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Abstract
We introduce RNA-FRAMEFLOW, the first gen-
erative model for 3D RNA backbone design. We
build upon SE(3) flow matching for protein back-
bone generation and establish protocols for data
preparation and evaluation to address unique chal-
lenges posed by RNA modeling. We formulate
RNA structures as a set of rigid-body frames and
associated loss functions which account for larger,
more conformationally flexible RNA backbones
(13 atoms per nucleotide) vs. proteins (4 atoms
per residue). To tackle the lack of diversity in 3D
RNA datasets, we explore training with structural
clustering and cropping augmentations. Addition-
ally, we define a suite of evaluation metrics to
measure whether the generated RNA structures
are globally self-consistent (via inverse folding
followed by forward folding) and locally recover
RNA-specific structural descriptors. The most
performant version of RNA-FRAMEFLOW gen-
erates locally realistic RNA backbones of 40-150
nucleotides, over 40% of which pass our validity
criteria as measured by a self-consistency TM-
score ≥ 0.45, at which two RNAs have the same
global fold.

1. Introduction
Designing RNA structures. Proteins, and the diverse
structures they can adopt, drive essential biological func-
tions in cells. Deep learning has led to breakthroughs in
structural modeling and design of proteins (Jumper et al.,
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2021; Dauparas et al., 2022; Watson et al., 2023), driven by
the abundance of 3D data from the Protein Data Bank (PDB).
Concurrently, there has been a surge of interest in Ribonu-
cleic Acids (RNA) and RNA-based therapeutics for gene
editing, gene silencing, and vaccines (Doudna and Charpen-
tier, 2014; Metkar et al., 2024). RNAs play a dual role as
carriers of genetic information coding for proteins (mRNAs)
as well as performing functions driven by their tertiary struc-
tural interactions (riboswitches and ribozymes). While there
is growing interest in designing structured RNAs for a range
of applications in biotechnology and medicine (Mulhbacher
et al., 2010; Damase et al., 2021), the current toolkit for
3D RNA design uses classical algorithms and heuristics to
assemble RNA motifs as building blocks (Han et al., 2017;
Yesselman et al., 2019). However, hand-crafted heuristics
are not always broadly applicable across multiple tasks and
rigid motifs may not fully capture the conformational dy-
namics that govern RNA functionality (Ganser et al., 2019;
Li et al., 2023a). This presents an opportunity for deep gen-
erative models to learn data-driven design principles from
existing 3D RNA structures.

What makes deep learning for RNA hard? The pri-
mary challenge is the paucity of raw 3D RNA structural
data, manifesting as an absence of ML-ready datasets for
model development (Joshi et al., 2023). Protein structure is
primarily driven by hydrogen bonding along the backbone,
and current geometric deep learning models incorporate
this inductive bias through backbone frames to represent
residues (Jumper et al., 2021). RNA structure, however, is
often more conformationally flexible and driven by base
pairing interactions across strands as well as base stacking
between rings of adjacent nucleotides (Vicens and Kieft,
2022), all of which can only be learnt implicitly at present1.

Additionally, RNA nucleotides, the equivalent of amino
acids in proteins, include significantly more atoms as part
of the backbone (13 compared to 4) which necessitates a
generalization of backbone frames where the placement of
most atoms needs to be parameterized by torsion angles.
These complexities have contributed to relatively poor per-

1See Eric Westhof’s talk contrasting RNA and protein structure.
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Figure 1. The RNA-FRAMEFLOW pipeline for 3D backbone generation. Our implementation establishes RNA-specific protocols
for data preparation and evaluation for FrameFlow (Yim et al., 2023a). (1) Each nucleotide in the RNA backbone is converted into a
frame to parameterize the placement of C4′ by a translation, C3′ − C4′ − O4′ by a rotation, and the rest of the atoms via 8 torsion
angles Φ. (2) We train generative models on all RNA structures of length 40-150 nucleotides from RNAsolo (Adamczyk et al., 2022). We
also explore training with structural clustering and cropping augmentations to tackle the lack of diversity in 3D RNA datasets. (3) We
introduce evaluation metrics to measure the recovery of local structural descriptors and global self-consistency of designed structures via
inverse-folding with gRNAde (Joshi et al., 2023) followed by forward-folding with RhoFold (Shen et al., 2022).

formance of deep learning for RNA structure prediction
compared to proteins (Kretsch et al., 2023; Abramson et al.,
2024). Additionally, structure prediction models cannot
directly be used for designing or generating novel RNA
structures with desired constraints, which our work aims to
do.

Our contributions. We develop RNA-FRAMEFLOW, the
first generative model for 3D RNA backbone design, illus-
trated in Figure 1. We adapt FrameFlow (Yim et al., 2023a),
an SE(3) equivariant flow matching model for proteins to
RNA. We introduce RNA-specific modifications to the data
preparation and loss formulation, including representing
RNA nucleotides as rigid-body frames that parameterize
all 13 atoms. We also introduce an evaluation pipeline to
benchmark RNA backbone design models’ capabilities at
recovering local and global structure. Our best model is
trained on RNAs of lengths 40-150 from the PDB and can
unconditionally sample locally plausible backbones with
over 40% validity as measured by a self-consistency TM-
score ≥ 0.45.

Through this study, we aimed to evaluate the extent to which
generative models for proteins can be adapted for RNA. This
brought up critical challenges and limitations of deep learn-
ing for RNA modelling, such as a lack of explicit represen-
tations of the physical interactions that drive RNA structure
as well as biases in 3D RNA datasets, which we have made
preliminary efforts towards addressing. Together with our
engineering contributions, we hope this work will stimulate
future research in generative models for RNA design.

2. Method
We are concerned with building a generative model that
unconditionally outputs all-atom RNA backbone samples.
For a target sequence length of Nres nucleotides, we aim to
generate a real-valued tensor X of shape Nres × 13× 3 rep-
resenting 3D atomic coordinates for each of the 13 backbone
atoms per nucleotide.

2.1. Representing RNA Backbones

This work introduces a frame analog for nucleic acids that
deals with the underlying complexity of working with their
backbones. Unlike protein residues with just 4 atoms in
the backbone, nucleic acid residues contain 12 atoms along
the backbone. As shown in Figure 1, we use the C4′, C3′,
and O4′ atoms as the reference frame as done by More-
head et al. (2023). All other backbone atoms are associated
with 8 torsions Φ = {ϕ1 → ϕ8}, ϕi ∈ SO(2) that are
predicted post-hoc after frame generation; these atoms are
C1′, C2′, N9 (or N1), O3′, O5′, P,OP1, and OP2.

The Gram-Schmidt process is used on v1, v2 defined by the
vectors along the C4′ − O4′ and C4′ − C3′ bonds; the
C5′ plays the role of Cβ and is imputed after the frames
have been created. The 8 torsions, in order, are C3′ − C2′,
O4′ − C1′, C1′ − N9, C3′ − O3′, C5′ − O5′, O5′ − P ,
P − OP1, and P − OP2. During sampling, Adenine (A)
is the default nucleic acid base whose idealized geometry is
obtained from Gelbin et al. (1996). Geometric imputation is
not tractable given the complexity of torsion angles. Given
the torsion angles, we autoregressively place non-frame
atoms in order of the torsions Φ in Figure 1, constructing
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the final all-atom RNA backbone structure.

Choice of RNA frame. We choose C3′, C4′, and O4′ as
they spatially shift the least in naturally occurring RNA
(Harvey and Prabhakaran, 1986). The non-frame backbones
- such as the remaining atoms in the ribose sugar ring (C1′,
C2′) and the farther away Phosphorous (P ) and two Oxy-
gens (OP1, OP2) - are parameterized by torsion angles to
account for their relative conformational flexibility. Ring
puckering refers to the planar rotation of the ribose sugar
ring about the C4′ − C5′ bond. It affects how the RNA
interacts with interaction partners to form complexes (e.g.,
protein-RNA) with high binding affinities (Clay et al., 2017).
To reduce the sensitivity of our generative model to highly
mobile atoms, we settle on the current frame composition.

Input. Given a set of 3D coordinates, a simultaneous rota-
tion and translation (r, x) forms an orientation-preserving
rigid-body transformation of the coordinates. The set of all
such transformations in 3D is the Special Euclidean group
SE(3), which composes the group of 3D rotations SO(3)
and 3D translations in R3.

We can represent an RNA frame T = (r, x) as a translation
x ∈ R3 from the global origin to place C4′ and a rotation
r ∈ SO(3) to orient C3′ − C4′ −O4′. Compared to work-
ing with raw 3D coordinates for each backbone atom, using
the frame representation entails performing flow matching
on the space of SE(3). This is an inductive bias to reduce
the degrees of freedom the generative model needs to learn.
Instead of predicting 13 correlated 3D coordinates indepen-
dently (39 quantities) for each nucleotide, we instead predict
one 3D coordinate (of C4′) and one 3×3 rotation matrix (12
quantities). We follow Chen and Lipman (2024) and Yim
et al. (2023a)’s framework for flow matching on SE(3),
which we summarise subsequently.

Overview. Flow matching generates or learns how to
place and orient a set of N frames T = {T (n)}Nn=1, where
T (n) = (r(n), x(n)), to form an RNA backbone of length N .
To do so, we initialize frames at random in 3D space at time
t = 0, and train a denoiser or flow model to iteratively refine
the location and orientation of each frame for a specified
number of steps until time t = 1.

Suppose p0(T0) and p1(T1) are the marginal distributions of
randomly oriented and ground truth frames from our dataset
of RNA structures, respectively. Suppose a non-unique time-
dependent vector field ut leads to an ODE between the two
distributions p0 and p1, i.e., assume there is a way to map
from noisy samples to the corresponding true samples. This
solution forms a ground truth probability path pt between
the two distributions at time t ∈ [0, 1], which we can use to
transform samples from noise to the true distribution. The
continuity equation ∂p

∂t = −∇ · (ptut) relates the vector
field ut to the evolution of the probability path pt.

Given a noisy frame T0 sampled from p0(T0) and the corre-
sponding ground truth frame T1 sampled from p1(T1), we
construct a flow Tt by following the probability path pt be-
tween T0 and T1 for any time step t sampled from U(0, 1).
As shown by Chen and Lipman (2024) for the SE(3) group
(and other manifolds), the shortest path between the two
states T0 and T1 can be used to define an interpolation:

Tt = expT0
(t · logT0

(T1)). (1)

Here, exp(·) and log(·) are the exponential and logarithmic
maps that enable moving (taking random walks) on curved
manifolds such as the SE(3) group. As we can decompose
a frame T = (r, x) into separate rotation and translation
terms, we can obtain closed-form interpolations for the
group of rotations SO(3) and translations R3. This gives us
two independent flows:

Translations: xt = tx1 + (1− t)x0 , (2)
Rotations: rt = expr0(t · logr0(r1)) . (3)

The random translation x0 is sampled from a zero-centered
Gaussian distribution N (0, I) in R3, and the random ro-
tation r0 is sampled from U(SO(3)), a generalization of
the uniform distribution for the group of rotations, SO(3).
For an RNA backbone consisting of a set of N frames
T = { T (n)}Nn=1, we can define the interpolation for each
frame in parallel via the aforementioned procedure.

Training. During training, we would like to learn a param-
eterized vector field vθ(Tt, t), a deep neural network with
parameters θ, which takes as input the intermediate frames
Tt at time t sampled from U(0, 1), and predicts the final
frames T̂ = {T̂ (n)}Nn=1, where T̂ (n) = (r̂

(n)
t , x̂

(n)
t ). The

ground truth vector field ut for mapping from the interme-
diate frames Tt to the ground truth frames T1 can also be
decomposed into a ground truth rotation and translation for
each frame T (n):

Translations: ut(x
(n)|x(n)

0 , x
(n)
1 ) = x

(n)
1 , (4)

Rotations: ut(r
(n)|r(n)0 , r

(n)
1 ) = log

r
(n)
t

(r
(n)
1 ) . (5)

To train the model vθ, we compute separate losses for the
predicted rotation r̂t ∈ SO(3) and translation x̂t ∈ R3. The
combined SE(3) flow matching loss over N frames is as
follows:

LSE(3) = Et,p0(T0),p1(T1)

[
1

(1− t)2

N∑
n=1

{∥∥∥x̂(n)
t − x

(n)
1

∥∥∥2
R3

+
∥∥∥ logr(n)

t
(r̂

(n)
1 )− log

r
(n)
t

(r
(n)
1 )

∥∥∥2
SO(3)

}]
.

(6)

The architecture of the flow model vθ is similar to the struc-
ture module from AlphaFold2 comprising Invariant Point
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Attention layers interleaved with standard Transformer en-
coder layers, following Yim et al. (2023a;b). We use an
MLP head to predict torsion angles Φ.

Auxiliary losses. The inclusion of auxiliary loss terms
to the objective in Equation (6) can be seen as a form of
adding domain knowledge into the training process (Yim
et al., 2023b). We include 3 additional losses that oper-
ate on the all-atom structure inferred from the predicted
frames, weighted by tunable coefficients to modulate their
contribution to the total loss:

Ltot = LSE(3) + Lbb + Ldist + Ltors . (7)

Suppose S = {C4′, C3′, O4′} is the set of frame atoms2

and the sequence length is N . We summarise the auxiliary
losses subsequently.

• Coordinate MSE Lbb: A direct all-atom MSE is com-
puted between generated and ground truth coordinates.
Here, a, â are the ground truth and predicted atomic
coordinates for the frame atoms:

Lbb =
1

|S|N

N∑
n=1

∑
a∈S

∥a(n) − â(n)∥2. (8)

• Distogram loss Ldist: A distogram D ∈ RNS×NS

containing all-to-all coordinate differences between
the atoms in an RNA structure is computed. Let
D

(nm)
ab = ∥a(n) − b(m)∥ be the elements of the dis-

togram for the ground truth structure. Here, atom a
belongs to nucleotide n and atom b to nucleotide m.
Given the corresponding predicted distogram D̂

(nm)
ab ,

we compute another difference between the tensors:

Ldist =
1

(|S|N)2 −N

N∑
n,m=1
n ̸=m

∑
a,b∈S

∥D(nm)
ab − D̂

(nm)
ab ∥2.

(9)

• Torsional loss Ltors: An angular loss between the 8
predicted torsions by the auxiliary MLP head and the
angles from the ground truth all-atom structure. Sup-
pose ϕ ∈ Φn and ϕ̂ ∈ Φ̂n are the ground truth and
predicted torsion angles for residue n, we compute:

Ltors =
1

8N

N∑
n=1

∑
ϕ∈Φn

(
∥ϕ− ϕ̂∥2

)
. (10)

Sampling. To generate or unconditionally sample an RNA
backbone of length N , we initialize a random point cloud

2In Appendix B.1, we show how including all backbone atoms
better accounts for larger RNA nucleotides and improves validity
of generated samples.

of frames. We use our trained flow model vθ within an
ODE solver to iteratively transform the noisy frames into
a realistic RNA backbone. For each nucleotide, we begin
with a noisy frame T0 = (r0, x0) at time step t = 0, and
integrate to t = 1 using the Euler method for a specified
number of steps NT , with step size ∆t = 1/NT . At each
step t, the flow model vθ predicts updates for the frames via
a rotation r̂1 and translation x̂1:

Translations: xt+∆t = xt +∆t · (x̂1 − xt) , (11)
Rotations: rt+∆t = exprt( c∆t · logrt(r̂1)) , (12)

where c = 10 is a tunable hyperparameter governing the
exponential sampling schedule for rotations.

Conditional generation. The unconditional sampling
strategy described above aims to generate realistic RNA
backbone structures sampled from the training distribution.
However using generative models in real-world design tasks
entails conditional generation based on specified design
constraints or requirements (Ingraham et al., 2022; Watson
et al., 2023), which we are currently exploring. For example,
unconditional models can leverage inference-time guidance
strategies (Wu et al., 2024), be fine-tuned conditionally
(Denker et al., 2024) or in an amortized fashion for motif-
scaffolding (Didi et al., 2023). For sequence conditioning
and structure prediction, we can incorporate embeddings
from language models (Penic et al., 2024; He et al., 2024).

2.2. Architecture

Following Yim et al. (2023a;b), we use the structure module
from AlphaFold2 (Jumper et al., 2021) comprising Invariant
Point Attention (IPA). We also use an auxiliary MLP head to
predict torsion angles Φ. We provide hyperparameters, ob-
jective functions, and additional experimental setup details
in Appendix A.1.

3. Experiments
3D RNA structure dataset. RNAsolo (Adamczyk et al.,
2022) is a recent dataset of RNA 3D structures extracted
from isolated RNAs, protein-RNA complexes, and DNA-
RNA hybrids from the Protein Data Bank (as of January
5, 2024). The dataset contains 14,366 structures at resolu-
tion ≤ 4 Å (1 Å = 0.1nm). We select sequences of lengths
between 40 and 150 nucleotides (5,319 in total) as we envi-
sioned this size range containing structured RNAs of interest
for design tasks.

Evaluation metrics. We evaluate our models for uncondi-
tional RNA backbone generation, analogous to recent work
in protein design (Yim et al., 2023b;a; Bose et al., 2023; Lin
and AlQuraishi, 2023). We generate 50 backbones for target
lengths sampled between 40 and 150 at intervals of 10. We
then compute the following indicators of quality for these

4



RNA-FRAMEFLOW for de novo 3D RNA Backbone Design

backbones:

• Validity (scTM ≥ 0.45): We inverse fold each gen-
erated backbone using gRNAde (Joshi et al., 2023)
and pass Nseq = 8 generated sequences into Rho-
Fold (Shen et al., 2022). We then compute the self-
consistency TM-score (scTM) between the predicted
RhoFold structure and our backbone at the C4′ level.
We say a backbone is valid if scTM≥ 0.45; this thresh-
old corresponds to roughly the same fold between two
RNA strands (Zhang et al., 2022). We expand on this
framework in Figure 5.

• Diversity: Among the valid samples, we compute
the number of unique structural clusters formed us-
ing qTMclust (Zhang et al., 2022) and take the ratio
to the total number of samples. Two structures are con-
sidered similar if their TM-score ≥ 0.45. This metric
shows how much each generated sample varies from
others across various sequence lengths.

• Novelty: Among the valid samples, we use
US-align (Zhang et al., 2022) at the C4′ level to
compute how structurally dissimilar the generated
backbones are from the training distribution. For a set
of samples for a given sequence length, we compute
the TM-score between all pairs of generated backbones
and training samples, and for each generated backbone,
we assign the highest TM-score. We call the average
across this set, pdbTM.

• Local structural measurements: We measure the
similarity between bond distances, bond angles, and
dihedral angles from the set of generated samples and
the training set. To do so, we compute histograms for
each of the local structural metrics and use 1D Earth
Mover’s distance to measure the similarity between
generated and training distributions.

Hyperparameters. We use 6 IPA blocks in our flow model,
with an additional 3-layer torsion predictor MLP that takes
in node embeddings from the IPA module. Our final model
contains 16.8M trainable parameters. We use AdamW op-
timizer with learning rate 0.0001, β1 = 0.9, β2 = 0.999.
We train for 120K gradient update steps on four NVIDIA
GeForce RTX 3090 GPUs for about 18 hours with a batch
size B = 28. Each batch contains samples of the same
sequence length to avoid padding. Further hyperparameters
are listed in Appendix A.1.

Training. Our filtered training dataset with sequences of
lengths between 40 and 150 consists of 5,319 samples. For
the denoiser, we use 6 IPA blocks and an additional torsion
predictor head, the latter being a 3-layer MLP that takes in
node embeddings from the IPA module to predict 8 torsion
angles. Our final model contains 16.8M trainable param-
eters. We use the Adam optimizer with a learning rate of
0.0001, β1 = 0.9, β2 = 0.999. We train for 120K gradient

MODEL % VALID ↑ DIVERSITY ↑ NOVELTY ↓
NT = 10 16.7 0.62 0.70
NT = 50 41.0 0.61 0.54
NT = 100 20.0 0.61 0.69
NT = 500 20.0 0.57 0.67

MMDIFF 0.0 - -

Table 1. RNA backbone generation results. The best performing
model uses NT = 50 timesteps for denoising.

update steps on four NVIDIA GeForce RTX 3090 GPUs for
15 hours with a batch size of B = 20. Each batch comprises
padded samples from randomly selected structural clusters
across sequence lengths.

4. Results
4.1. Global Evaluation of Generated RNA Backbones

We begin by analyzing RNA-FRAMEFLOW’s samples us-
ing the aforementioned evaluation metrics. For validity, we
report percentage of samples with scTM ≥ 0.45; for diver-
sity, we report the ratio of unique structural clusters to total
valid samples; and for novelty, we report the highest aver-
age pdbTM to a match from the PDB. For each sequence
length between 40 and 150, at intervals of 10, we generate
50 backbones. Table 1 reports these metrics across different
variants for the number of denoising steps NT . We com-
pare our model to protein-RNA-DNA complex co-design
model MMDiff (Morehead et al., 2023), which is a diffusion
model. As the original version of MMDiff was trained on
shorted RNA sequences, we retrain it on our training set.
Additionally, we inverse-folded MMDiff’s backbones using
gRNAde.

We identify NT = 50 as the best-performing model that bal-
ances validity, diversity, and novelty; furthermore, it takes
4.74 seconds (averaged over 5 runs) to sample a backbone
of length 100, as opposed to 27.3 seconds for MMDiff with
100 diffusion steps. We note that increasing NT does not
improve validity despite allowing the model to perform
more updates to atomic coordinate placements. Our model
also outperforms MMDiff. On manual inspection, samples
from MMDiff had significant chain breaks and disconnected
floating strands; see Appendix C.1.

4.2. Local Evaluation with Structural Measurements

For our best-performing model with number of timesteps
NT = 50, we plot histograms of bond distance, bond an-
gles, and dihedral angles in Figure 2. We include the Earth
Mover’s distance (EMD) between measurements from the
training and generated distributions as an indicator of lo-
cal realism (using 30 bins for each quantity). An ideal
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Figure 2. Local structural metrics from 600 generated backbone samples, compared to random Gaussian point cloud as a sanity check.
Our model can recapitulate local structural descriptors. (Subplots 1-3) Histograms of inter-nucleotide bond distances, bond angles
between nucleotide triplets, and torsion angles between every four nucleotides. (Subplot 4): RNA-centric Ramachandran plot of structures
from the training set (purple) and generated backbones (green).

MODEL
EMD ↓
(DIST)

EMD ↓
(ANGLES)

EMD ↓
(TORSIONS)

RNA-FRAMEFLOW 0.17 0.11 2.36

MMDIFF (ORIGINAL) 1.38 0.43 3.06
MMDIFF (RNASOLO) 0.39 0.21 3.23
GAUSSIAN NOISE 29.00 6.35 4.37

Table 2. Local structural metrics. Earth Mover’s Distance for
local structural measurements compared to ground truth measure-
ments from RNAsolo. Our model (NT = 50) shows improved
recapitulation of local structural descriptors compared to baselines.

generative model will score an EMD close to 0.0 (i.e. con-
sistent with the training set comprising naturally occurring
RNA). In Table 2, we observe EMD values from our best-
performing model’s backbones being significantly closer to
0.0 compared to MMDiff and random Gaussian all-atom
point clouds (akin to an untrained model), which serve as
sanity checks. We include histograms for MMDiff in Ap-
pendix C.1.

We also show RNA Ramachandran angle plots for gen-
erated samples and the training distribution in Figure 2.
Keating et al. (2011) introduced η − θ plots, similar to Ra-
machandran angle plots for proteins, that track the separate
dihedral angles formed by {C4′i, Pi+1, C4′i+1, Pi+2} and
{Pi, C4′i, Pi+1, C4′i+1} respectively, for each nucleotide i
along the chain. We observe that the dehedral angle distri-
bution from RNA-FRAMEFLOW closely recapitulates the
distribution of naturally occuring RNA structures from the
training set.

4.3. Generation Quality Across Sequence Lengths

We next investigate how sequence length affects the global
realism of generated samples (measured by scTM). Figure
3 (Left) shows the performance of RNA-FRAMEFLOW for
different sequence lengths. We observe our model generates
samples with high scTM for specific sequence lengths like
50, 60, 70, and 120 while generating poorer quality struc-
tures for other lengths. We believe the fluctuation of TM-
scores may be due to certain lengths being over-represented

in the training distribution. We can also partially attribute
this to the inherent length bias of RhoFold; see Appendix
A.2. With a better structure predictor, we expect an increase
in valid samples that meet the 0.45 TM-score threshold.

We also analyze the novelty of our generated samples (mea-
sured by pdbTM) in Figure 3 (Middle). We are particularly
interested in samples that lie in the right half with high
scTM and low pdbTM, which means that the designs are
highly likely to fold back into the sampled backbone but
are structurally dissimilar to any RNAs in the training set.
It is worth noting that our training set has high structural
similarity among samples: running qTMclust on our train-
ing dataset revealed only 342 unique clusters from 5,319
samples, which indicates that the model does not encounter
a diverse set of samples during training. This contributes
to many generated samples from our model looking similar
to samples from the training distribution. We include two
such examples in Figure 3 (Right). Both generated RNAs
yield relatively high pdbTM scores and look similar to their
respective closest matching chain from the training set: a
tRNA at length 70 and a 5S ribosomal RNA at length 120,
respectively. We include comparative results on validity and
novelty for MMDiff in Appendix C.1, finding that MMDiff
does not generate any samples that pass the validity criteria.

4.4. Data Preparation Protocols

Due to the overrepresentation of RNA strands of certain
lengths (mostly corresponding to tRNA or 5S ribosomal
RNA) in our training set, our models generate close like-
nesses for those lengths that achieve high self-consistency
but are not novel folds. To avoid this memorized recapit-
ulation and promote increased diversity among samples,
we sought to develop data preparation protocols to balance
RNA folds across sequence lengths.

• Structural clustering: We cluster our training set us-
ing qTMclust. When creating a training batch, we
sample random clusters and from each, a random struc-
ture. This ensures a batch does not comprise solely of
samples for a single sequence length or is dominated
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Figure 3. Validity and novelty of generated backbones. (Left) scTM of backbones of lengths 40-150 with the mean and spread of
scTM for each length; we select the top 10 structures with the best validation scores per length. (Middle) Scatter plot of self-consistency
TM-score (scTM) and novelty (pdbTM) across lengths. Vertical and horizontal dotted lines represent TM-score thresholds of 0.45.
(Right) Selected samples with high pdbTM scores (colored) with the closest, aligned match from the PDB (gray). Our model generates
valid backbones for certain sequence lengths and tends to recapitulate the most frequent folds in the PDB (e.g., tRNAs, small rRNAs).

MODEL % VALID ↑ DIVERSITY ↑ NOVELTY ↓
BASE 41.0 0.62 0.54
+ CLUST 12.0 0.88 0.49
+ CROP 11.0 0.85 0.47

Table 3. Impact of data preparation strategies. Increasing the
diversity of the training dataset using a combination of strategies
improves diversity and novelty of generated structures but leads to
fewer designs passing the validity threshold.

by over-represented folds. There are only 342 struc-
tural clusters for the 5,319 samples within sequence
lengths 40-150, highlighting the lack of diversity in
RNA structural data.

• Cropping augmentation: We expand our training
set by cropping longer RNA strands beyond length
150 by sampling a random crop length in [40, 150]
and extracting a contiguous segment from the larger
chains. As cropped RNA are not standalone molecules
and serve only to augment the dataset, we consider a
randomly chosen 20% of the training set size to balance
uncropped and cropped samples; this gives 1,063 extra
cropped samples.

We train identical models on these data splits for 120K gradi-
ent steps, with evaluation results reported in Table 3 showing
improved diversity and novelty in the generated samples, at
the cost of reduced validity. For structural clustering, each
batch comprises padded samples up to a maximum length
of 150 from randomly selected structural clusters across
sequence lengths. See Appendix C.2 for full results for the
two alternate data preparation protocols.

5. Limitations and Discussions
Altogether, our experiments demonstrate that the SE(3)
flow matching framework is sufficiently expressive for learn-
ing the distribution of 3D RNA structure and generating
realistic RNA backbones similar to well-represented RNA
folds in the PDB. Select examples are shown in Figure 6.
We have also identified notable limitations and avenues for
future work, which we highlight below.

Physical violations. While well-trained models usually gen-
erate realistic RNA backbones, we do observe some physical
violations: generated backbones sometimes have chains that
are either too close by or directly clash with one another,
are highly coiled, have excessive loops and unrealistically
intertwined helices, or have chain breaks. We highlight
these limitations in Figure 4. RNA tertiary structure folding
is driven by base pairing and base stacking (Vicens and
Kieft, 2022) which influence the formation of helices, loops,
and other tertiary motifs. Base pairing refers to nucleotides
along adjacent chains forming hydrogen bonds, while base
stacking involves interactions between rings of adjacent nu-
cleotide bases along a chain. To our knowledge, all current
deep learning models operate on individual nucleotides, only
implicitly learning base pairing and stacking. Developing
explicit representations of these interactions as part of the
architecture may further minimize physical violations and
provide stronger inductive biases to learn complex tertiary
RNA motifs.

Generalisation and novelty. We observed that the best
designs from our models (as measured by scTM score)
are sampled at lengths 70-80 and 120-130, and often have
closely matching structures in the PDB (high TM-scores).
This suggests that models can recapitulate well-represented
RNA folds in their training distribution (e.g., both tRNAs at
length 70-90 and small 5S ribosomal RNAs at length 120
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Figure 4. Physical violations in generated samples. (A) Steric
clashes between generated chains (highlighted in yellow). (B)
Chain breaks and stray strands (highlighted in yellow). (C)-(E)
Excessive loops and intertwined helices.

are very frequent). However, self-consistency metrics were
relatively poorer for less frequent lengths, suggesting that
models are currently not designing novel folds.

We would also like to note that the models we use for struc-
ture prediction and inverse folding may be similarly biased
to perform well for certain sequence lengths, leading to
the overall pipeline being reliable for commonly occurring
lengths and unreliable for less frequent ones (see Appendix
A.2 for an analysis on RhoFold). We evaluated prelimi-
nary strategies for structural clustering and cropping aug-
mentations during training, which improved the novelty of
designed structures but led to fewer designs passing the
validity filter. Overall, the relative scarcity of RNA struc-
tural data compared to proteins necessitates greater care in
preparing data pipelines for scaling up training and/or incor-
porating inductive biases into generative models, which we
hope to continue exploring.

6. Related Work
Here, we summarize recent developments in deep learn-
ing for 3D RNA modeling and design. Recent RNA struc-
ture prediction tools include RhoFold (Shen et al., 2022),
RoseTTAFold2NA (Baek et al., 2022), DRFold (Li et al.,
2023b), and AlphaFold3 (Abramson et al., 2024), each with

varying performance that is yet to match the current state-
of-the-art for proteins. However, structure prediction tools
are not directly capable of designing new structures, which
this work aims to address by adapting an SE(3) flow match-
ing framework for proteins (Yim et al., 2023a). MMD-
IFF (Morehead et al., 2023), a diffusion model for protein-
nucleic acid complex generation, is also capable of design-
ing RNA structures. Our evaluation shows that our flow
matching model significantly outperforms both the original
and RNA-only versions of MMDIFF.

Joshi et al. (2023) introduce GRNADE for 3D RNA inverse
folding, a closely related task of designing new sequences
conditioned on backbone structures. We use GRNADE fol-
lowed by RhoFold in our evaluation pipeline to forward fold
designed backbones and measure structural self-consistency.
Independently and concurrent to our work, Nori and Jin
(2024) propose RNAFlow, which uses GRNADE combined
with RoseTTAFold2NA as a denoiser in the flow match-
ing setup to design RNA sequences conditioned on protein
structures. Our work tackles de novo 3D RNA backbone
generation, an orthogonal RNA design task.

7. Conclusion
We introduce RNA-FRAMEFLOW, a generative model for
3D RNA backbone design. Our evaluations show our model
can design locally realistic and moderately novel backbones
of length 40 – 150 nucleotides. We achieve a validity score
of 41.0% and relatively strong diversity and novelty scores
compared to diffusion model baselines and ablated variants.
While generative models can successfully recapitulate well-
represented RNA folds (e.g., tRNAs, small rRNAs), the lack
of diversity in the training data may hinder broad generaliza-
tion. We are actively exploring improved data preparation
strategies combined with inductive biases that explicitly
incorporate physical interactions that drive RNA structure.
We hope RNA-FRAMEFLOW and the associated evalua-
tion framework serve as foundations for the community to
explore 3D RNA design, towards developing conditional
generative models for real-world design scenarios.
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Figure 5. Structural self-consistency evaluation. We sample a backbone from our model and pass it through an inverse folding model
(gRNAde) to obtain Nseq = 8 sequences. Each sequence is fed into a structure prediction model (RhoFold) to get the predicted all-atom
backbone. Self-consistency between a predicted backbone and the generated sample is measured with TM-score (we also report RMSD
and GDT_TS). For a given generated sample, we thus have Nseq = 8 TM-scores of which we take the maximum as its scTM score.

Length: 40
scTM: 0.482
scRMSD: 2.41
scGDT: 0.681
pdbTM: 0.385

Length: 50
scTM: 0.458
scRMSD: 16.91
scGDT: 0.455
pdbTM: 0.492

Length: 70
scTM: 0.763
scRMSD: 1.54
scGDT: 0.803
pdbTM: 0.652

Length: 90
scTM: 0.627
scRMSD: 12.51
scGDT: 0.241
pdbTM: 0.611

Length: 120
scTM: 0.948
scRMSD: 0.88
scGDT: 0.943
pdbTM: 0.896

Length: 130
scTM: 0.493
scRMSD: 8.53
scGDT: 0.250
pdbTM: 0.598

Figure 6. Some generated RNA backbones (colored) of varying lengths aligned with their RhoFold predicted structure (gray).

9



RNA-FRAMEFLOW for de novo 3D RNA Backbone Design

References
John Jumper, Richard Evans, Alexander Pritzel, Tim Green,

Michael Figurnov, Olaf Ronneberger, Kathryn Tunyasu-
vunakool, Russ Bates, Augustin Zidek, Anna Potapenko,
et al. Highly accurate protein structure prediction with
AlphaFold. Nature, 2021.

Justas Dauparas, Ivan Anishchenko, Nathaniel Bennett, Hua
Bai, Robert J Ragotte, Lukas F Milles, Basile IM Wicky,
Alexis Courbet, Rob J de Haas, Neville Bethel, et al. Ro-
bust deep learning–based protein sequence design using
proteinmpnn. Science, 2022.

Joseph L Watson, David Juergens, Nathaniel R Bennett,
Brian L Trippe, Jason Yim, Helen E Eisenach, Woody
Ahern, Andrew J Borst, Robert J Ragotte, Lukas F Milles,
et al. De novo design of protein structure and function
with rfdiffusion. Nature, 2023.

Jennifer A Doudna and Emmanuelle Charpentier. The new
frontier of genome engineering with crispr-cas9. Science,
2014.

Mihir Metkar, Christopher S Pepin, and Melissa J Moore.
Tailor made: the art of therapeutic mrna design. Nature
Reviews Drug Discovery, 23(1):67–83, 2024.

Jerome Mulhbacher, Patrick St-Pierre, and Daniel A La-
fontaine. Therapeutic applications of ribozymes and ri-
boswitches. Current opinion in pharmacology, 2010.

Tulsi Ram Damase, Roman Sukhovershin, Christian Boada,
Francesca Taraballi, Roderic I Pettigrew, and John P
Cooke. The limitless future of rna therapeutics. Frontiers
in bioengineering and biotechnology, 9:628137, 2021.

Dongran Han, Xiaodong Qi, Cameron Myhrvold, Bei Wang,
Mingjie Dai, Shuoxing Jiang, Maxwell Bates, Yan Liu,
Byoungkwon An, Fei Zhang, et al. Single-stranded dna
and rna origami. Science, 2017.

Joseph D Yesselman, Daniel Eiler, Erik D Carlson,
Michael R Gotrik, Anne E d’Aquino, Alexandra N
Ooms, Wipapat Kladwang, Paul D Carlson, Xuesong
Shi, David A Costantino, et al. Computational design
of three-dimensional rna structure and function. Nature
nanotechnology, 2019.

Laura R Ganser, Megan L Kelly, Daniel Herschlag, and
Hashim M Al-Hashimi. The roles of structural dynamics
in the cellular functions of rnas. Nature reviews Molecu-
lar cell biology, 2019.

Yueyi Li, Anibal Arce, Tyler Lucci, Rebecca A Rasmussen,
and Julius B Lucks. Dynamic rna synthetic biology: new
principles, practices and potential. RNA biology, 2023a.

Jason Yim, Andrew Campbell, Andrew Y. K. Foong,
Michael Gastegger, José Jiménez-Luna, Sarah Lewis, Vic-
tor Garcia Satorras, Bastiaan S. Veeling, Regina Barzilay,
Tommi Jaakkola, and Frank Noé. Fast protein backbone
generation with se(3) flow matching, 2023a.

Bartosz Adamczyk, Maciej Antczak, and Marta Szachniuk.
RNAsolo: a repository of cleaned PDB-derived RNA 3D
structures. Bioinformatics, 2022.

Chaitanya K. Joshi, Arian R. Jamasb, Ramon Viñas, Charles
Harris, Simon Mathis, Alex Morehead, Rishabh Anand,
and Pietro Liò. grnade: Geometric deep learning for 3d
rna inverse design, 2023.

Tao Shen, Zhihang Hu, Zhangzhi Peng, Jiayang Chen, Peng
Xiong, Liang Hong, Liangzhen Zheng, Yixuan Wang,
Irwin King, Sheng Wang, Siqi Sun, and Yu Li. E2efold-
3d: End-to-end deep learning method for accurate de
novo rna 3d structure prediction, 2022.

Quentin Vicens and Jeffrey S Kieft. Thoughts on how to
think (and talk) about rna structure. Proceedings of the
National Academy of Sciences, 2022.

Rachael C Kretsch, Ebbe S Andersen, Janusz M Bujnicki,
Wah Chiu, Rhiju Das, Bingnan Luo, Benoît Masquida,
Ewan KS McRae, Griffin M Schroeder, Zhaoming Su,
et al. Rna target highlights in casp15: Evaluation of pre-
dicted models by structure providers. Proteins: Structure,
Function, and Bioinformatics, 2023.

Josh Abramson, Jonas Adler, Jack Dunger, Richard Evans,
Tim Green, Alexander Pritzel, Olaf Ronneberger, Lindsay
Willmore, Andrew J Ballard, Joshua Bambrick, et al.
Accurate structure prediction of biomolecular interactions
with alphafold 3. Nature, 2024.

Alex Morehead, Jeffrey Ruffolo, Aadyot Bhatnagar, and Ali
Madani. Towards joint sequence-structure generation of
nucleic acid and protein complexes with se(3)-discrete
diffusion, 2023.

Anke Gelbin, Bohdan Schneider, Lester Clowney, Shu-Hsin
Hsieh, Wilma K Olson, and Helen M Berman. Geometric
parameters in nucleic acids: sugar and phosphate con-
stituents. Journal of the American Chemical Society, 118
(3):519–529, 1996.

Stephen C Harvey and M Prabhakaran. Ribose puckering:
structure, dynamics, energetics, and the pseudorotation
cycle. Journal of the American Chemical Society, 108
(20):6128–6136, 1986.

Mary C Clay, Laura R Ganser, Dawn K Merriman, and
Hashim M Al-Hashimi. Resolving sugar puckers in rna
excited states exposes slow modes of repuckering dynam-
ics. Nucleic acids research, 45(14):e134–e134, 2017.

10



RNA-FRAMEFLOW for de novo 3D RNA Backbone Design

Ricky T. Q. Chen and Yaron Lipman. Flow matching on
general geometries, 2024.

Jason Yim, Brian L. Trippe, Valentin De Bortoli, Emile
Mathieu, Arnaud Doucet, Regina Barzilay, and Tommi
Jaakkola. Se(3) diffusion model with application to pro-
tein backbone generation, 2023b.

John Ingraham, Max Baranov, Zak Costello, Vincent Frap-
pier, Ahmed Ismail, Shan Tie, Wujie Wang, Vincent
Xue, Fritz Obermeyer, Andrew Beam, et al. Illuminat-
ing protein space with a programmable generative model.
bioRxiv, pages 2022–12, 2022.

Luhuan Wu, Brian Trippe, Christian Naesseth, David Blei,
and John P Cunningham. Practical and asymptotically
exact conditional sampling in diffusion models. Advances
in Neural Information Processing Systems, 36, 2024.

Alexander Denker, Francisco Vargas, Shreyas Padhy, Kieran
Didi, Simon Mathis, Vincent Dutordoir, Riccardo Bar-
bano, Emile Mathieu, Urszula Julia Komorowska, and
Pietro Lio. Deft: Efficient finetuning of conditional dif-
fusion models by learning the generalised h-transform.
arXiv preprint arXiv:2406.01781, 2024.

Kieran Didi, Francisco Vargas, Simon Mathis, Vincent Du-
tordoir, Emile Mathieu, Urszula Julia Komorowska, and
Pietro Lio. A framework for conditional diffusion mod-
elling with applications in motif scaffolding for protein
design. In NeurIPS 2023 Machine Learning for Structural
Biology Workshop, 2023.

Rafael Josip Penic, Tin Vlasic, Roland G Huber, Yue Wan,
and Mile Sikic. Rinalmo: General-purpose rna language
models can generalize well on structure prediction tasks.
arXiv preprint, 2024.

Shujun He, Rui Huang, Jill Townley, Rachael C Kretsch,
Thomas G Karagianes, David BT Cox, Hamish Blair,
Dmitry Penzar, Valeriy Vyaltsev, Elizaveta Aristova, et al.
Ribonanza: deep learning of rna structure through dual
crowdsourcing. bioRxiv, 2024.

Avishek Joey Bose, Tara Akhound-Sadegh, Kilian Fatras,
Guillaume Huguet, Jarrid Rector-Brooks, Cheng-Hao
Liu, Andrei Cristian Nica, Maksym Korablyov, Michael
Bronstein, and Alexander Tong. Se(3)-stochastic flow
matching for protein backbone generation, 2023.

Yeqing Lin and Mohammed AlQuraishi. Generating novel,
designable, and diverse protein structures by equivariantly
diffusing oriented residue clouds, 2023.

Chengxin Zhang, Morgan Shine, Anna Marie Pyle, and
Yang Zhang. Us-align: universal structure alignments of
proteins, nucleic acids, and macromolecular complexes.
Nature methods, 2022.

Kevin S Keating, Elisabeth L Humphris, and Anna Marie
Pyle. A new way to see rna. Quarterly reviews of bio-
physics, 44(4):433–466, 2011.

Minkyung Baek, Ryan McHugh, Ivan Anishchenko, David
Baker, and Frank DiMaio. Accurate prediction of nu-
cleic acid and protein-nucleic acid complexes using
rosettafoldna. bioRxiv, 2022.

Yang Li, Chengxin Zhang, Chenjie Feng, Robin Pearce,
P Lydia Freddolino, and Yang Zhang. Integrating end-
to-end learning with deep geometrical potentials for ab
initio rna structure prediction. Nature Communications,
2023b.

Divya Nori and Wengong Jin. Rnaflow: Rna structure &
sequence co-design via inverse folding-based flow match-
ing. In ICLR 2024 Workshop on Generative and Experi-
mental Perspectives for Biomolecular Design, 2024.

11



RNA-FRAMEFLOW for de novo 3D RNA Backbone Design

A. Additional Experimental Details
A.1. Architectural Details

We list hyperparameters used for our denoiser model in Table 4 below:

Category Hyperparameter Value
Invariant Point Attention (IPA) Atom embedding dimension Dh 256

Hidden dimension Dz 128
Number of blocks 6
Query and key points 8
Number of heads 8
Key points 12

Transformer Number of heads 4
Number of layers 2

Torsion Prediction MLP Input dimension 256
Hidden dimension 128

Schedule Translations (training) linear
Rotations (training) linear
Translations (sampling) linear
Rotations (sampling) exponential
Number of denoising steps NT [10,50, 100, 500]

Table 4. Hyperparameters for the baseline model.

A.2. RhoFold Length Bias

We investigate the performance of RhoFold on the RNAsolo training dataset used for our generative model. Figure 7 shows
sequence length bias where RhoFold predicts structures with extremely low RMSDs for sequence lengths (like 70, 100, and
120) while predicting poor structures for other lengths with larger RMSDs. The performance across lengths is disparate (like
AlphaFold2) and may influence what is considered valid. Furthermore, RhoFold is not optimized for de novo designed RNA,
only naturally occurring RNA. To compensate for bias, we resort to a ranking instead of thresholding done by (Yim et al.,
2023b;a) when measuring validity.

B. Ablations
B.1. Composition of Backbone Coordinate Loss

We also analyze how changing the composition of atoms considered in the inter-atom losses affects performance. We
increase the number of atoms being supervised in the Lbb loss described above. Aside from the frame comprising C3′, C4′,
and O4′, we try two settings with 3 and 7 additional non-frame atoms included in the loss. For the 3 non-frame atoms, we
choose C1′, P , and O3′, and for the 7 non-frame atoms, we choose a superset C1′, P , O3′, C5′, OP1, OP2, and N1/N9.
We posit the additional supervision may increase the local structural realism, which may further improve validity, as shown
in Table 5.

FRAME COMPOSITION IN LBB % VALIDITY ↑ DIVERSITY ↑ NOVELTY ↓
FRAME ONLY (BASELINE) 41.0 0.62 0.54
FRAME AND 3 NON-FRAME 45.0 0.28 0.79
FRAME AND 7 NON-FRAME 46.7 0.35 0.85

Table 5. Ablating composition of backbone loss Lbb. Supervising more non-frame atoms improves validity but worsens diversity and
novelty. Best per-column result is bolded.

We indeed observe increasing validity as we increase the frame complexity in the auxiliary backbone loss. The minute
RMSD contributions from disordered fragments of the RNA may be minimal, accounting for greater likeness to the RhoFold
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Figure 7. RhoFold length bias. RhoFold has a strong bias for certain sequence lengths over others. This affects its efficacy when used to
compute the 3D self-consistency of generated backbones. The blue dotted line represents the median RMSD of RhoFold predictions
to the samples from RNAsolo. To minimize the influence of this length bias, we use TM-score for self-consistency because it does not
penalize flexible regions as much as RMSD.

predicted structures, scoring relatively higher scTM scores. However, the original frame-only baseline model has better
diversity and novelty which we attribute to high local variation in atomic placements. This variation causes two generated
structures for the same sequence length to look very different at an all-atom resolution.

B.2. Composition of Auxiliary Loss

We ablate the inclusion of different auxiliary loss terms that guide our SE(3) flow matching setup; results are in Table 6.
Although, there is an increase in EMD for bond distances as we remove distance-based losses like backbone coordinate
loss Lbb and all-to-all pairwise distance loss (Ldist). However, we also observe the model still learns realistic distributions
despite removing different loss terms, indicating that each loss makes up for the absence of the other. Moreover, the best
model still uses all losses with any removal causing a drop in validity.

LBB LDIST LSO(3) EMD (DISTANCE) ↓ EMD (ANGLES) ↓ EMD (TORSIONS) ↓ % VALIDITY ↑
✓ ✓ ✓ 0.17 0.11 2.36 41.0

✓ ✓ 0.18 0.14 3.85 35.0
✓ ✓ 0.23 0.11 3.72 13.3

✓ ✓ 0.18 0.18 3.59 16.7

Table 6. Ablations of loss terms on Earth Mover’s Distance scores for structural measurements compared to ground truth measurements
from RNAsolo. The first row corresponds to the baseline model. Distance-based losses like the backbone coordinate loss (Lbb) and
all-to-all pairwise distance loss (Ldist) are necessary to learn geometric properties like bond distances adequately.

Further inspecting the samples from the models without each loss term reveals structural deformities at the all-atom level.
Figure 8 shows such artifacts resulting from not enforcing geometric constraints through explicit losses.
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Figure 8. Not including auxiliary losses causes structural issues in generated RNAs. (A) RNA backbone from our baseline model with
expected adherence to bonding between nucleotides. (B) Not including the rotation loss LSO(3) causes nucleotides to have random
orientations, preventing them from connecting contiguously. (C) Not including the backbone atom loss Lbb causes intra-residue atoms to
be placed too close to one another resulting in bonds that should not exist. (D) Not including the all-to-all pairwise distance loss Ldist

causes deformations and fusing between adjacent frames, and unrealistic nucleotide placements, especially along helices and loops.

C. Additional Results
C.1. Evaluation of MMDIFF Samples

Here, we document global and local metrics from samples generated by MMDIFF. MMDIFF has a validity score of 0.0% as
all the samples have a poor scTM score below the 0.45 threshold to the RhoFold predicted backbones. Even though none of
the samples are valid, we show the average pdbTM scores for the samples, which are trivially low as there are no structures
from the PDB that match them due to poor quality.

40 50 60 70 80 90 100110120130140150
Sequence Length

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

sc
TM

pdbTM
0.24
0.32
0.40
0.48
0.56

0.0 0.25 0.5 0.75 1.0
scTM

0.0

0.25

0.5

0.75

1.0

pd
bT

M

Length
40
60
80
100
120
140

Figure 9. Validity and novelty of retrained MMDIFF’s generated backbones. (Left) scTM of backbones of lengths 40-150 with the
mean and spread of scTM for each length. (Middle) Scatter plot of self-consistency TM-score (scTM) and novelty (pdbTM) across
lengths. Vertical and horizontal dotted lines represent TM-score thresholds of 0.45. Overall, MMDIFF retrained on RNAsolo does not
generate realistic RNA structures.

While MMDIFF’s samples locally resemble RNA structures given realistic, manual inspection reveals multiple chain breaks
and disconnected floating strands, resulting in 0.0% validity. In 10 (Subplot 1), we see inter-residue C4′ distances slightly
varying, causing the chain breaks. Furthermore, the Ramachandran plot in Figure 10 (Subplot 4) reveals a more complex
angular distribution than found in RNAsolo, which may be a consequence of excessively folded regions or substructures that
may have folded in on themselves.
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Figure 10. Structural measurements from samples generated by MMDiff. (Subplots 1-3) Left: histogram of inter-nucleotide bond
distances in Angstrom. Middle: histogram of bond angles between nucleotide triplets. Right: histogram of torsion (dihedral) angles
between every four nucleotides. (Subplot 4): RNA-centric Ramachandran plot of structures from the training set (purple) and MMDiff’s
generated backbones (green).

C.2. Evaluation of Data Preparation Strategies

We include global evaluation metrics for the two data preparation strategies presented in the main text, namely structural
clustering and cropping augmentation.
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Figure 11. Validity and novelty of top-10 generated backbones from the model trained with only structural clustering. (Left) scTM of
backbones of lengths 40-150 with the mean and spread of scTM for each length. (Middle) Scatter plot of self-consistency TM-score
(scTM) and novelty (pdbTM) across lengths. Vertical and horizontal dotted lines represent TM-score thresholds of 0.45.
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Figure 12. Validity and novelty of top-10 generated backbones from the model trained with structural clustering and cropping. (Left)
scTM of backbones of lengths 40-150 with the mean and spread of scTM for each length. (Middle) Scatter plot of self-consistency
TM-score (scTM) and novelty (pdbTM) across lengths. Vertical and horizontal dotted lines represent TM-score thresholds of 0.45.
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