.g., “provides a clearer
answer...”. While the LLM’s direct response or human reference might not be erroneous and can fulfill
the instructions well, for instance,

:::::::::::::::::::::::::::::::::::::::::::::::::
“Happy and Joyful belong to the word group of synonyms, ...,” in

the first case, it has no relevance to responses to be evaluated and resulting “neither assistant directly
addressed the classification,” judgment. In contrast, the reference generated by REVISEVAL is a
more adaptive guidance,

:::::::::
“Emotions”, accurately helping the LLM to align the crucial elements, “the

clarity and completeness”. This is also evident in the second case, where differences between the
response and the revised text, such as “had brought,” “accidentally dropped,” and others, directly
highlight fluency issues with the response. In other words, this demonstrates a transparent potential.
Furthermore, we provide evaluation discrepancy statistics between REVISEVAL and other evaluations
to observe how different evaluation methods, as demonstrated in Appendix I.3.

6 CONCLUSION

In this work, we introduce a novel yet general evaluation paradigm that leverages the revision
capabilities of LLMs to revise evaluated responses to be response-adapted references for evaluation.
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Table 8: An instruction-following open-ended case of pairwise comparison and a story-generation
case of score rating evaluated by different paradigms. Score/Preference refers to accurate evaluation
result and Score/Preference refers to wrong result. We emphasize the noisy evaluation elements in
red, while highlighting the useful elements of the evaluation in green. Here, the base LLM is GPT-4.

Instruction: Classify the following to the correct word group. \n\n Happy, Joyful

Response 1 Response 2
Happy -> Emotions Emotions

Reference-free Evaluation:
Both Assistant A and Assistant B . . . . . . Both responses are correct, but one might argue that including the words with the categorization,

as Assistant A does, provides a clearer answer and specifically indicates that both words have been classified. . . . . . .
- Final Verdict: [[A]]

Referfence-based Evaluation:
Direct Response-as-Reference:

:::
Happy

:::
and

::::
Joyful

::::
belong

::
to

::
the

:::
word

::::
group

::
of

::::::
synonyms,

::
as

:::
they

::
both

:::::
express

::::
similar

:::::
feelings

::
of

:::::
pleasure

::
and

::::::::
contentment.

. . . . . . Assistant A, while correct in stating that "Happy" belongs to "Emotions," did not mention "Joyful" or classify them together as
synonyms. Rather, it only assigned a category to one word.

Assistant B . . . . . . but fails to classify both words as instructed, missing the relationship between "Happy" and "Joyful."
Neither assistant directly addressed the classification as "synonyms," which was central to the user’s instruction.

- Final Verdict: [[A]]

REVISEVAL Evaluation:
Response-adapted Reference:

:::::
Emotions

. . . . . . Assistant A . . . . . . However, it is clear from the classification provided that Assistant A understands the context and correctly
categorizes "Happy" but overlooks "Joyful".

Assistant B simply responds with "Emotions", effectively covering both "Happy" and "Joyful". This response uses a more concise and
generalized approach, which aligns perfectly with the reference answer.

Based on the reference answer and the clarity and completeness in addressing both terms, Assistant B’s response is superior. . . . . . .
- Final Verdict: [[B]]

Instruction: Generate a reasonable ending for the following story. \n Source Input: my 2 year old cousin was eating an apple .

Response: he brought apples from his class. he dropped the apples. he began to throw them back up. he had a hard time.
Gold Score: 3.8

Reference-free Evaluation:
. . . . . . but it lacks coherence and logical flow. The sentences seem disconnected, and the events described do not build upon each other

in a meaningful way. The output does not demonstrate a clear understanding of the story’s context or the character’s actions.
- Rating: [[1]]

Referfence-based Evaluation:
Human Reference:

:
he

::::
walked

:::::
around

:::::
between

:::::
everyone

:
at
::
the

::::
party .

::
he

::::
started

::::::
coughing

::
and

:::::
choking

:
.
:::::
everyone

::::::
panicked

::
and

::::
started

::::
hitting

::
him

::
on

::
the

:::
back

:
.
:
he
:::::::

eventually
::
spit

::
out

::
the

::::
apple

:::
piece

:
.

The model-generated output is not fluent and lacks coherence in comparison to the reference output.
. . . . . . . . . . . .
Overall, the model-generated output fails to meet the fluency criteria due to its lack of coherence and grammatical errors.

- Rating: [[1]]

REVISEVAL Evaluation:
Response-adapted Reference:

::
He

::
had

:::::
brought

::::
apples

:::
from

::
his

::::
class,

::
but

:::::::
accidentally

:::::
dropped

:::
them.

:::::::
Struggling,

::
he

::::::
attempted

:
to
:::
pick

:::
them

::
up

::
and

:
in
::

the
:::::

process,
::::
began

::::
tossing

:::
them

:::::
around.

::
He

:::
was

::::
having

:
a
:::
hard

::
time

::::::
managing

::
the

:::::
apples.

The model-generated output is somewhat fluent but lacks coherence and completeness in comparison to the reference output. . . . . . The
reference output provides a more detailed and logical sequence of events, enhancing the narrative’s coherence and clarity.

. . . . . .
Overall, the model-generated output is fluent but could benefit from improvements in coherence and detail to match the quality of the

reference output.
- Rating: [[3]]

This approach significantly enhances the reliability of the versatile LLM-as-a-Judge, particularly in
effectively reducing bias. The references generated through our REVISEVAL greatly improve even
the simplest n-gram metrics, achieving performance comparable to LLM-as-a-Judge. This proves
especially advantageous for weaker LLMs, which often struggle to improve despite extensive training,
providing an efficient method to enhance their evaluation capabilities.

Our findings highlight that (1) the importance of references has been underestimated, and (2)
harnessing the generative strengths of LLMs can substantially support evaluation tasks by increasing
reference relevance. Looking ahead, REVISEVAL offers promising extensions: (i) introducing a
new paradigm combining Reviser with classic metrics, particularly benefiting smaller LLMs; (ii)
exploring applications in new domains, such as multi-modal tasks where revision mechanisms could
be applied to MLLM; and (iii) integrating REVISEVAL into future multi-agent pipelines, where it can
serve as a critical component in powerful evaluation frameworks.
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Please act as an impartial judge and evaluate the quality of the responses 
provided by two AI assistants to the user question displayed below. You should 
choose the assistant that follows the user's instructions and answers the user's 
question better. Your evaluation should consider factors such as {rubric: the 
helpfulness, relevance, accuracy, depth, creativity, and level of detail of their 
responses}. Begin your evaluation by comparing the two responses and provide a 
short explanation. Avoid any position biases and ensure that the order in which 
the responses were presented does not influence your decision. Do not allow the 
length of the responses to influence your evaluation. Do not favor certain names 
of the assistants. Be as objective as possible. After providing your explanation, 
output your final verdict by strictly following this format: "[[A]]" if assistant 
A is better, "[[B]]" if assistant B is better.

[Instruction]
{instruction}

[The Start of Assistant A's Answer]
{response_output_1}
[The End of Assistant A's Answer] 

[The Start of Assistant B's Answer]
{response_output_2}
[The End of Assistant B's Answer]

The reference-free pairwise comparison promptFigure 4: The prompt of reference-free pairwise comparison evaluation.

Please act as an impartial judge and evaluate the quality of the responses 
provided by two AI assistants to the user question displayed below. You should 
choose the assistant that follows the user's instructions and answers the user's 
question better. Your evaluation should consider factors such as the {rubric: 
helpfulness, relevance, accuracy, depth, creativity, and level of detail of their 
responses}. And I also give a reliable reference answer, and begin your 
evaluation by comparing the two responses with the reference answer and provide a 
short explanation. Avoid any position biases and ensure that the order in which 
the responses were presented does not influence your decision. Do not allow the 
length of the responses to influence your evaluation. Do not favor certain names 
of the assistants. Be as objective as possible. After providing your explanation, 
output your final verdict by strictly following this format: "[[A]]" if assistant 
A is better, "[[B]]" if assistant B is better.

[Instruction]
{instruction}

[Reference Answer]
{ref_answer}

[The Start of Assistant A's Answer]
{response_1}
[The End of Assistant A's Answer]

[The Start of Assistant B's Answer]
{response_2}
[The End of Assistant B's Answer]

The reference-based pairwise comparison promptFigure 5: The prompt of reference-based pairwise comparison evaluation.

A PROMPT TEMPLATE

We provide the prompt templates used for evaluation and revision. These prompts are either taken
directly from MT-Bench or adapted from it, ensuring the universality of our proposed paradigm.
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Please act as an impartial judge and evaluate the quality of the model-generated 
output provided by an AI assistant to the instruction with source input displayed 
below. Your evaluation should consider the following aspect: {rubric}.
Begin your evaluation by providing a short explanation. Be as objective as 
possible. After providing your explanation, please rate the response on a scale 
of 1 to 5 by strictly following this format: "[[rating]]", for example: "Rating: 
[[3]]".

Instruction: {instruction}
{input_context}

Model-generated Output: {response_output}

The reference-free score rating promptFigure 6: The prompt of reference-free score rating evaluation.

Please act as an impartial judge and evaluate the quality of the response 
generated by an AI assistant to the instruction with source input displayed below. 
Your evaluation should consider the following aspect: {rubric}.
Begin your evaluation by comparing the Model-generated Output with the Reference 
output and provide a short explanation. Be as objective as possible. After 
providing your explanation, please rate the response on a scale of 1 to 5 by 
strictly following this format: "[[rating]]", for example: "Rating: [[3]]".

Instruction: {instruction}
{input_context}

Model-generated Output: {response_output}

Reference output: {ref_output}

The reference-based score rating promptFigure 7: The prompt of reference-based score rating evaluation.

Please act as a powerful reviser to revise the response generated by an AI 
assistant to the instruction displayed below. You should revise the response to 
follow the user‘s instructions and answer the user’s instruction better. Your 
revision should consider factors such as the {rubric}. If the original response 
is good enough, simply output the original answer. 

**Instruction:**{instruction}

**Model-Generated Response:**{response_output_1}

I also give you another model-generated answer, which is not necessarily of 
better quality, as a reference for your revision, and you can draw on its 
strengths and avoid its weaknesses. 
**Another Answer:**{response_output_2}

Do NOT provide any explanation for your response.
ONLY output the complete revised answer without saying anything else.

Prompt of LLM-as-revisor for pairwise comparison.
Figure 8: The prompt of LLM-as-a-reviser for pairwise comparison.
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Please act as a powerful reviser to revise the response generated by an AI 
assistant to the instruction and source input displayed below. Please revise this 
output to be more {rubric}. If model-generated output is already good enough, 
simply output that original output. 
**Instruction:**{instruction}
{input_context}

**Model-generated Output:**{response_output}

Do NOT provide any explanation for your response.
ONLY output the complete revised answer without saying anything else.

Prompt of LLM-as-revisor for score rating.

{instruction}

Prompt of LLM direct response.

Figure 9: The prompt of LLM-as-a-reviser for score rating.

Please act as a powerful reviser to revise the response generated by an AI 
assistant to the instruction and source input displayed below. Please revise this 
output to be more {rubric}. If model-generated output is already good enough, 
simply output that original output. 
**Instruction:**{instruction}
{input_context}

**Model-generated Output:**{response_output}

Do NOT provide any explanation for your response.
ONLY output the complete revised answer without saying anything else.

Prompt of LLM-as-revisor for score rating.

{instruction}

Prompt of LLM direct response.
Figure 10: The prompt of LLM direct response to instruction.

Table 9: The Statistics of NLG Evaluation Training Data.

Task Aspects Samples Items Evaluation Items

Summarization fluency,consistency,coherence,relevance 2886 11544
Translation accuracy 6000 6000
Data2Text accuracy,fluency 3098 6196
Story Generation fluency,consistency,style matching 1052 3156

B INFERENCE SETTING FOR PROPRIETARY MODEL

Base Model. We choose GPT-4 as the base model for our evaluation and revision. For repro-
ducibility, we used the GPT-4 version GPT-4-TURBO-2024-04-09, with a temperature setting of
0.0.

C FINETUNING SETTING FOR OPEN-SOURCED MODEL

Base Model. We choose LLAMA 3.1-8B-INST 1 as the base model for our evaluation and revision.
Here, we want to clarify that we choose the INSTRUCT model as the base model because finetuning
on this model yields better evaluation and revision results than the PRETRAINED model.

Training Setting. We followed the common setup for supervised instruction finetuning, with a
context length = 2048, epochs = 3, batch size = 128, and learning rate = 2e− 5.

Distilling Setting. Whether finetuning open-source models for evaluation or revision capabilities,
the training data comes from the generation of a powerful model prompted by the same data source.
The model we choose to distill is still GPT-4, with the same version and inference settings as
mentioned above.

Distilling Data Source. We depict the distilling data flow in Figure 11. For NLG evaluation,
ideally, we would have a variety of erroneous samples along with human evaluation scores for them.
However, such data typically exists only in test sets, making it unavailable for training and often
limited in quantity. Therefore, we choose MetricInstruct 2, proposed by Jiang et al. (2024a), as our

1https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct
2https://huggingface.co/datasets/TIGER-Lab/MetricInstruct
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HH-rlhf

Instruction

Response A

Response B

Response-adaptive 

reference

Revise Evaluate
RevisEval

evaluation

Propriety LLM (Inference) Open-source LLM (Finetuning) 

Response-adaptive reference

Finetune

RevisEval evaluator

Instruction

Response A/B

RevisEval evaluation

Instruction

Response A/B
RevisEval reviser

Distill

MetricInstruct

Instruction

Response Response-adaptive 

reference

Revise Evaluate
RevisEval

evaluation

Instruction

Response Distill

Response-adaptive reference

RevisEval evaluation

Instruction

Response Finetune

RevisEval evaluator

RevisEval reviser

Figure 11: In our data distillation process for open-source LLMs, we utilize HH-rlhf and MetricIn-
struct as the primary data sources. We then employ a proprietary LLM to perform RevisEval,
generating both the revisions and corresponding evaluation outputs. Finally, we fine-tune the open-
source LLM using this enriched dataset.

training data source. This dataset provides a large volume of diverse erroneous texts, which serve as
the basis for evaluation. From the 40K+ data points, we filter out other NLG tasks and apply our
previously mentioned prompts with corresponding aspects, maintaining the same inference settings to
generate evaluation scores and reasoning for these error samples. Detailed statistics are presented in
the Table 9. Although the overall dataset size is relatively small compared to other works specifically
designed to train evaluators, the NLG evaluation data we assess remains held-out from these training
samples.

Unlike NLG evaluation data that lacks human-labeled evaluation, preference data typically contains
substantial human-labeled preference annotations without evaluation. We choose the most commonly
used hh-rlhf 3 (Bai et al., 2022) dataset, applying the aforementioned prompts and inference settings to
conduct evaluations on this data to get the evaluation. We select the preference correctness intersection
of reference-free evaluation, reference-based evaluation, and gold preference annotations, ensuring
both accuracy and fairness when comparing the performance of LLMs under different evaluation
methods post-training. In the end, we selected 10, 000 samples, each containing corresponding
revisions, reference-free evaluation, and reference-based evaluation. These three sets were then
used to train the same model separately, ensuring that no new information is introduced to alter the
distribution.

Finetuning LLM-as-a-Judge adaptive to NLG. Each instance in filtered MetricInstruct is a
tuple (response, input context, task instruction, aspect), then use GPT-4 to get the corresponding
(reference-free evaluation, revision text, REVEVO evaluation) to each instance. Subsequently, we
separately use these data to finetune LLM to get the reference-free evaluator, LLM-as-a-reviser, and
reference-based evaluator.

Each instance in filtered hh-rlhf is a tuple (instruction, response a, response b), then use GPT-4 to get
the corresponding (reference-free evaluation, revision text, REVEVO evaluation) to each instance.
Subsequently, we separately use these data to finetune LLM to get the reference-free evaluator,
LLM-as-a-reviser, and reference-based evaluator.

Decoding Setting. When the finetuned model executes the evaluation and revision tasks, the de-
coding setting uses a greedy decoding strategy with a max output length = 1024 and temperature =
0.01.
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Table 10: The Statistics of NLG Evaluation Benchmarks.

Task Benchmark Response Source Inputs Items Samples Items

Summarization SummEval (Fabbri et al., 2021) 16 Models 100 1600
Translation WMT-22 (zh-en) (Kocmi et al., 2022) 18 Models 1875 33750
Data2Text WebNLG-2020 (Zhou & Lampouras, 2020) 18 Models 179 2848
Story Generation OpenMEVA (ROC) (Guan et al., 2021) 5 Models 200 1000

D BENCHMARKS

D.1 NLG EVALUATION BENCHMARKS

Traditional text generation tasks and their corresponding evaluation benchmarks are highly diverse.
Based on the varying degrees of freeform in text generation tasks, we select four representative
Machine Translation, Data-to-Text, Summarization, and Story Generation. We follow the
experiment setting of Tigerscore and choose specific benchmarks for each task, and their statistics
are shown in the Table 10.

D.2 INSTRUCTION FOLLOWING PREFERENCE BENCHMARKS

With their powerful generalization capabilities, LLMs have become the focus of research on NLP
generation abilities. Evaluating LLMs requires more challenging tasks that can assess their gen-
eralization capabilities. Here, we selected three representative benchmarks: MT-BENCH (abbr.,
MT-BENCH_HUMAN-JUDGEMENT), ALPACAFARM, and LLMBAR.

MT-Bench. This dataset comprises 3.3K expert-level pairwise human evaluations of model re-
sponses, generated by six models across 80 MT-Bench questions. The six models include GPT-4,
GPT-3.5, CLAUDE-V1, VICUNA-13B, ALPACA-13B, and LLAMA-13B, offering a diverse rep-
resentation of powerful language models. The topic of subtasks is consisted of Writing, Roleplay,
Reasoning Math, Coding, Extraction, STEM and Humanities. MT-Bench is the most common bench-
mark for evaluating LLM-as-a-Judge, and our results validate the feasibility of our experiments. We
select the first round of dialogues from this dataset as the evaluation data, containing 1284 cases.

AlpacaFarm. We utilize HUMAN-CROSSANNOTATION 4 set specifically designed for evaluating
the reliability of evaluators, following the ALPACAFARM process. Each instance in this dataset
contains cross-annotations from 4 human experts. Additionally, the tasks in this dataset are more
diverse, open-ended, and challenging, making the preference annotations more reliable. Notably,
since four experts conduct the preference annotations, some instances resulted in ties, where two
annotators favored the first option and the other two favored the second. We filtered out these tied
cases, leaving a final evaluation dataset of 501 instances.

LLMBar. LLMBar is a meta-evaluation benchmark designed to test how well LLM evaluators can
identify instruction-following outputs. It consists of two parts: (1) The Natural set, which gathers
instances from existing human-preference datasets, filtered and adjusted to ensure a clear preference
for each instance. (2) The Adversarial set, where the authors intentionally create misleading outputs
that superficially seem good but deviate from the instructions, to challenge the evaluators. The Natural
set measures performance in real-world conditions, while the Adversarial set tests evaluators’ ability
to detect true instruction-following. The overall size is 419.

E BASELINES IN NLG EVALUATION TASKS

N-gram Metrics. N-gram text generation metrics are commonly used to evaluate the text quality
generated by models, especially in tasks like machine translation and summarization. While these
metrics are simple and efficient, they come with notable limitations: they are highly sensitive to

3https://huggingface.co/datasets/Anthropic/hh-rlhf
4https://huggingface.co/datasets/tatsu-lab/alpaca_eval/blob/main/

alpaca_farm_human_crossannotations.json
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Table 11: The Lists of weak LLM-as-a-Judge.

Model Base Model Instruction Response Annotation Evaluation Scheme Training Samples

JudgeLM Vicuna-7B Alpaca-GPT4,
Dolly-15K...

11 models
(Alpaca, Vicuna...) GPT-4 Pairwise Grading 100K

PandaLM LLaMA-7B Alpaca 52K 5 models
(LLaMA, Bloom...) GPT3.5 Pairwise Selection 300K

Auto-J LLaMA2-13B-chat Chatbot Arena,
OpenAI WebGPT... Preference Datasets Human Pairwise Selection,

Pointwise Grading 4396

Prometheus LLaMA2-7B-chat GPT-4 Generated GPT-4 Generated GPT-4 Pointwise Grading 100K

Prometheus-2 Mistral-7B-v2.0 GPT-4 Generated GPT-4 Generated GPT-4 Pointwise Grading
Preference 300K

surface-level differences, such as word order or vocabulary choice, which may fail to capture the true
meaning or fluency of the generated text. In our evaluation, we use the most widely adopted metrics:
BLEU, ROUGE-L, and METEOR.

Model-based Metrics. To capture the semantic-level meaning of generated text, researchers have
started using models like BERT and BART as the foundation for text evaluation. Typical examples
include BERTScore, BARTScore, and Moverscore. BERTScore computes the similarity between
two text sequences based on the contextual embeddings from BERT, while Moverscore enhances
this by adding many-to-one alignment. BARTScore, on the other hand, uses BART to calculate the
probability of converting the response to the reference text as a score. All of these are reference-based
model metrics.

Additionally, there are reference-free model-based metrics. These metrics are trained on specific
task datasets, allowing the model to internalize relevant information. As a result, the model can
generate evaluations without needing reference texts and transform them into scores. For instance,
UNIEVAL uses data augmentation to expand a task-specific dataset to 30K examples and fine-tunes
on T5, which is why it performs exceptionally well in summarization tasks.

LLM-as-a-Judge. Following the exciting advancements in large language models (LLMs), the
most straightforward approach has been to replace the models in previous model-based metrics, such
as BART, with larger models. GPTScore follows this concept, and despite its simplicity, it delivers
notable results. Moreover, leveraging the vast internal knowledge of open-source LLMs, more
powerful and interpretable evaluators can be developed, such as INSTRUCTScore and TIGERScore.

Xu et al. (2023) argue that performing error analysis on given reference texts enhances evaluation
explainability and reliability. They used NLG evaluation data and employed GPT-4 to perform
error-based assessments. These outputs were then paired with the response to train an Llama model,
resulting in a training dataset of 10K examples. TIGERScore goes a step further by proposing a
reference-free approach. Using a similar strategy, they collected 40K data points for training, masking
the reference text during the process.

F BASELINES IN INSTRUCTION FOLLOWING PREFERENCE BENCHMARKS

LLM-as-a-Judges. The baseline models are listed in the Table 11. Considering scalability and
cost, researchers have long sought to achieve evaluation performance on weaker LLMs that is
comparable to that of stronger LLMs. The most straightforward approach to this challenge has been
to automatically generate more preference-related data, and many of these efforts have followed this
strategy.

N-gram Metrics & Model-based Metrics. Unlike the NLG-Evaluation benchmark, the LLM-as-
Judge benchmark has largely moved away from using n-gram metrics and model-based metrics. This
shift is due to several characteristics of the test samples in such benchmarks: (1) The response space
is extremely large and unconstrained, making reference annotations both unhelpful and prohibitively
expensive; (2) These metrics do not perform well for tasks such as coding or math, where even
models like BERT struggle to capture semantic-level meaning. In this study, we apply these metrics
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Table 12: Pearson correlation coefficients comparing non-reference, static-reference, and dynamic-
reference methods across various text generation tasks and Instruction-Following Benchmarks. This
table summarizes the performance of these methods in generating summarization, translation, data-
to-text, and story-generation tasks.

Methods SUMMARIZATION TRANSLATION DATA2TEXT STORY GENERATION Avg.

n-gram Metrics

BLEU 14.13 17.47 34.29 -3.89 15.50
ROUGE 15.36 16.26 35.85 -0.22 16.81
METEOR 18.69 18.80 36.30 -1.02 18.19

Reference-free Metrics

BERTScore 26.26 37.65 48.22 26.58 34.68
BARTScore 19.73 29.04 47.89 17.76 28.61
UniEval 53.22 23.11 51.14 44.88 43.09
GPTScore 13.47 21.05 48.70 18.94 25.54
InstructScore-7B 27.40 51.55 47.28 12.81 34.76
TIGERScore-7B 43.95 37.70 49.13 39.90 42.67
Llama-3.1 8B-Instruct 25.89 27.84 31.15 31.04 28.98

Open-Sourced LLM-as-a-Judge

Ref-Free 33.61 25.14 53.36 35.02 36.78
Ref-Based 42.32 29.99 48.52 11.92 33.19
REVEVO(Ours) 39.69 29.58 53.87 29.04 38.05

Proprietary LLM-as-a-Judge

Ref-Free 42.12 41.35 54.26 33.50 43.56
Ref-Based 43.31 44.11 53.98 24.63 41.51
REVEVO(Ours) 43.81 43.92 54.25 35.07 44.26

to demonstrate that, when reference texts are highly relevant, these otherwise “inapplicable” metrics
can be reactivated and produce meaningful results.

G META EVALUATION

Meta-evaluation aims to assess the performance of automated metrics by measuring how well the
automated evaluations yauto align with human evaluations yhuman. For score ratings, we calculate the
correlation values across all N samples, represented as:

Corr = g
(
[y1auto, . . . , y

n
auto], [y

1
human, . . . , y

n
human]

)
,

where g can adopt various correlation functions, e.g., Spearman. For pair-wise comparison evaluations,
accuracy is typically used as the evaluation metric,

Acc = 1
|N |

∑
(i,oi1,o

i
2)∈N I[yiauto = pi]

NLG Tasks. In the NLG evaluation task, it’s crucial to assess various rubrics of the text during the
evaluation process. For the four selected tasks, we’ve outlined the specific rubrics to be evaluated in
the accompanying Table 9. In both the SummEval and Story-Generation tasks, we evaluate multiple
rubrics independently, calculating the correlation coefficient for each one. Subsequently, we compute
the average correlation coefficient across all rubrics to obtain an overall assessment for each task. This
comprehensive approach ensures a more nuanced and accurate evaluation of the model’s performance
across different dimensions.

H PEARSON CORRELATION IN NLG EVALUATION TASKS

We also supplement the Pearson Correlation results in the NLG Evaluation Tasks.
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Table 13: Statistics on the differential proportion between REVISEVAL and each of the other two
evaluation methods. A higher ratio indicates a greater evaluation difference between the two mecha-
nisms.

Comparative Evaluation MT-BENCH ALPACAFARM LLMBAR

Ref-Free 8.1 22.8 16.9
Ref-Based (GPT-4 Direct Response) 9.7 21.6 16.2

I OTHER ANALYSIS

I.1 THE BENEFITS OF TRAINING RESOURCE SCALE FOR LLM-AS-A-JUDGE ARE
QUESTIONABLE.

As shown in Table 2 and 11, Despite being trained with extensive evaluation-specific resources, these
LLM-as-a-Judge baselines fail to achieve evaluation performance comparable to GPT-4, particularly
on the adversarially designed LLMBar, where they perform worse than random selection. While
substantial effort is put into designing and generating a large amount of training data for these LLMs,
the results are even less effective than our evaluator trained on just 10,000 samples from the hh-rlhf
dataset. The possible reasons for this could be: 1. The inherent capabilities of the base model play a
more crucial role; 2. Simply increasing the volume of training data does not yield significant benefits;
3. Efforts should be focused on other potentials to enhance the evaluator, such as the method we
propose.

I.2 OTHER REVISION STRATEGIES FOR PAIRWISE COMPARISON

When revising two given responses to generate a reference, we experiment with two different revision
strategies. In our work, we adopt a strategy where one text is randomly selected as the primary text to
be revised, while the other serves as the revision guidance. In addition to this, we try the following
two prompt strategies: a) Revising a single text based on both responses. b) Revising each response
separately. However, the outcomes of these two strategies are unsatisfactory. Strategy (a) exhibit a
tendency to forcibly merge the two responses during the revision process, resulting in a generated
text that lacked logical consistency. Strategy (b), on the other hand, lead to a revised text with very
low similarity to the other response, inevitably favoring the one chosen for revision. Neither method
is capable of producing a satisfactory reference. We anticipate that future research might provide
more revision strategies or approaches to more effectively combine multiple responses and generate a
high-quality reference. We look forward to seeing further developments in this area.

I.3 EVALUATION DIFFERENTIAL OF DIFFERENT METHODS

We analyse the differential between REVISEVAL and two other evaluation methods, showcasing
the proportion of samples where the evaluation decisions differed. A higher proportion indicates
a greater difference in the evaluation mechanisms of the two methods. The Table 13 present that
REVISEVAL and the other two evaluation methods make different decisions on 22% of the samples
in AlpacaFarm and 16% of the samples in LLMbar. This indicates that our evaluation method has
a significant difference in mechanism-level, compared to the other two methods. Furthermore, it
suggests aggregating these differing decisions could potentially lead to a more reliable final evaluation.

J THE CORRECTNESS STUDY OF RESPONSE-ADAPTED RESPONSE

Revision is a post-edit modification method aimed at improving the quality of the response. The
ability to correct subtle errors in the text is a key factor we observe to determine the effectiveness of
the revision. Experiments on LLMBar and BLEU/ROUGE provide relevant evidence to support this
to some degrees: i) LLMBar Benchmark: the performance of the judge on LLMBar relies on its ability
to detect subtle errors in instruction following. As shown in Table 2, RevisEval enhances the LLM-
as-a-Judge’s performance on LLMBar, demonstrating that our references effectively validate these
errors. ii) BLEU/ROUGE: as N-gram metrics, completely depend on references to identify subtle
errors. In Sec. 4.3 and 4.4, we input the references generated by REVISEVAL into BLEU/ROUGE to
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evaluate their effectiveness. By computing accuracy and the correlation to human scores, we show
that our references successfully capture and validate these errors. Although our existing method has
demonstrated advantages in both LLMBar and classic n-gram metrics, we will provide a more direct
study and analysis here.

J.1 CASE STUDY

On LLMBar, we present response samples modified by REVISEVAL.

Question: Convert from celsius to fahrenheit. Temperature in Celsius: 15

Response: 770̆0b0F

Response-Adapted Reference: 590̆0b0F

Question: Sort them in lexicographical order: nnapples, grapes, bananas, oranges, kiwi, pears,
plums, oranges, cherries, apples, tangerines, peaches

Response: apples, bananas, cherries, grapes, kiwi, oranges, peaches, pears, plums, tangerines

Response-Adapted Reference: apples, apples, bananas, cherries, grapes, kiwi, oranges, oranges,
peaches, pears, plums, tangerines

We can observe that compared with the response, the adapted reference contains fewer subtle
errors. This provides the guidance to make llm-as-a-judge easier to evaluate, as containing errors
directly affects the quality of the response, leading to a higher alignment with human evaluators than
reference-free evaluators.

J.2 DIRECT QUALITY EVALUATION ON RESPONSE-ADAPTED REFERENCES

We directly score the quality (1-5) of the adapted references on the correctness aspect compared to
the original responses using LLM-as-a-Judge.

Table 14: Comparasive Correctness Rating to the original responses and response-adapted references
on LLMBar. Here, we directly use LLM-as-a-Judge (GPT-4o) to rate the responses and references on
correctness.

ADVERSARIAL NEIGHBOR ADVERSARIAL GPTINST ADVERSARIAL GPTOUT ADVERSARIAL MANUAL NATURAL OVERALL

Response 1 3.27 3.03 3.47 3.39 2.99 3.19
Response 2 3.16 3.01 3.32 3.47 3.44 3.25

Response-adapted Reference 4.72 4.73 4.53 4.91 4.82 4.75

In this Tab. 14, Response 1 and Response 2 refer to the position of this response in the pairs. On 5
subsets of LLMBar, the references (revised by REVISEVAL-gpt-4-turbo) have consistently better
correctness than the responses, which means REVISEVAL detects and corrects the subtle errors.

K EVALUATION FOCUSING ON FACTUAL ACCURACY

While historical work and our experiments have validated that revision is an effective approach for
improving text generation, in this section, we further examine whether revision remains effective in
modifying text errors in factual correctness.

First, previous studies (Pan et al., 2024; Gao et al., 2023) have demonstrated that revision can be
applied to correct factual errors, such as hallucination. Here, we provide a more direct experiment:
using JudgeBench (Tan et al., 2024), a benchmark for LLM-as-a-Judge to directly evaluate factual
errors in model-generated text, we test whether REVISEVAL can improve the effectiveness of LLM-
as-a-Judge in this context.
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Table 15: Comparative Performance on JudgeBench. Here, the metric is Accuracy.

METHOD KNOLWEDGE MATH REASONING CODING OVERALL

LLM-as-a-Judge (gpt-4-turbo) 48.05 69.64 56.12 38.09 52.57
RevisEval (gpt-4-turbo) 64.29 64.29 70.41 45.24 63.71

LLM-as-a-Judge (gpt-4o) 53.2 55.4 49.0 35.7 50.3
RevisEval (gpt-4o) 72.7 58.9 66.3 33.3 64.0

LLM-as-a-Judge (gpt-4o-mini) 64.3 62.5 65.3 42.9 61.7
RevisEval (gpt-4o) 70.8 64.3 63.3 54.8 65.7

Here, JudgeBench includes multiple samples about factual correctness across various domains, and
REVISEVAL demonstrates strong performance in evaluating factual correctness on different domains
in Tab. 15.

L MULTIPLE REFINED-GRAINED REFERENCES

In the traditional NLG-Evaluation Tasks, e.g., Machine Translation (Freitag et al., 2020), multiple
human-annotated references have been proven to be a simple yet effective method to improve the
reliability of evaluators/metrics. And, Tang et al. (2024) further uses LLMs to paraphrase the pre-
existing human-annotated references to generate multiple references for the following evaluation.
Based on this, we hope to verify whether REVISEVAL works for multiple references and more
refined-grained references, and further extend the applicability of REVISEVAL.

In the original RevisEval setting, we revise the response once to generate one reference, wherein the
reviser prompt, “Your revision should consider factors such as the helpfulness, relevance, accuracy,
depth, creativity, and level of detail of their responses”, we include all aspects in one prompt. Now,
we conduct separate fine-grained revisions to generate multiple references, where each reviser prompt
only includes one aspect (helpful, accuracy, relevance, depth, creativity), then use them in the
following evaluation separately. For each case, we will evaluate it based on each reference, and we
will get multiple predicted preferences or scores. For the preference evaluation task, we will run a
majority-voting to get a final preference; for the score-rating evaluation task, we will obtain a mean
score. We name this new evaluation pipeline as FINE-GRAINED REVISEVAL, and test its accuracy in
the MT-Bench as follows,

Table 16: Performance comparison of evaluation methods on MT-Bench. The results show that FINE-
GRAINED REVISEVAL, which incorporates multiple refined-grained references, further improves
evaluation accuracy over REVISEVAL and LLM-as-a-Judge, demonstrating the effectiveness of this
extended strategy.

METHOD GPT-4-TURBO GPT-4O-MINI

LLM-as-a-Judge 81.18 80.29
RevisEval 83.01 81.38

Finegrained-RevisEval 84.13 81.99

As presented in this Tab. 16, REVISEVAL has been improved in the multiple refine-grained references
setting, indicating it works for this classic strategy.

M COMPARISON WITH DIV-REF

Both DIV-REF (Tang et al., 2024) and ours leverage references to enhance evaluation performance.
However, there are some differences between the two methods:

i) Methodology: DIV-REF diversifies pre-labeling references (through paraphrasing), so it cannot
support reference-free benchmarks, e.g., MT-Bench, AlpacaFarm. and this work also only tests in
NLG-tasks. In contrast, we find that the reason for the ineffectiveness of pre-existing references is
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lacking relevance to the response, as shown in Fig 1. Therefore, REVISEVAL proposes to revise the
response and create a post-generated reference with higher relevance towards itself than pre-existing
ones. Additionally, RevisEval supports reference-free benchmarks, while DIV-REF can not.

ii) Performance: To comprehensively validate the effectiveness of the references generated by both
mechanisms, we employ classic N-gram metrics (ROUGE), model-based metrics (BERTScore and
MoverScore), and an LLM evaluator (GPT-4-Turbo, aligned with our version) for testing.

For Tang et al. (2024)’s method, we diversify a pre-existing human-labeled reference ten times to
produce ten references, followed by running the reference-based metric separately to get 10 scores and
calculating the mean score. For RevisEval (ours), we do not rely on human references; instead, we
revise the response to generate one response-adapted reference. We then conduct the reference-based
metric to obtain a score. For each specific aspect (e.g., fluency), we compute the correlation between
the predicted score and human evaluation scores, then average the correlation values across these
aspects to derive the final performance score for this benchmark. We compare two methods in
SummEval and Story Generation, and the correlation we choose Spearman, the results are as below:

Table 17: Comparison of DIV-REF and REVISEVAL on SummEval and Story Generation tasks.
RevisEval achieves superior results in most cases, particularly in story generation, highlighting its
advantage in addressing the limitations of pre-existing references.

Methods SummEval Story Generation

ROUGE BERTSCORE MOVERSCORE GPT-4-TURBO ROUGE BERTSCORE MOVERSCORE GPT-4-TURBO

Human-Reference 14.85 23.83 19.73 40.01 2.34 23.79 16.47 24.86
DIV-REF 18.25 28.13 23.47 43.82 1.53 25.79 15.48 27.38
REVISEVAL 19.65 29.47 25.85 41.15 17.24 25.84 26.89 35.26

As we can observe in the Tab. 17, both DIV-REF and our REVISEVAL outperform human references,
indicating the effectiveness of both methods. Comparably, our method is the best-performed one
in most cases, indicating its effectiveness, especially in story generation. In summary, DIV-REF is
a piece of solid evidence of the ineffectiveness of pre-existing references. However, REVISEVAL
differs from DIV-REF in how we address such ineffectiveness and whether supporting a reference-free
benchmark. We will incorporate this comparative experiment in the next version.

N PERFORMANCE ON REWARDBENCH

While we have tested on LLMBar, a challenging enough benchmark, to verify this issue, Reward-
Bench (Lambert et al., 2024) is the latest popular challenging benchmark covering more challenging
domains, such as CHAT-HARD, REASONING, and SAFETY subsets. So, we decide to choose the
RewardBench as an extensive experiment, the result is below,

Table 18: Comparative Performance on RewardBench.

METHOD CHAT CHAT-HARD SAFETY REASONING OVERALL

LLM-as-a-Judge (gpt-4-turbo) 97.76 80.04 88.51 90.01 89.04
RevisEval (gpt-4-turbo) 97.76 80.04 88.51 90.01 89.04

LLM-as-a-Judge (gpt-4o) 98.60 79.17 92.03 94.47 91.96
RevisEval (gpt-4o) 97.76 83.55 93.51 95.53 93.47

LLM-as-a-Judge (gpt-4o-mini) 96.37 60.09 91.89 81.21 82.45
RevisEval (gpt-4o) 93.30 65.13 93.08 86.35 85.63

RevisEval can improve LLM-as-a-Judge consistently on RewardBench. Especially in challenging
subsets, RevisEval surpasses LLM-as-a-Judge stably.

O PERFORMANCE ON CHALLENGING REASONING BENCHMARKS
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To further explore the potential boundaries of our method, extremely challenging reasoning-based
generation benchmarks serve as an excellent testbed. We introduce two new benchmarks, GPQA (Rein
et al., 2024) and Omni (Gao et al., 2024a), both of which are state-of-the-art and highly challenging
in the field of reasoning.

However, the initial setups of these benchmarks were not designed for evaluating LLM-as-a-Judge.
Specifically, they lack positive-negative response pairs for the judge to discriminate between. To
address this, we modify the benchmark setups by using LLMs to generate positive-negative response
pairs for each question.

• Negative responses are relatively easy to generate. We used GPT-4o to repeatedly sample
and produce incorrect responses.

• Positive responses, being harder to create due to the complexity of the questions, were
generated through correcting the negative responses with the oracle solution-as-references
by GPT-4o.

As a result, we obtain two responses with similar styles but differing levels of accuracy.

In this experiment, we adapt GPQA and Omni to test the reliability of LLM-as-a-Judge. The
evaluation task assesses whether LLM-as-a-Judge can more accurately select the positive response
without access to the oracle answer. We introduce two baselines for comparison, 1) Vanilla: LLM-as-
a-Judge directly selects the better response without any reference; 2) Ref-based: LLM answers the
question first, and its response is used as the reference.

Table 19: Comparison of LLM-as-a-Judge Baselines and REVISEVAL on GPQA and Omni bench-
marks.

Methods GPQA Omni
GPQA_EXTENDED GPQA_MAIN GPQA_DIAMOND OVERALL

Vanilla(gpt-4o-mini) 53.11 54.69 58.59 54.61 51.99
Ref-based(gpt-4o-mini) 52.01 50.89 54.05 51.93 47.38
RevisEval(gpt-4o-mini) 54.21 53.79 58.59 54.78 53.00

Vanilla(gpt-4o) 67.39 71.21 70.71 69.39 60.86
Ref-based(gpt-4o) 59.89 60.26 61.62 60.32 57.99
RevisEval(gpt-4o) 69.23 70.98 75.76 70.91 61.43

Vanilla(gpt-4-turbo 70.33 66.52 68.68 68.62 61.11
Ref-based(gpt-4-turbo) 54.58 57.14 56.57 55.79 59.01
RevisEval(gpt-4-turbo) 71.06 67.19 68.69 69.21 62.37

We can draw the following conclusions from the Table 19: i) In the absence of an Oracle solution,
our method remains effective even on extremely challenging benchmarks. ii) Compared to having
the LLM directly answer the question, RevisEval provides a more effective solution for generating
references with LLMs.

P JUSTIFICATION OF USING REVISION AS A RELIABLE METHOD TO
ENHANCE TEXT QUALITY

The revision process in LLMs is not a simple copy operation. We emphasize that our revision
mechanism incorporates information from two responses rather than solely one response being
revised (shown in Sec. 3). Due to the training objective of LLMs—LLMs are predominantly trained
to generate high-quality, human-like outputs, with limited exposure to the distribution of low-quality
or flawed data—the probability of retaining correct segments is significantly higher than that of
retaining erroneous segments during the revision process. This observation is also utilized by
numerous studies (Yang et al., 2022; Akyurek et al., 2023; Guo et al., 2024; Gao et al., 2023) that
post-revision by LLMs is a reliable mechanism to improve response quality.

For example, let E represent erroneous segments in the response, and H represent high-quality
segments. Consider two responses: R1: E1, H2, H3; R2: H2, H3, H4 and R2 has a higher quality.
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After revision, the reference R⋆ is likely to retain H2, H3, H4 while eliminating E1. Then LLM-as-
a-Judge will pick the R2, as R⋆ would align more with high-quality segments overall. If the LLM
fails to remove and retains it, the resulting R⋆ = E1, H2, H3, H4 would be equally closer to R1 and
R2. Then, inputting the reference adapted from R1 into LLM-as-a-Judge would make no difference
from LLM-as-a-Judge without reference.
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