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Abstract

Recently, it has been observed that a transfer learning solution might be all we need
to solve many few-shot learning benchmarks – thus raising important questions
about when and how meta-learning algorithms should be deployed. In this paper,
we seek to clarify these questions by 1. proposing a novel metric – the diversity
coefficient – to measure the diversity of tasks in a few-shot learning benchmark and
2. by comparing Model-Agnostic Meta-Learning (MAML) and transfer learning
under fair conditions (same architecture, same optimizer, and all models trained
to convergence). Using the diversity coefficient, we show that the popular Mini-
ImageNet and CIFAR-FS few-shot learning benchmarks have low diversity. This
novel insight contextualizes claims that transfer learning solutions are better than
meta-learned solutions in the regime of low diversity under a fair comparison.
Specifically, we empirically find that a low diversity coefficient correlates with a
high similarity between transfer learning and MAML learned solutions in terms of
accuracy at meta-test time and classification layer similarity (using feature based
distance metrics like SVCCA, PWCCA, CKA, and OPD). To further support our
claim, we find this meta-test accuracy holds even as the model size changes. There-
fore, we conclude that in the low diversity regime, MAML and transfer learning
have equivalent meta-test performance when both are compared fairly. We also
hope our work inspires more thoughtful constructions and quantitative evaluations
of meta-learning benchmarks in the future.

1 Introduction

The success of deep learning in computer vision [Krizhevsky et al., 2012, He et al., 2015], natural
language processing [Devlin et al., 2018, Brown et al., 2020], game playing [Silver et al., 2016, Mnih
et al., 2013, Ye et al., 2021], theorem proving [Rabe et al., Polu and Sutskever, 2020, Han et al.],
code [Chen et al.] and more keeps motivating a growing body of applications of deep learning on
an increasingly wide variety of domains. In particular, deep learning is now routinely applied to
few-shot learning – a research challenge that assesses a model’s ability to learn to adapt to new tasks,
new distributions, or new environments. This has been the main research area where meta-learning
algorithms have been applied – since such a strategy seems promising in a small data regime due to its
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potential to learn to learn or learn to adapt. However, it was recently shown [Tian et al., 2020] that
a transfer learning model with a fixed embedding can outperform many modern sophisticated meta-
learning algorithms on numerous few-shot learning benchmarks [Chen et al., 2019, 2020, Dhillon
et al., 2019, Huang and Tao, 2019]. This growing body of evidence raises the question if researchers
are applying meta-learning with the right inductive biases [Mitchell, 1980, Shai Shalev-Shwartz,
2014] and designing appropriate benchmarks for meta-learning. Our evidence suggests this is not the
case.

Our work is motivated by the inductive bias that when the diversity of tasks in a benchmark is low,
then a meta-learning solution should provide no advantage compared to a minimally meta-learned
algorithm – e.g. only fine-tuning the final layer. Therefore, in this work, we quantitatively show
that when the task diversity – a novel measure of variability across tasks – is low, then MAML
(Model-Agnostic Meta-Learning) [Finn et al., 2017] learned solutions have the same accuracy as a
popular transfer learning algorithm – a supervised learned model with a fine-tuned final linear layer.
We want to emphasize the importance of doing such an analysis fairly: with the same architecture,
same optimizer, and all models trained to convergence. We hypothesize this was lacking in previous
work [Chen et al., 2019, 2020, Dhillon et al., 2019, Huang and Tao, 2019]. This empirical equivalence
remained true even as the model size changed – thus further suggesting this equivalence is more a
property of the data than of the model. Therefore, we suggest taking a problem-centric approach to
meta-learning and suggest applying Marr’s level of analysis [Hamrick and Mohamed, 2020, Marr,
1982] to few-shot learning – to identify the family of problems suitable for meta-learning. We do this
by analyzing the intrinsic diversity of the data.

Our contributions are summarized as follows:

1. We propose a novel metric that quantifies the intrinsic diversity of the data of a few-shot
learning benchmark. We call it the diversity coefficient. It enables analysis of meta-learning
algorithms through a problem-centric framework.

2. We analyze the two most prominent few-shot learning benchmarks – MiniImagenet and
Cifar-fs – and show that their diversity is low.

3. With this context, we clarify the previous results from [Tian et al., 2020] and show that
MAML and transfer learning have statistically equivalent test performance under a fair
comparison. We define a fair comparison when the two methods are compared using the
same architecture (backbone), same optimizer, and all models trained to convergence. This
holds even as the model size increases.

4. As an actionable conclusion, we provide a metric that can be used to analyze the intrinsic
diversity of the data in a few-shot learning benchmarks and if it measures to a low value
then the suggestion is to use simple transfer learning methods.

We hope that this line of work inspires a problem-centric first approach to meta-learning – especially
a quantitative approach to benchmark creation instead of focusing on making huge data sets.

2 Background

Model-Agnostic Meta-Learning (MAML): The MAML algorithm [Finn et al., 2017] attempts to
meta-learn an initialization of parameters for a neural network so that it is primed for fast gradient
descent adaptation. It consists of two main optimization loops: 1) an outer loop used to prime the
parameters for fast adaptation, and 2) an inner loop that does the fast adaptation. During meta-testing,
only the inner loop is used to adapt the representation learned by the outer loop.

Transfer Learning with Union Supervised Learning (USL): Previous work [Tian et al., 2020]
shows that an initialization trained with supervised learning, on a union of all tasks, can outperform
many sophisticated methods in meta-learning. In particular, their method consists of two stages:
1) first they use a union of all the labels in the few-shot learning benchmark during meta-training
and train with standard supervised learning (SL), then 2) during the meta-testing, they use an
inference method common in transfer learning: extract a fixed feature from the neural network
and fully fine-tune the final classification layer (i.e., the head) with LBGFS (Limited-memory
Broyden–Fletcher–Goldfarb–Shanno algorithm).
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Task2Vec Embeddings for Distance computation between Tasks: The diversity coefficient we
propose is the expectation of the distance between tasks (details in section 3). Therefore, it is essential
to define the distance between different pairs of tasks. We focus on the cosine distance between
Task2Vec (vectorial) embeddings as in [Achille UCLA et al., 2019]. The vectorial representation
of tasks provided by Task2Vec [Achille UCLA et al., 2019] is the vector of diagonal entries of the
Fisher Information Matrix (FIM) given a fixed neural network as a feature extractor – also called a
probe network – after fine-tuning the final classification layer to the task. The authors explain this is
a good vectorial representation of tasks because 1. It approximately indicates the most informative
weights for solving the current task (up to a second order approximation) 2. For rich probe networks
like CNNs, the diagonal is more computationally tractable. The Task2Vec embedding of task τ is the
diagonal of the following matrix:

F̂Dτ ,fw = F̂ (Dτ , fw) = Diag
(
Ex,y∼p̂(x|τ)p(y|x,fw)[∇w log p(y | x, fw)∇wp(y | x, fw)⊤]

)
(1)

where fw is the neural network used as a feature extractor with architecture f and weights w,
p̂(x | τ) is the empirical distribution defined by the training data Dτ = {(xi, yi)}ni=1 for task τ , and
p(y | x, fw) is a deep neural network trained to approximate the (empirical) posterior p̂(y | x, τ).

3 The Diversity Coefficient

The diversity coefficient aims to measure the intrinsic diversity (or variability) of tasks in a few-shot
learning benchmark.

3.1 Ground Truth Distribution Based Diversity

We propose that the diversity coefficient should measure some aggregation of the distance of tasks
from a few-shot learning benchmark. If the tasks are distributions then the measure should aggregate
the distance between probability distributions. Therefore when the ground truth distributions are
available, we propose the diversity coefficient to be the expected value of distances between the task
probability distribution (see section 3.2, 2 for notation details):

div(B) = Eτ1∼p(τ |B),τ2∼p(τ |B):τ1 ̸=τ2 [d(p(x1, y1 | τ1), p(x2, y2 | τ2))] (2)

3.2 Task Based Diversity Coefficient (with Task2Vec)

For real data the diversity coefficient is the expected distance between embeddings of different tasks
given a fixed probe network. In this work, we choose the distance to be the cosine distance between
vectorial representations of tasks according to Task2Vec as described in section 2. We define the
diversity coefficient of a few-shot learning benchmark B as follows:

d̂iv(B) = Eτ1∼p̂(τ |B),τ2∼p̂(τ |B):τ1 ̸=τ2ED1∼p̂(x1,y1|τ1),D2∼p̂(x2,y2|τ2)

[
d(F̂D1,fw , F̂D2,fw)

]
(3)

where fw is the neural networks used as a feature extractor with architecture f and weights w,
p̂(x | τ) is the empirical distribution defined by the training data Dτ = {(xi, yi)}ni=1 for task τ ,
τ1, τ2 are tasks sampled from the empirical distribution of tasks p̂(τ | B) for the current benchmark
B (i.e. a batch of tasks with their data sets D = (τi, Dτi)

N
i=1), a task τi is the probability distribution

p(x, y | τ) of the data, d is a distance metric (for us cosine), fw is the neural networks used as a
feature extractor with architecture f and weights w, and p̂(x | τ) is the empirical distribution defined
by the training data Dτ = {(xi, yi)}ni=1 for task τ . We’d also like to recall to the reader that the
definition of a task in this setting is of an n-way, k-shot few-shot learning task. Therefore, each task
has n classes sampled with k examples used for the adaptation.

3.3 Justification for Task Based Diversity Coefficient with Task2Vec

Previous work showed Task2Vec is a solid task embedding method because: 1. it’s able to predict
task similarities that match human semantic relations between different visual tasks [Achille UCLA
et al., 2019] 2. Task2Vec distances correlates positively with taxonomical distances [Achille UCLA
et al., 2019] 3. importantly, Task2Vec is based on the FIM – which is a Riemannian metric on the
space of probability distributions [Amari and Nagaoka, 2007]. This implies that distances based
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on Task2Vec are good proxy to ground truth distances between task distribution. We confirm this
in figure 11 where we should a strong correlation (with Pearson r = 0.990) of Task2Vec diversity
compared to ground truth diversity (using the Hellinger distance).

We want to emphasize that one of our main contributions is the novel use of Task2Vec in non-trivial
ways to analyze transfer and meta-learning algorithms.

4 Experiments

4.1 Experiments: Low Diversity Correlates with Equivalence of MAML and Transfer
Learning when the diversity is low

We show that the diversity coefficient of the popular MiniImagenet and Cifar-fs benchmarks are low
with good confidence intervals using four different probe networks in the left most plot of figure 1.
We argue it’s low because the diversity values are in the interval [0.06, 0.117] – and the minimum
and maximum values of the cosine distance are 0.0 and 1.0. The rightmost plot in figure 1 shows
the failure of transfer learning (with USL) to outperform MAML. Finally, we study the role of
model size. An alternative hypothesis to explain the equivalence of transfer learning (with USL)
and MAML could be due to the capabilities of large neural networks to be better meta-learners in
general – inspired by the impressive ability of large language models to be few-shot learners [Brown
et al., 2020, Bommasani et al., 2021, Radford et al., 2021, Devlin et al., 2018]. In particular, we
expect a meta-learned solution like MAML to help more for smaller-size models. We tested this and
surprisingly the equivalence between MAML and USL seems to hold even as the model increased
– strengthening our hypothesis that the low task diversity might be a bigger factor explaining our
observations 2.

Figure 1: MAML trained models and union supervised trained (USL) models have statistically
equivalent meta-test accuracy for MiniImagenet and Cifar-fs when the diversity is low. This
holds for both the Resnet12 architecture used in [Tian et al., 2020] and the 5 layer CNN (indicated as
“5CNN") in [Ravi and Larochelle, 2017]. We used Resnet18 and Resnet34 networks as probe networks
– both pre-trained on ImageNet (indicated as “pt" on table) and randomly initialized (indicated as
“rand" on table). We used 95% confidence intervals.

Figure 2: The meta-test accuracy of MAML and transfer learning using USL is similar in a
statistically significant way – regardless of the model size. We used the MiniImagenet benchmark
and the five-layer CNN used in [Finn et al., 2017, Ravi and Larochelle, 2017], and only increased the
filter size using sizes 4, 8, 16, and 32. The MAML model was meta-trained using 5 inner steps. The
legends MAML5 and MAML10 indicate the test time adaptation method.
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A Synthetic Experiments showing closeness of MAML and Transfer
Learning as Diversity Changes

In this section, we show the closeness of MAML and transfer learning (with USL) for synthetic
experiments for low and high diversity regimes in Figure 3. In the low regime, the two methods are
equivalent in a statistically significant way – which supports the main claims of our paper. As the
diversity increases, however, the difference between USL and MAML increases (in favor of USL).
This will be explored further in future work.

The tasks are the usual n-way, k-shot tasks, but the data comes from Gaussian classes and the
meta-learners are tasked with classifying from which Gaussian class the data points came from in a
few-shot learning manner. Benchmarks are created by sampling the parameters of individual classes
from a Gaussian benchmark distribution, where class means move farther away from each other and
the origin as the diversity of the benchmark increases. Therefore, the Gaussian benchmark with the
highest diversity coefficient has Gaussians that are the furthest from each other and the origin. We
computed the task diversity coefficients using the Task2Vec method as outlined in Section 3, using a
random 3-layer fully connected probe network described in Section F.

Figure 3: Left and center plots show the meta-test accuracy of MAML and transfer learning
using USL is similar in a statistically equivalent way in the low diversity regime in the 5-way,
10-shot Gaussian Benchmarks. The right most figure shows the strong correlation between
Task2Vec diversity and the ground truth Hellinger Diversity. Results used a (meta) batch-size of
500 tasks, 95% confidence intervals and the Pearson value was r = 0.990. MAML5 and MAML10
indicate adaptation at test time of the MAML5 trained model.

B Can we trust the computed diversity coefficient indeed reflects the diversity
of a benchmark?

In this section, we argue that of all our low diversity computations are and valid because: 1. the task
based diversity using Task2Vec reflects the true diversity as argued in section 3.3 2. our results are
robust to the choice of the probe network because Task2Vec depends solely on the task, and ignores
interactions with the model [Achille UCLA et al., 2019] – implying our results are valid regardless of
the probe network 3. despite the evidence provided by the authors of Task2Vec [Achille UCLA et al.,
2019], we nevertheless tested this dependence and used 4 probe networks to compute the task based
diversity coefficient 4. the choice of using the expectation was empirically based on the bell shape of
the histogram that shows the distribution of task distances (via Task2Vec) in figures 15, 16 17. They
were Gaussian shaped, so the expectation of task distances was a sufficient statistic. 5. Although
there are a large number of possible tasks based on combinatorial arguments (e.g. C64

5 = 7624512),
500 samples are enough to make strong statistical inferences about the population. If we assume
the distribution of the data is Gaussian, then we expect to see a single mode with an approximate
bell curve. If we plot the histogram of task pair distances of the 500 tasks and see this, then we can
infer our Gaussian assumption is approximately correct. Given that the histograms in figure 15, 16 17
appear Gaussian, we can infer our assumption is approximately correct. This implies we can make
strong statistical assumptions about the population – in particular, that we have a good estimate of
the diversity coefficient using 500 samples. 6. The heat maps for MiniImagenet and Cifar-fs were
homogeneous (uniform color) as shown in figures 14,13, 12.
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C Discussion

In this work, we presented a problem-centric framework when comparing transfer learning methods
with meta-learning algorithms – using USL and MAML as the representatives of transfer and meta-
learning methods respectively. We showed that the diversity coefficient of the popular MiniImagenet
and Cifar-fs benchmark is low and that under a fair comparison – MAML is very similar to transfer
learning (with USL) at test time. This was also true even when changing the model size – removing
the alternative hypothesis that the equivalence of MAML and transfer learning with USL held due
to large models. Instead, this strengthens our hypothesis that the diversity of the data might be the
driving factor. The equivalence of MAML and USL was also replicated in synthetic experiments.
Therefore, we challenge the suggestions from previous work Tian et al. [2020] that only a good
embedding can beat more effective than sophisticated meta-learning – especially in the low diversity
regime, and instead suggest this observation might be due to lack of good principles to design meta-
learning benchmarks. In addition, our synthetic experiments show a promising scenario where we
can systematically differentiate meta-learning algorithms from transfer learning algorithms – which
supports our actionable suggestion to use the diversity coefficient to effectively study meta-learning
and transfer learning algorithms. In addition, this problematizes the observations that fo-MAML
in meta-data set [Triantafillou et al., 2019] is better than transfer learning solutions – since our
synthetic experiments show MAML is not better than USL in the high diversity regime. To further
problematize, we want to point out that meta-learning methods are not better than transfer learning
as observed by [Guo et al., 2019] – as observed in our synthetic experiments. Meaning that further
research is needed in both data sets – especially from a problem-centric perspective with quantitative
methods like the ones we suggest.

We also have theoretical results from a statistical decision perspective in the supplementary section Q
that inspired this work and suggest that when the distance between tasks is zero – then the predictions
of transfer learning, meta-learning, and even a fixed model with no adaptation are all equivalent (with
respect to the l2 loss).

We hope this work inspires the community in meta-learning and machine learning to construct
benchmarks from a problem-centric perspective – that go beyond only large scale data sets – and
instead use quantitative metrics for the construction of such research challenges.

We’d like to emphasize that our synthetic experiments are promising because we can systematically
differentiate meta-learning algorithms from transfer learning algorithms – which supports our action-
able suggestion to: 1. use the diversity coefficient to effectively study meta-learning and transfer
learning algorithms, and 2. to use the diversity coefficient to design better benchmarks. In addition,
this problematizes the observations that fo-proto-MAML in meta-data set [Triantafillou et al., 2019]
is better than transfer learning solutions – since our synthetic experiments show MAML is not better
than USL in the high diversity regime. To further problematize, we want to point out that meta-
learning methods are not better than transfer learning as observed by [Guo et al., 2019] – as observed
in our synthetic experiments. We hypothesize however that the two scenarios in [Triantafillou et al.,
2019] are different [Guo et al., 2019]. The first one focuses on the same meta-training and meta-
testing conditions, while the latter focuses on a cross-domain. We hypothesize that the cross-domain
scenario might benefit from a meta-learning which lower variance (e.g., a fixed embedding [Tian
et al., 2020]) – which might explain why sophisticated meta-learning solutions might perform worse
on the cross-domain setting as observed in [Guo et al., 2019]. Further research is needed in both
benchmarks – especially from a problem centric perspective with quantitative methods like the ones
we suggest.

In addition, we hypothesize that diversity might be a good proxy to predict the difference between
meta-learning and transfer learning methods. More precisely, we conjecture that in a low diversity
setting meta-learning methods are equivalent at meta-test time to transfer learning methods but their
difference increases as the diversity of tasks in a benchmark increases. In the high diversity regime,
we conjecture that the difference between meta-learning and transfer learning methods increases as
the diversity increases. We are optimistic that meta-learning algorithms might outperform transfer
learning methods, once we start comparing them in more thoughtfully designed benchmarks. It
is possible that despite our efforts, meta-learning algorithms – as currently designed – are too
sophisticated and in fact lead to meta-overfitting, as shown in previous work [Miranda et al., 2021].

10



We’d like to emphasize, that up until now, the meta-learning community has evaluated meta-learning
algorithms in benchmarks that might not be the most appropriate. We conjecture high diversity
benchmarks are more appropriate, since they might capture the meta-learning inductive prior: high
diversity means that adaptation is required by construction. Thus, we conjecture that previous
conclusions should be taken with a grain of salt until a more in depth study can be made in the
high diversity regime – especially with benchmarks with real world data that have been analyzed
extensively with metrics like the diversity coefficient that we propose. We conjecture that we can
finally do meta-learning research effectively – given that a regime where meta-learning and transfer
learning methods can be differentiated has been discovered, and previous low diversity benchmarks
have been understood.

We also conjecture that meta-learning research is different from classical machine learning research.
Historically, a seminal paper is the one where AlexNet was proposed [Krizhevsky et al., 2012]. In
that time we had low performance on a fixed task e.g., Imagenet and couldn’t even interpolate the
data (i.e., reach zero train error). We conjecture that meta-learning is different because if we have a
diversity so large where all possible tasks are incorporated, then we should reach the no-free lunch
theorem regime [Wolpert and Macready, 1997] – where all algorithms should perform the same on
average. Therefore, we hypothesize that a deliberate and quantitative efforts to design benchmarks
is essential. A great example of such an attempt is the Abstraction and Reasoning Corpus (ARC)
benchmark [Chollet, 2019] – which was made very thoughtfully with Artificial General Intelligence
(AGI) in mind. We conjecture meta-learning is the most promising path in that direction, and hope
this work inspires the design of benchmarks that lead to actionable and deliberate attempts to make
progress to build such AGI technologies.

D Related Work

Our work proposes a problem-centric framework for the analysis of meta-learning algorithms inspired
from previous puzzling results [Tian et al., 2020]. We propose the use of a pair-wise distance between
tasks and analyze how this metric might correlate with meta-learning. The closest line of work for
this is the long line of work by [Achille UCLA et al., 2019] where they suggest methods to analyze
the complexity of a task, propose unsymmetrical distance metrics for data sets, reachability of tasks
with SGD, ways to embed entire data sets and more [Achille UCLA et al., 2019, Achille et al., 2018,
2019, 2020]. We hypothesize this line of work to be very fruitful and hope that more people adopt
tools like the ones they suggest and the tools we propose in this paper before researching or deploying
meta-learning algorithms. We hope this helps meta-learning methods succeed in practice – since
cognitive science suggests meta-learning is a powerful method humans use to learn [Lake et al., 2016].
In the future, we hope to compare [Achille UCLA et al., 2019]’s distance metrics between tasks with
ours to provide a further unified understanding of meta-learning and transfer learning. A contrast
between their work and ours is that we focus our analysis from a meta-learning perspective applied to
few-shot learning – while their focus is understanding transfer learning methods between data sets.

Our analysis of the feature extractor layer is identical to the analysis by [Raghu et al., 2020]. They
showed that MAML functions mainly via feature re-use than by rapid learning, i.e., that a model
trained with MAML changes very little after the MAML adaptation. The main difference of their
work with our is: 1) that we compare MAML trained models against union supervised learned
models (USL) instead of only comparing MAML against adapted MAML, and 2) that we explicitly
analyzed properties of the data sets. In addition, we use a large set of distance metrics for our analysis
including: SVCCA, PWCCA, LINCKA and OPD as proposed by [Raghu et al., 2017, Morcos et al.,
2018, Kornblith et al., 2019, Ding et al., 2021].

Our work is most influenced by previous work suggesting modern meta-learning requires rethinking
[Tian et al., 2020]. The main difference of our work with theirs is that we analyzed the internal
representation of the meta-learning algorithms and contextualize these with quantifiable metrics of
the problem being solved. Unlike their work, we focused on a fair comparison between meta-learning
methods by ensuring the same neural network backbone was used. Another difference is that they
gained further accuracy gains by using distillation – a method we did not analyze and leave for future
work.

Another related line of work is the predictability of adversarial transferability and transfer learning.
They show this both theoretically and with extensive experiments [Liang et al., 2021]. The main
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difference between their work and ours is that they focus their analysis mainly on transfer learning,
while we concentrated on meta-learning for few-shot learning. In addition, we did not consider
adversarial transferability – while that was a central piece of their analysis.

In terms of benchmarks, we’d like to start with the ARC benchmark [Chollet, 2019]. ARC was
designed with AGI in mind – arguably the ultimate meta-learner. Its focus is primarily on visual
reasoning using program synthesis techniques. We hypothesize that it’s a very promising path, but our
work inspires extension that go beyond program synthesis approaches. The meta-data set benchmark
is an attempt to make the data set for few-shot learning at a larger scale and more diverse [Triantafillou
et al., 2019]. The main difference of their work and ours is that we propose a quantitative metric to
measure the intrinsic diversity in the data and go beyond data set size or number of classes. They
also showed that a meta-learning algorithms – fo-Proto-MAML – is capable of beating transfer
learning. However, they also showed transfer learning baselines are in fact quite difficult to beat. The
IBM Cross-Domain few-shot learning benchmark [Guo et al., 2019] is a fascinating benchmark to
evaluate meta-learning algorithms. Their central premise however is to transfer from a source domain
to a different target domain – instead of our setting where tasks are created from the same meta-
distribution. This is why their paper is considered, in addition to few-shot learning, a cross-domain
benchmark. We believe this is an essential scenario to think about, but consider it different from our
setting or the setting of meta-data set. We’d also like to emphasize that they do not employ a metric
like our diversity coefficient that quantitatively assesses the diversity of their benchmarks. These two
last benchmarks, although fascinating, are missing the essential quantitative analysis of the data itself
we are trying to propose.

The work by [Chen et al., 2021] gives, to the best of our knowledge – the first non-vacuous general-
ization bounds for the (supervised) meta-learning setting. Their statements apply to a non-convex
loss function and use stability theory at the task level. The bound depends on the mutual information
on the input data vs the output data of the meta-learner. The results, although fascinating, are not
built to separate classes of meta-learning – like our work attempts to do empirically.

The work by [Wang et al., 2021] proposes the idea of global labels as a way to indirectly optimize for
the meta—learning objective for a fixed feature extractor. Global labels are equivalent to the concept
we call USL in this paper. They show that pre-training (i.e. using USL/global labels) provides
excellent meta-test results – including with their method (named MeLa) that can infer global labels
given only local labels provided at in episodic meta-training. Their theoretical analysis depends
on a fixed feature extractor, instead of considering the whole end-to-end meta-learner as a whole –
meaning two different deep learning models cannot be used in their analysis. Therefore, their analysis
fails to separate how different feature extractors might be trained, e.g. comparing USL vs MAML
directly in an end-to-end fashion. In contrast, we instead tackle this question head on theoretically Q
(with limited results) but instead show that the feature extractors indeed are different empirically G.

The work by [Denevi et al., 2020] proposes a theoretical treatment of meta-learning using meta-
learners with closed-form equations derived from ridged regularization using fixed features. They
formulate the conditional and unconditional formulation using side information for the task (e.g. the
support set) and show the conditional method is superior. In relation to our work, they do not provide
characterizations of the role of a neural network doing end-to-end meta-learning (in their empirical or
theoretical analysis). In contrast, our findings make an explicit effort in understanding the role of
the neural network in meta-learning in an end-to-end fashion through emperical analysis. Another
contrast is that their results are highly theoretical, while ours focus on empirical results. In addition,
their results are on synthetic experiments and do not explore their findings in the context of modern
few-shot learning benchmarks like MiniImagenet or Cifar-fs.

The work by [Goldblum et al., 2020] provide strong evidence that adaptation at test time is best
done when the meta-trained model matches the adaptation it was meta-trained with. This is shown
because their classically pre-trained nets cannot perform better than the MetaOpt models with any
fine-tuning method. However, their results cannot beat [Tian et al., 2020] and thus does not help
separate the role of meta-training and union supervised learning (USL). Their Resnet12 results do
provide further support to our hypothesis that large enough neural networks all perform the same,
since 78.63 (Goldblum) vs 79.74 (RFS) have very close errors, in line with our findings. However,
we hypothesize it is not due to the model size in accordance with our experiments 2.

The work by [Gao and Sener, 2020] provides theoretical bounds of when the expected risk of MAML
and DRS (Domain Randomized Search) by bounding the gradient norm. DRS attempts to model
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USL but fails to do so completely, because USL is capable of modeling adaptation because the final
layer is capable of adaption. Thus, it does not address the capabilities of the feature extractor being
able to learn all the information needed to meta-learn. Concisely, their analysis is not capable of
separating performance of MAML and USL. Even if it hypothetically could, their analysis remains
an upper bounds (with assumptions). This raising the question if their method truly explain the
observations that transfer learning methods – like USL – beat meta-learning methods. In addition,
they do not provide in depth empirical analysis with respect to any real few-shot learning benchmarks
like MiniImagenet or Cifar-fs.

The work by [Kumar et al., 2022] provides an exploration of the effects of diversity in meta-learning.
The main difference with our work is that they focus mostly on sampling strategies, and it’s effect on
diversity, while we focused on the intrinsic diversity in the benchmarks themselves.

The work by [Rosenfeld et al., 2021] provides a theoretical analysis on the difference between
interpolation and extrapolation in transfer learning (and domain generalization). We believe this type
of theory may be helpful as an inspiration to explore why in the high diversity regime there seems to
be a difference between the performance of meta-learning and transfer learning methods.

A related line of work [Miranda, 2020b,a] first showed that there exist synthetic data sets that are
capable of exhibiting higher degrees of adaptation as compared to the original work by [Raghu et al.,
2020]. The difference is that they did not compare MAML models against transfer learning methods
like we did here. Instead, they focused on comparing adapted MAML models vs. unadapted MAML
models.

E Convergence of Learning Curves for Fair Comparison

E.1 Convergence of Learning Curves for MiniImagenet and Cifar-fs

In this section, we show that learning curves for the models used in figure 1 achieve convergence.
Note that the learning curves for the models trained with MAML look noisier because the distributed
training reduces the (meta) batch size for logging purposes. In addition, due to episodic meta-training,
(meta) batch sizes have to be smaller compared to batch sizes used in USL.

Figure 4: Plot showing convergence of 5CNN on MiniImagenet.

Figure 5: Plot showing convergence of 5CNN on Cifar-fs.

F Experimental Details

F.1 Experimental Details on MiniImagenet and Cifar-fs

We will explain the details for the four models we trained on figure 1.
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Figure 6: Plot showing convergence of Resnet12 on MiniImagenet.

Figure 7: Plot showing convergence of Resnet12 on Cifar-fs.

Figure 8: Plot showing convergence of a custom 3-layer fully connected network, for all synthetic
Gaussian benchmarks tested. Each curve represents a different synthetic Gaussian benchmark tested
on either MAML (left plot) or USL (right plot). The curves are then color-coded by the value of the
Task2Vec-based task diversity coefficient of the Gaussian benchmark tested in that particular run.

Summary: We trained a five layer CNN (5CNN) and Resnet12 on both MiniImagenet and Cifar-
fs to convergence. We used the Adam optimizer with learning rate 1e-3. We used the standard
MiniImagenet and Cifar-fs data augmentations as provided in ["Arnold et al., 2020] matching [Tian
et al., 2020].

Experimental Details for 5CNN on MiniImagenet: We used the five layer CNN from [Finn et al.,
2017, Ravi and Larochelle, 2017]. We used 32 filters as used in previous work. We used the Adam
optimizer with learning rate 1e-3 for both MAML and USL. We used no scheduler. We trained the
USL model for 1000 epochs. We trained the MAML model for 100,000 episodic iterations (outer
loop iterations). We used a batch size of 128 for USL and a (meta) batch size of 8 for MAML. For
MAML we used an inner learning rate of 1e-1 and 5 inner learning steps. We did not use first order
MAML. It took 3 hours 5 minutes 5 seconds to train USL to convergence with a single GPU. It took
1 day 6 hours 21 minutes 8 seconds to train MAML to convergence with 4 NVIDIA GeForce GTX
TITAN X GPUs.

Experimental Details for Resnet12 for MiniImagenet: We used the Resnet12 provided by [Tian
et al., 2020]. We used the Adam optimizer with learning rate 1e-3 for both MAML and USL. We used
the same cosine scheduler as in [Tian et al., 2020] for USL and no cosine scheduler for MAML. We
trained the USL model for 186 epochs. We trained the MAML model for 37,800 episodic iterations
(outer loop iterations). We used a batch size of 512 for USL and a (meta) batch size of 4 for MAML.
For MAML we used an inner learning rate of 1e-1 and 4 inner learning steps. We did not use first
order MAML. It took 1 day 17 hours 2 minutes 41 seconds to train USL to convergence with a single
dgx A100-SXM4-40GB GPU. The MAML model was trained with Torchmeta [Deleu et al., 2019]
which didn’t support multi gpu training when we ran this experiment, so we estimate it took 1-2
weeks to train on a single GPU. In addition, it was ran with an earlier version of our code, so we

14



unfortunately did not record the type of GPU but suspect it was either an A100, A40 or Quadro RTX
6000.

Experimental Details for 5CNN for Cifar-fs: We used the five layer CNN from [Finn et al., 2017,
Ravi and Larochelle, 2017] provided by ["Arnold et al., 2020]. But we used 1024 filters instead of 32
(to speed up convergence). We used the Adam optimizer with learning rate 1e-3 for both MAML and
USL. We used the same cosine scheduler as in [Tian et al., 2020] for MAML and no cosine scheduler
for USL. We trained the USL model for 1000 epochs. We trained the MAML model for 100,000
episodic iterations (outer loop iterations). We used a batch size of 256 for USL and a (meta) batch size
of 8 for MAML. For MAML we used an inner learning rate of 1e-1 and 5 inner learning steps. We
did not use first order MAML. It took 10 hours 43 minutes 31 seconds to train USL to convergence
with a single GPU dgx A100-SXM4-40GB. It took 2 days 9 hours 26 minutes 27 seconds to train
MAML to convergence with 4 Quadro RTX 6000 GPUs.

Experimental Details for Resnet12 for Cifar-fs: We used the Resnet12 provided by [Tian et al.,
2020]. We used the Adam optimizer with learning rate 1e-3 for both MAML and USL. We used the
cosine scheduler used in [Tian et al., 2020] for both USL and MAML. We trained the USL model
for 200 epochs. We trained the MAML model for 75,500 episodic iterations (outer loop iterations).
We used a batch size of 1024 for USL and a (meta) batch size of 8 for MAML. For MAML we used
an inner learning rate of 1e-1 and 5 inner learning steps. We did not use first order MAML. It took
45 minutes 54 seconds to train USL to convergence with a single GPU. It took 1 day 19 hours 29
minutes 31 seconds to train MAML to convergence with 4 dgx A100-SXM4-40GB GPUs.

Why the Adam optimizer? We hypothesize that the Adam optimizer is the most appropriate
optimizer for a fair comparison for various reasons. First, the Adam optimizer is widely used –
making our results most relevant and broadly applicable. Adam is generally a stable optimizer –
especially for sophisticated meta-learning algorithms like MAML. It is not uncommon to have SGD
result in exploding gradients or end up diverging – especially for MAML. Most importantly however,
we hope to stay faithful whenever possible to how modern transformer models are trained – because
they have been shown to be good meta-learners, e.g., GPT-3 is often cited as a zero-shot learner
[Brown et al., 2020]. These type of models do use more complicated learning schemes besides only
Adam (e.g., warm-ups, decay rates etc.) but we hypothesize using Adam is a good first step. We
conjecture that the small benefits that SGD might provide are negligible compared to the stability
that Adam provides, especially as the scale of the data sets starts to increase. Without Adam, we
conjecture it would be hard to even perfectly fit the data for large scale data sets as it’s usually
done in Deep Learning. This was definitively true in our own experiments. Therefore, we decided
to use Adam for our experiments, since it would be too hard to use SGD reliably at scale or with
sophisticated meta-learning algorithms.

Details for left most plot on figure 1: Results on the left most plot used a (meta) batch-size of 500
tasks and 95% confidence intervals 1. All MAML models were trained with 5 inner steps during
meta-training. MiniImagenet is abbreviated as “MI" in the figure. We used 20 shots (number of
examples per class) since we can use the whole task data to compute the diversity coefficient (no
splitting of support and query set required for the diversity coefficient). We used Resnet18 and
Resnet34 networks as probe networks – both pre-trained on ImageNet (indicated as “pt" on table)
and randomly initialized (indicated as “rand" on table). We observe that both type of networks and
weights give similar diversity results.

Details for right most plot on figure 1: “MAML5" and “MAML10" in the bar plot indicates
the adaptation method used at test time i.e. we used 5 inner steps and 10 inner steps at test time.
MiniImagenet is abbreviated as “MI" in the figure. All confidence intervals were at 95%. We used
500 few-shot learning tasks. This results in (5002 − 500)/2 = 124, 750 pair-wise distances used to
compute the diversity coefficient. We used 95% confidence intervals.

F.2 Experimental Details on N-way Gaussian Tasks

We used a custom 3-layer fully connected network derived from Learn2Learn’s OmniglotFC model
["Arnold et al., 2020], with parameters input_size = 1, output_size = 5, and hidden layer sizes
sizes = [128, 128]. We used the Adam optimizer with learning rate 1e-3 for both MAML and USL,
but did not use a cosine scheduler for either USL or MAML. We trained the USL model for 100
epochs. We trained the MAML model for 14,000 episodic iterations (outer loop iterations). We used
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a batch size of 100 for USL and a (meta) batch size of 100 for MAML. For MAML we used an inner
learning rate of 1e-1 and 5 inner learning steps. We did not use first order MAML. It took 19 minutes
24 seconds to train USL to convergence with a single Titan X. It took 2 days and 13 hours 6 minutes
27 seconds to train MAML to convergence with a single Titan X.

F.2.1 Experimental details of empirical equivalence figure in main body

Experimental details for figure 11. MAML models were trained with 5 inner steps. MAML5 and
MAML10 indicate the adaptation procedure at test time. Results used a (meta) batch-size of 500
tasks and 95% confidence intervals. As the diversity of the benchmark increases, the Gaussian tasks
are sampled further away from the origin. Note, as the diversity increases, the difference between
USL and MAML increases (in favor of USL).

F.3 Experimental Details on 5CNN test performance equivalence on MiniImagenet

For figure 1 we used Logistic Regression (LR) with LBFGS with the default value for the l2
regularization parameter given by Python’s Sklearn. Note that an increase in inner steps from 5 to 10
with the MAML5 trained model does not provide an additional meta-test accuracy boost, consistent
with previous work [Miranda, 2020a]. Note that the fact that the MAML5 representation matches
the USL representation when both use the same adaptation method is not surprising – given that: 1)
previous work has shown that the distance between the body of an adapted MAML model is minimal
compared to the unadapted MAML (which we reproduce in 9 in the green line) and 2) the fact that a
MAML5 adaptation is only 5 steps of MAML while LR fully converges the prediction layer. We
want to highlight that only the MAML5 model achieved the maximum meta-test performance of 0.6
with the MAML5 adaptation – suggesting that the USL and MAML5 meta-learning algorithms might
learn different representations. For USL to have a fair comparison during meta-test time when using
the MAML adaptation, we provide the MAML final layer learned initialization parameters to the
USL model (but any is fine due to convexity when using a fixed feature extractor). This is needed
since during meta-training, USL is trained with a union of all the labels (64) – so it does not even
have the right output size of 5 for few-shot prediction. Meta-testing was done in the standard 5-way,
5-shot regime.

G Feature Extractor Analysis of USL and MAML

G.1 MAML learns a different base model compared to Union Supervised Learned models –
even in the presence of low task diversity

The first four layers of figure 10 shows how large the distance is of a MAML representation compared
to a SL representation. In particular, it is much larger than the distance value in the range [0, 0.1]
from previous work that compared MAML vs. adapted MAML [Raghu et al., 2020]. We reproduced
that and indeed MAML vs. adapted MAML has a small difference (smaller for us) – supporting our
observations that a MAML vs. a USL learned representation show a statistically significant difference
at the feature extractor layer, even when the diversity is low.

In this section, we discuss figure 9 that suggests that the feature extractor of MAML trained model
is markedly different from a USL model – even when the diversity is low. Figure 9 shows that the
initial difference is already much larger than previous work [Raghu et al., 2020] were, 0.0 < 0.1 and
statistically significant. In fact, we reproduce their results from [Raghu et al., 2020] in figure 9 with
the green curve. In addition, their original distance remains much larger than our reproduction of
the distance of previous work with the green line. This suggests that the adaptation makes even a
smaller difference in MAML according to our experiments. This is true for all four metrics: SVCCA,
PWCCCA, LINCKA and OPD.

H Classification Layer Analysis of USL and MAML show predictions are
similar

The main contribution of this section is to show the similarity of the predictions of USL and MAML
through figure 10. This is additional evidence to our claims – through a different metric than accuracy
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Figure 9: Shows the significant difference between the feature extractor layers of a MAML
trained model vs. a union supervised learned model – especially in contrast to the small change
in the adapted MAML model (green line). This figure suggests that although benchmark diversity
is small, a meta-learned representation still learns through a different mechanism than a supervised
learned representation. Note that the green line is our reproduction of previous work [Raghu et al.,
2020] that showed that a MAML trained model does not change after using the MAML adaptation.
They term this observation as “feature re-use".

difference – that USL and MAML are empirically equivalent. For the background on SVCCA,
PWCCA, CKA, and, OPD see section O.

I Task2Vec embeddings are also related to the Complexity of a Task

In addition, Task2Vec exhibits impressive properties that are strongly suggestive that it also captures
the amount of information about a task. Some of these properties are: 1. the ability to use Task2Vec
to select a pre-trained features extractor close to the ground truth optimal expert – while costing
substantially less [Achille UCLA et al., 2019]. 2. the correlation of the (nuclear) norm of the
Task2Vec embedding with the difficulty of the task and test performance. 3. In addition, Task2Vec
(through FIM) is related to the (Kolmogorov) complexity of a task [Achille et al., 2018].

J Background of Few-shot Learning Basics

The goal of few-shot learning is to learn to classify from a limited set of training samples. A few-shot
benchmark is utilized to evaluate few-shot learning algorithms and typically contains many classes
and a smaller number of samples per class. Typically, few-shot learning algorithms learn in episodes,
where in each episode, a task consisting of a train (or support) set and a held-out validation (or query)
set is sampled. In particular, a task is a n-way k-shot classification problem, means that the support
and query sets each consist of n classes sampled from the benchmark, and each of the n classes are
represented by k shots or examples. The learner uses the support set to adapt to the task, and the
query set to evaluate the performance on the given task.
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Figure 10: The classification layer of transfer learning and a MAML5 model decrease in
distance – implying similar predictions. More precisely, an initialization trained with 5 inner steps
(MAML5) has an increasingly similar head (classifier) after adaptation with MAML5 compared
to the classifier layer of the Union Supervise-Learned (USL) model that has been adapted only at
the final layer. In particular, the USL model has been adapted with Logistic Regression (LR) with
LBFGS with the default value for the l2 regularization parameter given by Python’s Sklearn (as in
[Tian et al., 2020]). We showed this trend with four different distance metrics - SVCCA, PWCCA,
LICKA, and OPD - as referenced in section 2. Observe that according to PWCCA, the distance
between the predictions is zero. This is true because the distance of classification layer (indicated
as “head" in the figure) is zero. The architecture used here is a five layer CNN as in [Finn et al.,
2017, Ravi and Larochelle, 2017] with their same setup. The benchmark used for this analysis is
MiniImagenet.

K Synthetic Gaussian Benchmark and N-way Gaussian Tasks

We create a series of synthetic few-shot benchmarks, where each Gaussian benchmark B is defined by
four parameters B = (µm, σm, µs, σs). To form the dataset of our benchmark, we first sample 100
meta-train, 100 meta-test, and 100 meta-validation classes, where class 1 ≤ i ≤ 300 is a Gaussian
parameterized by (µclassi , σclassi) where

µclassi ∼ N(µm, σm), σclassi ∼ |N(µs, σs)|

Then, for each class i, we sample 1000 data points (xi,1, i) . . . (xi,1000, i) where each datapoint (x, y)
is composed of a input value x ∈ R and class label 1 ≤ y ≤ 300. The input values xi,1 . . . x1,1000

are each sampled from class i’s class distribution:

xi,1 . . . xi,1000 ∼ N(µclassi , σclassi)

Having defined our dataset underlying our benchmark, we may now sample individual tasks from
our benchmark. Each task in our benchmark is 5-way, 10-shot - that is, each task is formed by
first sampling 5 ways from the benchmark dataset, then sampling 10 shots from each of the 5 ways.
The goal of each task is to correctly predict which of the 5 ways an input value x ∈ R falls into.
We conducted experiments using 7 different benchmarks, with each benchmark defined by four
parameters and its corresponding Hellinger distribution diversity coefficient and Task2Vec task
diversity coefficient, as listed in Table 1:
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Benchmark Parameters
(µm, σm, µs, σs) Hellinger-based Distribution Diversity Task2Vec-based Task Diversity

(0, 0.01, 1, 0.01) 7.475e-05 ± 4.891e-07 0.247 ± 1.04e-3
(0, 1, 1, 0.01) 0.183 ± 1.24e-3 0.271 ± 1.15e-3
(0, 3, 1, 0.01) 0.574 ± 2.28e-3 0.393 ± 1.79e-3
(0, 10, 1, 0.01) 0.860 ± 1.75e-3 0.470 ± 2.35e-3
(0, 20, 1, 0.01) 0.929 ± 1.31e-3 0.533 ± 2.47e-3
(0, 30, 1, 0.01) 0.952 ± 1.10e-3 0.537 ± 2.57e-3
(0, 1000, 1, 0.01) 0.998 ± 2.07e-4 0.546 ± 2.74e-3

Table 1: Benchmarks of increasing diversity are created by increasing σm, or, the standard
deviation of the class mean. This table also shows that as the ground truth diversity increases,
so does the Task2Vec diversity – implying the Task2Vec diversity is a good proxy to the ground
truth distribution based diversity. A larger σm increases the variance of the class means, making
their respective class distributions farther apart on average and causing both the Hellinger-based
distribution diversity and Task2Vec-based task diversity coefficients to increase. We varied σm

from 0.01 to 1000 and fixed all remaining benchmark parameters to obtain 7 different Gaussian
benchmarks. The corresponding Hellinger-based distribution diversity coefficients were obtained
by numerically approximating the expected Hellinger distance between two classes sampled from
the benchmark and computing the 95% confidence interval of the approximation. We also computed
Task2Vec-based task diversity coefficients as an alternative measure to diversity using a random
3-layer fully connected probe network described in Section F. Figure 12 visualizes the Task2Vec task
diversities among the synthetic benchmarks via a heatmap showing the relative pairwise distance
between sampled tasks.

Figure 11: Shows the strong relation between Hellinger distribution diversity and the Task2Vec
task diversity coefficients, as both coefficients may be used interchangeably as a measure for the
diversity of a given synthetic Gaussian benchmark The first two plots show the relation between
the Hellinger-based distribution diversity of a synthetic Gaussian benchmark and the benchmark’s
performance on the MAML5, MAML10, and USL methods. These first two plots are noticeably
similar to Figure 3 (where Task2Vec-based task diversity was used as a measure of diversity instead of
Hellinger-based distribution diversity), which indicates that our Hellinger-based distribution diversity
metric also serves as a good proxy for task diversity. The rightmost plot shows a strong positive
correlation between Hellinger-based distribution diversity and Task2Vec task diversity (Pearson
r = 0.990).

L Distribution-based Diversity Metrics

In addition to the task diversity methods (such as Task2Vec) that we chose as a measure of diversity
across our experiments in our main paper, we would like to introduce an additional class of diversity
metrics that we call distribution diversity. Unlike task diversity, which quantifies diversity through
the expected distance between any two distinct tasks sampled from the benchmark, distribution
diversity quantifies diversity through the expected distance between any two distinct distributions that
underlie the benchmark. In our synthetic Gaussian experiments, we define the distribution diversity
of our Gaussian benchmark as the expected Hellinger distance between two distinct Gaussian class
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Figure 12: Heatmaps show how benchmarks with larger Task2Vec-based task diversity
coefficient show more heterogeneity between sampled tasks Each heatmap below shows the
pairwise distances between fifteen 5-way, 10-shot few-shot learning tasks sampled from the various
synthetic Gaussian benchmarks described in Table 1. Note that as σm (the standard deviation of
the class mean) increases, the distance between two tasks becomes larger on average and more
varied, which can be seen as the heatmaps become more heterogeneous. This increase in expected
distance among different tasks in turn increases the Task2Vec-based task diversity coefficient, which
summarizes the average distance between any two tasks. From left to right, top to bottom, the
benchmarks tested have parameters σm = 0.01, 1, 3, 20, 30, 1000 and Task2Vec-based task diversity
coefficient parameters div = 0.247, 0.271, 0.393, 0.533, 0.537, 0.546.

distributions sampled from the benchmark - we describe the calculation of the distribution diversity
of our synthetic Gaussian benchmark in more detail in Section M.

M Hellinger Diversity Coefficient and Hellinger Distance

An alternative metric to the Task2Vec-based task diversity metric is the Hellinger-based distribution
diversity metric. The Hellinger-based distribution diversity of our Gaussian benchmark is obtained
by computing the expected Hellinger distance between any two classes sampled from the benchmark.
That is, for some benchmark parameterized by B = (µm, σm, µs, σs), the diversity coefficient is
given by

div(B) = Eµ1,µ2∼N(µm,σm)Eσ1,σ2∼|N(µs,σs)|[H
2(N(µ1, σ1), N(µ2, σ2))]

where H2 denotes the squared Hellinger distance metric and N(µ1, σ1), N(µ2, σ2) denote the
distributions of the two classes sampled from the benchmark. The Hellinger-based distribution
diversity metric provides an intuitive, model-agnostic characterization of the diversity of a benchmark
- the larger the diversity, the less similar any two classes within the benchmark are, and the easier it is
to distinguish between two classes. Conversely, the lower the diversity, the more similar any two
classes within the benchmark are, and the harder it is to distinguish between two classes due to a
larger overlap between the two classes’ distributions.
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Note that the closed-form equation for the Hellinger distance between the two class distributions
N(µ1, σ1), N(µ2, σ2) is given by

H2(N(µ1, σ1), N(µ2, σ2)) = 1−

√
2σ1σ2

σ2
1 + σ2

2

e
− 1

4
(µ1−µ2)2

σ2
1+σ2

2

However, there is no simple closed-form equation for computing the diversity div(B) itself. As a
result, we computed the diversity coefficient as a numerical approximation by repeatedly sampling
two classes from the benchmark distribution and calculating the Hellinger distance between the two
classes. These samples ultimately provide a 95% confidence interval that represents the expected
Hellinger distance between two classes sampled from the benchmark.

We also compared our Hellinger-based distribution diversity coefficient with the Task2Vec-based task
diversity coefficient for each of the synthetic Gaussian benchmarks tested in Table 1. We observe a
strong positive correlation between the Hellinger-based distribution diversity and Task2Vec-based
task diversity coefficients according to Figure 11, indicating that the Hellinger-based distribution
diversity serves as an effective proxy for task diversity when the number of ways and shots of all
tasks are fixed.

N Analysis of distribution of task distances in few-shot learning benchmarks

N.1 Heat Maps show Low Diversity and Homogeneity of tasks from MiniImagenet and
Cifar-fs

In this section, we show the heat maps showing the distances between 5-way, 20-shot few-shot
learning tasks from MiniImagenet and Cifar-fs in figure 13 and 14. We used 20-shots because we do
not need to separate the data into support and query set to compute the diversity coefficient. We show
that tasks sampled from these benchmarks create not only a low diversity coefficient on average, but
also at the level of individual distances between pairs of tasks. In addition, the heat map’s uniform
coloring reveals that it is also justifiable to call the tasks from these benchmarks homogeneous. Low
diversity is shown because the distances are between 0.07-0.12 given that max is 1.0 and minimum is
0.0.

N.2 Histograms of distances of tasks in the synthetic Gaussian Benchmark, MiniImagenet
and Cifar-fs

In this section, we show the histograms of the cosine distances between pairs of tasks for the Gaussian
Benchmark, MiniImagenet and Cifar-fs. The main purpose of this is to argue that a (relatively small)
sample of the tasks is sufficient to estimate population statistics – like the expected distance between
tasks i.e. diversity coefficient.

For ease of exposition for the argument, consider the case where we have 500 distance from a large
population of size

(
64
5

)
= 7, 624, 512. The goal is to argue that 500 samples are enough to make

strong statistical inferences about the population – even if it’s as large as 7, 624, 512. If we assume
the distribution of the data is Gaussian, then we expect to see a single mode with an approximate
bell curve. Therefore, if we plot the histogram of task pair distances of the 500 tasks and see this,
then we can infer our Gaussian assumption is approximately correct. Given that the 15, 16, 17 appear
Gaussian, we can infer our assumption is approximately correct. This implies we can make strong
statistical assumptions about the population – in particular, that we have a good estimate of the
diversity coefficient using 500 samples. Additionally, in histograms also discard the presence of
outlier tasks.

O Background on Deep Neural Network Distance metrics

Distances for Deep Neural Network Feature Analysis: To compute the distance between neural
networks, we use the distance versions of Singular Value Canonical Correlation Analysis (SVCCA)
[Raghu et al., 2017], Projection Weighted Canonical Correlation (PWCCA) [Morcos et al., 2018],
Linear Centered Kernel Analysis (LINCKA) [Kornblith et al., 2019] and Orthogonal Procrustes
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Figure 13: Shows homogeneity and low diversity of 5-way, 20-shot tasks from MiniImagenet
using the Task2Vec distance [Achille UCLA et al., 2019]. The top left heat map uses a Resnet18
pre-trained on Imagenet to compute the Task2Vec distance between tasks. The top right heat map
uses a Resnet18 with random weights to compute the Task2Vec distance between tasks. The bottom
left heat map uses a Resnet34 pre-trained on Imagenet to compute the Task2Vec distance between
tasks. The bottom right heat map uses a Resnet34 with random weights on Imagenet to compute the
Task2Vec distance between tasks. Homogeneity is shown because of the uniform color shown in the
heat map. Low diversity is shown because the distance is between 0.07-0.12 given that max is 1.0
and minimum is 0.0. Note the diagonal is exactly zero because it is comparing the same tasks. The
axis indices indicate the arbitrary name for the tasks. Indices between heat maps do not indicate the
same task. We used the cosine distance between task Task2Vec embeddings.

Distance (OPD) [Ding et al., 2021]. These distances are in the interval [0, 1] and are not necessarily
a formal distance metric but are guaranteed to be zero when their inputs are equal and nonzero
otherwise. This is true because SVCCA, PWCCA, LINCKA are based on similarity metrics and
OPD is already a distance. Note that we use the formula d(X,Y ) = 1− sim(X,Y ) for our distance
metrics where sim is one either SVCCA, PWCCA, LINCKA similarity metric and X,Y are matrices
of activations (called layer matrices). The distance between two models is computed by choosing a
layer and then comparing the features/activations after adaptation for that layer given a batch of tasks
represented as a support and query set.

O.1 Neuron Vectors

The representation of a neuron d in layer l is the vector z(l)d (X) ∈ RN of activations for a set of N
examples, where X ∈ RN,D is the data matrix with N examples.

O.2 Layer Matrix

A layer matrix L for layer l is a matrix of neuron vectors z
(l)
d (X) ∈ RN with shape, [N,Di] i.e.

L ∈ RN,Di . In other words, the layer matrix L is the subspace of RN spanned by its neuron vectors
z
(l)
d (X). In short, L is the layer matrix [zld; . . . ; z

l
D1

] ∈ RN,Di with neuron vector zld.

O.3 CCA

Canonical Correlation Analysis (CCA) is a well established statistical technique for comparing the
(linear) correlation of two sets of random variables (or vectors of random variables). In the empirical
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Figure 14: Shows homogeneity and low diversity of 5-way, 20-shot tasks from Cifar-fs using the
Task2Vec distance. The top left heat map uses a Resnet18 pre-trained on Imagenet to compute the
Task2Vec distance between tasks. The top right heat map uses a Resnet18 with random weights to
compute the Task2Vec distance between tasks. The bottom left heat map uses a Resnet34 pre-trained
on Imagenet to compute the Task2Vec distance between tasks. The bottom right heat map uses
a Resnet34 with random weights on Imagenet to compute the Task2Vec distance between tasks.
Homogeneity is shown because of the uniform color shown in the heat map. Low diversity is shown
because the distance is between 0.07-0.12 given that max is 1.0 and minimum is 0.0. The axis indices
indicate the arbitrary name for the tasks. Indices between heat maps do not indicate the same task.
We used the cosine distance between task Task2Vec embeddings.

Figure 15: Histogram of distances of 5-way, 20-shot tasks from Cifar-fs using the Task2Vec
distance. This plot justifies the use of a subsample of the population to estimate the diversity
coefficient because of its approximate Gaussian distribution. For the full argument, see the main
text, section N.2. The top left histogram uses a Resnet18 pre-trained on Imagenet to compute the
Task2Vec distance between tasks. The top right histogram uses a Resnet18 with random weights to
compute the Task2Vec distance between tasks. The bottom left histogram uses a Resnet34 pre-trained
on Imagenet to compute the Task2Vec distance between tasks. The bottom right histogram uses a
Resnet34 with random weights on Imagenet to compute the Task2Vec distance between tasks.

case, however, one computes the correlations between two sets of data sets (e.g. two matrices
X ∈ RN,D1 and Y ∈ RN,D2 with N examples and D1, D2 features or layer matrices).
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Figure 16: Histogram of distances of 5-way, 20-shot tasks from MiniImagenet using the
Task2Vec distance. This plot justifies the use of a subsample of the population to estimate the
diversity coefficient because of its approximate Gaussian distribution. For the full argument,
see the main text, section N.2. The top left histogram uses a Resnet18 pre-trained on Imagenet to
compute the Task2Vec distance between tasks. The top right histogram uses a Resnet18 with random
weights to compute the Task2Vec distance between tasks. The bottom left histogram uses a Resnet34
pre-trained on Imagenet to compute the Task2Vec distance between tasks. The bottom right histogram
uses a Resnet34 with random weights on Imagenet to compute the Task2Vec distance between tasks.

True distribution based Canonical Correlation Analysis (CCA): What we call true distribution
based CCA is the standard CCA measure using the true but known distribution of the data p∗(x)
and p∗(y). In this case, CCA searches for a pair of linear combinations a∗, b∗ of two set of random
variables (or vectors of random variables) x = [X1, . . . , XD1

] and y = [Y1, . . . , YD2
] that maximizes

the Pearson correlation coefficient:

a∗, b∗ = argmax
a,b

EX,Y [(a
⊤x)((b⊤y))]√

EX [(a⊤x)2]
√
EY [(a⊤y)2]

= arg max
w1,w2

a⊤ΣX,Y b√
a⊤ΣX,Xa

√
b⊤ΣY,Y b

where ΣX,Y ,ΣX,XΣY,Y are the (true) covariance and variance matrices respectively (e.g.
ΣX,Y [i, j] = Cov[Xi, Xj ] = [XiYj ] for centered random variables). All of these can be replaced by
empirical data matrices in the obvious way.

O.4 SVCCA

At a high level, SVCCA is a similarity measure of two matrices that aims in removing redundant
neurons (i.e. redundant features) with the truncated SVD by keeping 0.99 of the variance and then
measure the overall similarity by averaging the top C CCA values.

SV: Given two matrices L1 ∈ RN,D1 , L2 ∈ RN,D2 (e.g. layer matrices) first reduce the effective
dimensionality of the matrix via a low rank approximation L′

1 ∈ RN,D′
1 , L2′ ∈ RN,D′

2 by choosing
the top k singular values that keeps 0.99 of the variance. In particular, for each layer matrix, Li keep
the top D′

i singular values (and vectors) such that
∑D′

i
j=1 |σj | ≥ 0.99

∑rank(Li)
j=1 |σj |.

SVCCA: SVCCA is a statistical technique for the measuring the (linear) similarity of two sets
of data sets L1 ∈ RN,D1 , L2 ∈ RN,D2 (e.g. data matrices, layer matrices) by first reducing the
effective dimensionality of the matrix via a low rank approximation L′

1 ∈ RN,D′
1 , L′

2 ∈ RN,D′
2 (e.g.

by choosing the top k singular values that keeps 0.99 of the variance) and then applying the standard
empirical CCA to the resulting matrices. This is repeated C = min(D′

1, D
′
2) times and the overall

similarity of the two matrices is computed as the average CCA: svcca = sim(L′
1, L

′
2) =

1
C

∑C
c=1 ρc

Concretely:

1. Get the D′
i components that keep 0.99 of the variance (i.e. D′

i such that
∑D′

i
j=1 |σj | ≥

0.99
∑rank(Li)

j=1 |σj | ).
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Figure 17: Histogram of distances of 5-way, 20-shot tasks from the Synthetic Gaussian bench-
mark using the Task2Vec distance. This plot justifies the use of a subsample of the population to
estimate the diversity coefficient because of its approximate Gaussian distribution. For the full
argument, see the main text, section N.2. The meta parameters generating tasks for each benchmark
are denoted by B = (0, x, 1, 0.01) where x is in the list [0.01, 1, 3, 10, 20, 30, 1000] indicating the
mean to generate the mean of the Gaussian tasks. For full details of the synthetic Gaussian benchmark,
see section M.

2. Get the SVD: U1,Σ1, V
⊤
1 = SV D(L1) and U2,Σ2, V

⊤
2 = SV D(L2)

3. Then produce the SVD dimensionality reduction by L′
1 = L1V1[1 : ki] ∈ RN,D1 and

L′
2 = L2V2[1 : k] ∈ RN,D2 where Vi[1 : Di] gets the top Di columns of a layer matrix i.

4. Get the CCA of the reduced layer matrix: [ρc]
C
c=1 = CCA(L′

1, L
′
2) where, C =

min(D′
1, D

′
2)

5. Finally return the mean CCA: svcca = 1
C

∑C
c=1 ρc, where is the k-th CCA value of the

reduced layer matrix.

O.5 PWCCA

At a high level, PWCCA was developed to increase the robustness (to noise) of SVCCA in the context
of deep neural networks. In particular, Maithra et al. [Morcos et al., 2018] noticed that when the
performance of the neural networks stabilized, so did the set of CCA vectors (or principle neuron
vectors) related to the network stabilized on the data set in question. Thus, they suggest to give higher
weighting to the canonical correlation ρc of these stable CCA vectors – in particular to the ones that
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are similar to the final output layer matrix, e.g. L1. Note this is simpler than trying to track the
stability of these CCA vectors during training and then give those higher weighting.

PWCCA: Formally let L1 be the layer matrix [zld; . . . ; z
l
D1

] ∈ RN,Di with neuron vectors zld
for some layer l. Recall that the k-th left CCA vector for layer matrix L1 is defined as follows,
x̃c = L1ac = L1(Σ

− 1
2uc) where ac is the cth CCA direction and uc is the c-th left singular value

from the matrix M = Σ
− 1

2

L1
ΣL1,L2Σ

− 1
2

L2
= UΛV ⊤. Then, PWCCA can be computed as follows:

1. Calculate the CCA vectors x̃c = L1ac = L1(Σ
− 1

2

L1
uc) and explicitly orthonormalize with

Gram-Schmidt for numerical stability.

2. Compute the weight α̃c of how much the layer matrix L1 is account for by each CCA vector
x̃k with equation α̃c(hc, L1) =

∑C
c=1 |⟨x̃c, z

l
c⟩RN | where zlc is the c-th column of the layer

matrix L1

3. Normalize the weight indicating how much each CCA vector hc accounts for L1 and denote
it with, αc(x̃k, L1) =

α̃c(x̃k,L1)∑C
c=1 αc(x̃k,L1)

4. Finally return the mean CCA weighted by αc(x̃k, L1): pwcca =
∑C

c=1 αc(x̃k, L1)ρc where
C = min(D′

1, D
′
2).

The original authors could have used the right CCA vectors, i.e. ỹc = L2bk = L2(Σ
− 1

2 vk) and in
fact the details of their code suggest they choose the one that would have lead to fewer values removed
by SVD. This choice seems to already be robust to noise, as shown in [Morcos et al., 2018]. Note
that the CCA vectors x̃k, ỹk are of size RN and thus could be viewed as the principle neuron vectors
that correlate two layers L1, L2. With this view, PWCCA computes the mean CCA normalized by of
the c principle neuron vectors are account for the output layer matrix the most.

O.6 CCA for CNNs

The input to CCA are two data matrices, but CNNs have intermediate representations that are
4D tensors. Therefore, some justification is needed in how to create the data matrices needed for
computing CCA for CNNs. Note that it’s the same reasoning for both SVCCA and PWCCA.

Each channel as the dimensionality of the data matrix: One option is to get the intermediate
representation of size [M,C,H,W ] and get a layer matrix of size [MHW,C]. Thus, MHW is the
effective number of data points and the channels (or number of filters) is the effective dimensionality
of the (layer) matrix. In this view, each patch of an image processed by the CNN is effectively
considered a data point. This view is very natural because it also considers each filter as its own
“neuron" – which seams reasonable considering that each filter uniquely responds to each stimulus
(e.g., data patch). This view results in HW images for every sample in the data set (or batch) of size
M and C effective neurons.

Although the original authors suggest this metric as a good metric mainly for comparing two layers
that are the same – we hypothesize it is also good for comparing different layers (as long as the
effective number of data points match for the two layer matrices). The reason is that CCA tries to
compute the maximum correlation of two data sets (or sets of random variables) and assumes no
meaning in the ordering of the data points and assumes no process for generating each individual
sample for the set of random variables, thus meaning that this metric (CCA) can be used for any two
layers in a matrix. Overall, in this view, we are comparing the representation learned in each channel.

Each activation as the dimensionality of the data matrix: One option is to get the intermediate
representation of size [M,C,H,W ] and get a layer matrix of size [M,CHW ]. Thus, M is the
effective number of data points (which matches the number of samples in the data set or batch) and
therefore each activation value is the effective dimensionality of the (layer) matrix. In this view,
each activation is viewed as a neuron of size M and we have CHW effective neurons for each
activation. The authors suggest this metric for comparing different layers (potentially at different
depths). However, because CCA assumes no correspondence between the data points nor the same
dimensionality in the data matrix – we hypothesize this way to define the data matrix is as valid as
the previous definition for comparisons between any models at any layer. One disadvantage however
is that it will often result in data matrices that are very large due to CHW being very large – which
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results in artificially high CCA similarity values. Potential ways to deal with it are noticing that there
is no correspondence between the data matrices, so a cross comparison of every data point with every
other data point in CCA is possible (resulting is O(M2) comparisons for the empirical covariance
matrix). Alternatively one can pool in the spatial dimensions [H,W ] resulting in potential smaller
layer matrices e.g. of shape [M,C] with a pool over the entire spatial dimension. For these reasons
and the fact that we hypothesize an image patch being its own image – we prefer to interpret the
number of channels as the natural way to compare CNNs so that the layer matrices results of size
[MHW,C].

Subsampling of representations for channels as dimensionality: In this section, we review the
subsampling we did when comparing the representations learned in each channel, i.e. the layer
matrix has size [MHW,C]. The effective number of data points MHW will often be much larger
than needed (e.g. for 16 data samples M = 16 and H = W = 84 results in MHW = 112, 896),
especially compared to the number of filters/channels (e.g. C = 64). Previous work [Raghu et al.,
2017, Morcos et al., 2018] suggest using the number of effective data points to be from 5-10 times
the size of the dimensionality in a layer matrix of size [N ′, D′] that means N ′ = 10D′. Based on our
reproductions of that number, we choose N ′ = 20D′ which results in NHW = 20C

O.7 Centered Kernel Alignment (CKA)

At a high level, CKA is based on the insight that one can first measure the similarity between every
pair of examples in each representation separately and then use the similarity structure to compute an
overall similarity metric. In our case, we can treat the examples as the neuron vectors and compare
all neuron vectors using some kernel function. Usually this will end in a kernel matrix of size M,M ′

where M and M ′ are the number of examples. In our case, they would be D,D′ for the number of
neurons of each layer matrix. Note, the layers matrices can correspond to neurons of different layers
in a neural network.

Linear CKA: We use the linear kernel function as used in previous work [Kornblith et al., 2019, Ding
et al., 2021]. Given two layer matrices X1 ∈ RN,Dl and X2 ∈ RN,Dl′ for layers l, l′, we compute the
linear kernel X⊤

1 X2 to get the Dl by Dl′ kernel matrix indicating the (linear) similarity per neuron
vector for the two layers. Then to obtain a single distance value we compute the Frobenius norm of
the kernel matrix and subtract by one after normalization:

dlinearCKA(A,B) = 1− ∥A⊤B∥F
∥A⊤A∥F ∥B⊤B∥F

(4)

Note that depending on how the examples in matrices A,B are organized the cross-product could
be computed with AB⊤ instead. Other kernel functions have been tested (e.g., the RBF kernel) for
CKA but similar results are obtained, resulting in linear CKA being the most popular CKA method
[Ding et al., 2021, Kornblith et al., 2019] to the best of our knowledge.

O.8 Orthogonal Procrustes Distance (OPD)

At a high level, the orthogonal Procrustes distance computes the distances between two matrices after
using for the best orthogonal matrix that tries to match the two. Usually this is done after centering
and dividing by the Frobenious the matrices, i.e. normalizing the matrices. In addition, previous work
[Ding et al., 2021] finds that OPD is a better metric at detecting changes that matter functionally and
robust against changes that do not matter.

OPD: Formally, the Orthogonal Procrustes Distance is the smallest distance between two matrices X
and Y (with columns as the vectors in question) found by finding the orthogonal matrix Q which most
closely maps A to B. Therefore, the OPD distance is the distance value from solving the orthogonal
Procrustes problem:

dOPD(X,Y ) = min
Q

∥X − Y Q∥F (5)

where ∥ · ∥F is the Frobenius norm. When matrices are normalized (centered and divided by their
Frobenious norm) this is called the general Procrustes problem. However, the closed for equation we
used is the following:

d′OPD(X,Y ) =
1

2

(
∥X∥F + ∥Y ∥F − 2∥X⊤Y ∥∗

)
(6)
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where ∥ · ∥∗ is the nuclear norm, i.e. the sum of singular values
∑

i σ(A)i = ∥A∥∗ . The division
by 2 is to guarantee that the OPD distance is between [0, 1] instead of [0, 2]. We do the standard
normalization of the matrices before computing the OPD distance – by centering and dividing by
the Frobenious norm of the matrix. This is done because the orthogonal matrix in the orthogonal
Procrustes problem does not allow for translation or rescaling of the matrices. Therefore, this
normalization enforces invariance to this type of transformations – i.e. we don’t want large OPD
values due to rescaling or translation (and even if present, the orthogonal matrix wouldn’t be able to
reflect it).

Therefore, the final equation for OPD we use is:

dOPD(X,Y ) = 1− ∥X⊤Y ∥∗ (7)

Why OPD? We use OPD due to the findings of [Ding et al., 2021]. They find that OPD is a more
robust metric (compared to SVCCA, PWCCA, and CKA) because it is sensitive to changes that affect
real functional behavior (so it detects changes to behavior that “matter") and it’s specific against
changes that do not. As a summary, some of the evidence that they provide for this is that OPD is
able to detect when 0.75 of the principal components are removed, while CKA cannot detect removal
of principal components until 0.97 are removed. CCA like metrics on the other hand are not specific –
even random initialization noise overwhelms the distances it reports, while OPD is more robust to
this random noise. For the last point, this means that even if we compare two different layers with
CCA, the noise will dominate the distance reported instead of the difference caused by comparing
different layer.

O.9 Correctly using Feature Based Distances

When comparing two layers of a neural network using two layer matrices, one needs to be careful with
the number of data points (or batch size) being used. This is because metrics like CCA intrinsically
are formulated as an optimization and if the number of examples is not larger than the number
of dimensionality of the examples – then the similarity can be pathologically be perfect (e.g., the
distance is zero when it’s actually not zero). Therefore, we follow the suggestions by the original
authors of SVCCA [Raghu et al., 2017] and always use at least 10 times more examples than there
are features for our feature based comparisons. We call this value the safety margin. To illustrate this
idea, we produce two random matrices and compare how the similarity (SVCCA) values varies as
a function of the dimensionality of the data and the number of points. Since the two matrices are
completely random, we know they should not be very similar and thus SVCCA should report a high
similarity value (or low distance value). Therefore, we can see in figure 18 how as the dimensionality
increases, the similarity value approaches a perfect similarity of 1.0. In figure 19 we can see how as
the number of points increases, we approach a smaller similarity – closer to the true similarity for
random matrices.

In general, given two matrices X,Y ∈ RM ′,D′
with the number of (effective) data points M ′ and

(effective) dimensionality (number of features) D′ – we want the number of points to be larger by
a safety factor s. Formally, it must satisfy this inequality to avoid the pathological case for feature
based distances:

D′ ≤ sM ′ (8)

where we suggest to use s ≤ 10 (as used in previous work [Raghu et al., 2017]). Note the effective
number of data points used and dimensionality can be different depending on how one reshapes the
CNN tensors to produce layer matrices as explained in section O.6. For example, if one uses the
channel as the dimensionality (i.e., use the image patches as an effective data point) then one has to
obey the following inequality:

C ≤ sMHW (9)

where M is the batch size, H,W is the height and width of the images, and C is the number of
filters/channels for the current layer. This means that for a given architecture processing images of a
given size that the only parameter we can change to make the above inequality true is the batch size
M .
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Figure 18: Shows that as the dimensionality of a random data matrix increases – the SVCCA
similarity approaches the pathological case by falsely reports the similarity is perfect. The green
line indicates when the number of examples and dimensionality are equal (and equal to 300). D
denotes the dimensionality of the simulated data and B the size of the batch size/number of points.

Figure 19: Shows how to avoid the pathological case when using feature based similarities by
increasing the number of data points (or batch size). In particular, as the number of data points in
two random data matrix increases – the true similarity approaches the true low similarity value. The
green line indicates when the number of examples and dimensionality are equal (and equal to 300).
D denotes the dimensionality of the simulated data and B the size of the batch size/number of points.

P Summary of Compute Required

We used an internal compute cluster with wide varied of GPUs. We used Titan X GPUs for most
five layer CNN experiments. We used A40 and dgx-A100 GPUs for Resnet12 experiments, with 48
GB and 40 GB GPU memory respectively. We did notice that the Resnet12 architecture we used
from previous work [Tian et al., 2020] required more memory than Resnet18 and Resnet34 used in
Task2Vec [Achille UCLA et al., 2019]. By requiring more memory, we mean we did not have many
memory out of bound issues with Resnet18/Resnet34, but did have memory issues with Resnet12. In
addition, our episodic meta-learning training for MAML used Learn2Learn’s ["Arnold et al., 2020]
distributed training to speed up experiments. Experiments took 1-2 weeks with MAML in a single
GPU to potentially 2-3 days with multiple GPUs (we used 2, 4 to 8 GPUs depending on availability).
For synthetic experiments, we used Titan X GPUs with 16GB of GPU memory. Experiments took
around 1-2 days on average with a single GPU. For more precision, check the experimental details
section F.
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Q A Statistical Decision view of the differences between Supervised Learning
and Meta-learning

Recent work in meta-learning implies that feature-reuse might be all we need to solve modern few-
shot learning benchmarks [Tian et al., 2020]. However, what it also reveals is our poor understanding
of meta-learning algorithms. Therefore, in this section, we take the most foundational perspective
to formulate and analyze meta-learning algorithms by analyzing them from an optimal statistical
decision theory perspective?

We hope that this can help clarify the results from [Tian et al., 2020] and therefore help meta-learning
researchers design better meta-learning benchmarks and meta-learning algorithms.

Q.1 Supervised Meta-Learning problem set-up

In this section, we introduce the notation for supervised meta-learning. Intuitively, we seek to find a
function that minimizes the expected risk over tasks. To formalize it, we will use three formulations:

Monolithic meta-learner: for a monolithic decision rule g (or meta-learner), we want to find the
optimal g by minimizing the supervised meta-learning expected risk:

RMono(g) = Eτ∼p(τ)Ex,y∼p(x,y|τ) [l(g(x, τ), y)] (10)

where g is a single monolithic function, p(τ) is the true but unknown distribution of tasks, p(x, y | τ)
is the true, but unknown distribution of data pair given a task τ and (x, y) is the data pair of input and
target value sampled from a task.

Meta-learned meta-learner: for a meta-learned decision rule we usually have an adaptation rule A
(e.g. SGD in MAML) and a function approximator h (e.g. a neural network) and minimize the follow
over both:

RML(A, h) = Eτ∼p(τ)Ex,y∼p(x,y|τ) [l(A(h, τ)(x), y)] (11)

p(τ) is the true but unknown distribution of tasks, p(x, y | τ) is the true, but unknown distribution of
data pair given a task τ and (x, y) is the data pair of input and target value sampled from a task.

Fixed representation meta-learner without adaptation: one can also solve 10 using a single
decision rule f that does not take the task τ as input as follows:

RSL(f) = Eτ∼p(τ)Ex,y∼p(x,y|τ) [l(f(x), y)] (12)

where f is a function to be adapted (e.g. a neural network), p(τ) is the true but unknown distribution
of tasks, p(x, y | τ) is the true, but unknown distribution of data pair given a task τ and (x, y) is the
data pair of input and target value sampled from a task.

Fixed representation meta-learner with a final adaptation layer: one can also solve 10 using a
single feature extractor g that does not take the task τ as input with a feature extractor g:

RSLA(f, g) = Eτ∼p(τ)Ex,y∼p(x,y|τ) [l((f(τ) ◦ g)(x), y)] (13)

where g is the feature extractor from the raw inputs (e.g. a neural network), f the final layer adapted
(e.g. a linear layer), p(τ) is the true but unknown distribution of tasks, p(x, y | τ) is the true, but
unknown distribution of data pair given a task τ and (x, y) is the data pair of input and target value
sampled from a task.
Remark Q.1. Note that in practice, the meta-learner does not usually take the full task τ as input, but
instead a train and test set (often referred to as support set and query set) sampled from the task τ .

The goal of this work is to clarify the difference between 12 and 11 under the framework of statistical
decision theory. Arguably the most important comparison between 11 and 13 is left for future work.

Q.2 Main Result: Difference between the Supervised Learned and Meta-learned decision rule

The proof sketch is as follows: we first show the optimal decision rules for both supervised learning
and meta-learning when minimizing the expected meta-risk from equations 12 and 11 and then
highlight that the main difference between them is that the meta-learned solution can act optimally if
it identifies the task τ while the supervised learned solution has no capabilities of this since it learns
an average based on tasks instead.
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Theorem Q.2. The minimizer to equation 11 is:

A(h, τ)(x) = ȳ∗y|x,τ = Ey∼p(y|x,τ) [y] (14)

where ȳ∗y|x,τ = Ey∼p(y|x,τ) [y] and l is the squared loss l(ŷ, y) = (ŷ − y)2.

Proof. The proof is the same as the standard decision rule textbook proof but instead of minimizing
it point-wise w.r.t. x we minimize it point-wise w.r.t. (x, τ). In particular, we have:

RML(A, h) = Eτ∼p(τ)Ex,y∼p(x,y|τ) [l(A(h, τ)(x), y)]

min
A,h

Eτ∼p(τ)Ex∼p(x|τ)Ey∼p(y|x,τ)
[
(A(h, τ)(x)− y)2

]
without loss of generality (WLOG) and for clarity of exposition consider the special case for discrete
variables:

min
A,h

∑
τ

p(τ)
∑
x

p(x | τ)Ey∼p(y|x,τ)
[
(A(h, τ)(x)− y)2

]
At this point we notice we can minimize the above point-wise w.r.t (x, τ) and ignore h. To do that,
take the derivative of R(A, h) with respect to A(h, τ)(x) because that A(h, τ)(x) ∈ R and set it to
zero:

d

dA(h, τ)(x)
Ey∼p(y|x,τ)

[
(A(h, τ)(x)− y)2

]
= 0

Ey∼p(y|x,τ) [(A(h, τ)(x)− y)] = 0

Ey∼p(y|x,τ) [(A(h, τ)(x)] = Ey∼p(y|x,τ) [y]

A(h, τ)(x) = Ey∼p(y|x,τ) [y] = ȳ∗y|x,τ

as desired.

Corollary Q.3. For a monolithic meta-learner defined in section Q.1 the solution to the meta
supervised learning problem is the same as in equation 14 for the squared loss l(ŷ, y) = (ŷ − y)2 i.e.
g(τ, x) = ȳ∗y|x,τ = Ey∼p(y|x,τ) [y].

Proof. Proof is trivial, replace A(h, τ)(x) with g(τ, x) since h is not used. In this case, there is
no difference with having an adaptation rule A equipped with another function h and a monolithic
meta-learner g.

Theorem Q.4. The minimizer to equation 12:

f(x) = Eτ∼p(τ |x)

[
ȳ∗y|x,τ

]
(15)

where ȳ∗y|x,τ = Ey∼p(y|x,τ) [y] and l is the squared loss l(ŷ, y) = (ŷ − y)2.

Proof. WLOG, consider the minimizer of equation 12 in the discrete case. In particular, we have:

RSL(f) = Eτ∼p(τ)Ex,y∼p(x,y|τ) [l(f(x), y)]

min
f

Eτ∼p(τ)Ex∼p(x|τ)Ey∼p(y|x,τ)
[
(f(x)− y)2

]
min
f

∑
x

Eτ∼p(τ)p(x | τ)Ey∼p(y|x,τ)
[
(f(x)− y)2

]
Note we can minimize the above point-wise w.r.t. x only (and not also w.r.t. τ as we did in proof
Q.2). Thus, we have want:

f(x) = min
f(x)∈R

Eτ∼p(τ)p(x | τ)Ey∼p(y|x,τ)
[
(f(x)− y)2

]
at this point it is interesting to observe the disadvantage of supervised learning methods with fixed
functions without dependence on the task is that they are forced to consider all task τ at once. We
proceed to take derivatives as in proof Q.2 but with this objective:

Eτ∼p(τ)p(x | τ)Ey∼p(y|x,τ)
[
(f(x)− y)2

]
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d

df(x)
Eτ∼p(τ)p(x | τ)Ey∼p(y|x,τ)

[
(f(x)− y)2

]
= 0

Eτ∼p(τ)p(x | τ)Ey∼p(y|x,τ) [f(x)] = Eτ∼p(τ)p(x | τ)Ey∼p(y|x,τ) [y]

f(x)Eτ∼p(τ) [p(x | τ)] = Eτ∼p(τ)p(x | τ)Ey∼p(y|x,τ) [y]

f(x) = Eτ∼p(τ)

[
p(x | τ)

Eτ∼p(τ) [p(x | τ)]
Ey∼p(y|x,τ) [y]

]
(16)

We proceed by noticing that Eτ∼p(τ) [p(x | τ)] = p(x), thus:

f(x) = Eτ∼p(τ)

[
p(x | τ)
p(x)

Ey∼p(y|x,τ) [y]

]
f(x) =

∑
τ

p(τ)
p(x | τ)
p(x)

[
Ey∼p(y|x,τ) [y]

]
f(x) =

∑
τ

p(τ)

p(x)

p(x, τ)

p(τ)

[
Ey∼p(y|x,τ) [y]

]
f(x) =

∑
τ

p(x, τ)

p(x)

[
Ey∼p(y|x,τ) [y]

]
f(x) =

∑
τ

p(x | τ)
[
Ey∼p(y|x,τ) [y]

]
f(x) = Eτ∼p(x|τ)

[
Ey∼p(y|x,τ)y

]
f(x) = Eτ∼p(x|τ)

[
ȳ∗y|x,τ

]
as required by the rightmost RHS of equation 15.

Theorem Q.5. The minimizer in equation 15 reduces to an expectation only over w.r.t. p(τ) of ȳ∗y|x,τ
under benchmarks that are balanced. Formally

f(x) = Eτ∼p(τ)

[
ȳ∗y|x,τ

]
= Eτ∼p(τ)

[
Ey∼p(y|x,τ) [y]

]
(17)

where ȳ∗y|x,τ = Ey∼p(y|x,τ) [y] and under assumption A1: p(x | τ) is a constant, i.e. p(x | τ) =
kXT ∈ R,∀x ∈ X,∀τ ∈ T and l is the squared loss l(ŷ, y) = (ŷ − y)2.

Proof. Recall equation 15:
f(x) = Eτ∼p(τ |x)

[
ȳ∗y|x,τ

]
due to Bayes’s rule we have p(τ | x) = p(τ)p(x|τ)

p(x) and equation 15 can be re-written as follows:

f(x) = Eτ∼p(τ)

[
p(x | τ)
p(x)

ȳ∗y|x,τ

]
under assumption A1 we have that p(x | τ) does not depend on as a function of x or τ . Thus, we
have:

p(x) =
∑
τ

p(τ)p(x | τ) = p(x | τ)
∑
τ

p(τ) = p(x | τ)

Thus we have:

f(x) = Eτ∼p(τ)

[
p(x)

p(x)
ȳ∗y|x,τ

]
f(x) = Eτ∼p(τ)

[
ȳ∗y|x,τ

]
as required.

Remark Q.6. Note that assumption A1 holds for the common MiniImagenet few-shot learning data
set, where p(x | τ) = 1

600 .
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Remark Q.7. In addition, because all classes are equally likely (e.g. p(class) = 1
64 for the meta-train

set) we have p(τ) is the same constant independent of the task τ . Proof in the appendix, lemma Q.8.
Theorem Q.8. If the tasks are equally likely, then equation 17 becomes an average over conditional
predictions over all tasks. Formally, if p(τ) = 1

T then equation 17 becomes:

f(x) =
1

T

∑
τ

ȳ∗y|x,τ (18)

under the squared loss l(ŷ, y) = (ŷ − y)2.

Proof. Since f(x) = Eτ∼p(τ)

[
ȳ∗y|x,τ

]
then, plugging p(τ) = 1

T completes proof.

Remark Q.9. It is interesting to note that without adaptation or dependence on the task τ being
solved, the supervised learned meta-learner is suboptimal compared to the meta-learned solution.
The proof is simple, and it follows because the meta-learned decision rule was chosen to minimize
each term individually, but the supervised learned decision is not of that form. Proof in appendix
Q.11. Unfortunately, note that this does not necessarily apply to previous work [Tian et al., 2020].
Remark Q.10. Note that remark Q.9 does not apply to work [Tian et al., 2020] because that work
does depend on a task τ during meta-test time by adapting the final layer even if the representation is
fixed.
Remark Q.11. The supervised learning decision rule is suboptimal compared to the meta-learned
decision rule.

Q.3 The supervised Learning Solution is equivalent to the Meta-Learning solution when
there is low task diversity

Sketch argument: The main idea is that because all tasks are very similar (task diversity is low)
– it essentially means that τ is not truly an input to the adaptation rule or monolithic meta-learner).
Equivalently, the problem is essentially a single task problem, so the task is implicitly an input to any
method used. Therefore, since the task conditioning does not exist, then the optimization problem is
the same for the meta-learned solution and when there is a fixed supervised learning feature extractor.
Theorem Q.12. Assume τ1 = τ2 for any tasks in T and the data sets are balanced (i.e. same number
of images x for each task). Then we have the meta-learned solution is the same as the supervised
learning solution with shared embeddings: fsl(x) = A(fml, τ)(x).

Proof. Consider the optimization problem, for supervised learning:

min
A,h

Eτ∼p(τ)Ex∼p(x|τ)Ey∼p(y|x,τ)
[
(A(h, τ)(x)− y)2

]
If every pair of tasks is equal, it means their distributions are equal p(x, y | τ) = p(x, y) (mean-
ing τ can be ignored). Thus, the solution to the supervised learning problem is: fsl(x) =
EτEp(x,y)[y] = Ep(x,y)[y] = y∗|x. Now for the meta-learning problem we have: A(fml, τ)(x) =

y∗|x,τ = Ey∼p(y|x,τ)[y] but due to every pair of tasks being equal means p(x, y | τ) = p(x, y) (i.e.
all task share the same distributions) we have: A(fml, τ)(x) = Ey∼p(y|x,τ)[y] = Ey∼p(y|x[y] = y∗|x
which is the same as the solution as in fsl. Thus fsl(x) = A(fml, τ)(x).

Remark Q.13. Proofs were presented in the discrete case clearly, but it is trivial to expand them to
the continuous case – e.g., using integrals instead of summations.
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