
NEO-KD: Knowledge-Distillation-Based Adversarial
Training for Robust Multi-Exit Neural Networks

Seokil Ham1 Jungwuk Park1 Dong-Jun Han2∗ Jaekyun Moon1

1KAIST 2Purdue University
{gkatjrdlf, savertm}@kaist.ac.kr, han762@purdue.edu, jmoon@kaist.edu

Abstract

While multi-exit neural networks are regarded as a promising solution for making
efficient inference via early exits, combating adversarial attacks remains a challeng-
ing problem. In multi-exit networks, due to the high dependency among different
submodels, an adversarial example targeting a specific exit not only degrades the
performance of the target exit but also reduces the performance of all other exits
concurrently. This makes multi-exit networks highly vulnerable to simple adver-
sarial attacks. In this paper, we propose NEO-KD, a knowledge-distillation-based
adversarial training strategy that tackles this fundamental challenge based on two
key contributions. NEO-KD first resorts to neighbor knowledge distillation to
guide the output of the adversarial examples to tend to the ensemble outputs of
neighbor exits of clean data. NEO-KD also employs exit-wise orthogonal knowl-
edge distillation for reducing adversarial transferability across different submodels.
The result is a significantly improved robustness against adversarial attacks. Exper-
imental results on various datasets/models show that our method achieves the best
adversarial accuracy with reduced computation budgets, compared to the baselines
relying on existing adversarial training or knowledge distillation techniques for
multi-exit networks.

1 Introduction

Multi-exit neural networks are receiving significant attention [9, 13, 26, 27, 28, 32] for their ability
to make dynamic predictions in resource-constrained applications. Instead of making predictions at
the final output of the full model, a faster prediction can be made at an earlier exit depending on the
current time budget or computing budget. In this sense, a multi-exit network can be viewed as an
architecture having multiple submodels, where each submodel consists of parameters from the input
of the model to the output of a specific exit. These submodels are highly correlated as they share some
model parameters. It is also well-known that the performance of all submodels can be improved by
distilling the knowledge of the last exit to other exits, i.e., via self-distillation [15, 20, 24, 27]. There
have also been efforts to address the adversarial attack issues in the context of multi-exit networks
[3, 12].

Providing robustness against adversarial attacks is especially challenging in multi-exit networks:
since different submodels have high correlations by sharing parameters, an adversarial example
targeting a specific exit can significantly degrade the performance of other submodels. In other
words, an adversarial example can have strong adversarial transferability across different submodels,
making the model highly vulnerable to simple adversarial attacks (e.g., an adversarial attack targeting
a single exit).

∗Corresponding author.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

Motivation. Only a few prior works have focused on adversarial defense strategies for multi-exit
networks [3, 12]. The authors of [12] focused on generating adversarial examples tailored to multi-
exit networks (e.g., generate samples via max-average attack), and trained the model to minimize the
sum of clean and adversarial losses of all exits. Given the adversarial example constructed in [12],
the authors of [3] proposed a regularization term to reduce the weights of the classifier at each exit
during training. However, existing adversarial defense strategies [3, 12] do not directly handle the
high correlations among different submodels, resulting in high adversarial transferability and limited
robustness in multi-exit networks. To tackle this difficulty, we take a knowledge-distillation-based
approach in a fashion orthogonal to prior works [3, 12]. Some previous studies [8, 23, 33, 34]
have shown that knowledge distillation can be utilized for improving the robustness of the model
in conventional single-exit networks. However, although there are extensive existing works on
self-distillation for training multi-exit networks using clean data [15, 20, 24, 27], it is currently
unknown how distillation techniques should be utilized for adversarial training of multi-exit networks.
Moreover, when the existing distillation-based schemes are applied to multi-exit networks, the
dependencies among submodels become higher since the same output (e.g., the knowledge of the last
exit) is distilled to all sub-models. Motivated by these limitations, we pose the following questions:
How can we take advantage of knowledge-distillation to improve adversarial robustness of multi-exit
networks? At the same time, how can we reduce adversarial transferability across different submodels
in multi-exit networks?

Main contributions. To handle these questions, we propose NEO-KD, a knowledge-distillation-
based adversarial training strategy highly tailored to robust multi-exit neural networks. Our solution
is two-pronged: neighbor knowledge distillation and exit-wise orthogonal knowledge distillation.

• Given a specific exit, the first part of our solution, neighbor knowledge distillation (NKD), distills
the ensembled prediction of neighbor exits of clean data to the prediction of the adversarial
example at the corresponding exit, as shown in Figure 1a. This method guides the output of
adversarial examples to follow the outputs of clean data, improving robustness against adversarial
attacks. By ensembling the neighbor predictions of clean data before distillation, NKD provides
higher quality features to the corresponding exits compared to the scheme distilling with only
one exit in the same position.

• The second focus of our solution, exit-wise orthogonal knowledge distillation (EOKD), mainly
aims at reducing adversarial transferability across different submodels. This part is another
unique contribution of our work compared to existing methods on robust multi-exit networks
[3, 12] (that suffer from high adversarial transferability) or self-distillation-based multi-exit
networks [15, 20, 24, 27] (that further increase adversarial transferability). In our EOKD, the
output of clean data at the i-th exit is distilled to the output of the adversarial sample at the
i-th exit, in an exit-wise manner. During this exit-wise distillation process, we encourage
the non-ground-truth predictions of individual exits to be mutually orthogonal, by providing
orthogonal soft labels to each exit as described in Figure 1b. By weakening the dependencies
among different exit outputs, EOKD reduces the adversarial transferability across all submodels
in the network, which leads to an improved robustness against adversarial attacks.

The NKD and EOKD components of our architectural solution work together to reduce adversarial
transferability across different submodels in the network while correctly guiding the predictions of
the adversarial examples at each exit. Experimental results on various datasets show that the proposed
strategy achieves the best adversarial accuracy with reduced computation budgets, compared to
existing adversarial training methods for multi-exit networks. Our solution is a plug-and-play method,
which can be used in conjunction with existing training strategies tailored to multi-exit networks.

2 Related Works

Knowledge distillation for multi-exit networks. Multi-exit neural networks [9, 13, 26, 27, 28, 32]
aim at making efficient inference via early exits in resource-constrained applications. In the multi-exit
network literature, it is well-known that distilling the knowledge of the last exit to others significantly
improves the overall performance on clean data without an external teacher network, i.e., via self-
distillation [15, 20, 24, 27]. However, it is currently unclear how adversarial training can benefit from
self-distillation in multi-exit networks. One challenge is that simply applying existing self-distillation
techniques increases adversarial transferability across different submodels, since the same knowledge

2

from the last exit is distilled to all other exits, increasing dependency among different submodels
in the network. Compared to the existing ideas, our contribution is to develop a self-distillation
strategy that does not increase the dependency of submodels as much; this helps reduce adversarial
transferability of the multi-exit network for better robustness.

Improving adversarial robustness. Most existing defense methods [6, 7, 31] have mainly focused
on creating new adversarial training losses tailored to single-exit networks. Several other works have
utilized the concept of knowledge distillation [8, 23, 33, 34] showing that distilling the knowledge
of the teacher network can improve robustness of the student network. Especially in [8], given a
teacher network, it is shown that robustness of the teacher network can be distilled to the student
network during adversarial training. Compared to these works, our approach can be viewed as a new
self-distillation strategy for multi-exit networks where teacher/student models are trained together.
More importantly, adversarial transferability across different submodels has not been an issue in
previous works as the focus there has been on the single-exit network. In contrast, in our multi-exit
setup, all submodels sharing some model parameters require extra robustness against adversarial
attacks; this motivates us to propose exit-wise orthogonal knowledge distillation, to reduce adversarial
transferability among different submodels.

Some prior works [19, 22, 29, 30] aim at improving adversarial robustness of the ensemble model,
by reducing adversarial transferability across individual models. Specifically, the adaptive diversity-
promoting regularizer proposed in [22] regularizes the non-maximal predictions of individual models
to be mutually orthogonal, and the maximal term is used to compute the loss as usual. While the
previous work focuses on reducing the transferability among different models having independent
parameters, in a multi-exit network setup, the problem becomes more challenging in that all submodels
have some shared parameters, making the models to be highly correlated. To handle this issue, we
specifically take advantage of knowledge distillation in an exit-wise manner, which can further reduce
the dependency among different submodels in the multi-exit network.

Adversarial training for multi-exit networks. When focused on multi-exit networks, only a few
prior works considered the adversarial attack issue in the literature [3, 10, 11, 12]. The authors
of [10, 11] focused on generating slowdown attacks in multi-exit networks rather than defense
strategies. In [12], the authors proposed an adversarial training strategy by generating adversarial
examples targeting a specific exit (single attack) or multiple exits (average attack and max-average
attack). However, (i) [12] does not take advantage of knowledge distillation during training and (ii)
[12] does not directly handle the high correlations among different submodels, which can result in
high adversarial transferability. Our solution overcomes these limitations by reducing adversarial
transferability while correctly guiding the predictions of adversarial examples at each exit, via self
knowledge distillation.

3 Proposed NEO-KD Algorithm
Consider a multi-exit network with L exits, which is composed of L blocks {φi}Li=1 and L clas-
sifiers {wi}Li=1. Given the input data x, the output of the i-th exit is denoted as fθi(x), which is
parameterized by the i-th submodel θi = [φ1, . . . , φi, wi] that consists of i blocks and one classifier.
Note that all L submodels produce different predictions [fθ1(x), . . . , fθL(x)]. Here, since each
submodel shares several blocks with other submodels, the predictions of any two submodels are
highly correlated.

3.1 Problem Setup: Adversarial Training in Multi-Exit Networks

The first step for adversarial training is to generate adversarial examples. Given L different submodels
{θi}Li=1, clean data x, and the corresponding label y, the adversarial example xadv can be generated
based on single attack, max-average attack or average attack, following the process of [12]. More
specifically, we have

xadvsingle,i = argmax
x′∈{z:|z−x|∞≤ε}

|`(fθi(x
′), y)|, (1)

xadvmax = xadvi∗ , where i∗ = argmax
i

∣∣∣∣ 1L
L∑
j=1

`(fθj (x
adv
single,i), y)

∣∣∣∣, (2)

xadvavg = argmax
x′∈{z:|z−x|∞≤ε}

∣∣∣∣ 1L
L∑
j=1

`(fθj (x
′), y)

∣∣∣∣, (3)

3

(a) Neighbor knowledge distillation (b) Exit-wise orthogonal knowledge distillation

Figure 1: NEO-KD consists of two parts that together improve the adversarial robustness: NKD
and EOKD. (a) NKD guides the output of the adversarial data to mimic the ensemble outputs of
neighbor exits of clean data. (b) EOKD reduces adversarial transferability of the network by distilling
orthogonal knowledge of the clean data to adversarial data for the non-ground-truth predictions,
in an exit-wise manner. Although omitted in this figure, EOKD normalizes the likelihood before
distilling the soft labels. The overall process operates in a single model, although we consider two
cases depending on the input (clean or adversarial example) for a clear presentation.

which correspond to the adversarial example generated by single attack targeting exit i, max-average
attack, and average attack, respectively. ε denotes the perturbation degree. In the single attack of
(1), the adversarial example xadvi is generated to maximize the cross-entropy loss `(·, ·) of the target
exit utilizing an attacker algorithm (e.g., PGD [21]). In the max-average attack of (2), among the
adversarial examples generated by the single attack for all exits i = 1, 2, . . . , L, the sample that
maximizes the average loss of all exits is selected. Finally, the average attack in (3) directly generates
an adversarial sample that maximizes the average loss of all exits. Based on the generated xadv, a
typical strategy is to update the model considering both the clean and adversarial losses of all exits as
follows:

L =
1

N

N∑
j=1

L∑
i=1

[`(fθi(xj), yj) + `(fθi(x
adv
j), yj)], (4)

where N is the number of samples in the training set and xadvj is the adversarial example correspond-
ing to clean sample xj generated by one of the attacks described above. However, the loss in (4) does
not directly consider the correlation among submodels, which can potentially increase adversarial
transferability of the multi-exit network.

3.2 Algorithm Description

To tackle the limitations of prior works [3, 12], we propose neighbor exit-wise orthogonal knowledge
distillation (NEO-KD), a self-distillation strategy tailored to robust multi-exit networks. To gain
insights, we divide our solution into two distinct components with different roles - neighbor knowledge
distillation and exit-wise orthogonal knowledge distillation - and first describe each component
separately, and then put together into the overall NEO-KD method. A high-level description of our
approach is given in Figure 1.

Neighbor knowledge distillation (NKD). The first component of our solution, NKD, guides the
output feature of adversarial data at each exit to mimic the output feature of clean data. Specifically,
the proposed NKD loss of the j-th train sample at the i-th exit is written as follows:

NKDi,j =


`(fθ1(x

adv
j), 12

∑2
k=1 fθk(xj)) i = 1

`(fθL(x
adv
j), 12

∑L
k=L−1 fθk(xj)) i = L

`(fθi(x
adv
j), 13

∑i+1
k=i−1 fθk(xj)) otherwise,

(5)

which can be visualized with the colored arrows as in Figure 1a. Different from previous self-
knowledge distillation methods, for each exit i, NKD generates a teacher prediction by ensembling
(averaging) the neighbor predictions (i.e., from exit i− 1 and exit i+1) of clean data and distills it to
each prediction of adversarial examples.

Compared to other distillation strategies, NKD takes advantage of only these neighbors during
distillation, which has the following key advantages for improving adversarial robustness. First,

4

by ensembling the neighbor predictions of clean data before distillation, NKD provides a higher
quality feature of the original data to the corresponding exit; compared to the naive baseline that
is distilled with only one exit in the same position (without ensembling), NKD achieves better
adversarial accuracy, where the results are provided in Table 7. Secondly, by considering only the
neighbors during ensembling, we can distill different teacher predictions to each exit. Different
teacher predictions of NKD also play a role of reducing adversarial transferability compared to
the strategies that distill the same prediction (e.g., the last exit) to all exit; ensembling other exits
(beyond the neighbors) increases the dependencies among submodels, resulting in higher adversarial
transferability. The corresponding results are also shown via experiments in Section 4.3.

However, a multi-exit network trained with only NKD loss still has a significant room for mitigating
adversarial transferability further. In the following, we describe the second part of our solution that
solely focuses on reducing adversarial transferability of multi-exit networks.

Exit-wise orthogonal knowledge distillation (EOKD). EOKD provides orthogonal soft labels to
each exit for the non-ground-truth predictions, in an exit-wise manner. As can be seen from the red
arrows in Figure 1b, the output of clean data at the i-th exit is distilled to the output of adversarial
example at the i-th exit. During this exit-wise distillation process, some predictions are discarded
to encourage the non-ground-truth predictions of individual exits to be mutually orthogonal. We
randomly allocate the classes of non-ground-truth predictions to each exit for every epoch, which
prevents the classifier to be biased compared to the fixed allocation strategy. The proposed EOKD
loss of the j-th sample at the i-th exit is defined as follows:

EOKDi,j = `(fθi(x
adv
j), O(fθi(xj))). (6)

Here, O(·) is the orthogonal labeling operation to make the non-ground-truth predictions to be
orthogonal across all exits. For each exit, O(·) randomly selects b(C − 1)/Lc labels among a total
of C classes so that the selected labels are non-overlapping across different exits (except for the
ground-truth label), as in Figure 1b. Lastly, the probabilities of selected labels are normalized to sum
to one. To gain clearer insights, consider a toy example with a 3-exit network (i.e., L = 3) focusing
on a 4-way classification task (i.e., C = 4). Let [pi1, p

i
2, p

i
3, p

i
4] be the softmax output of the clean

sample at the i-th exit, for i = 1, 2, 3. If class 1 is the ground-truth, the orthogonal labeling operation
O(·) jointly produces the following results from each exit: [p̂11, p̂

1
2, 0, 0] from exit 1, [p̂21, 0, p̂

2
3, 0] from

exit 2, [p̂31, 0, 0, p̂
3
4] from exit 3, where p̂ indicates the normalized probability of p so that the values

in each vector sum to one.

Based on Eq. (6), the output of the orthogonal label operation O(fθi(xj)) for the clean data xj is
distilled to fθi(x

adv
j) which is the prediction of the adversarial example of the j-th sample at the i-th

exit. This encourages the model to self-distill orthogonally distinct knowledge in an exit-wise manner
while keeping the essential knowledge of the ground-truth class. By taking this exit-wise orthogonal
distillation approach, EOKD reduces the dependency among different submodels, reducing the
adversarial transferability of the network.

Overall NEO-KD loss. Finally, considering the proposed loss functions in Eq. (5), (6) and the
original adversarial training loss, the overall objective function of our scheme is written as follows:

L =
1

N

N∑
j=1

L∑
i=1

[`(fθi(xj), yj) + `(fθi(x
adv
j), yj) + γi(α · NKDi,j + β · EOKDi,j)], (7)

where α, β control the weights for each component and γi is the knowledge distillation weight for
each exit i. Since later exits have lower knowledge distillation loss than the earlier exits, we impose a
slightly higher γi for the later exits than γi of the earlier exits. More details regarding hyperparameters
are described in Appendix.

By introducing two unique components - NKD and EOKD - the overall NEO-KD loss function in Eq.
(7) reduces adversarial transferability in the multi-exit network while correctly guiding the output of
the adversarial examples in each exit, significantly improving the adversarial robustness of multi-exit
networks, as we will see in the next section.

4 Experiments

In this section, we evaluate our method on five datasets commonly adopted in multi-exit networks:
MNIST [18], CIFAR-10, CIFAR-100 [16], Tiny-ImageNet [17], and ImageNet [25]. For MNIST, we

5

Exit 1 2 3 Average
Adv. w/o Distill [12] 89.74% 95.89% 96.82% 94.15%

SKD [24] 89.77% 96.24% 97.08% 94.36%
ARD [8] 89.65% 95.79% 96.47% 93.97%
LW [3] 87.08% 93.86% 95.42% 92.12%

NEO-KD (ours) 90.56% 96.30% 96.62% 94.49%

(a) Max-average attack

Exit 1 2 3 Average
Adv. w/o Distill [12] 85.17% 95.87% 97.20% 92.75%

SKD [24] 84.35% 96.53% 97.53% 92.82%
ARD [8] 85.07% 96.12% 97.28% 92.82%
LW [3] 85.26% 94.54% 96.05% 91.95%

NEO-KD (ours) 86.17% 96.92% 97.42% 93.50%

(b) Average attack

Table 1: Anytime prediction setup: Adversarial test accuracy on MNIST.

Exit 1 2 3 Average
Adv. w/o Distill [12] 44.77% 46.10% 46.86% 45.91%

SKD [24] 44.75% 44.54% 44.79% 44.69%
ARD [8] 44.50% 45.85% 51.82% 47.39%
LW [3] 37.38% 35.39% 34.85% 35.87%

NEO-KD (ours) 46.53% 47.65% 50.71% 48.30%

(a) Max-average attack

Exit 1 2 3 Average
Adv. w/o Distill [12] 38.00% 41.42% 40.70% 40.04%

SKD [24] 39.36% 41.39% 38.39% 39.71%
ARD [8] 39.37% 41.98% 43.53% 41.63%
LW [3] 31.47% 31.41% 28.98% 30.62%

NEO-KD (ours) 41.67% 45.38% 45.54% 44.20%

(b) Average attack

Table 2: Anytime prediction setup: Adversarial test accuracy on CIFAR-10.

use SmallCNN [12] with 3 exits. We trained the MSDNet [13] with 3 and 7 exits using CIFAR-10
and CIFAR-100, respectively. For Tiny-ImageNet and ImageNet, we trained the MSDNet with 5
exits. More implementation details are provided in Appendix.

4.1 Experimental Setup

Generating adversarial examples. To generate adversarial examples during training and testing, we
utilize max-average attack and average attack proposed in [12]. We perform adversarial training using
adversarial examples generated by max-average attack, where the results for adversarial training via
average attack are reported in Appendix. During training, we use PGD attack [21] with 7 steps as
attacker algorithm to generate max-average and average attack while PGD attack with 50 steps is
adopted at test time for measuring robustness against a stronger attack. We further consider other
strong attacks in Section 4.3. In each attacker algorithm, the perturbation degree ε is 0.3 for MNIST,
and 8/255 for CIFAR-10/100, and 2/255 for Tiny-ImageNet/ImageNet datasets during adversarial
training and when measuring the adversarial test accuracy. Other details for generating adversarial
examples and additional experiments on various attacker algorithms are described in Appendix.

Evaluation metric. We evaluate the adversarial test accuracy as in [12], which is the classification
accuracy on the corrupted test dataset compromised by an attacker (e.g., average attack). We also
measure the clean test accuracy using the original clean test data and report the results in Appendix.

Baselines. We compare our NEO-KD with the following baselines. First, we consider the scheme
based on adversarial training without any knowledge distillation, where adversarial examples are
generated by max-average attack or average attack [12]. The second baseline is the conventional
self-knowledge distillation (SKD) strategy [20, 24] combined with adversarial training: during
adversarial training, the prediction of the last exit for a given clean/adversarial data is distilled to
the predictions of all the previous exits for the same clean/adversarial data. The third baseline is the
knowledge distillation scheme for adversarial training [8], which distills the prediction of clean data
to the prediction of adversarial examples in single-exit networks. As in [8], we distill the last output
of clean data to the last output of adversarial data. The last baseline is a regularizer-based adversarial
training strategy for multi-exit networks [3], where the regularizer restricts the weights of the fully
connected layers (classifiers). In Appendix we compare our NEO-KD with the recent work TEAT
[7], a general defense algorithm for single-exit networks.

Inference scenarios. At inference time, we consider two widely known setups for multi-exit
networks: (i) anytime prediction setup and (ii) budgeted prediction setup. In the anytime prediction
setup, an appropriate exit is selected depending on the current latency constraint. In this setup, for each
exit, we report the average performance computed with all test samples. In the budgeted prediction
setup, given a fixed computational budget, each sample is predicted at different exits depending on
the predetermined confidence threshold (which is determined by validation set). Starting from the
first exit, given a test sample, when the confidence at the exit (defined as the maximum softmax value)
is larger than the threshold, prediction is made at this exit. Otherwise, the sample proceeds to the next
exit. In this scenario, easier samples are predicted at earlier exits and harder samples are predicted at
later exits, which leads to efficient inference. Given the fixed computation budget and confidence
threshold, we measure the average accuracy of the test samples. We evaluate our method in these two

6

top-1 accuracy (%) top-5 accuracy (%)
Exit 1 2 3 4 5 6 7 Avg. 1 2 3 4 5 6 7 Avg.

Adv. w/o Distill [12] 28.04 28.32 28.34 27.64 26.78 25.93 24.77 27.12 60.64 61.15 59.13 58.46 58.38 57.46 57.44 58.95
SKD [24] 27.36 27.68 25.79 24.74 24.10 20.86 19.28 24.26 60.50 60.23 57.56 55.98 55.11 52.71 52.17 56.32
ARD [8] 27.60 28.00 27.99 27.42 28.32 27.25 29.08 27.95 60.26 60.51 59.31 58.40 58.40 58.09 60.62 59.37
LW [3] 20.44 20.57 19.86 19.34 19.51 19.46 20.22 19.91 50.69 50.91 48.47 48.56 48.13 49.61 49.76 49.45

NEO-KD (ours) 28.37 28.78 29.02 29.49 30.06 28.45 28.54 28.96 59.58 60.04 59.67 59.29 60.46 58.96 59.44 59.63

(a) Max-average atack
top-1 accuracy (%) top-5 accuracy (%)

Exit 1 2 3 4 5 6 7 Avg. 1 2 3 4 5 6 7 Avg.
Adv. w/o Distill [12] 16.74 17.33 19.05 19.47 19.06 18.15 17.12 18.13 47.31 48.34 50.78 50.75 50.80 49.89 47.10 49.28

SKD [24] 18.13 18.45 19.53 19.87 19.54 16.67 14.21 18.06 49.85 50.72 51.17 51.91 51.73 47.32 43.18 49.41
ARD [8] 16.63 17.16 19.13 19.74 19.70 18.92 19.83 18.73 46.90 48.60 50.44 51.28 50.93 49.14 49.01 49.47
LW [3] 13.78 13.95 15.16 15.62 15.86 13.01 13.57 14.42 41.14 41.27 43.29 43.67 44.08 40.49 40.66 42.09

NEO-KD (ours) 20.41 21.32 23.27 24.30 24.47 23.99 22.39 22.88 49.48 51.47 53.13 55.01 54.69 54.32 52.11 52.89

(b) Average attack

Table 3: Anytime prediction setup: Adversarial test accuracy on CIFAR-100.

top-1 accuracy (%) top-5 accuracy (%)
Exit 1 2 3 4 5 Avg. 1 2 3 4 5 Avg.

Adv. w/o Distill [12] 31.30 32.38 32.52 31.42 31.56 31.84 60.20 60.84 61.10 58.64 59.56 60.07
SKD [24] 33.04 33.24 30.50 28.40 28.50 30.74 63.68 62.72 60.04 58.50 58.28 60.64
ARD [8] 30.08 31.84 30.56 31.22 32.34 31.21 59.88 60.74 59.62 59.28 59.72 59.85
LW [3] 26.06 26.00 24.54 24.42 24.88 25.18 53.24 51.90 51.02 51.02 51.14 51.66

NEO-KD (ours) 32.96 35.08 33.42 32.40 32.64 33.30 62.48 62.82 61.76 60.70 60.92 61.74

(a) Max-average attack
top-1 accuracy (%) top-5 accuracy (%)

Exit 1 2 3 4 5 Avg. 1 2 3 4 5 Avg.
Adv. w/o Distill [12] 25.22 27.34 28.94 28.06 28.48 27.61 53.68 55.46 58.18 57.46 57.38 56.43

SKD [24] 28.40 29.26 28.74 28.14 26.82 28.27 58.34 59.30 58.38 57.72 55.48 57.84
ARD [8] 24.48 26.76 27.78 28.46 29.14 27.32 53.44 56.10 57.20 57.32 57.08 56.23
LW [3] 22.34 23.12 23.58 22.76 23.30 23.02 47.56 48.16 49.86 48.64 49.72 48.79

NEO-KD (ours) 28.24 31.14 30.58 31.58 31.24 30.56 57.34 59.82 60.16 60.04 59.06 59.28

(b) Average attack

Table 4: Anytime prediction setup: Adversarial test accuracy on Tiny-ImageNet.

top-1 accuracy (%) top-5 accuracy (%)
Exit 1 2 3 4 5 Avg. 1 2 3 4 5 Avg.

Adv. w/o Distill [12] 26.10 31.71 31.94 30.22 32.30 30.45 55.40 59.84 59.23 57.17 59.90 58.31
SKD [24] 27.34 31.44 29.63 27.03 26.71 28.43 56.96 59.94 57.49 53.98 55.24 56.72
ARD [8] 25.81 32.00 32.93 32.00 31.72 30.89 54.46 59.34 59.24 57.93 58.29 57.85

NEO-KD (ours) 27.89 32.61 32.99 32.74 35.63 32.37 55.46 59.64 59.79 59.61 62.46 59.39

(a) Max-average attack
top-1 accuracy (%) top-5 accuracy (%)

Exit 1 2 3 4 5 Avg. 1 2 3 4 5 Avg.
Adv. w/o Distill [12] 18.20 24.21 28.24 28.73 28.50 25.58 44.74 52.57 56.82 57.55 57.14 53.77

SKD [24] 19.04 24.45 26.45 25.72 22.17 23.57 46.31 52.92 55.33 54.71 50.18 51.89
ARD [8] 17.56 23.68 27.98 28.52 25.83 24.71 43.76 52.07 56.42 57.30 53.48 52.60

NEO-KD (ours) 22.42 28.62 31.77 32.78 34.30 29.98 48.02 55.30 58.76 60.07 61.35 56.70

(b) Average attack

Table 5: Anytime prediction setup: Adversarial test accuracy on ImageNet.

settings and show that our method outperforms the baselines in both settings. More detailed settings
for our inference scenarios are provided in Appendix.

4.2 Main Experimental Results

Result 1: Anytime prediction setup. Tables 1, 2, 3, 4, 5 compare the adversarial test accuracy
of different schemes under max-average attack and average attack using MNIST, CIFAR-10/100,
Tiny-ImageNet, and ImageNet, respectively. Note that we achieve adversarial accuracies between
40% - 50% for CIFAR-10, which is standard considering the prior works on robust multi-exit
networks [12]. Our first observation from the results indicates that the performance of SKD [24] is
generally lower than that of Adv. w/o Distill, whereas ARD [8] outperforms Adv. w/o Distill. This
suggests that the naive application of self-knowledge distillation can either increase or decrease the
adversarial robustness of multi-exit networks. Consequently, the method of knowledge distillation

7

(a) CIFAR-10 (b) CIFAR-100 (c) Tiny-ImageNet

Figure 2: Budgeted prediction setup: Adversarial test accuracy under average attack. The result for LW is
excluded since the performance is too low and thus hinders the comparison between baselines and NEO-KD.

(a) CIFAR-10 (b) CIFAR-100 (c) Tiny-ImageNet

Figure 3: Budgeted prediction setup: Adversarial test accuracy under max-average attack. The result for LW
is excluded since the performance is too low and thus hinders the comparison between baselines and NEO-KD.

significantly influences the robustness of multi-exit networks (i.e., determining which knowledge to
distill and which exit to target). To further enhance robustness, we investigate strategies for distilling
high-quality knowledge and mitigating adversarial transferability.

By combining EOKD with NKD to mitigate dependency across submodels while guiding a multi-exit
network to extract high quality features from adversarial examples as original data, NEO-KD achieves
the highest adversarial test accuracy at most exits compared to the baselines for all datasets/attacks.
The overall results confirm the advantage of NEO-KD for robust multi-exit networks.

Result 2: Budgeted prediction setup. Different from the anytime prediction setup where the pure
performance of each exit is measured, in this setup, we adopt ensemble strategy at inference time
where the predictions from the selected exit (according to the confidence threshold) and the previous
exits are ensembled. From the results in anytime prediction setup, it is observed that various schemes
tend to show low performance at the later exits compared to earlier exits in the model, where more
details are discussed in Appendix. Therefore, this ensemble strategy can boost the performance of the
later exits. With the ensemble scheme, given a fixed computation budget, we compare adversarial test
accuracies of our method with the baselines.

Figures 2 and 3 show the results in budgeted prediction setup under average attack and max-average
attack, respectively. NEO-KD achieves the best adversarial test accuracy against both average
and max-average attacks in all budget setups. Our scheme also achieves the target accuracy with
significantly smaller computing budget compared to the baselines. For example, to achieve 41.21%
of accuracy against average attack using CIFAR-10 (which is the maximum accuracy of Adv. w/o
Distill), the proposed NEO-KD needs 10.59 MFlops compared to Adv. w/o Distill that requires 20.46
MFlops, saving 48.24% of computing budget. Compared to ARD, our NEO-KD saves 25.27% of
computation, while SKD and LW are unable to achieve this target accuracy. For CIFAR-100 and
Tiny-ImageNet, NEO-KD saves 81.60% and 50.27% of computing budgets compared to Adv. w/o
Distill. The overall results are consistent with the results in anytime prediction setup, confirming the
advantage of our solution in practical settings with limited computing budget.

Result 3: Adversarial transferability. We also compare the adversarial transferability of our NEO-
KD and different baselines among exits in a multi-exit neural network. When measuring adversarial
transferability, as in [29], we initially gather all clean test samples for which all exits produce correct
predictions. Subsequently, we generate adversarial examples targeting each exit using the collected
clean samples (We use PGD-50 based single attack). Finally, we assess the adversarial transferability
as the attack success rate of these adversarial examples at each exit. Figure 4 shows the adversarial
transferability map of each scheme on CIFAR-100. Here, each row corresponds to the target exit for
generating adversarial examples, and each column corresponds the exit where attack success rate is
measured. For example, the (i, j)-th element in the map is adversarial transferability measured at exit

8

(a) Adv. w/o Distill [12]
(Avg. w/o Diag.: 23.68%)

(b) SKD [24]
(Avg. w/o Diag.: 33.36%)

(c) NKD
(Avg. w/o Diag.: 22.76%)

(d) NEO-KD (ours)
(Avg. w/o Diag.: 20.12%)

Figure 4: Adversarial transferability map of each method on CIFAR-100. Diag. indicates the diagonal of the
matrix. Row: Target exit for generating adversarial examples. Column: Exit where adversarial transferability is
measured. Adopting NKD solely already achieves better adversarial transferability compared to the existing
baselines. Applying EOKD to NKD can further improve adversarial transferability by reducing the dependency
among different submodels in the multi-exit network.

Exit 1 2 3 Average
Adv. w/o Distill 38.00% 41.42% 40.70% 40.04%

NKD 40.01% 42.67% 40.23% 40.97%
EOKD 37.26% 41.10% 38.68% 39.01%

NEO-KD (ours) 41.67% 45.38% 45.54% 44.20%

Table 6: Effect of each component of NEO-KD:
Adversarial test accuracy against average attack on

CIFAR-10. NKD and EOKD work in a complementary
fashion and have implicit synergies.

Type of ensembles 1 2 3 Average
Adv. w/o Distill 38.00% 41.42% 40.70% 40.04%
No ensembling 39.54% 41.77% 40.15% 40.49%

Ensemble neighbors (NKD) 41.67% 45.38% 45.54% 44.20%
Ensemble all exits 38.63% 41.61% 39.93% 40.06%

Table 7: Results with different number of
ensembles: Adversarial test accuracy against average

attack on CIFAR-10. The neighbor-wise ensemble
case corresponds to our NKD.

j, generated by the adversarial examples targeting exit i. The values and the brightness in the map
indicate success rates of attacks; lower value (dark color) means lower adversarial transferability.

We have the following key observations from adversarial transferability map. First, as observed in
Figure 4a, compared to Adv. w/o Distill [12], SKD [24] in Figure 4b exhibits higher adversarial
transferability. This indicates that distilling the same teacher prediction to every exit leads to a high
dependency across exits. Thus, it is essential to consider distilling non-overlapping knowledge across
different exits. Second, when compared to the baselines [12, 24], our proposed NKD in Figure 4c
demonstrates low adversarial transferability. This can be attributed to the fact that NKD takes into
account the quality of the distilled features and ensures that the features are not overlapping among
exits. Third, as seen in Figure 4d, the adversarial transferability is further mitigated by incorporating
EOKD, which distills orthogonal class predictions to different exits, into NKD. Comparing the
average of attack success rate across all exits (excluding the values of the target exits shown in the
diagonal), it becomes evident that NEO-KD yields 3.56% and 13.24% gains compared to Adv. w/o
Distill and SKD, respectively. The overall results confirm the advantage of our solution to reduce the
adversarial transferability in multi-exit networks. These results support the improved adversarial test
accuracy of NEO-KD reported in Section 4.2.

4.3 Ablation Studies and Discussions

Effect of each component of NEO-KD. In Table 6, we observe the effects of our individual
components, NKD and EOKD. It shows that combining NKD and EOKD boosts up the performance
beyond the sum of their original gains. Given different roles, the combination of NKD and EOKD
enables multi-exit networks to achieve the state-of-the-art performance under adversarial attacks.

Effect of the type of ensembles in NKD. In the proposed NKD, we consider only the neighbor exits
to distill the knowledge of clean data. What if we consider fewer or more exits than neighboring
exits? If the number of ensembles is too small, the scheme does not distill high-quality features. If
the number of ensembles is too large, the dependencies among submodels increase, resulting in high
adversarial transferability. To see this effect, in Table 7, we measure adversarial test accuracy of three
types of ensembling methods depending on the number of exits used for constructing ensembles:
no ensembling, ensemble neighbors (NKD), and ensemble all exits. In no enesmbling approach,
we distill the knowledge of each exit from clean data to the output at the same position of exit for
adversarial examples. In contrast, the ensemble all exits scheme averages the knowledge of all exits
from clean data and provides it to all exits of adversarial examples. The ensemble neighbors approach
corresponds to our NKD. The results show that the proposed NEO-KD with neighbor ensembling

9

Attacks Exit 1 2 3 4 5 6 7 Average

PGD-100 Adv. w/o Distill [12] 16.82% 17.24% 19.03% 19.41% 18.97% 17.90% 16.96% 18.05%
NEO-KD (ours) 20.38% 21.29% 23.22% 24.38% 24.44% 23.82% 22.21% 22.82%

CW Adv. w/o Distill [12] 35.31% 35.72% 36.47% 36.85% 37.20% 37.19% 36.68% 36.49%
NEO-KD (ours) 31.56% 34.55% 38.20% 40.60% 43.48% 44.03% 43.01% 39.35%

AutoAttack Adv. w/o Distill [12] 31.32% 34.24% 37.27% 39.67% 41.20% 41.73% 40.45% 37.98%
NEO-KD (ours) 31.56% 34.55% 38.20% 40.60% 43.48% 44.03% 43.01% 39.35%

Table 8: Results with stronger attacker algorithms: Adversarial test accuracy against average attack using
CIFAR-100 dataset.

enables to distill high-quality features while lowering dependencies among submodels, confirming
our intuition.

Robustness against stronger adversarial attack. We evaluate NEO-KD against stronger adversarial
attacks; we perform average attack based on PGD-100 [21], Carlini and Wagner (CW) [2], and
AutoAttack [5]. Table 8 shows that NEO-KD achieves higher adversarial test accuracy than Adv. w/o
Distill [12] in most of cases. Typically, CW attack and AutoAttack are stronger attacks than the PGD
attack in single-exit networks. However, in the context of multi-exit networks, these attacks become
weaker than the PGD attack when taking all exits into account. Details for generating stronger
adversarial attacks are described in Appendix.

Additional results. Other results including clean test accuracy, results with average attack based
adversarial training, results with varying hyperparameters, and results with another baseline used in
single-exit network, are provided in Appendix.

5 Conclusion

In this paper, we proposed a new knowledge distillation based adversarial training strategy for robust
multi-exit networks. Our solution, NEO-KD, reduces adversarial transferability in the network while
guiding the output of the adversarial examples to closely follow the ensemble outputs of the neighbor
exits of the clean data, significantly improving the overall adversarial test accuracy. Extensive
experimental results on both anytime and budgeted prediction setups using various datasets confirmed
the effectiveness of our method, compared to baselines relying on existing adversarial training or
knowledge distillation techniques for multi-exit networks.

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the
Korea government (MSIT) (No. NRF-2019R1I1A2A02061135), by the Center for Applied Research
in Artificial Intelligence (CARAI) grant funded by DAPA and ADD (UD230017TD), and by IITP
funds from MSIT of Korea (No. 2020-0-00626).

References
[1] Maksym Andriushchenko, Francesco Croce, Nicolas Flammarion, and Matthias Hein. Square

attack: a query-efficient black-box adversarial attack via random search. In Computer Vision–
ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part
XXIII, pages 484–501. Springer, 2020.

[2] Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In
2017 ieee symposium on security and privacy (sp), pages 39–57. Ieee, 2017.

[3] Sihong Chen, Haojing Shen, Ran Wang, and Xizhao Wang. Towards improving fast adversarial
training in multi-exit network. Neural Networks, 150:1–11, 2022.

[4] Francesco Croce and Matthias Hein. Minimally distorted adversarial examples with a fast
adaptive boundary attack. In International Conference on Machine Learning, pages 2196–2205.
PMLR, 2020.

[5] Francesco Croce and Matthias Hein. Reliable evaluation of adversarial robustness with an
ensemble of diverse parameter-free attacks. In International conference on machine learning,
pages 2206–2216. PMLR, 2020.

10

[6] Junhao Dong, Seyed-Mohsen Moosavi-Dezfooli, Jianhuang Lai, and Xiaohua Xie. The enemy
of my enemy is my friend: Exploring inverse adversaries for improving adversarial training. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
24678–24687, 2023.

[7] Yinpeng Dong, Ke Xu, Xiao Yang, Tianyu Pang, Zhijie Deng, Hang Su, and Jun Zhu. Exploring
memorization in adversarial training. arXiv preprint arXiv:2106.01606, 2021.

[8] Micah Goldblum, Liam Fowl, Soheil Feizi, and Tom Goldstein. Adversarially robust distillation.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pages 3996–4003,
2020.

[9] Dong-Jun Han, Jungwuk Park, Seokil Ham, Namjin Lee, and Jaekyun Moon. Improving low-
latency predictions in multi-exit neural networks via block-dependent losses. IEEE Transactions
on Neural Networks and Learning Systems, 2023.

[10] Mirazul Haque, Anki Chauhan, Cong Liu, and Wei Yang. Ilfo: Adversarial attack on adaptive
neural networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 14264–14273, 2020.

[11] Sanghyun Hong, Yigitcan Kaya, Ionut,-Vlad Modoranu, and Tudor Dumitras. A panda? no, it’s
a sloth: Slowdown attacks on adaptive multi-exit neural network inference. In International
Conference on Learning Representations, 2020.

[12] Ting-Kuei Hu, Tianlong Chen, Haotao Wang, and Zhangyang Wang. Triple wins: Boosting ac-
curacy, robustness and efficiency together by enabling input-adaptive inference. In International
Conference on Learning Representations, 2020.

[13] Gao Huang, Danlu Chen, Tianhong Li, Felix Wu, Laurens Van Der Maaten, and Kilian Q
Weinberger. Multi-scale dense networks for resource efficient image classification. arXiv
preprint arXiv:1703.09844, 2017.

[14] Hoki Kim. Torchattacks: A pytorch repository for adversarial attacks. arXiv preprint
arXiv:2010.01950, 2020.

[15] Alexandros Kouris, Stylianos I Venieris, Stefanos Laskaridis, and Nicholas Lane. Multi-exit
semantic segmentation networks. In European Conference on Computer Vision, pages 330–349.
Springer, 2022.

[16] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

[17] Ya Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N, 7(7):3, 2015.

[18] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[19] Sungyoon Lee, Hoki Kim, and Jaewook Lee. Graddiv: Adversarial robustness of randomized
neural networks via gradient diversity regularization. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2022.

[20] Hao Li, Hong Zhang, Xiaojuan Qi, Ruigang Yang, and Gao Huang. Improved techniques for
training adaptive deep networks. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 1891–1900, 2019.

[21] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. In International Conference on
Learning Representations, 2018.

[22] Tianyu Pang, Kun Xu, Chao Du, Ning Chen, and Jun Zhu. Improving adversarial robustness
via promoting ensemble diversity. In International Conference on Machine Learning, pages
4970–4979. PMLR, 2019.

11

[23] Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha, and Ananthram Swami. Distillation
as a defense to adversarial perturbations against deep neural networks. In 2016 IEEE symposium
on security and privacy (SP), pages 582–597. IEEE, 2016.

[24] Mary Phuong and Christoph H Lampert. Distillation-based training for multi-exit architectures.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 1355–
1364, 2019.

[25] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
recognition challenge. International journal of computer vision, 115:211–252, 2015.

[26] Surat Teerapittayanon, Bradley McDanel, and Hsiang-Tsung Kung. Branchynet: Fast inference
via early exiting from deep neural networks. In 2016 23rd International Conference on Pattern
Recognition (ICPR), pages 2464–2469. IEEE, 2016.

[27] Xinglu Wang and Yingming Li. Harmonized dense knowledge distillation training for multi-exit
architectures. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35,
pages 10218–10226, 2021.

[28] Qunliang Xing, Mai Xu, Tianyi Li, and Zhenyu Guan. Early exit or not: Resource-efficient
blind quality enhancement for compressed images. In European Conference on Computer
Vision, pages 275–292. Springer, 2020.

[29] Huanrui Yang, Jingyang Zhang, Hongliang Dong, Nathan Inkawhich, Andrew Gardner, Andrew
Touchet, Wesley Wilkes, Heath Berry, and Hai Li. Dverge: diversifying vulnerabilities for
enhanced robust generation of ensembles. Advances in Neural Information Processing Systems,
33:5505–5515, 2020.

[30] Zhuolin Yang, Linyi Li, Xiaojun Xu, Shiliang Zuo, Qian Chen, Pan Zhou, Benjamin Rubinstein,
Ce Zhang, and Bo Li. Trs: Transferability reduced ensemble via promoting gradient diversity
and model smoothness. Advances in Neural Information Processing Systems, 34, 2021.

[31] Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric Xing, Laurent El Ghaoui, and Michael Jordan.
Theoretically principled trade-off between robustness and accuracy. In International conference
on machine learning, pages 7472–7482. PMLR, 2019.

[32] Wangchunshu Zhou, Canwen Xu, Tao Ge, Julian McAuley, Ke Xu, and Furu Wei. Bert loses
patience: Fast and robust inference with early exit. Advances in Neural Information Processing
Systems, 33:18330–18341, 2020.

[33] Jianing Zhu, Jiangchao Yao, Bo Han, Jingfeng Zhang, Tongliang Liu, Gang Niu, Jingren Zhou,
Jianliang Xu, and Hongxia Yang. Reliable adversarial distillation with unreliable teachers.
arXiv preprint arXiv:2106.04928, 2021.

[34] Bojia Zi, Shihao Zhao, Xingjun Ma, and Yu-Gang Jiang. Revisiting adversarial robustness dis-
tillation: Robust soft labels make student better. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 16443–16452, 2021.

12

A Experiment Details

We provide additional implementation details that were not described in the main manuscript.

A.1 Model training

We train a SmallCNN [12] for 150 epochs with batch size 128 on MNIST [18], a MSDNet [13] for
150 epochs with batch size 128 on CIFAR-10/100 [16] and Tiny-ImageNet [17]. For ImageNet [25],
since it takes a long time to train from the beginning, we finetune the pretrained model with our
NEO-KD loss function for 10 epochs. All experiments are implemented with two RTX3090 GPUs.
Other settings follow [12]2 for SmallCNN and [13]3 for MSDNet except for a channel, which is set
to 8 for our experiments on CIFAR-10/100. For the optimizer, SGD is used with a momentum of 0.9
and a weight decay of 5× 10−4. For the MNIST dataset, the initial learning rate is set to 0.01 and
the learning rate is decayed 10-fold at 50 epoch. For the CIFAR-10/100 dataset, the initial learning
rate is 0.1, and is decayed 10-fold at 75-th epoch and 115-th epoch. For Tiny-ImageNet, the initial
learning rate is set to 0.1, and is decayed 10-fold at 50-th epoch and 100-th epoch. For ImageNet, the
learning rate is constant with 0.001.

A.2 Adversarial training

During adversarial training, we use max-average attack and average attack [12] for generating
adversarial examples via PGD attacker algorithm [21] with 7-steps, while the PGD attacker algorithm
with 50-step is used for measuring robustness against a stronger attack during test time. With PGD-
50 attack, we measure adversarial test accuracy on 3 random seeds and average the results. For
PGD attack, the perturbation degree ε = 0.3 is used for MNIST, ε = 8/255 is used for CIFAR-
10/100, and ε = 2/255 Tiny-ImageNet/ImageNet during both adversarial training and inference time.
The step size δ is set to 20/255 for MNIST, 2/255 for CIFAR-10/100, and 2

3ε (0.0052) for Tiny-
ImageNet/ImageNet. The number of iterations is commonly 50-steps. Similarly, when measuring
adversarial transferability, we also use PGD attack with 50 steps, 2/255 step size, and 8/255 epsilon
value to generate adversarial attacks. With PGD attack, the attack success rate is utilized as the metric
to measure adversarial transferability. We perform each experiment on 5 random seeds and average
the results.

Additionally, the hyperparameter α for NKD is set to 3, and β for EOKD is set to 1 across all
experiments. On the other hand, the exit-balancing parameter γ is set to [1, 1, 1] for MNIST and
CIFAR-10, and [1, 1, 1, 1.5, 1.5], [1, 1, 1, 1.5, 1.5, 1.5, 1.5] for Tiny-ImageNet/ImageNet, CIFAR-100,
respectively.

A.3 How to determine confidence threshold in budgeted prediction setup

We provide a detailed explanation about how to determine confidence threshold for each exit using
validation set before the testing phase. First, in order to obtain confidence thresholds for various
budget scenarios, we allocate the number of validation samples for each exit. For simplicity, consider
a toy example with 3-exit network (i.e., L = 3) and assume the number of validation set is 3000.
Then, each exit can be assigned a different number of samples: for instance, (2000, 500, 500), (1000,
1000, 1000) and (500, 1000, 1500). As more samples are allocated to the early exits, a scenario
with a smaller budget can be obtained, while allocating more data to the later exits can lead to a
scenario with a larger budget. More specifically, to see how to obtain the confidence threshold for
each exit, consider the low-budget case of (2000, 500, 500). The model first makes predictions on all
3000 samples at exit 1 and sorts the samples based on their confidence. Then, the 2000-th largest
confidence value is set as the confidence threshold for the exit 1. Likewise, the model performs
predictions on remaining 1000 samples at exit 2 and the 500-th largest confidence is determined as
the threshold for exit 2. Following this process, all thresholds for each exit are determined. During
the testing phase, we perform predictions on test samples based on the predefined thresholds for each
exit, and calculate the total computational budget for the combination of (2000, 500, 500). In this
way, we can obtain accuracy and computational budget for different combinations of data numbers

2https://github.com/VITA-Group/triple-wins
3https://github.com/kalviny/MSDNet-PyTorch

13

Exit 1 2 3 Average
Adv. w/o Distill [12] 98.14% 99.36% 99.55% 99.02%

NEO-KD (ours) 97.82% 99.29% 99.48% 98.86%

(a) MNIST

top-1 accuracy (%) top-5 accuracy (%)
Exit 1 2 3 4 5 Avg. 1 2 3 4 5 Avg.

Adv. w/o Distill [12] 43.10 47.64 50.36 50.58 50.70 48.48 68.26 72.30 74.86 75.58 75.36 73.27
NEO-KD (ours) 45.56 48.32 49.88 50.56 50.52 48.97 70.56 73.12 74.52 74.22 74.98 73.48

(b) Tiny-ImageNet

Table A1: Clean test accuracy in the anytime prediction setup: NEO-KD’s advantage in terms
of adversarial test accuracy (as shown in the main mansuscript) can be achieved without largely
compromising the clean test accuracy.

top-1 accuracy (%) top-5 accuracy (%)
Exit 1 2 3 4 5 6 7 Avg. 1 2 3 4 5 6 7 Avg.

Adv. w/o Distill [12] 21.14 20.49 20.68 20.18 20.58 20.56 20.24 20.55 48.28 48.24 46.75 46.41 46.31 46.96 45.64 46.94
SKD [24] 22.39 22.17 19.89 18.81 18.82 17.48 14.84 19.20 51.73 51.43 47.88 45.92 45.90 43.65 41.38 46.84
ARD [8] 20.55 19.84 20.95 19.61 19.41 20.52 21.72 20.37 48.18 46.94 46.96 45.37 45.06 46.17 48.42 46.73
LW [3] 17.65 18.80 16.97 16.64 17.15 17.08 16.79 17.30 44.33 44.03 41.49 41.48 41.37 42.06 41.64 42.34

NEO-KD (ours) 21.31 22.01 21.46 22.10 21.89 21.64 20.78 21.60 49.16 48.88 49.12 48.76 48.00 48.08 47.23 48.46

(a) Max-average attack
top-1 accuracy (%) top-5 accuracy (%)

Exit 1 2 3 4 5 6 7 Avg. 1 2 3 4 5 6 7 Avg.
Adv. w/o Distill [12] 12.73 12.10 13.33 13.27 13.14 13.17 13.27 13.00 36.22 35.66 37.07 36.57 36.47 37.26 36.51 36.54

SKD [24] 15.96 15.90 15.31 15.32 15.70 14.84 10.33 14.77 42.19 41.72 41.29 41.46 42.03 40.08 32.68 40.21
ARD [8] 12.74 12.53 13.80 13.04 12.79 13.56 14.73 13.31 36.12 35.67 37.21 36.28 35.81 37.09 38.82 36.71
LW [3] 12.82 13.33 12.28 11.96 12.10 12.25 12.55 12.47 36.49 36.23 34.46 34.17 34.09 34.78 34.72 34.99

NEO-KD (ours) 14.64 15.15 15.42 16.07 16.42 16.11 15.59 15.63 38.88 39.56 40.60 40.57 41.13 40.91 39.85 40.21

(b) Average attack

Table A2: Adversarial training via Average attack: Adversarial test accuracy in the anytime
prediction setup on CIFAR-100.

(i.e., various budget scenarios). Figures 2 and 3 in the main manuscript show the results for 100 cases
of different budget scenarios.

B Clean Test Accuracy

Table A1 shows the clean accuracy results using the model built upon adversarial training via max-
average attack. We observe that NEO-KD generally shows comparable clean test accuracy with Adv.
w/o Distill [12], especially on the more complicated dataset Tiny-ImageNet [17] while achieving
much better adversarial test accuracy as reported in the main manuscript.

C Adversarial Training via Average Attack

In the main manuscript, we presented experimental results using the model trained based on max-
average attack. Here, we also adversarially train the model via average attack [12] and measure
adversarial test accuracy on CIFAR-100 dataset. Table A2 compares adversarial test accuracies of
NEO-KD and other baselines against max-average attack and average attack. The overall results are
consistent with the ones in the main manuscript with adversarial training via max-average attack,
further confirming the advantage of NEO-KD.

D Hyperparameter Tuning

In the NEO-KD objective function, there are three hyperparameters (α, β, γ), where α, β control
the amount of distilling knowledge from NKD, EOKD and γ increases the amount of knowledge
distilled to later exits.

14

D.1 Hyperparameter (α, β)

The extreme value of α and β can destroy ideal adversarial training. Too large α makes strong NKD,
which results in high dependency among submodels and too small α makes weak NKD, which cannot
distill enough knowledge to student exits. In contrast, too large β makes strong EOKD, which can
interrupt adversarial training by distilling only sparse knowledge (likelihoods of majority classes are
zero) and too small β makes weak EOKD, which cannot mitigate dependency among submodels.
We select α, β values in the range of [0.35, 3] and measure the adversarial test accuracy value by
averaging adversarial test accuracy from all exits. The candidate (α, β) pairs are (0.35, 1), (1, 0.35),
(0.35, 0.35), (0.5, 1), (1, 0.5), (0.5, 0.5), (1, 1), (2, 1), (1, 2), (2, 2), (3, 1), (1, 3), and (3, 3). When
(α, β) is (3, 1), NEO-KD achieves 28.96% of adversarial test accuracy against max-average attack
and 22.88% against average attack, which is the highest adversarial test accuracy among the various
candidate (α, β) pairs. Therefore, we use (3, 1) as (α, β) pair in our experiments.

D.2 Hyperparameter γ

Since the prediction difference between the last exit (teacher prediction) and later exits is smaller than
the prediction difference between the last exit and early exits, later exits are less effective for taking
advantage of knowledge distillation. Therefore, we provide slightly larger weights to later exits for
distilling more knowledge to later exits than early exits. The candidate γ values are [1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1.5, 1.5, 1.5, 1.5], and [1, 1, 1, 1.7, 1.7, 1.7, 1.7]. As a result, when we distill 1.5 times more
knowledge to later exits, NEO-KD achieves 28.96% of adversarial test accuracy against max-average
attack and 22.88% against average attack, which is the highest adversarial test accuracy compared
to providing same weights with earlier exits to later exits (28.13% for max-average and 21.66% for
average attack) or distilling 1.7 times more knowledge to later exits than earlier exits (28.68% for
max-average and 22.58% for average attack). The adversarial test accuracy value is the average of
adversarial test accuracies from all exits. Therefore, we use γ = [1, 1, 1, 1.5, 1.5, 1.5, 1.5] in our
experiments. This result proves that the exit-balancing parameter γ with an appropriate value is
needed for high performance.

E Discussions on Performance Degradation at Later Exits

As can be seen from the results for the anytime prediction in the main manuscript, the adversarial test
accuracy of the later exits is sometimes lower than the performance of earlier exits. This phenomenon
can be explained as follows: In general, we observed via experiments that adversarial examples
targeting later exits has the higher sum of losses from all exits compared to adversarial examples
targeting earlier exits. This makes max-average or average attack mainly focus on attacking the later
exits, leading to low adversarial test accuracy at later exits. The performance of later exits can be
improved by adopting the ensemble strategy as in the main manuscript for the budgeted prediction
setup.

F Comparison with Recent Defense Methods for Single-Exit Networks

The baselines in the main paper were generally the adversarial defense methods designed for multi-
exit networks. In this section, we conduct additional experiments with a recent defense method,
TEAT [7], and compare with our method. Since TEAT was originally designed for the single-exit
network, we first adapt TEAT to the multi-exit network setting. Instead of the original TEAT that
generates the adversarial examples considering the final output of the network, we modify TEAT to
generate adversarial examples that maximizes the average loss of all exits in the multi-exit network.
Table A3 below shows the results using max-average attack on CIFAR-10/100. It can be seen that
our NEO-KD, which is designed for multi-exit networks, achieves higher adversarial test accuracy
compared to the TEAT methods (PGD-TE and TRADES-TE) designed for single-exit networks.
The results highlight the necessity of developing adversarial defense techniques geared to multi-exit
networks rather than adapting general defense methods used for single-exit networks.

15

Exit 1 2 3 Average
PGD-TE [7] 48.73% 46.00% 46.85% 47.19%

TRADES-TE [7] 45.05% 39.64% 42.10% 42.26%
NEO-KD (ours) 46.53% 47.65% 50.71% 48.30%

(a) CIFAR-10

Exit 1 2 3 4 5 6 7 Avg.
PGD-TE [7] 24.07% 24.39% 25.14% 25.35% 26.29% 25.57% 24.60% 25.06%

TRADE-TE [7] 17.62% 18.52% 18.61% 18.98% 18.95% 19.67% 20.35% 18.96%
NEO-KD (ours) 28.37% 28.78% 29.02% 29.49% 30.06% 28.45% 28.54% 28.96%

(b) CIFAR-100

Table A3: Comparison of adversarial test accuracy against max-average attack between TEAT
methods and our NEO-KD.

Exit 1 2 3 Avg.
SKD (exit 1) 32.27% 36.92% 38.57% 35.92%
SKD (exit 2) 35.33% 35.10% 37.82% 36.08%
SKD (exit 3) 39.36% 41.39% 38.39% 39.71%

SKD (ensemble) 38.63% 41.80% 40.13% 40.19%
ARD (exit 1) 35.64% 38.10% 42.12% 38.62%
ARD (exit 2) 35.35% 38.24% 40.00% 37.86%
ARD (exit 3) 39.37% 41.98% 43.53% 41.63%

ARD (ensemble) 35.22% 38.35% 40.76% 38.11%
NEO-KD (ours) 41.67% 45.38% 45.54% 44.20%

Table A4: Adversarial test accuracy of SKD and ARD according to exit selection as a teacher
prediction.

G Comparison with SKD and ARD

Existing self-distillation schemes [20, 24] for multi-exit networks improve the performance on clean
samples by self-distilling the knowledge of the last exit, as the last exit has the best prediction quality.
Therefore, following the original philosophy, we also used the last exit in implementing the SKD
baseline. Regarding ARD [8], since it was proposed for single-exit networks, we also utilized the last
exit with high performance when applying ARD to multi-exit networks. Nevertheless, we perform
additional experiments to consider comprehensive baselines using various exits for distillation. Table
A4 above shows the results of SKD and ARD using a specific exit or an ensemble of all exits for
distillation. The results show that our scheme consistently outperforms all baselines.

H Implementations of Stronger Attacker Algorithms

In Section 4.3 of the main manuscript, during inference, we replaced the Projected Gradient Descent
(PGD) attack with other attacker algorithms (PGD-100 attack, Carlini and Wagner (CW) attack [2],
and AutoAttack [5]) to generate stronger attacks for multi-exit neural networks. This section provides
explanation on how these stronger attacks are implemented tailored to multi-exit neural networks.

H.1 Carlini and Wagner (CW) attack

The Carlini and Wagner (CW) attack is a method of generating adversarial examples designed to
reduce the difference between the logits of the correct label and the largest logits among incorrect
labels. In alignment with this attack strategy, we modify the CW attack for multi-exit neural networks.
In the process of minimizing this difference, our modification aims to minimize the average difference
across all exits of the multi-exit neural network. Moreover, when deciding whether a sample has been
successfully converted into an adversarial example, we consider a sample adversarial if it misleads
all exits in the multi-exit neural network.

16

H.2 AutoAttack

AutoAttack produces adversarial attacks by ensembling various attacker algorithms. For our experi-
ment, we sequentially use APGD [5], APGD-T [5], FAB [4], and Square [1] algorithms to generate
adversarial attacks, as they are commonly used.

H.2.1 APGD and APGD-T

The APGD attack is a modified version of the PGD attack, which is limited by its fixed step size, a
suboptimal choice. The APGD attack overcomes this limitation by introducing an adaptive step size
and a momentum term. Similarly, the APGD-T attack is a variation of the APGD attack where the
attack perturbs a sample to change to a specific class. In this process, we use the average loss of all
exits in the multi-exit neural network as the loss for computing the gradient for adversarial example
updates. Moreover, we define a sample as adversarial if it misleads all exits in the multi-exit neural
network.

H.2.2 FAB

The FAB attack creates adversarial attacks through a process involving linear approximation of
classifiers, projection to the classifier hyperplane, convex combinations, and extrapolation. The
FAB attack first defines a hyperplane classifier separating two classes, then finds a new adversarial
example through a convex combination of the extrapolation-projected current adversarial example
and the extrapolation-projected original sample with the minimum perturbation norm. Here, we
use the average gradient of all exits in the multi-exit neural network as the gradient for updating
adversarial examples. Similar to above, we label a sample as adversarial if it can mislead all exits in
the multi-exit neural network.

H.2.3 Square

The Square attack generates adversarial attacks via random searches of adversarial patches with
variable degrees of perturbation and position. The Square attack algorithm iteratively samples the
perturbation degree and the positions of patches while reducing the size of patches. The sampled
adversarial patches are added to a sample, and the patches that maximizes the loss of the target model
are selected. Here, we use the average loss of all exits in the multi-exit neural network as the loss
for determining whether a sampled perturbation increases or decreases the loss of the target model.
Additionally, we determine a sample as adversarial if it misleads all exits in the multi-exit neural
network.

H.3 Experiment details

For all attacks, we commonly use ε = 0.03 as the perturbation degree and generate adversarial
examples over 50 steps. All the attacks are based on L∞ norm. For the APGD attack, we employ
cross entropy loss for computing the gradient to update adversarial examples. In both the APGD-T
and FAB attacks, all class pairs are considered when generating adversarial attacks. For the Square
attack, the random search operation is conducted 5000 times (the number of queries). Other settings
follow [14]. In terms of performance comparison against stronger attacker algorithms, we adopt
adversarial training via average attack in both Adv. w/o Distill [12] and NEO-KD (our approach).
However, since the original CW attack algorithm and AutoAttack algorithm were designed for
single-exit neural networks, this adapted versions targeting multi-exit neural networks are relatively
weak.

17

	Introduction
	Related Works
	Proposed NEO-KD Algorithm
	Problem Setup: Adversarial Training in Multi-Exit Networks
	Algorithm Description

	Experiments
	Experimental Setup
	Main Experimental Results
	Ablation Studies and Discussions

	Conclusion
	Experiment Details
	Model training
	Adversarial training
	How to determine confidence threshold in budgeted prediction setup

	Clean Test Accuracy
	Adversarial Training via Average Attack
	Hyperparameter Tuning
	Hyperparameter (,)
	Hyperparameter

	Discussions on Performance Degradation at Later Exits
	Comparison with Recent Defense Methods for Single-Exit Networks
	Comparison with SKD and ARD
	Implementations of Stronger Attacker Algorithms
	Carlini and Wagner (CW) attack
	AutoAttack
	APGD and APGD-T
	FAB
	Square

	Experiment details

