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ABSTRACT

Learning in the real world requires models to evolve with changing environments
and cope with diverse forms of distribution shift. This is especially challenging in
online domain-incremental learning, where data arrive as a non-stationary stream,
each sample can be seen only once, and past observations cannot be revisited.
Although pre-trained models can be used to obtain strong initial representations,
standard fine-tuning in this setting leads to forgetting and poor cross-domain
generalization. Inspired by how the human brain organizes experiences around
semantic concepts, we propose Semantic Adapters (SAD)—Ilightweight modules
plugged on top of any frozen pre-trained vision encoder that leverage structured
semantic knowledge to guide representation updates. By routing the updates toward
semantic clusters rather than domains, SAD stabilizes learning while enabling fast,
one-pass adaptation. To further enrich flexibility, we introduce SADLoRA, which
augments heads with low-rank parameter updates within the encoder, further
enhancing adaptability while maintaining efficiency. Extensive experiments across
diverse domain shifts show that both SAD versions substantially reduces forgetting
and accelerates adaptation. The proposed Semantic routing with targeted updation
offers a simple, fast, scalable and a viable solution for robust continual adaptation
in dynamic real-world scenarios.'

1 INTRODUCTION

Real-world applications need models that can continuously adapt as environments evolve, often
facing diverse forms of distribution shift. Continual learning (CL) enables models to learn new
tasks sequentially without forgetting previously acquired knowledge. A fundamental obstacle in
CL is catastrophic forgetting (McCloskey & Cohenl, [1989; [Frenchl [1999), reflecting the trade-off
between stability (preserving past knowledge) and plasticity (adapting to new input). This challenge
is commonly evaluated in Class- and Domain-incremental learning (IL) settings. While Class-IL
introduces entirely new classes at each task, Domain-IL maintains a fixed label space but requires
robustness to shifts in input distributions. The latter arises naturally in real-world scenarios, for
example, an autonomous driving system must recognize the same traffic signs despite variations
in geography, weather, lighting, or sensor modality. The online Domain-IL setting is especially
demanding, as data arrive only once in a stream, replay is limited or absent, and updates must be fast
and memory-efficient.

Learning in continual settings involves two tightly coupled aspects: shaping the underlying representa-
tions and adapting the decision boundaries, and forgetting can occur in both. To mitigate degradation
in the representation space and leverage robust features, recent works increasingly rely on pre-trained
or foundation models, which provide strong generalization and transfer capabilities. Recent works
have begun exploring how these models can be adapted to CL settings through parameter-efficient
strategies such as prompt tuning or rehearsal-based fine-tuning (Wang et al.| [2022a} [Zhou et al.,
2025)). These strategies can be effective when the incoming stream is close to the pretraining distri-
bution, but under substantial domain shift they tend to overfit the latest domain and interfere with
previously learned generic features, amplifying recency bias and brittle generalization (Borlino et al.}
2024)). Moreover, most studies with pre-trained models emphasize Class-IL; Domain-IL with such
models—especially in the strict online regime—remains comparatively underexplored.

!Code will be made available upon acceptance.
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Domain-incremental learning with pre-trained models presents distinct challenges: preserving generic,
reusable representations while keeping the classifier unbiased. A common strategy is to freeze the
encoder and update only lightweight adapters, which is computationally efficient. However, when
these adapters are fine-tuned sequentially on a drifting stream, they still overwrite previously learned
information and suffer from forgetting. Recent methods attach domain- or task-specific prompts or
modules (Gao et al., 2024; Byun et al., 2024)), which effectively capture each domain’s distribution.
Yet, such designs treat domains in isolation, chasing domain-specific characteristics rather than
consolidating transferable knowledge. By contrast, humans organize experience around semantics:
an “airplane” or "helicopter” remains an aerial vehicle whether seen as a photograph, a sketch, or
a painting, or under different lighting and contexts. Cognitive studies suggest that knowledge is
encoded in structured semantic networks that abstract away from surface variations (Binder et al.,
2009; [Ralph et al.|[2017). This perspective motivates a shift from domain-centric adaptation toward
meaning-centric updates, reducing interference and fostering reuse across heterogeneous shifts.

Building on this motivation, we propose semantic routing as a practical way to reduce forgetting and
improve adaptability in continual learning. Instead of attaching domain-specific modules that quickly
become brittle, our approach organizes learning around meaning: semantically related classes are
grouped into coherent clusters, and inputs are routed to lightweight adapter heads that specialize
within each cluster. This reduces cross-domain interference, simplifies decision boundaries, and
naturally encourages knowledge reuse as new data arrive. To realize this idea, we rely on Language
as it serves as a powerful, high-level abstraction prior to extract the semantic concepts in the visual
inputs. The embeddings of class names or attributes from a pre-trained language model, are clustered
into a handful of coherent and meaningful groups. For each cluster, we instantiate a Semantic
Adapter (SAD) head—Ilightweight classifiers trained only on their member classes but shared across
domains. The vision encoder remains frozen, and all learning happens in these adapter heads.

We further introduce SAD-LoRA, which augments SAD by inserting low-rank adapters into the last
encoder blocks, combining semantic routing with targeted plasticity. Together, these modules provide
a simple yet effective mechanism for continual adaptation that is computationally efficient. We
evaluate semantic routing under one of the demanding continual learning scenarios: online domain-
incremental learning, where data arrive in a single pass, memory and compute are constrained, and
distribution shifts can be severe. Extensive empirical evaluation across multiple Domain-IL datasets
and benchmarks demonstrates that the semantic approach consistently improves both final and
anytime accuracy compared to multiple SOTA baselines, supporting the idea that organizing updates
by meaning—rather than by domain—yields more stable online Domain-IL. We also show that such
targeted semantic updating also proves more robust against natural corruptions or perturbations.
Beyond empirical gains, the proposed semantic routing is a viable alternative to full fine-tuning,
enabling practitioners to continually leverage pre-trained models to application-specific datasets in
real-world environment.

2 RELATED WORKS

2.1 CONTINUAL LEARNING

Continual learning (CL) aims to enable the models to learn on a sequence of tasks without catastrophic
forgetting. A common taxonomy distinguishes task-incremental, class-incremental, and domain-
incremental scenarios depending on whether the output space or only the input distribution shifts
across tasks (Van de Ven et al.,[2022)). In Domain—incremental learning (Domain-IL), the class label
set is fixed across all stages while the input distribution changes. Several strategies are proposed
to mitigate forgetting. Replay-based methods (Buzzega et al., [2020; |Prabhu et al., 2020; |Aljundi
et al.L |2019; Isele & Cosgun, 2018}, Rolnick et al.,2019) address forgetting by storing a subset of past
data for replay. ER-ACE couples rehearsal with class-balanced losses (anti-conflict) to mitigate bias
toward recent classes (Caccia et al.,|2021). Replay reduces drift but introduces storage/privacy costs
and is less aligned with online single-pass settings. Regularization methods (Aljundi et al., 2018;
Chaudhry et al.| |2018)) such oEWC assigns Fisher-based importance to parameters and penalizes their
drift across tasks, implemented online with a running Fisher estimate (Kirkpatrick et al., [2017). SI
accumulates path-integral importance that discourages changes to parameters that have contributed
large loss reductions in the past (Zenke et al.,|2017). Despite their simplicity, regularization methods
often struggle when tasks are highly dissimilar, such as in domain-incremental learning settings
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Figure 1: Online Domain-incremental learning using Pre-trained Vision Encoders on DN4IL dataset
with six domains - Real, Clipart, Infograph, Painting, Sketch and Quickdraw
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where input distributions shift substantially. Dynamic architectural methods (Mallya & Lazebnik]
2018}, Rusu et al, [2016) tackle forgetting by expanding model capacity per task, freezing earlier
weights, and learning new subnetworks.

2.2  PRE-TRAINED MODELS-BASED CONTINUAL LEARNING

With the advent of large pre-trained models, many fine-tuning methods minimize forgetting by
leveraging the pre-trained encoder and learning small plug-ins. L2P learns a pool of prompts and
retrieves a subset per input and the prompt keys act as a router in feature space (Wang et al.| [20224).
DualPrompt separates general and expert prompts and trains a prompt router for better transfer (Wang
2022b)). There are also fine-tuning based replay techniques. SimpleCIL revisits PTM-based
CIL with a streamlined recipe (light distillation, cosine heads, balanced sampling), showing strong
performance with a modest buffer but still relying on stored images (Zhou et al., 2025). MEMO shows
if a small buffer can outperform a fine-tuned model without buffer and advocates memory-efficient
rehearsal with careful sampling and tuning [2023). A common limitation is that many
of these approaches operate in a non-online regime, requiring multiple epochs per domain, frequent
full-batch retraining, or explicit task/domain ID information—not always feasible in truly streaming
or resource-constrained settings. Moreover, prompt- or domain-specific adapters typically chase
domain idiosyncrasies; when distributions keep changing, their parameters can themselves suffer
from recency bias. Many works utilize pre-trained models but perform multi-stage training with
full-retraining or model merging (Ainsworth et al.| 2022} [Matena & Raffel, 2022} [Frankle et all
[2020). Our work aims to leverage the representations from a pre-trained model, and update only
specific modules without updating the model.

3 SEMANTIC ADAPTERS

Our goal is to leverage rich representations from pre-trained vision models and perform efficient
targeted adaptation in a domain-incremental setting. We begin with a simple empirical analysis on
DNA4IL to understand what a frozen pre-trained encoder can and cannot do under online domain shifts.
We take an ImageNet-pre-trained ResNet-18, freeze all its weights, and only train classifier heads in
a single pass over the six DN4IL domains (Real, Clipart, Infograph, Painting, Sketch, Quickdraw).
After each stage we evaluate on all domains seen so far.

The left panel of Figure [I] trains a single linear classifier on top of the frozen backbone. The per-
domain heatmap reveals severe forgetting—new domains overwrite the decision boundary for earlier
ones. The right panel replaces this with domain-specific heads (requiring domain ID at test time).
This removes cross-domain interference in the classifier, largely eliminating forgetting, however, the
overall accuracy remains low on several domains. Each head relearns similar concepts independently
(e.g., “ambulance” in Real vs. Sketch), failing to transfer structure such as shape or relations that
recur across domains.
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Figure 2: Semantic groups in DN4IL and Gradient Alignment within and outside the groups

Motivation Humans accumulate lifelong knowledge by organizing experiences into rich semantic
abstractions rather than rote episodic traces. Classic studies of catastrophic interference show that
naively updating a single network on new tasks rapidly erodes prior knowledge (McCloskey & Cohen)
1989; [French| [1999)). In contrast, semantic memory supports concept-level representations (e.g.,
“airplane,” “helicopter,” “hot-air balloon” as aerial vehicles; “pear,” “apple,” “strawberry” as fruits)
that generalize across large visual changes(Tulving),[1972). Converging cognitive and neuroimaging
evidence further indicates modular specialization—partially distinct subsystems tuned for faces,
places, and objects—allowing stable representations with localized adaptation when new experience

arrives (Kanwisher et al., [1997)).

Guided by this view, we aim to replace domain-conditioned heads with semantic routing. We want
to cluster the input data into a small set of concept groups and attach lightweight classifier heads to
those groups. Inputs are routed by meaning, not by domain and can hence make use of the shared
structure across domains.

Semantic Groups Analysis To test whether semantically related classes are indeed safer to share
parameters, we conduct a gradient-alignment study. For the analysis we freeze a ResNet-18 encoder
and train a small linear head on an anchor pair A (e.g., airplane vs. helicopter). At the resulting
weights 6 4 we compare gradients for two new pairs: a within-group pair B taken from the same
semantic group as A (e.g., airplane vs. helicopter/UFO), and a cross-group pair C' (e.g., airplane
vs. pizza). We evaluate two settings: (i) per-domain, where images for A, B, C' are sampled from a
single domain (one task) to remove style variation; and (ii) mixed, where images are pooled across
all domains, so each pair includes multi-style examples. For each domain/mode we summarize a
compatibility score Acos = cos(ga,gp) — cos(ga,gc), where positive values indicate that
within-group updates push in more similar directions than cross-group updates.

Across DN4IL settings ("mixed” and “per-domain” slices), Acos is consistently positive (Fig. 2] right)
This means that, holding the backbone fixed, the optimization step needed for a semantically related
pair is more aligned with the step required by the current task than the step for an unrelated pair. In
other words, sharing parameters within a semantic group is cooperative, while sharing across groups
induces conflicting updates. This provides direct motivation for our routing design: routing each
input to its semantic adapter concentrates learning within a concept-consistent subspace, reducing
interference and enabling targeted adaptation.

4 METHODOLOGY

We study Domain—Incremental Learning (Domain-IL), where the label space stays fixed while data
domains change. Let C = {c1, ..., cpr} be the shared class set. We train over a sequence of domains
(tasks) {Dy}£_,, each inducing a different distribution over the same label space but with shifted

input statistics. At task b, the training stream is T, = {(z{”),y{")} N, .
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We use any frozen pre-trained vision encoder f : RF*Wx3 4 RP to encode the visual inputs to
produce image embeddings. z = f(z) € RP.

Language-Induced Semantic Grouping: At the beginning of the first task, we encode class labels
or attributes using any light-weight pre-trained language model (PLM) and cluster them into semantic
groups. This is to enable a meaningful, domain-agnostic structure on object relationships, enabling
efficient routing and shared learning across heterogeneous domains.

At the beginning of Task0, we know all the classes that we will encounter in the whole training.
Hence, for each class ¢ € C, obtain a d-dimensional language embedding via a pre-trained language
model (PLM),
ec = PLM(c) € RY.
Clustering {e.}.ec yields K disjoint semantic groups {Si, . .., Sk } and a routing map
g:C—{1,...,K}, g(c) =k <= ceS.

For each group k, we also save a fixed language prototype
) 1
L = normalize (8 Z ec> e R%.

The semantic groups and language prototypes are computed once and remain fixed.

Semantic Adapters on Frozen Features: We enhance the frozen backbone with lightweight, group-
specific linear classifier heads that focus on semantically coherent subsets of classes in the Domain-IL
training. If there are K semantic clusters formed in the previous step, we instantiate K classifier
heads with the corresponding classes per cluster. All the semantic adapter heads (classifiers) are
instantiated once at the beginning of training. (Figure [3)
For each group k, the semantic adapter head is
Ay i RP — RISHL

Given an input sample (z,y), we form z = f () from the frozen encoder and train only the marching
head Ay(,):

fsad = Aq(y) (Z) € Rlsg(y)l'

Let i(y; Sy(y)) be the local index of y inside its group. The supervised loss on the routed head is the
standard cross-entropy loss,

exp([Ag() (2)]iw:s,,))
Zcesgm eXP([Ag(y)(Z)]i(c:sgwﬂ)

Lcg = —log

Language Anchoring : Projecting visual features into the semantic language space and optimizing
for alignment strengthens the semantic consistency between vision and language modalities, and
proves useful for dynamic routing during inference. To encourage semantic alignment, we learn a
small projection P € R?* that maps visual features to the PLM space, é = normalize(P(z)) € R%.
We apply a group-level contrastive loss:

exp((é, Lg(y)>/7'i’) .
S exp((e, Li) /)

Inter— and Intra-Group Separation: To further discourage interference across semantic subspaces
and reduce redundancy within each head, we use a separation loss that penalizes off-diagonal cosine
similarity. Let 13 be a mini-batch, and for each group & define the batch mean p, = ‘Bl—k‘ Z( o.y)EBy %

where B, = {(z,y) € B : g(y) = k}, and fix, = /|| pek||2-
1

PN 2
ESEP = K(K—l) I#Zk, <Mk7/'bk’> .

Elang,anchor = -1

Similarly we also apply a similar intra-group de-correlation on classifier weights to make the classes
inside each semantic head more distinct.

Overall Objective:
L = ['CE + )\lang ['Iang,anchor + /\sep ‘Csep-
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Figure 3: Semantic Adapters Heads (SAD) and Semantic Adapter LoORA (SADLoRA) for Pre-trained
Vision encoders for Online Domain-incremental learning.

SAD-LoRA Beyond training the group heads, we optionally activate semantic LoRA adapters
inside the frozen encoder for additional capacity without full fine-tuning. Let 6 denote the backbone
weights (frozen) and AA*) be group-specific low-rank updates (LoRA) inserted into a subset of
layers:

W — W + AW BKE), AR erm*r - BR) e R™™ & min(m, n).

For ResNet-18 we attach LoRA to the final stage (layer4) convolutions; for ViT we attach LoRA to
the last transformer block, targeting self-attention and MLP projections. We train only the group
heads and the group-specific LoRA parameters in similar way as shown above.

Inference Strategies : Given a test sample x from domain b, set z = f(z) and 2 = z/||z]|2, and
let ¢ = normalize(P(z)).

Oracle uses the true group k£ = ¢(y) (upper bound), to route the sample to the correct semantic
adapter and predict the output.

Dynamic Routing: In real-world we need to dynamically route without oracle knowledge. At the
beginning of training, when we do semantic grouping, we also save the language prototypes per
group. Further, during training we also save the group-wise visual prototypes (running means of the
features within that group). From the incoming sample, we compute a routing score using visual
prototypes and language prototypes by passing it through the small projection layer, we trained. We
also augment this with with a head-confidence term, energy or negative entropy of each head’s logits.
We use this score to select the active adapter and perform classification.

5 EXPERIMENTAL SETUP

We begin our initial empirical analysis with the DN4IL dataset (Gowda et al.| [2024)), which is a
curated subset of the DomainNet (Peng et al., 2019) dataset used in Domain Adaptation and considers
the ease of benchmarking for continual learning purposes, and has siz domains/ We also benchmark
on CORe50 (Lomonaco & Maltoni, [2017)), which has eleven domains and Office-Home, which has
four domains (Venkateswara et al.,|2017). Unless stated, results are averaged over 3 seeds. We train
with only 1 EPOCH to satisfy ONLINE Domain-incremental learning evaluation.

We use ImageNet-1K (Russakovsky et al.| [2015) pre-trained ResNet-18 and ViT-B/16 as frozen
feature extractors. The clusters and language prototypes are built with the CLIP text encoder (ViT-
B/32;). We form K semantic groups per dataset by clustering class text features: DN4IL(K = 16),
OfficeHome (K = 20), CORe50(K = 10). For example, in DN4I1 - airplanes, helicopters, flying
saucers classes get clustered together as they all can be categorized as aerial vehicles”. Other clusters
characterized - fruts, indoor objects, outdoor scenes, clothing etc.

We report on multiple baselines, starting with few online CL methods - oEWC (Kirkpatrick et al.,
2017), SI (Zenke et al., [2017) and exemplar based ER-ACE (Caccia et al.| [2021). We also show
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Table 1: SAD results for Online Domain-IL on PTM-ResNet18 and OfficeHome and DN4IL datasets.
Methods with T use replay.

Y | DN4IL OfficeHome | #Trainable
ethod Params
ACC AAA ACC AAA ‘ (DN4IL / Off)
SGD 6.32+1.86 6.23+0.48 4.03+0.61 3.69+0.22
Scratch oEWC 6.84+032 4.76+0.08 4.25+0.51 3.57+0.19 11.23M/
SI 7.14+072  6.264+032 | 4.61+080  3.43+054 11.21M
ER-ACE' 5124049  4.85+051 | 3.114093  3.55+052
SGD 14.97+058 22.32+029 | 45.96+048 37.96+2.32
PTM oEWC 12.54+135 17.95+059 | 48.84+271 41.29+240 11.23M/
SI 17.97+106 24.99+152 | 46.72+1.43 38.50+1.91 11.21IM
ER-ACE' 19.69+053 24.31+049 | 50.30+059 34.55+0.82
PTM SAD (oracle) | 36.66+025 44.93+022 | 74.50+0.04 70.33+0.91 51K /33K
Frozen | SAD 20.45+030 26.09+030 | 60.32+030 57.71+t042 | 313K /296K

comparison with explicit PTM-based CL methods, MEMO (Zhou et al.,|2023)), SimpleCIL (Zhou
et al.| [2025) and prompt-based methods L2P (Wang et al.| |2022a), DualPrompt (Wang et al., [2022b).
We also report multiple variants of our method : SAD-Oracle: evaluated with the oracle group-id;
SAD : Semantic Heads evaluated with dynamic routing. We compare results with SADLoRA variant:
SAD with low-rank adapters - at the end of the Results section.

Metrics Let T be the number of tasks and a;_, ;. denote the test accuracy on task k after completing
training on task t. The per-step average accuracy is A; = % Zle ay—1 . We report Acc as average
performance of all tasks after the last task and Averaged Anytime Accuracy (AAA) (Caccia et al.}
2021)) that evaluates the model through all tasks.

N

T
Acc = Ap  and  AAA = 12At.
t=1

6 RESULTS

We begin with a simple analysis on DN4IL using a pre-trained ResNet18 model(Fig. ). We compare
three setups: FineTuning with a single head, FineTuning with domain—specific heads, and SAD
which freezes the encoder and trains language—derived semantic heads shared across domains (Oracle
mode). SAD shows higher per—domain accuracy and a stronger overall average, whereas fine—tuning
suffers severe forgetting. Task—wise heads do not suffer forgetting, but has sub-optimal performance.
Grouping classes by semantics encourages the model to reuse object—level cues across domains
instead of overfitting to domain style, which is crucial under single—pass learning. The significant
gap in performance in SAD-Oracle proves that if routed properly, the semantic modules can adapt
well to improve plasticity on new tasks while also maintaining stablility over previous tasks.
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Table 2: Comparison with PTM-based methods that run longer epochs. Methods with T use replay.

DualPrompt [ECCV’22] | 79.1+014 77.243.10 | 777410  71.0+45 10
SimpleCIL [TJCV’24] 75.7+000 75.74503 | 67.2400 62.5+16 20

SAD-Oracle 88.2+0.13 85.6+021 | 90.1+03  86.7+0.16 1
SAD 80.1+0.08 77.8+08 | 84.8+056 81.1+046 1

Method \ Office-Home \ CORe50 \ Epochs
| Acc AAA | Acc AAA |

MEMO' [ICLR’23] 63.1+180 71.24+276 | 68.2+27  66.0+2.7 20

L2P [CVPR’22] 80.0+120 79.7+4.19 | 81.7+04  72.3+1.1 10

Table 3: SAD vs. SADLoRA on Office-Home and CORe50

\ \ ResNet18 \ ViT-B/16
| Method | "Office- Home ~ COReS0 | Office-Home ~ COReS0
\ | Acc AAA | Acc AAA | Acc AAA | Acc  AAA
Oracle | SAD 7450 7033 | 7274 67.81 | 8821 85.63 | 90.10 86.70
SADLORA | 8120 73.12 | 81.66 78.51 | 89.24 8638 | 91.85 87.46
Dvnamic | SAD 6032 5771 | 60.35 5359 | 80.14 77.83 | 8482 81.06
y SADLORA | 69.62 6421 | 7252 6745 | 81.80 78.16 | 85.78 82.09

Table[T] compares online Domain-IL on DN4IL and OfficeHome against few online CL baselines. We
compare three training regimes: Scratch (randomly-initialized encoder), PTM (full fine-tuning of the
ImageNet encoder), and PTM-Frozen (ours), which keeps the encoder fixed and trains only semantic
heads. We compare against two regularization methods—oEWC and SI (which use importance-
weighted regularization to slows weight drift)—and a replay method, ER-ACE (which does replay
with asymmetric cross entropy to reduce bias). We report SAD (oracle)—an upper bound using the
true semantic group for routing—and SAD with dynamic routing. While PTM baselines update the
entire 11.2M parameter encoder each step, SAD trains only 300K parameters (> 30z fewer) and yet
attains competitive final accuracy on both datasets. Our semantic router and adapters can utilize the
rich, transferable features from the frozen encoders, and only update specialized adapters—preserving
general features, limiting forgetting, and letting each head specialize to its slice of the space.

Table 2] extends the study to ViT-B/16 architecture on OfficeHome and CORe-50 datasets. Here, we
compare against methods specifically proposed for PTM-based CL, although they are not online and
were proposed for Class-IL settings. We report the exemplar based MEMO, adapter based SimpleCIL
and prompt-based L2P and DualPrompt. These methods all train the PTM for 10-20 epochs and
depend on extra resources (buffers or prompt pools) and some also retrain the whole model. SAD
is competitive or better on both the datasets and in the stricter 1 epoch regime. Notably, our model
updates 290K trainable parameters versus 82M parameters in the backbone. Hence the frozen PTM
features + semantically routed heads yield strong generalization and proves that targeted plasticity is
better than global update by fine-tuning the whole model.

Adding low-rank plasticity. Table[3|evaluates SAD-LoRA, which introduces low-rank updates
in the encoder tail along with the semantic heads. Across Office-Home and CORe50 with both
ResNet-18 and ViT-B/16, SAD-LoRA consistently improves both Oracle and Dynamic settings, with
a modest increase in trainable parameters (Table [3)), still much lesser than retraining any encoder.
The gains are consistently larger on ResNet-18 than on ViT-B/16 as placing LoRA in the final blocks
aligns especially well with CNNs, where late layers carry task-specific cues. SAD-LoRA concentrates
updates where they fix domain shift without destabilizing earlier, reusable features, yielding bigger
returns for the CNN architecture while still giving consistent, smaller boosts for transformers. When
domain shift is large, a small amount of targeted backbone plasticity complements the semantic heads
and further stabilizes performance across the stream.
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Figure 5: Robustness against different natural corruptions on ViT-B/16 and Office-home dataset

Robustness Analysis To assess deployment readiness under real-world degradations, we evaluate
robustness to natural corruptions on Office-Home . We apply 12 corruption types (Hendrycks &
Dietterich} [2019) at severity 3 to the “real” domain test set. Across all corruptions (Figure ), SAD
consistently outperforms full fine-tuning, and SAD-LoRA yields the strongest results—especially
on blur, fog, and contrast—indicating that a small, targeted capacity inside the backbone helps
recondition features without destabilizing shared representations. Semantic concepts act as high-level
anchors: by routing features through concept-aligned heads, the model bases decisions on stable
structure (shape/parts/relations) rather than fragile pixel cues, making it less sensitive to noise or blur.

Computational Efficiency Our goal was to keep the backbone encoder (CNN or Transformer)
almost entirely frozen during continual learning, training only lightweight semantic heads and—under
SAD-LoRA—low-rank adapters in the tail. Table [5]details the budget across datasets/architectures.
For example, on the Office-Home dataset using ResNet-18, all semantic heads collectively have
around 33,345 parameter, plus an additional projection layer of 262,656 parameters used for aligning
vision and language embeddings to route inputs dynamically. This brings the total trainable parameters
to roughly 296,000, which is minuscule compared to baseline methods that retrain the entire backbone,
which have over 11 million parameters. Notably, our approach aso completes training of heads and
adapters in just one epoch per domain, enabling rapid and resource-efficient online adaptation without
sacrificing accuracy, making it especially suitable for quick adaptation.

7 CONCLUSION

We address online Domain-incremental learning setting, where non-stationary data streams demand
rapid adaptation without replay and with tight compute/memory budgets. Leveraging rich representa-
tions from pre-trained encoders is appealing, but naive fine-tuning tends to overfit new domains and
erode previously learned structure. Our goal was to gain targeted plasticity for the current domain
while preserving stable, reusable features from the pre-trained models. We introduced semantic
routing : language-induced clusters define concept groups, and we train lightweight, group-specific
adapter heads on frozen encoders. We further proposed SAD-LoRA, which adds low-rank updates
only in the encoder tail to provide more targeted plasticity without sacrificing stability. Across DN4IL,
Office-Home, and CORe50 datasets, SAD/SAD-LoRA exceed strong PTM-based CL baselines while
training only hundreds of thousands of parameters (vs. tens of millions for full fine-tuning). These
results indicate that routing by meaning reduces gradient cross-talk, while targeted plasticity con-
fines updates to the appropriate semantic subspace, preserving generic features that transfer across
domains. Semantic routing also proves robust against natural corruptions. By aligning adaptation
with human-meaningful semantics and keeping updates lightweight, our approach offers a practical,
resource-efficient path to continual learning under real-world distribution shifts. As a broader impact,
for practitioners seeking continual adaptation of pre-trained models on application-specific datasets,
SAD provide a viable alternative to full fine-tuning.
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A APPENDIX

B EXPERIMENTAL DETAILS

Benchmarks and Streams We study online Domain-IL on three standard vision benchmarks.
DNA4IL (Gowda et al., 2024)) is a curated subset of DomainNet (Peng et al., 2019) containing six
domains (Real, Clipart, Infograph, Painting, Sketch, Quickdraw) under a fixed class set. Office-
Home (Venkateswara et al., [2017) has four domains (Art, Clipart, Product, Real-World), and
CORe50 (Lomonaco & Maltoni, [2017) has eleven sessions commonly used as domains. Each
dataset is processed as a single-pass stream: images arrive once per domain, we shuffle within a
domain, and move to the next domain without revisiting previous data (unless a baseline explicitly
requires replay). DN4IL images are 64x64. All other images are of 224 x224 and normalized with
ImageNet statistics. Results are averaged over three seeds.

Language-Induced Semantic Groups We construct meaning-centric groups once at the beginning
of training. We encode class names with the CLIP text encoder (ViT-B/32). We also tried with
class-level descriptions or attributes of each object, Example - "airplane” - a vehicle that has wings
and engines and is capable of moving through the air. These light descriptions with attributes gave
more nuances clusters. Text features are {5-normalized and clustered with k-means to form K disjoint
semantic groups. We obtain K=16 for DN4IL, K =20 for Office-Home, and K'=10 for CORe50.
The language anchor for a group is the mean of its members’ text embeddings, normalized. Group
assignments and anchors remain fixed for the entire run.

Architectures and Trainable Modules We use ImageNet-1K pre-trained ResNet-18 and ViT-B/16
as frozen encoders. On top, we attach one Semantic Adapter per group: a linear classifier from the
visual feature space (D=>512 for ResNet-18, D=768 for ViT-B/16) to the classes in that group. In
addition, we train a lightweight vision—language projection W € R?12%D to align visual features
with language space (parameter counts match: 262,656 for ResNet-18, 393,728 for ViT-B/16). In
SAD-LoRA, we further activate low-rank adapters in the encoder tail: rank r=8, a=16, dropout 0.0.
For ResNet-18 we instrument 1ayer4 convolutions; for ViT-B/16 we instrument the last transformer
block (QKV and MLP projections). All remaining encoder weights stay frozen.

Training and Losses Unless noted, each stream is trained for one epoch (online). Batch size is
32. We optimize only the semantic heads, the vision—language projection, and (when enabled)
LoRA parameters. For ResNet-18 we use SGD (Ir 0.1); for ViT-B/16 we use AdamW (Ir 0.001).
The objective combines: (i) cross-entropy on the routed head; (ii) a language anchoring term that
encourages the projected visual feature to score highest on its group anchor; and (iii) a group
separation penalty that discourages cosine similarity between inter and intra groups. We set Ajang=0.5
and Agp=0.1 and keep them fixed across datasets.

Dynamic Inference and Calibration At inference, we compute scores from two branches and
fuse them: (1) visual scores via cosine similarity to vision prototypes; (2) language scores via the
projected feature against text prototypes. Unless specified in the ablation, the encoder remains frozen
and routing is fully dynamic.

Baselines and Their Resources We compare with two families. Online CL baselines include
oEWC (Kirkpatrick et al.,|2017) (online Fisher-based regularization) and SI (Zenke et al.,|2017) (path-
integral importance), both without replay, plus ER-ACE (Caccia et al.,|2021)) which uses rehearsal
with asymmetric cross-entropy to reduce bias. PTM-based CL baselines include MEMO (Zhou
et al.| 2023) (memory-efficient rehearsal), L2P (Wang et al.,|2022a)) (prompt-pool retrieval for ViT),
DualPrompt (Wang et al., 2022b) (general+task prompts with routing), and SimpleCIL (Zhou et al.|
20235) (streamlined PTM fine-tuning with rehearsal). For methods with buffers or prompt pools,
we follow the settings in their papers; when they train for multiple epochs (10-20), we report their
regime while our default remains single-epoch online.

Metrics and Reporting We report Acc (final average over all tasks after the last domain) and
AAA (Averaged Anytime Accuracy, i.e., the mean of per-time average accuracies across the stream).
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Table 4: Accuracy on the DN4IL dataset on Pre-trained ResNet18 vision encoder.

Method | real  clipart infograph painting sketch quickdraw | Acc
\ PTM

FineTune + 1CLS 1025  9.35 2.69 7.02 6.60 4.02 6.66]

FineTune + Task-Classifiers | 16.61  23.97 4.88 17.03 8.41 5.22 12.69
\ PTM + Semantic Adapters + Oracle-ID

SAD 4137 43.26 27.57 35.56 35.72 36.45 36.66
SADLoRA 55.36  54.94 29.55 47.80 48.63 65.11 50.24

Table 5: Trainable parameter counts for each architecture—dataset pair under our two variants. SAD
trains only the semantic classifiers and the vision—language projection head. SAD-LoRA additionally
trains the LoRA components inserted in the backbone tail. Counts are reported as absolute numbers

Dataset Arch Variant Total trainable  Classifiers Proj LoRA

DN4IL ResNet-18  SAD 313,956 51,300 262,656 -
DN4IL ResNet-18 SAD-LoRA 4,008,548 51,300 262,656 3,694,592
Office-Home ResNet-18 SAD 296,001 33,345 262,656 -
Office-Home ResNet-18 SAD-LoRA 3,654,721 33,345 262,656 3,358,720
CORe50 ResNet-18  SAD 288,306 25,650 262,656 —
CORe50 ResNet-18  SAD-LoRA 1,967,666 25,650 262,656 1,679,360
Office-Home ViT-B/16 ~ SAD 443,713 49,985 393,728 -
Office-Home ViT-B/16 ~ SAD-LoRA 1,185,593 49,985 393,728 741,888
CORe50 ViT-B/16  SAD 432,178 38,450 393,728 -
CORe50 ViT-B/16  SAD-LoRA 805,426 38,450 393,728 373,248

We repeat each experiment with three random seeds and report mean =+ std. Implementation is in
PyTorch. Parameter counts in the main paper and the appendix table break down trainables into
classifiers, projection head, and LoRA components for full transparency.

C SEMANTIC GROUPS

We use a frozen pre-trained vision encoder (ResNet-18 or ViT-B/16) and attach lightweight semantic
adapter heads. To define which classes share an adapter, we build language-driven groups: each
class label is embedded with a pre-trained language model (e.g., CLIP-text or a sentence encoder),
the label embeddings are f.o—normalized and clustered with k-means, and the resulting clusters are
treated as semantically coherent groups. The group centroid serves as a fixed language prototype
used for routing/analysis; only the small adapter heads are trained online. This grouping is computed
once per dataset and remains fixed throughout training, ensuring a domain-agnostic, concept-level
structure that encourages knowledge sharing across domains while keeping the backbone frozen.

DN4IL

1. AIR VEHICLES: airplane, helicopter, flying_saucer, hot_air_balloon
2. VEHICLES: aircraft_carrier, bicycle, bus, motorbike, pickup_truck, train

3. FRUITS AND VEGGIES: apple, carrot, onion, pear, strawberry, watermelon, banana, aspara-
gus, broccoli

HAND TOOLS: axe, eraser, hammer, pencil, saw, scissors, screwdriver

DESSERTS & FAST FOOD: birthday_cake, ice_cream, pizza, sandwich, hamburger
ANIMALS: bat, bird, dolphin, fish, mouse, rabbit, raccoon, squirrel, whale
ANIMALS AQUATIC): dolphin, fish, shark, whale

N ok

13



Under review as a conference paper at ICLR 2026

8. MAMMALS: bear, camel, cow, dog, elephant, horse, kangaroo, lion, panda, tiger, zebra
9. INDOOR FURNITURE: bed, chair, couch, dresser, keyboard, table

10. INSECTS / ARACHNIDS: bee, butterfly, mosquito, spider

11. CLOTHING: bowtie, jacket, pants, shorts, sock

12. BUILDINGS: bridge, castle, house, skyscraper, windmill

13. NATURE / SCENES: bush, cloud, mountain, mushroom, ocean, river

14. HOUSEHOLD & MISC.: calendar, clock, cup, floor_lamp, frying_pan, map, marker, teapot,
telephone, television, wine_bottle, wine_glass

15. MUSICAL INSTRUMENTS: cello, clarinet, guitar, trombone, violin
16. SEA : crab, lobster, octopus, scorpion, snail

OFFICE-HOME

1. WRITING TOOLS: Eraser, Pencil, Pen, Marker, Push_Pin

2. STORAGE: Shelf, File_Cabinet

3. ELECTRONICS / MEDIA: Alarm_Clock, Speaker, Radio, Webcam, Fan, Printer, TV, Monitor
4. FURNITURE: Couch, Table, Bed, Chair

5. FOOTWEAR: Sneakers, Flipflops

6. KITCHEN & TOOLS: Spoon, Knives, Paper_Clip, Scissors, Fork, Ruler, Pan, Hammer
7. OFFICE SUPPLIES: Calendar, Clipboards, Backpack, Notebook, Postit_Notes, Folder
8. POWER TOOLS: Screwdriver, Drill

9. SIGNAGE: Exit_Sign

10. COMPUTING: Computer, Keyboard, Laptop

11. TRANSPORT: Bike

12. CLEANING / HYGIENE: Mop, ToothBrush

13. CONTAINERS & MIscC.: Mug, Bottle, Helmet, Soda, Trash_Can, Bucket

14. EYEWEAR: Glasses

15. OFFICE ELECTRONICS: Calculator, Telephone, Mouse

16. KITCHEN FIXTURES: Kettle, Sink

17. LIGHTING: Desk_Lamp

18. DECOR / Misc.: Flowers, Toys, Batteries

19. APPLIANCES: Refrigerator, Oven

20. HOME DECOR: Lamp_Shade, Candles, Curtains

D LARGE LANGUAGE MODELS USAGE IN WRITING PAPER

We used LLms to find potentially relevant prior work so we could double-check coverage of all the
baselines and works related to our work. We also used it to reorganize paragraphs, improve clarity
and grammar, tighten phrasing, and standardize tone (including some figure/table captions).
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