
Scaling Robot Policy Learning via Zero-Shot Labeling
with Foundation Models

Nils Blank1, Moritz Reuss1, Fabian Wenzel1, Oier Mees2, Rudolf Lioutikov1

state-actions

Foundation
Models

Task
Generation

Scene
Labeling

Keystate
Detection &
Grounding

Move the pot to the right

Inference: Language
Conditioned Policy

state-actions,
language

Unlabeled
Dataset

Labeled
Dataset

Train
Policy

Fig. 1: LUPUS leverages an ensemble of frozen pre-trained models to segment and annotate uncurated, long-horizon robot
demonstrations. The resulting fully-labeled and segmented dataset can be used to train language-conditioned policies zero-
shot without any human annotation.

Abstract— A central challenge towards developing robots that
can relate human language to their perception and actions
is the scarcity of natural language annotations in diverse
robot datasets. Moreover, robot policies that follow natural
language instructions are typically trained on either templated
language or expensive human-labeled instructions, hindering
their scalability. To this end, we introduce a novel approach to
automatically label uncurated, long-horizon robot teleoperation
data at scale in a zero-shot manner without any human
intervention. We utilize a combination of pre-trained vision-
language foundation models to detect objects in a scene, propose
possible tasks, segment tasks from large datasets of unlabelled
interaction data and then train language-conditioned policies
on the relabeled datasets. Our initial experiments show that
our method enables training language-conditioned policies on
unlabeled and unstructured datasets that match ones trained
with oracle human annotations.

I. INTRODUCTION

Language-conditioned policies offer an intuitive and user-
friendly method to instruct robots [1], [2]. Training such
policies to perform diverse skills requires large amounts
of text-labeled robot trajectories for the policy to ground
instructions to behavior.

In response to these obstacles, Learning from Play (LfP)
has been introduced as a method of using play-like data
for fast and diverse data collection. This approach acquires
extended, varied demonstrations and makes the data col-
lection process more efficient and cost-effective. However,

1Intuitive Robots Lab, Karlsruhe Institute of Technology, Germany
2 Berkeley Artificial Intelligence Research Lab, University of California,

Berkeley, USA

generating language labels for play demonstrations usually
includes human labeling, which is costly and inefficient.

To address this, we introduce Labeling Unstructed Play
Data utilizing Specialist Language Models (LUPUS), a novel
method for zero-shot labeling of long-horizon videos captur-
ing robot play without necessitating human intervention or
additional model training. LUPUS employs an ensemble of
pre-trained expert models to identify relevant objects within
the environment. Our method introduces an expert ensemble
method to identify object-centric keystates to segment long
videos consisting of multiple tasks into smaller windows
with single actions. Subsequently, a Large Language Model
(LLM) generates language instructions matching the scene
changes tracked by various pre-trained models. As a result,
LUPUS converts long-horizon play data into segmented and
annotated datasets for training language-conditioned policies
without any manual labeling.

We evaluate LUPUS on a challenging self-collected play
dataset in a toy kitchen. Our findings indicate that LUPUS
not only efficiently annotates play data with appropriate
task descriptions but also surpasses state-of-the-art closed-
source Vision-Language Models (VLMs), such as Gemini-
Pro. Furthermore, regardless of grounding, LUPUS reliably
finds important keystates in long-horizon demonstrations
better than prior zero-shot methods such as UVD [3]. Finally,
we demonstrate the efficacy of LUPUS in zero-shot policy
learning by training a language-guided diffusion policy using
our synthetically labeled data.

II. METHOD

In this section, LUPUS is introduced. We start by giving
a high-level overview of the method, followed by detailed
explanations of its three sub-methods for zero-shot play
labeling and key-state detection.

A. LUPUS Method Overview

Step 1. Initial Object and Task Retrieval

OV
Ensemble

(VLM)

Keystates + Scores

Banana moved to the right

Robot Action

Step 2. Scene Labeling
Object

Detection
Filtering

Object Relations
Object States

Gripper Position
Object Movement

Keystate
Ensemble

Banana is next to pot

None

Robot was close to
banana

Given these
observations, what
did the robot do?

Put the banana
in the stove

Step 3. Keystate Detection and Grounding

Depth
Estimation

Segmentation

Flow
Estimation

Object
List Close

microwave, …

Given these objects ,
what tasks could a

robot solve?

Fig. 2: Overview of the proposed LUPUS framework for
labeling long-horizon robot play sequences in a zero-shot
manner using an ensemble of experts.

LUPUS is divided into three primary steps: (I) Potential
Task Identification and Initial Object Retrieval, (II) Scene
Labeling, and (III) Keystate Detection with Grounding. Step
(I) focuses on identifying all objects within the scene and
querying a Large Language Model (LLM) to generate a
list of all potential tasks involving these objects. Step (II)
involves labeling all scene objects and monitoring their
changes throughout a frame sequence. Step (III) is dedicated
to identifying object-centric key states and prompting an
LLM to annotate the segmented interactions with appropriate
natural language descriptions. Figure 2 depicts a compre-
hensive overview of these steps. The subsequent sections
elaborate on each component of LUPUS.

B. Step 1: Identifying Potential Tasks from RGB Images

To effectively annotate play data with LUPUS, LUPUS
starts by determining all objects in the scene and subse-
quently compiling a set of potential tasks executable within
the given environment.

LUPUS first generates n class-agnostic bounding boxes
for 16 uniformly sampled frames with OWLv2 [4]. These
boxes are then aligned with a predefined list of objects
commonly appearing in robotic environments. LUPUS fur-
ther calculates similarity scores with SigLIP [5] for each
box proposal against all object text representations for more
robust grounding. Scores from both grounding predictions
are then combined and filtered based on objectness scores,
grounding accuracy, and object temporal presence to finalize
the scene’s object set. With a finalized object list, an LLM
is prompted to generate a potential task list by considering

the objects’ interactions. Figure 13 of the Appendix gives an
example prompt to generate this task list.

C. Step 2: Scene Labeling

The perception module annotates all observable ob-
ject changes throughout the video, encompassing bounding
boxes, segmentation masks, object positions, frame-to-frame
displacements, and object relationships. LUPUS integrates
several state-of-the-art models for scene labeling.
For object detection, LUPUS uses an ensemble of open-
vocabulary detectors, namely OWLv2 [4] and CLIPSeg [6].
For segmentation, LUPUS employs Efficient-SAM [7]. To
ensure robust scene representations, LUPUS performs several
filtering steps, including temporal aggregation with DEVA
[8]. Details of our perception pipeline are presented in
section D.1 of the Appendix.

D. Step 3: Keystate Detection by Heuristic Consensus

Given the scene annotations from Step 2, LUPUS utilizes
these representations to detect keystates and perform ground-
ing. LUPUS uses multiple heuristics to detect keystates in
the long-horizon trajectory. By combining multiple heuris-
tics, we can filter out keystates induced by noise in the
observations and control the quality of the keystates with
the resulting score. Each heuristic monitors keystate changes
for individual objects. This approach minimizes overlapping
agreements in different parts of the scene caused by noise.

An object-centric keystate oi is valid if its score exceeds
a user-specified threshold. LUPUS considers keystates of
different heuristics within a certain range to be referring
to the same keystate. The keystates are averaged across the
heuristics for a final keystate.

LUPUS uses gripper position, object states, object rela-
tions, object movement, and gripper close signals as heuris-
tics. The heuristics are detailed in Appendix D.2.

E. Action Retrieval and Grounding

Each keystate heuristic outputs a natural description of
why a keystate was detected. LUPUS uses this information
to construct a prompt to query a large language model. The
LLM is tasked to reason about detected object movement and
relation changes to determine the possible actions performed
by the robot. Sometimes, the observations are insufficient to
reason about the performed task. In such cases, we instruct
the LLM to output all possible tasks that could result in
the observations. Despite the instruction being ambiguous,
it could still be useful for downstream policy learning. We
evaluate this hypothesis in our experiments. We provide a
list of prompts in Section I of the Appendix.

III. EVALUATION

In this section, we study LUPUS as an effective tool for
labeling uncurated play datasets. We want to answer the fol-
lowing key questions: (I) Is LUPUS able to label uncurated,
long-horizon robot data in different environments with a high
accuracy? (II) How good are the generated keystates? (III)
How does LUPUS perform in grounding against recent state-
of-the-art vision-language foundation models? (IV) How well

does a policy trained on automatic annotations understand
language instructions compared to a policy trained with
human annotations?

A. Experiment Description

To test the capabilities of LUPUS, we collect a long-
horizon play dataset in our own play kitchen using teleoper-
ation. The dataset and evaluation setup details can be found
in Sec. B.

B. Keystate Evaluation

↑

V
al

ue

0,0

0,2

0,4

0,6

0,8

𝜖 = 8 𝜖 = 16

Uniform Sampling UVD Ours Ours + Gripper

Kitchen Play

Fig. 3: Keystate accuracy for different frame distance toler-
ances. When additionally incorporating gripper-close signals,
the keystate quality further increases.

We perform a quantitative evaluation of the keystates
produced by our method on the play dataset recorded in a toy
kitchen and BridgeV2 [9] for different tolerance thresholds.
If a predicted keystates distance to an actual keystate is
smaller than the threshold, it is labeled as correct. Fig.
3 shows the result of our method on our Kitchen Play
dataset, compared against UVD [3] and uniform sampling
with interval 64.

Notably, LUPUS outperforms UVD by a large margin in
precision and recall for both tolerances and mAP. Addition-
ally, incorporating gripper-close signals further improves the
performance. We provide ablations of the performance of our
method with different heuristics in Table IV of the Appendix.
Results on CALVIN and BridgeV2 can be seen in Sec. F of
the Appendix.

C. Grounding Evaluation

Method LLM Accuracy (ϵ = 8) Accuracy (ϵ = 16)
Amb. Single Amb. Single

S3D - 0.04 0.03
XCLIP - 0.07 0.09
Gemini 0.13 0.13

LUPUS
GPT-3.5 0.70 0.55 0.67 0.53
GPT-4 0.84 0.77 0.79 0.71

Gemini (Lang) 0.80 0.61 0.75 0.57
Mixtral8x7b 0.66 0.52 0.62 0.49

TABLE I: Grounding accuracy of our framework. For Amb.,
the prediction is labeled correct if the list of answers con-
tains the ground truth. In Single, ambiguous predictions are
considered wrong.

To address Question (III), we compare the annotations
produced by our framework with ground truth language
annotations obtained through human labeling on the Kitchen
Play environment. Given the natural language observations
made by our heuristics, we prompt four different LLMs to
select up to two tasks from a task list. We compare against
Gemini Pro Vision [10], which we prompt with eight evenly
spaced frames, S3D [11], [12] and XCLIP [13].

LUPUS outperforms all baselines by a large margin, as
seen in Table I.

D. Language-conditioned Policy Training

Success Correct Grounding
0

0.5

1

1.5

0.47

0.89

0.28

0.580.58

0.89

V
al

ue

LUPUS LUPUS Noisy Human-Annotated

Fig. 4: Comparison of policies trained with different data
labels in our real world setting.

Next, we train a language-conditioned policy [14] on our
automatically labeled dataset and compare it against a policy
trained with a human-annotated dataset. For evaluation, we
task the policies to solve tasks specified in natural language.
We evaluate two quantities: instruction understanding and
success rate. Detailed descriptions of our policy, environment
setup, and evaluation are summarized in B of the Appendix.
Fig. 4 shows the grounding and success ratio across 12
tasks. The policy trained with automatically labeled data
performs on par with the human-annotated dataset regarding
grounding, while the success rate is slightly lower. This can
be attributed to the overall lower number of training samples
produced by our method. Including noisy samples seems to
hurt the performance significantly.

IV. CONCLUSION

In this work, we introduced LUPUS, the first method,
which is able to fully label long-horizon play datasets without
needing any human interventions or model training. The
framework leverages a set of vision-language foundation
models and an LLM to detect key-frames and ground actions
in the demonstrations. We show that LUPUS’ keystate detec-
tion heuristics can be used to extract informative keyframes
from long horizon data with RGB images only. Furthermore,
LUPUS is able to generate natural language labels for long-
horizon videos. Our experiments demonstrate that language-
guided policies trained on the artificially labeled dataset
perform competitively with those trained on fully human-
labeled data.

V. ACKNOWLEDGEMENTS

The work presented here was funded by the German
Research Foundation (DFG) – 448648559. The authors
acknowledge support by the state of Baden-Württemberg
through HoreKa supercomputer funded by the Ministry of
Science, Research and the Arts Baden-Württemberg and by
the German Federal Ministry of Education and Research.

REFERENCES

[1] O. Mees, L. Hermann, and W. Burgard, “What Matters in
Language Conditioned Robotic Imitation Learning over Unstructured
Data,” Aug. 2022, arXiv:2204.06252 [cs]. [Online]. Available:
http://arxiv.org/abs/2204.06252

[2] C. Lynch and P. Sermanet, “Language Conditioned Imitation Learning
over Unstructured Data,” Jul. 2021, arXiv:2005.07648 [cs]. [Online].
Available: http://arxiv.org/abs/2005.07648

[3] Z. Zhang, Y. Li, O. Bastani, A. Gupta, D. Jayaraman, Y. J. Ma, and
L. Weihs, “Universal visual decomposer: Long-horizon manipulation
made easy,” 2023.

[4] M. Minderer, A. Gritsenko, and N. Houlsby, “Scaling Open-
Vocabulary Object Detection,” Jul. 2023, arXiv:2306.09683 [cs].
[Online]. Available: http://arxiv.org/abs/2306.09683

[5] X. Zhai, B. Mustafa, A. Kolesnikov, and L. Beyer, “Sigmoid loss for
language image pre-training,” 2023.

[6] T. Lüddecke and A. S. Ecker, “Image Segmentation Using Text
and Image Prompts,” Mar. 2022, arXiv:2112.10003 [cs]. [Online].
Available: http://arxiv.org/abs/2112.10003

[7] Y. Xiong, B. Varadarajan, L. Wu, X. Xiang, F. Xiao, C. Zhu, X. Dai,
D. Wang, F. Sun, F. Iandola, R. Krishnamoorthi, and V. Chandra, “Ef-
ficientsam: Leveraged masked image pretraining for efficient segment
anything,” 2023.

[8] H. K. Cheng, S. W. Oh, B. Price, A. Schwing, and J.-Y. Lee, “Tracking
anything with decoupled video segmentation,” 2023.

[9] H. Walke, K. Black, A. Lee, M. J. Kim, M. Du, C. Zheng, T. Zhao,
P. Hansen-Estruch, Q. Vuong, A. He, V. Myers, K. Fang, C. Finn,
and S. Levine, “Bridgedata v2: A dataset for robot learning at scale,”
2024.

[10] G. Team, “Gemini: A family of highly capable multimodal models,”
2023.

[11] S. A. Sontakke, J. Zhang, S. Arnold, K. Pertsch, E. Biyik,
D. Sadigh, C. Finn, and L. Itti, “RoboCLIP: One Demonstration is
Enough to Learn Robot Policies,” Nov. 2023. [Online]. Available:
https://openreview.net/forum?id=DVlawv2rSI

[12] A. Miech, D. Zhukov, J.-B. Alayrac, M. Tapaswi, I. Laptev, and
J. Sivic, “Howto100m: Learning a text-video embedding by watching
hundred million narrated video clips,” 2019.

[13] Y. Ma, G. Xu, X. Sun, M. Yan, J. Zhang, and R. Ji, “X-clip: End-to-
end multi-grained contrastive learning for video-text retrieval,” 2022.

[14] M. Reuss and R. Lioutikov, “Multimodal diffusion transformer
for learning from play,” in 2nd Workshop on Language and
Robot Learning: Language as Grounding, 2023. [Online]. Available:
https://openreview.net/forum?id=nvtxqMGpn1

[15] C. Lynch, M. Khansari, T. Xiao, V. Kumar, J. Tompson,
S. Levine, and P. Sermanet, “Learning Latent Plans from
Play,” Dec. 2019, arXiv:1903.01973 [cs]. [Online]. Available:
http://arxiv.org/abs/1903.01973

[16] E. Rosete-Beas, O. Mees, G. Kalweit, J. Boedecker, and
W. Burgard, “Latent Plans for Task-Agnostic Offline Reinforcement
Learning,” Sep. 2022, arXiv:2209.08959 [cs]. [Online]. Available:
http://arxiv.org/abs/2209.08959

[17] A. Gupta, V. Kumar, C. Lynch, S. Levine, and K. Hausman, “Relay
policy learning: Solving long-horizon tasks via imitation and reinforce-
ment learning,” 2019.

[18] S. Nair and C. Finn, “Hierarchical foresight: Self-supervised learning
of long-horizon tasks via visual subgoal generation,” 2019.

[19] K. Shiarlis, M. Wulfmeier, S. Salter, S. Whiteson, and I. Posner, “Taco:
Learning task decomposition via temporal alignment for control,”
2018.

[20] O. Mees, L. Hermann, and W. Burgard, “What Matters in
Language Conditioned Robotic Imitation Learning over Unstructured
Data,” Aug. 2022, arXiv:2204.06252 [cs]. [Online]. Available:
http://arxiv.org/abs/2204.06252

[21] O. Mees, J. Borja-Diaz, and W. Burgard, “Grounding
Language with Visual Affordances over Unstructured Data,”
Mar. 2023, arXiv:2210.01911 [cs]. [Online]. Available:
http://arxiv.org/abs/2210.01911

[22] O. Mees, L. Hermann, E. Rosete-Beas, and W. Burgard, “Calvin: A
benchmark for language-conditioned policy learning for long-horizon
robot manipulation tasks,” 2022.

[23] V. Myers, A. He, K. Fang, H. Walke, P. Hansen-Estruch, C.-A.
Cheng, M. Jalobeanu, A. Kolobov, A. Dragan, and S. Levine,
“Goal Representations for Instruction Following: A Semi-Supervised
Language Interface to Control,” Aug. 2023, arXiv:2307.00117 [cs].
[Online]. Available: http://arxiv.org/abs/2307.00117

[24] O. Mees, L. Hermann, and W. Burgard, “What Matters in
Language Conditioned Robotic Imitation Learning over Unstructured
Data,” Aug. 2022, arXiv:2204.06252 [cs]. [Online]. Available:
http://arxiv.org/abs/2204.06252

[25] M. Reuss, M. Li, X. Jia, and R. Lioutikov, “Goal-
Conditioned Imitation Learning using Score-based Diffusion
Policies,” Jun. 2023, arXiv:2304.02532 [cs]. [Online]. Available:
http://arxiv.org/abs/2304.02532

[26] J. Borja-Diaz, O. Mees, G. Kalweit, L. Hermann, J. Boedecker, and
W. Burgard, “Affordance learning from play for sample-efficient policy
learning,” 2022.

[27] S. James and A. J. Davison, “Q-attention: Enabling efficient learning
for vision-based robotic manipulation,” 2022.

[28] M. Shridhar, L. Manuelli, and D. Fox, “Perceiver-actor: A multi-task
transformer for robotic manipulation,” 2022.

[29] Z. Liu, A. Bahety, and S. Song, “REFLECT: Summarizing
Robot Experiences for Failure Explanation and Correction,”
Oct. 2023, arXiv:2306.15724 [cs]. [Online]. Available:
http://arxiv.org/abs/2306.15724

[30] A. Yang, A. Nagrani, P. H. Seo, A. Miech, J. Pont-Tuset, I. Laptev,
J. Sivic, and C. Schmid, “Vid2seq: Large-scale pretraining of a visual
language model for dense video captioning,” 2023.

[31] S. Yan, T. Zhu, Z. Wang, Y. Cao, M. Zhang, S. Ghosh, Y. Wu, and
J. Yu, “VideoCoCa: Video-Text Modeling with Zero-Shot Transfer
from Contrastive Captioners,” Mar. 2023, arXiv:2212.04979 [cs].
[Online]. Available: http://arxiv.org/abs/2212.04979

[32] Z. Wang, M. Li, R. Xu, L. Zhou, J. Lei, X. Lin, S. Wang, Z. Yang,
C. Zhu, D. Hoiem, S.-F. Chang, M. Bansal, and H. Ji, “Language
models with image descriptors are strong few-shot video-language
learners,” 2022.

[33] H. Fang, P. Xiong, L. Xu, and Y. Chen, “CLIP2Video: Mastering
Video-Text Retrieval via Image CLIP,” Jun. 2021, arXiv:2106.11097
[cs]. [Online]. Available: http://arxiv.org/abs/2106.11097

[34] D. Ko, J. S. Lee, W. Kang, B. Roh, and H. J. Kim, “Large Language
Models are Temporal and Causal Reasoners for Video Question
Answering,” Nov. 2023, arXiv:2310.15747 [cs]. [Online]. Available:
http://arxiv.org/abs/2310.15747

[35] P. Sermanet, T. Ding, J. Zhao, F. Xia, D. Dwibedi, K. Gopalakrishnan,
C. Chan, G. Dulac-Arnold, S. Maddineni, N. J. Joshi,
P. Florence, W. Han, R. Baruch, Y. Lu, S. Mirchandani,
P. Xu, P. Sanketi, K. Hausman, I. Shafran, B. Ichter, and
Y. Cao, “RoboVQA: Multimodal Long-Horizon Reasoning for
Robotics,” Nov. 2023, arXiv:2311.00899 [cs]. [Online]. Available:
http://arxiv.org/abs/2311.00899

[36] J. Pan, Z. Lin, X. Zhu, J. Shao, and H. Li, “St-adapter: Parameter-
efficient image-to-video transfer learning,” 2022.

[37] T. Xiao, H. Chan, P. Sermanet, A. Wahid, A. Brohan,
K. Hausman, S. Levine, and J. Tompson, “Robotic Skill
Acquisition via Instruction Augmentation with Vision-Language
Models,” Jul. 2023, arXiv:2211.11736 [cs]. [Online]. Available:
http://arxiv.org/abs/2211.11736

[38] S. Karamcheti, S. Nair, A. S. Chen, T. Kollar, C. Finn, D. Sadigh,
and P. Liang, “Language-Driven Representation Learning for
Robotics,” Feb. 2023, arXiv:2302.12766 [cs]. [Online]. Available:
http://arxiv.org/abs/2302.12766

[39] Y. J. Ma, W. Liang, V. Som, V. Kumar, A. Zhang, O. Bastani, and
D. Jayaraman, “LIV: Language-Image Representations and Rewards
for Robotic Control,” Jun. 2023, arXiv:2306.00958 [cs]. [Online].
Available: http://arxiv.org/abs/2306.00958

[40] Y. J. Ma, S. Sodhani, D. Jayaraman, O. Bastani, V. Kumar, and
A. Zhang, “Vip: Towards universal visual reward and representation
via value-implicit pre-training,” 2023.

[41] A. Adeniji, A. Xie, C. Sferrazza, Y. Seo, S. James, and P. Abbeel,
“Language Reward Modulation for Pretraining Reinforcement
Learning,” Aug. 2023, arXiv:2308.12270 [cs]. [Online]. Available:
http://arxiv.org/abs/2308.12270

[42] R. Goyal, S. E. Kahou, V. Michalski, J. Materzyńska, S. Westphal,
H. Kim, V. Haenel, I. Fruend, P. Yianilos, M. Mueller-Freitag,
F. Hoppe, C. Thurau, I. Bax, and R. Memisevic, “The ”something
something” video database for learning and evaluating visual common
sense,” 2017.

[43] D. Damen, H. Doughty, G. M. Farinella, S. Fidler, A. Furnari,
E. Kazakos, D. Moltisanti, J. Munro, T. Perrett, W. Price, and M. Wray,
“Scaling egocentric vision: The epic-kitchens dataset,” 2018.

[44] T. Yu, T. Xiao, A. Stone, J. Tompson, A. Brohan, S. Wang,
J. Singh, C. Tan, D. M, J. Peralta, B. Ichter, K. Hausman,
and F. Xia, “Scaling Robot Learning with Semantically Imagined
Experience,” Feb. 2023, arXiv:2302.11550 [cs]. [Online]. Available:
http://arxiv.org/abs/2302.11550

[45] H. Xu, J. Zhang, J. Cai, H. Rezatofighi, and D. Tao, “Gmflow:
Learning optical flow via global matching,” 2022.

[46] L. Yang, B. Kang, Z. Huang, X. Xu, J. Feng, and H. Zhao, “Depth
anything: Unleashing the power of large-scale unlabeled data,” 2024.

[47] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based
algorithm for discovering clusters in large spatial databases with
noise,” in Proceedings of the Second International Conference on
Knowledge Discovery and Data Mining, ser. KDD’96. AAAI Press,
1996, p. 226–231.

[48] B. Chen, Z. Xu, S. Kirmani, B. Ichter, D. Driess,
P. Florence, D. Sadigh, L. Guibas, and F. Xia, “SpatialVLM:
Endowing Vision-Language Models with Spatial Reasoning
Capabilities,” Jan. 2024, arXiv:2401.12168 [cs]. [Online]. Available:
http://arxiv.org/abs/2401.12168

[49] H. Xu, J. Zhang, J. Cai, H. Rezatofighi, F. Yu, D. Tao, and A. Geiger,
“Unifying flow, stereo and depth estimation,” 2023.

[50] X. Wang, Y. Zhou, X. Liu, H. Lu, Y. Xu, F. He, J. Yoon, T. Lu,
G. Bertasius, M. Bansal, H. Yao, and F. Huang, “Mementos: A com-
prehensive benchmark for multimodal large language model reasoning
over image sequences,” 2024.

[51] J. Gao, B. Sarkar, F. Xia, T. Xiao, J. Wu, B. Ichter, A. Majumdar,
and D. Sadigh, “Physically Grounded Vision-Language Models for
Robotic Manipulation,” Sep. 2023, arXiv:2309.02561 [cs]. [Online].
Available: http://arxiv.org/abs/2309.02561

APPENDIX

A. Related Work

Learning From Play. LfP is a training data paradigm for
imitation learning, that leverages play-like data for imitation
learning. Instead of collecting a fixed set of expert demon-
strations, an operator interacts in the given environment with-
out constraints. Collecting demonstrations this way results in
more diverse and wide state space and easier data collection.
Consequently, a policy trained from such play data usually
shows a better generalization and performance in unseen
state goal spaces. To apply this paradigm to goal-conditioned
imitation learning, goal states in these long demonstrations
must be available. When working with image goals, goal
states can be extracted by sampling random windows from
the long-horizon play sequence or with robot proprietary in-
formation [15], [16], [14]. Hierarchical methods use multiple
policies to extract and learn subskills from play data [17],
[18], [19], [20], [21].

Several recent work try to learn a multimodal goal space to
embed goal states of text instructions and goal images [22],
[2], [23], [24], [25], [11]. Some methods require as little
as 1% language annotated data combined with efficiently
collected image goals to train policies [2], [22], [14]. Despite
these efforts, learning language-conditioned policies from
play still requires some language annotations.

Key State Identification. Long-horizon tasks often consist
of multiple subtasks. To efficiently learn goal-conditioned
policies from long-horizon tasks, one has to identify impor-
tant keystates from long-horizon tasks. From these keystates,
various goal modalities, such as image or language goals, can
be derived. Several methods can be used to extract keystates
from long-horizon demonstrations. These methods can range
from very simple to complex, depending on the complexity
of the task at hand. For instance, some approaches use the
robot’s proprioceptive observation [26], [21], [27], [28] to
detect points of interest. While proprioceptive observations
are strong indicators for keystates, they cannot universally
detect keystates for all actions.

Waypoint reconstruction is used to obtain important
keyframes from a long-horizon trajectory [26]. All these
methods require knowledge about robot or environment
states to extract keystates. UVD proposes to leverage founda-
tion models trained on large-scale robotic datasets to identify
keyframes by detecting phase shifts in the latent space of
these models [3]. This allows for keystate identification based
solely based on RGB observations. While this approach
presents a strong baseline, incorporating additional infor-
mation can significantly improve the keystate quality. We
argue that access to robot proprietary information is a viable
assumption, as this data is required to train a policy.

Changes in object relations and object states can also
be a strong indicator for subtask completion. REFLECT
constructs a scene graph containing object relations and
states [29]. If a scene graph changes for two consecutive
frames the frame is marked as a keyframe. This method
works well with access to ground truth state information

and object positions, usually only available in simulated
environments. While we use a similar approach to detect
keystates, our studies focus on the general applicability in
real-world environments without these restrictions.

Action Recognition. Video action recognition is the task
of retrieving an action performed over multiple frames.
Video action recognition consists of two subtasks. Dense
video action recognition aims to extract multiple actions and
their corresponding time frames from a video. Video action
classification assumes that the provided video only contains
a single action. Recent advances in generalist VLMs enable
them to solve these tasks in a zero-shot, open-vocabulary
manner [30], [31], [32], [33], [34].

RoboVQA collects a dataset of long-horizon demonstra-
tions [35]. Human annotators then divide the tasks into
short-horizon tasks and label the sequences accordingly. The
resulting data is used to finetune a video VLM on a VQA
dataset derived from the labeled robot demonstrations. The
model can then answer several questions regarding a video
demonstration, including the action performed by the robot.
Several recent works fine-tune CLIP foundation models using
in-domain robotics data [36], [37], [23]. The finetuned mod-
els are used for goal-conditioned behavior learning or action
retrieval for a larger, unlabeled dataset. These approaches
assume known key states and require labeled in-domain
finetuning data. LUPUS does not require any finetuning
and is thus environment agnostic. Several studies [38], [39],
[40], [41] train generalist visual representation models on
large-scale egocentric datasets [42], [43]. Although the main
purpose of these models is to provide a general representation
for downstream policy learning, they can also be used
for action retrieval, given their alignment of language and
images during pretraining. Often, finetuning of the models
is required to align language and images for new unseen
environments.

B. Real World Experiments Description

The following section describes our real-world play
kitchen environment in detail.

We collect play data through teleoperation in our robot
kitchen environment. The setup is illustrated in Fig 5. The
robot can solve 12 tasks in the environment, as shown in
Fig. 6.

The dataset consists of 1 hour of pure play trajectories.
Each trajectory consists of at least 10 different tasks that are
completed randomly. The demonstration data contains 439
short-horizon demonstrations of 12 different tasks. In our
evaluation, we distinguish between keystate and grounding
evaluation. Additionally, we investigate the capability of a
policy trained with automatically labeled data to understand
language instructions. We compare the performance of this
policy against one trained on the same dataset but with
human annotations. We evaluate the performance of the
trained policies based on two metrics:

Success Rate We perform each task three times and
calculate the average number of successful task completions.
We then compute the average success rate over all tasks.

Correct Grounding We evaluate whether the policy cor-
rectly understands language instructions. The task does not
need to be completed successfully. The robot only has to
show that it correctly understood the task. For instance, if
the robot approaches the oven and tries to open it but fails,
we label the task as correctly grounded. We again compute
the average over all possible tasks.

We train three policies:
Human. A policy trained on ground truth, human-

annotated data.
LUPUS. A policy trained on data labeled by LUPUS. We

discard ambiguous labels.
LUPUS Noisy. If the LLM outputs multiple language

instructions, we incorporate the demonstration in the training
dataset multiple times with each generated instruction.

The grounding accuracies and success rates for each task
are shown in Table II.

Task Human Lupus Lupus Noisy

banana in sink 3-2 3-3 3-3
pot right 3-3 3-3 3-2
pot left 3-2 3-2 3-1
open microwave 3-3 2-2 0-0
open oven 3-0 3-0 3-0
open fridge 3-0 3-0 3-1
close microwave 3-3 3-3 2-2
close oven 3-3 3-2 0-0
close fridge 2-1 3-2 1-1
banana on stove 3-1 1-0 0-0
banana oven 0-0 0-0 0-0
pot in sink 3-2 3-0 3-0

TABLE II: Number of correct task groundings and successful
task completions. The first number depicts the number of
correctly grounded tasks, and the second the number of
successful completions. We evaluate each task three times.

Fig. 5: Overview of the teleoperation setup on the real
kitchen environment. The human operates on the leader
robot. The follower robot imitates the actions of the leader.
The top and front cameras record the play trajectory at 30Hz.

Fig. 6: Overview of the 12 tasks recorded during play from the preprocessed front camera perspective.

C. Real Robot Policy

For our experiments, we use the Multimodal Diffusion
Transformer (MDT) policy architecture [14]. The model con-
sists of a transformer encoder-decoder architecture and uses
a continuous-time diffusion generative model to generate a
sequence of 20 future actions. To encode the text instructions,
a pre-trained CLIP text encoder is used, while images are
encoded with FiLM-conditioned ResNets-18. We follow all
hyperparameter recommendations from the paper for our
own implementation and train the resulting policy on our
real-robot dataset for approx. 400 epochs with a batch size
of 512. Our policy learns to predict a sequence of joint state
positions.

D. Additional Implementation Details

1) Scene Labeling: Object Annotations and Segmen-
tations. LUPUS combines a state-of-the-art open vocabu-
lary object detector, OWL-v2, [44] and CLIPSeg, an open-
vocabulary semantic segmentation model [6]. The open vo-
cabulary detector struggles with some classes, and its ground-
ing confidence scores are not properly aligned for direct
usage, resulting in incomplete and wrong annotations. To
tackle this issue, LUPUS ensembles the segmentation model
and detector: First, we extract bounding boxes for all objects
extracted in Step 1 with a low detection threshold. LUPUS
then computes the agreement between the object detector and
dense predictor by summing the logits inside each proposed
bounding box. This results in complete bounding boxes and
more robust predictions, as illustrated in Figure ??.
LUPUS further extracts optical flow with GMFlow [45]
and metric depth estimates with DepthAnything [46] for all
frames.

Increasing Detection Robustness for Static Objects. For
non-moving objects, LUPUS employs a temporal consensus
approach to enhance detection robustness and accuracy, es-
pecially in scenarios prone to occlusion. A two-step filtering
process identifies the most representative bounding box for

static objects over time, first by eliminating statistical outliers
and then by clustering the remaining boxes using DB-
SCAN [47]. The final bounding box for each static object is
derived from the cluster with the highest overall confidence,
representing the object consistently across frames.

Object Filtering and Mask Refinement through Tem-
poral Aggregation. Initial object detections may suffer
from temporal misalignments, such as missing detections for
certain frames or an object being classified with a synonym
for different frames. To address this challenge, LUPUS
utilizes DEVA [8], a mask-tracking model, to capture tem-
poral correlations between objects. LUPUS extends DEVA
to incorporate a class score for each propagated mask. The
resulting final mask belonging to each object has multiple
class scores of possibly different associated classes. LUPUS
obtains the most confident class and labels the object as
the determined class. DEVA sometimes continues tracking
a portion of the overlapping object as the occluded object.
To mitigate this, LUPUS analyzes each mask’s components
and keeps the component with the highest intersection-over-
union relative to the overall mask.

After applying DEVA and filtering, the masks are tempo-
rally more consistent and have consistent class labels.

2) Keystate Heuristics: Gripper Position. The gripper
position over time can indicate robot-object interactions.
Specifically, if the gripper is close to an object for a time
span of n frames, the robot likely interacted with that object.
To compute gripper-object proximity, we utilize the object
segmentation mask of the robot and objects. This heuristic
first estimates the end-effector position from a predicted
depth map and then calculates end-effector object distances
in pixel space.

State Prediction. LUPUS predicts the state of all objects
over all timeframes and outputs a keystate if a state change
is detected. LUPUS detects object states with SigLIP [5], a
contrastive foundation model. We first obtain an image of
the object at frame t by cropping the original frame with

the object’s bounding box. Then, we compare the CLIP
similarities of state text embeddings defined by a large
language model and the cropped images for non-occluded
frames.

Object Relations LUPUS additionally analyzes object
relations and determines keystates based on object-relation
changes. LUPUS constructs an object-relation graph where
nodes represent scene objects and edges denote their spatial
relations, as inspired by [29]. Some spatial relations (e.g.
inside, behind) require depth information. To address this,
we project scene objects onto a point cloud using a predicted
depth map [46], followed by canonicalization to reason about
directions in natural language [48].

Object Movement LUPUS tracks object movement based
on a predicted flow-map [49] and bounding-box displace-
ment. We select keyframes based on object movement if the
movement is above an object-specific adaptive threshold and
occurs for at least three frames.

Gripper Close Signals. LUPUS can also consider gripper
close signals as possible keystates, if available. Similar to
prior work [26], [21], [27], [28], [25], our gripper close
heuristic identifies a keystate when the gripper was pre-
viously closed for several frames and subsequently opens.
Typically, this indicates that the robot has completed an
interaction.

The employed keystate heuristics do not apply to all robot-
object interactions. For instance, the state heuristic only
applies to objects with states, the relation heuristic only
applies to movable objects, and the gripper position heuristic
often fails for small objects. Nevertheless, the heuristics
complement each other, depending on the interacted object.

E. Ablations

(ϵ = 8) (ϵ = 16)

Amb. Single Amb. Single

Grounding
Naive 0.59 0.34 0.60 0.33

Naive - SG 0.62 0.27 0.59 0.26
- Temporal Alignment 0.76 0.53 0.68 0.51
- Detection ensembling 0.59 0.50 0.59 0.50

F.F. 0.80 0.61 0.75 0.57

Precision Recall Precision Recall mAP ↑
Keystates Naive 0.46 0.36 0.67 0.53 0.36

- Temporal alignment 0.41 0.45 0.70 0.77 0.45
- Detection ensembling 0.46 0.48 0.69 0.73 0.48

F.F. 0.50 0.46 0.75 0.69 0.51

TABLE III: Ablation for the effectiveness of our perception
filtering. For Naive, we simply use OWL-v2 and SAM
to extract masks and bounding boxes without additional
filtering or temporal aggregation. In Naive-SG, we provide a
full object-relation prompt to the LLM when retrieving the
action. F.F. depicts full filtering.

In Table III, we provide ablations of our perception mod-
ule. To assess the effectiveness of our perception module,
we compare against simple box generation with OWLv2
and object segmentation with Efficient-SAM [7]. We perform
ablations by disabling several components: ensembling with
a dense open vocabulary predictor, statistical mask outlier
filtering, temporal aggregation, state prediction without oc-
clusion, and static object box aggregation. We perform all

experiments with a keystate threshold of 0.3 and Gemini as
the LLM.

When we omit our heavy postprocessing steps, we ob-
serve a significant decline in keystate quality and grounding
accuracy. Although the drop in keystate precision is not sub-
stantial, the recall shows a notable decrease. Additionally, the
grounding accuracy drops significantly, especially when only
unambiguous prompts are considered valid. We observed that
constraining the prompt information to a specific object and
its relations helps to reduce hallucination and results in more
precise predictions.

These findings underscore the necessity of robust postpro-
cessing techniques to effectively leverage current state-of-
the-art perception models in novel and challenging domains.

ϵ = 8 ϵ = 16

LUPUS
Gripper

gripper close 0.35 0.32 0.73 0.65
gripper close + object state 0.38 0.36 0.73 0.69

all 0.50 0.46 0.75 0.69

LUPUS
RGB

all 0.42 0.40 0.66 0.62

object relations 0.21 0.13 0.56 0.35
+ gripper pos. 0.29 0.40 0.52 0.71

+ gripper pos. + state 0.39 0.32 0.62 0.51

object movement 0.31 0.40 0.52 0.68
+ gripper pos. 0.34 0.42 0.56 0.70

+ gripper pos. + state 0.42 0.38 0.65 0.59

gripper pos. 0.31 0.43 0.50 0.69

TABLE IV: Keystate precision and recall when using dif-
ferent keystate heuristics. For all experiments, the keystate
detection threshold is set to 0.3, if applicable.

Fig. 7: Keystate detection precision and recall for different
threshold values.

Table IV shows the performance of our method when
incorporating different keystate heuristics. Gripper close sig-
nals present a very strong baseline. However, as mentioned
before, gripper close signals are not always available and can
not represent all different kinds of tasks. This is shown by the
increased precision and recall when incorporating additional
heuristics. Especially for a smaller threshold, we observe
a significantly increased performance when incorporating
additional heuristics.

Incorporating additional heuristics usually results in an
increase in precision and a decrease in recall. Always using
all heuristics is desired, as the precision-recall tradeoff can
then be best controlled by setting an appropriate threshold.

Fig. 7 depicts the relation between threshold, keystate
precision and recall, and grounding accuracy. With increasing
threshold, the grounding accuracy and keystate precision
increase. This indicates that with our scoring method, the
quality of samples can be controlled effectively. In the future,
we plan to evaluate the impact of different quality samples on
policy training more thoroughly in a simulated environment.

F. Additional Experiments

↑

V
al

ue

0,00

0,25

0,50

0,75

1,00

𝜖 = 2 𝜖 = 6

Uniform Sampling UVD Ours (0.25) Ours (0.35)

BridgeV2

Fig. 8: Keystate accuracy for different frame distance toler-
ances on BridgeV2. We report the precision and recall of our
method at two different keystate thresholds.

ϵ = 8 ϵ = 16

Method Precision Recall Precision Recall

UVD VIP 0.16 0.06 0.28 0.10

LUPUS 0.37 0.21 0.53 0.31

TABLE V: Keystate accuracy for different frame distance
tolerances on CALVIN with RGB Image-Data Only.

In Table V we show the keystate detection precision
and recall on the CALVIN [22] benchmark. CALVIN is
a challenging benchmark and is especially hard given the
large domain shift of the low-resolution simulation. LUPUS
utilizes off-the-shelf models trained on real-world data. Thus,
these models struggle significantly in simulated environments
that contain abstract objects. We had to perform prompt engi-
neering to make the detection and OV-segmentation models
detect any objects in the scene. Nevertheless, our method
performs reasonably well. Fig. 8 shows the performance
of our framework on BridgeV2 compared against the same
baselines. Given the shorter average task length in BridgeV2,
we opted for lower evaluation tolerance thresholds. We also
assess the quality of keystates produced by our framework
at two keystate thresholds, θo = 0.25 and θo = 0.35.
Our approach surpasses both UVD and Uniform Sampling

in terms of precision and mAP. A notable increase in the
precision of our generated keystates is observed when the
keystate threshold is raised to 0.35, suggesting that our
method’s keystate score can effectively manage keystate
quality. One challenge with the BridgeV2 dataset is the
frequent introduction of new objects by humans in between
short-horizon demonstrations. Our current framework does
not accommodate this, leading to some objects going unde-
tected and consequently lowering our method’s overall recall
in this environment. We aim to enhance our framework in
the future by incorporating a feature to verify the detection
of all objects in the current frame.

We do not perform quantitative grounding evaluation on
CALVIN and BridgeV2 due to the difficulties that arise when
evaluating language commands in high-dimensional natural
language task spaces. Multiple instructions can be considered
valid, and evaluating the correctness of an instruction is not
trivial.

G. Open-Ended Language Annotation

We show qualitative examples of our framework’s pro-
duced natural language instructions on BridgeV2 [9] in
Figs. 9–12.

We do not restrict the LLM to choose a task from a prede-
fined list for this task. Instead, we task it to generate possible
actions given the natural language descriptions generated by
our method. As shown in the figures, LUPUS often generates
useful tasks that could later be used for downstream policy
learning. The examples show that lupus can produce clear
language instructions, while Gemini Vision Pro suffers from
heavy hallucinations. Evaluating these tasks automatically
poses challenges due to the absence of a definitive ground
truth. Multiple instructions can be deemed valid, and assess-
ing predicted instructions necessitates an understanding of
the scene or accurate knowledge of object locations. While
a potential evaluation methodology is outlined in [50], the
most dependable source of validation in such scenarios likely
lies in human intervention.

H. Limitations

Perception. Our work shows that it is possible to leverage
off-the-shelf specialist models to annotate challenging long-
horizon data. The major limitations of our framework are in-
duced by these off-the-shelf models. Commonly used robotic
environments and their contained objects are still very chal-
lenging for state-of-the-art models. For instance, common
evaluation environments in robotics are toy kitchens. Open-
vocabulary detectors often struggle with grounding in such
environments. For instance, our framework frequently detects
the banana as a sponge in our toy kitchen setup. This hinders
the applicability of our framework in challenging scenarios,
such as BridgeV2. While there are models specifically ap-
plicable to the robotic domain, such as Spatial-VLM[48],
RoboVQA [35] or PGBlip [51], these models are either
not easily accessible or too specific for broader grounding
applications.

Fig. 9: Instructions generated by LUPUS: Move the pepper from inside the strainer to in front of the strainer, Take the
pepper out of the strainer and place it forward, Relocate the pepper to a position in front of the strainer
Instructions generated by Gemini Pro Vision: Move the yellow bell pepper to the left, Place the yellow bell pepper in the
pot, Move the pot to the right.

Fig. 10: Place the saucepan on top of the dishrag, Move the saucepan to the right of the soap, Position the saucepan behind
the ladle.
Instructions generated by Gemini Pro Vision: Move the cheese to the right, Move the bowl to the right, Move the spoon to
the right, Move the dishrag to the right

Fig. 11: Insturctions generated by LUPUS:
Move the sushi from on top of the dishrag to a new location away from the saucepan,Relocate the sushi to clear the area
on top of the dishrag, Shift the sushi to organize the workspace, ensuring it is no longer next to the saucepan.

Instructions generated by Gemini Pro Vision: The robot moved the green spatula from the left of the cutting board
to the right of the cutting board, The robot moved the yellow cloth from the right of the cutting board to the left of the
cutting board, The robot moved the pot from the right of the cutting board to the left of the cutting board.

Furthermore, our initial object detection currently assumes
that all objects are visible within 16 frames uniformly
sampled over the long horizon trajectory. However, this
assumption does not hold in some cases. We plan to extend
our framework to be more robust in such cases.

Runtime. Using multiple different models to generate
scene representations introduces substantial computational
cost. The inference time of our framework is significantly
higher compared to our baselines. However, the increase
in performance justifies this overhead. Furthermore, the
framework is designed to be applied offline to prerecorded
play data, so computation time should not be much of an
issue.

Objectness Assumptions LUPUS relies heavily on ob-
jectness assumptions and properties trackable with current

foundation models. As such, the framework has issues with
granular objects, which can not be detected reliably with
current object detectors. Furthermore, the framework can not
detect tasks that involve small movements, such as flipping
a cup or pot upright. While these changes could be detected
by monitoring the object state, these kinds of states are
uncommon for such objects and, thus, are not generated by
the LLM. However, with prior knowledge that such tasks
can frequently appear in the dataset, the LLM prompt few
shot examples for initial possible object state retrieval can
be slightly modified to account for such cases.

Fig. 12: Put the reamer (juicer) inside the plate, Move the reamer (juicer) from next to the plate to inside it, Place the
reamer (juicer) into the plate for storage or preparation

Grounding Error. The initial object detections are wrong. Although the action is correctly predicted, the referenced
object is not correct.

Instructions generated by Gemini Pro Vision: The robot picked up a carrot that was resting on a green plate and
placed it in the sink. The robot moved a carrot from a green plate to the sink. The robot picked up a carrot and put it in
the sink.

I. Example Prompts

We give example prompts used to generate the list of
potential tasks given a list of objects in Fig. 13. In Fig. 14,
an example prompt used to label the task a robot solved in
between two keystates is given.

You will be provided with a list of objects
observed by a robot. Based on the objects, give
possible instructions to the robot. Infer the
type of environment from the provided objects.
Follow these guidelines:

- Keep the instructions simple. Focus on
tasks that only require a single step.
- Include tasks like placing an object inside
another object or moving the object. Only for
movable objects.
- Dont assume the presence of any objects not
listed.
Output at least 20 possible instructions
delimited by comma.

Here are a few examples: "Place the tin
can to the left of the pot.", "Move the dishrag
to the bottom of the table next to the towel","Put
the pot to the right of the fruit","Turn on
stove", "Open the microwave"

The following objects are in the environment:
[OBJECT LIST]

Fig. 13: Task generation prompt

You will be provided with observations of a robot
interaction with an environment, delimited by
triple quotes.
Select a task from this list that best describes
the robots actions:
‘‘‘ [TASK LIST] ‘‘‘
Follow these guidelines:
Step 1: Determine the object the robot interacted
with and then determine tasks that include that
object. Output the possible tasks after this step
delimited by commas.
Step 2: Determine the object movement and the
resulting object relations. Think about where the
object and its relational objects are located
in the scene on a global scale. Think step by
step and list the locations and relations of
all objects. Pay special attention to the object
relations from Step 1.
Step 3: Determine what tasks result in the object
relations from Step 2. Explain why the task
accomplishes the object relations. If the task
is not clear, output None. If multiple tasks are
possible, output multiple tasks with a low score.
Step 4: Some tasks do not have specific object
relations, but instead require moving objects
in some direction. Also consider these tasks by
examining the object movements.
Follow the steps above. Explain your reasoning.
Output the reasoning delimited by ***.

After, produce your output as JSON. The
format should be: ‘‘‘{ "task candidates":
"Possible tasks from the list after Step 1,
delimited by commas.", "tasks": "The tasks
that can be considered valid, delimited by
comma. Make sure to output all tasks that
match the description. Output up to 2 tasks.",
"confidence": "A confidence score for each
task between 0 and 10, delimited by commas. Be
pessimistic." }‘‘‘

Observations: ‘‘‘[OBSERVATIONS]‘‘‘

Fig. 14: Main action retrieval prompt

<Frame 1>...<Frame 8>
Given the video frames, what task did the robot
perform? Choose matching tasks from the list:
‘‘‘ [TASK LIST] ‘‘‘
Sometimes multiple tasks are possible. Output all
possible tasks delimited by commas.

Fig. 15: Gemini Vision Pro Baseline Prompt

