
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

THE CRITIC AS AN EXPLORER: LIGHTWEIGHT AND
PROVABLY EFFICIENT EXPLORATION FOR DEEP REIN-
FORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Exploration remains a critical challenge in reinforcement learning (RL), with
many existing methods either lacking theoretical guarantees or being computa-
tionally impractical for real-world applications. We introduce Litee, a lightweight
algorithm that repurposes the value network in standard deep RL algorithms to
effectively drive exploration without introducing additional parameters. Litee uti-
lizes linear multi-armed bandit (MAB) techniques, enabling efficient exploration
with provable sub-linear regret bounds while preserving the core structure of ex-
isting RL algorithms. Litee is simple to implement, requiring only around 10 lines
of code. It also substantially reduces computational overhead compared to pre-
vious theoretically grounded methods, lowering the complexity from O(n3) to
O(d3), where n is the number of network parameters and d is the size of the em-
bedding in the value network. Furthermore, we propose Litee+, an extension that
adds a small auxiliary network to better handle sparse reward environments, with
only a minor increase in parameter count (less than 1%) and additional 10 lines
of code. Experiments on the MiniHack suite and MuJoCo demonstrate that Litee
and Litee+ empirically outperform state-of-the-art baselines, effectively bridging
the gap between theoretical rigor and practical efficiency in RL exploration.

1 INTRODUCTION

Exploration remains a fundamental challenge in reinforcement learning (RL), particularly in envi-
ronments with sparse rewards or complex dynamics. Although algorithms such as DQN [26], PPO
[34], SAC [13], DDPG [24], TD3 [12], and IMPALA [10] have demonstrated impressive perfor-
mance on tasks like Atari games [25; 26], StarCraft [37], and Go [35], they often depend on rudi-
mentary exploration strategies. Common approaches, such as ϵ-greedy policies or injecting noise
into actions, are typically inefficient and can struggle in scenarios with delayed or sparse rewards.

Various exploration methods have been proposed to improve performance and address the challenge
of reward sparsity. For decades, exploration strategies with proven optimality in tabular settings have
been available [20]. More recently, methods with provable regret bounds have been developed for
scenarios involving function approximation, including linear functions [27; 28; 18; 19; 1], kernels
[40], and neural networks [40]. However, while linear and kernel-based approaches make strong
assumptions about the structure of RL functions, provable methods based on neural networks often
suffer from prohibitive computational costs—specifically O(n3) complexity, where n is the number
of parameters in the RL network—making these methods impractical for real-world applications.

A more practical approach to exploration relies on heuristics, leading to the development of several
empirically successful methods, such as Pseudocount [5], ICM [29], RND [6], RIDE [30], NovelD
[42], AGAC [11], and E3B [14; 15]. These methods typically use internally generated bonuses to
incentivize agents to explore novel states based on specific metrics. For instance, RND [6] utilizes
the prediction error of a randomly initialized target network as the exploration bonus, while RIDE
[30] combines the errors from forward and inverse dynamics models. However, these methods
lack theoretical guarantees and are primarily driven by intuitive heuristics. Furthermore, they often
require the training of additional networks beyond the standard value or policy networks in RL
algorithms, which makes them computationally expensive.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Embedding net

Auxiliary net

Value net

𝐿𝑏

Trajectories

𝐿𝑓

Auxiliary
net

𝐿𝑓

E3B or Litee Auxiliary component of Litee+Value network learning

(c) Litee +(a) E3B

Trajectories

(b) Litee

Value net

Embedding layers

Output layer

𝐿𝑏

Value net

Embedding layers

Output layer

𝐿𝑏

Trajectories

exploration
bonus 𝛽

exploration bonus 𝛽 exploration bonus 𝛽

aa

Figure 1: Comparison between a representative exploration approach (a) E3B [14] , (b) Litee, and
(c) Litee+. E3B requires additional networks to generate exploration bonuses, while Litee repur-
poses the value network’s state embeddings, resulting in reduced computational overhead and no
additional parameters. Litee+ extends Litee by incorporating a small auxiliary network to enhance
performance in sparse reward environments, with only a minor increase in parameters.

In this work, we aim to combine the strengths of both theoretically grounded and empirically effec-
tive exploration methods. Provably efficient exploration strategies that leverage function approxi-
mation [18; 19; 40; 27; 28; 32] are fundamentally rooted in the theory of contextual Multi-Armed
Bandits (MAB) [22; 9; 2; 38; 43; 44]. Building on this foundation, we hypothesize that advanced
techniques from neural MAB can be effectively adapted for exploration in deep RL. Empirical re-
sults indicate that decoupling deep representation learning from exploration strategies, such as Upper
Confidence Bound (UCB) or Thompson Sampling in linear MAB [41; 31; 39], shows promise for
achieving efficient exploration in neural MAB.

Motivated by these insights, we propose Litee: a Lite exploration algorithm for deep RL. Unlike
existing methods [5; 6; 29; 29; 30; 14; 15], which require training additional embedding networks
for state representation, Litee directly utilizes the state embeddings of the existing value network in
the RL algorithm, applying linear MAB techniques for exploration. As a result, Litee introduces
no new parameters beyond those already present in the original algorithm, demonstrating that RL
algorithms inherently possess strong exploration capabilities when their learned networks are effec-
tively leveraged. Moreover, Litee is simple to implement—requiring only around 10 lines of code.
For more complex tasks, where learning from sparse rewards is especially challenging, Litee can
be enhanced by incorporating a small auxiliary network to accelerate the learning process. This
extended version, Litee+, results in only a minimal increase in parameter count (less than 1%) and
implementation effort (approximately 10 additional lines of code).

We evaluated Litee+ and Litee on the MiniHack and MuJoCo benchmarks to assess their effective-
ness in both sparse and dense reward environments. Litee either outperforms or at least matches the
performance of state-of-the-art baseline methods such as PPO [34], SAC [13] and TD3 [12], which
are not specifically designed for exploration. In contrast, Litee+ consistently outperforms E3B [14],
the state-of-the-art exploration method for MiniHack, across all evaluated tasks, demonstrating su-
perior reliability and effectiveness in diverse reinforcement learning settings.

In summary, we make three key contributions in this paper. First, we propose Litee, a lightweight
exploration algorithm that integrates seamlessly with existing RL algorithms without introducing
additional parameters, and extend it to Litee+ for improved performance in sparse-reward environ-
ments. Second, we provide theoretical guarantees, showing that any RL algorithm enhanced with
Litee achieves a sub-linear regret bound over episodes. Finally, we validate the effectiveness of
Litee and Litee+ through experiments on the MiniHack and MuJoCo benchmarks, demonstrating
their superior performance in both sparse and dense reward settings.

2 RELATED WORK

Multi-Armed Bandits. MAB algorithms address the exploitation-exploration dilemma by making
decisions and receiving rewards over time under uncertainty. LinUCB [22] assumes linearity in re-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Table 1: Comparison of exploration methods on MiniHack tasks. Networks: additional networks re-
quired beyond those in IMPALA, which contains 25, 466, 652 parameters; parameters: the number
of additional parameters introduced by the exploration module; ↑ means the percentage of parameter
increase. Networks in bold represent those with significant parameters, while those in gray indicate
substantially fewer parameters. Litee+ refers to Litee with the small auxiliary network added.

Algorithm Networks parameters ↑ (%)

ICM Embedding net + Forward dynamics net + Inverse dynamics net 16, 074, 512 +2, 110, 464 + 527, 371 73%
RND Embedding net 16, 074, 512 63%
RIDE Embedding net + Forward dynamics net + Inverse dynamics net 16, 074, 512 +2, 110, 464 + 527, 371 73%
NovelD Embedding net 16, 074, 512 63%
E3B Embedding net + Inverse dynamics net 16, 074, 512 +527, 371 65%

Litee - - 0%
Litee+ Inverse dynamics net 199, 819 0.8%

wards concerning arm contexts and guarantees a sub-linear regret bound [9]. To relax the linearity
assumption, KernelUCB [36; 8] and NegUCB [23] map contexts to high-dimensional spaces and
apply LinUCB in these transformed settings. Neural-UCB [44] and Neural-TS [43] utilize neural
networks to model the relationship between contexts and rewards, though their computation time
of O(n3), where n is the number of network parameters, limits their scalability in real-world tasks.
Neural-LinTS [31] and Neural-LinUCB [39] effectively decouple representation learning from ex-
ploration, enhancing the practicality of network-based bandit algorithms.

Exploration in RL. Common exploration strategies in RL, such as ϵ-greedy [26] and stochastic
noise [24; 34], often lack sample efficiency and struggle with sparse rewards. While provably
sample-efficient algorithms [20; 27; 28; 18; 19; 1; 7] based on MAB theory exist, they face em-
pirical limitations or are primarily theoretical, lacking practical applicability in deep RL [4]. Many
successful empirical methods [5; 29; 6; 30; 42; 11; 14; 15] rely on exploration bonuses that incen-
tivize agents to visit novel states, but these approaches often lack theoretical grounding and require
training significantly more parameters. In contrast, Litee utilizes MAB methods for exploration, as-
sisted by embedding layers within the RL value network, providing empirical benefits with minimal
additional parameters. Figure 1 illustrates the differences between E3B and Litee, while Table 1
summarizes the additional networks and parameters of various exploration methods.

3 METHODOLOGY

Unless otherwise specified, bold uppercase symbols denote matrices, while bold lowercase symbols
represent vectors. I refers to an identity matrix, and 0 represents a zero vector. Frobenius norm and
l2 norm are both denoted by ∥·∥2. Mahalanobis norm of a vector x based on matrix A is given by
∥x∥A =

√
xTAx. For an integer K > 0, the set of integers {1, 2, ...,K} is represented by [K].

3.1 PRELIMINARY

An episodic Markov Decision Process (MDP) is formally defined as a tuple (S,A, H,P, r), where
S denotes the state space and A is the action space. Integer H > 0 indicates the duration of each
episode. Functions P : S × A × S → [0, 1] and r : S × A → [0, 1] are the Markov transition and
reward functions, respectively. During an episode, the agent follows a policy π : S × A → [0, 1].
At each time step h ∈ [H] in the episode, the agent observes the current state sh ∈ S and selects an
action ah ∼ π(·|sh) to execute, then the environment transits to the next state sh+1 ∼ P(·|sh, ah),
yielding an immediate reward rh = r(sh, ah).

Various algorithms have been developed to learn the optimal policy π∗ for the agent to select and
execute actions at each time step h in the episode, thus ultimately maximizing the long-term return∑H

h=1 γ
h−1rh, where 0 < γ < 1 is the discount parameter. Notable algorithms include DQN [26],

PPO [34], SAC [13], IMPALA [10], etc. A common component of these algorithms is the use of a

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

network to approximate the action-value function1 Q under a specific policy as Equation 1, where
ϕ(·, ·|W) is the embedding layers, θ and W are trainable parameters. At step h in the episode, the
action-value Q(sh, ah) approximates the long-term return

∑H
t=h γ

t−hrt after executing action ah at
state sh and following the specific policy thereafter:

Q(s, a) = θTϕ(s, a|W). (1)

The Bellman equation [26] is employed to update the action-value function. Using the most recent
action-value function, the policy can be updated in various ways, depending on the specific algo-
rithm. Since Litee focuses on leveraging Equation 1 for efficient exploration while preserving the
core techniques of existing algorithms, we introduce Litee within the context of DQN for simplicity;
however, it can be easily adapted to other algorithms.

3.2 Litee: EXPLORATION WITH VALUE NETWORK UNDER UNCERTAINTY

For the state-action pair (sh, ah) at time step h, the approximated action-value Q(sh, ah) is subject
to an uncertainty term β(sh, ah). This uncertainty arises from the novelty or limited experience with
the particular state-action pair. Similar to MAB problems, it is essential to account for this uncer-
tainty when utilizing the latest approximated action-value function. Incorporating the uncertainty
term encourages exploration, ultimately improving long-term performance. Thus, the action-value
function adjusted for uncertainty is given by Equation 2, where α ≥ 0 is the exploration coefficient:

Q(s, a) = θTϕ(s, a|W) + αβ(·, ·). (2)

However, defining β(·, ·) remains a significant challenge. Traditional MAB methods often attempt
to address this by either assuming a linear action-value function or relying on algorithms that require
O(n3) computation time in terms of the number of parameters n in the action-value network. Both
of these approaches have inherent drawbacks. Linearity may fail to capture the complexity of real-
world tasks. On the other hand, algorithms with cubic computation time become impractical.

To overcome these limitations, we draw inspiration from Neural-LinUCB [39] and Neural-LinTS
[31], which effectively decouple representation learning from exploration. Building on this idea,
Litee adopts a similar approach, decomposing the action-value function into two distinct compo-
nents. This decomposition follows the standard value network structure (Equation 1), while provid-
ing a flexible and computationally efficient framework for balancing exploration and exploitation:

• Network ϕ(s, a|W) extracts the embeddings of state-action pair (s; a);

• Q(s, a) = θTϕ(s, a|W) is linear in the embedding of (s, a) with parameter θ.

Consequently, MAB theory with the linearity assumption can be applied to the embedding ϕ(s, a)
for ∀s ∈ S and ∀a ∈ A. Simultaneously, the action-value function retains its representational
capacity through the neural network ϕ(s, a), ensuring promising empirical performance.

Algorithm 1 details DQN with Litee2. In this algorithm, all lines except those highlighted in blue
follow the standard DQN framework, while the blue lines specifically represent the adjustment of the
action-value function to account for uncertainty. For conciseness, we denote the result of ϕ(smh , amh)
as the vector ϕm

h , which is assumed to be d-dimensional, i.e., ϕm
h ∈ Rd. Algorithm 1 initializes the

variance matrix as A = λI where λ > 0 is the ridge parameter. Based on the latest variance matrix,
we introduce two methods to define the uncertainty term: UCB- and Thompson Sampling-based
uncertainty term, each corresponding to a different exploration strategy.

Uncertainty term based on UCB. Upper Confidence Bound (UCB) is a widely used optimistic
exploration strategy, where the agent assumes the best-case scenario in the face of uncertainty. In
this approach, the uncertainty term is proportional to the estimated variance and serves as a measure

1In some algorithms, the state- instead of the action-value functions are learned. However, this does not
affect the implementation and conclusion of our method, as will be seen in Section 3.2.

2It is a concise version for easier comprehension. In Appendix B, we present the complete version in
Algorithm 3.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Algorithm 1 Deep Q-Network (DQN) with Litee. The lines highlighted in blue represent modifi-
cations that introduce Litee’s exploration enhancements, incorporating uncertainty estimation and
variance updates to improve exploration efficiency.

1: Input: Ridge parameter λ > 0, the exploration parameter α ≥ 0, episode length H , episode number K
2: Initialize: Covariance matrix A = λI , parameters θ ∼ 1

d
N(0, I), networks ϕ(·, ·|W) [39], the action-

value network Q = θTϕ(s, a), and the target value-networks Q̄(s, a) = Q(s, a)

3: for episode m = 1 to M do
4: Sample the initial state of the episode sm1
5: for step h = 1, 2, ..., H do
6: Conduct action am

h = argmaxa Q(smh , a) and get the next state smh+1 and reward rmh
7: Update the parameters of the action-value function θ and W by Bellman equation [26]

8: Approximate the uncertainty term β(·, ·) by Equation 3 or Equation 4

9: Approximate the action-value in the face of uncertainty Q(s, a) by Equation 2

10: Update the variance matrix A by Equation 5

11: end for
12: Update the target network Q̄(·, ·) = Q(·, ·), h ∈ [H]
13: end for

of uncertainty in the action-value function approximation. The higher the uncertainty, the more
likely the agent is to explore. As uncertainty decreases, the agent gradually shifts towards exploiting
the known information for decision-making. This method defines the uncertainty term as:

β(s, a) =
√

ϕ(s, a)TA−1ϕ(s, a). (3)

Uncertainty term based on Thompson Sampling. Instead of relying on a fixed optimistic uncer-
tainty, this approach samples from a posterior distribution over the possible value functions. By
sampling from this distribution, the agent naturally balances exploration and exploitation based on
the likelihood of each action being optimal. This method defines the uncertainty term as:

∆θ ∼ N(0,A−1),

β(s, a) = (∆θ)Tϕ(s, a).
(4)

At each time step h in episode m, after calculating the uncertainty and approximating the actionn-
value function with uncertainty, we update the variance matrix before proceeding to the next step:

A = A+ ϕm
h (ϕm

h)T. (5)

Algorithm 1 is straightforward and easy to implement, while offering several advantages over exist-
ing approaches. E3B [14] introduces a bonus term similar to that in Equation 3; however, it relies
on additional networks to approximate the embedding, which is heuristic and lacks theoretical guar-
antees. Other approaches also incorporate MAB methods, but they typically treat the action-value
function as either a linear or kernel function [19; 40], which limits their applicability to real-world
tasks. Furthermore, some methods [40] require o(n3) computation time where n is the number of
the action-value network’s parameters, making them impractical to implement. Additionally, certain
approaches only provide proofs related to the MAB method while neglecting the theoretical analysis
of the deep RL algorithm [4]. In contrast to these methods, Algorithm 1 does not require learning
any additional parameters beyond those already present in the RL algorithms. Computationa time
associated with the uncertainty term is o(d3) where d ≪ n represents the embedding dimension.
Furthermore, it offers theoretical guarantee, which will be elaborated upon in Section 4.

Adapting to General RL Algorithms. To apply Algorithm 1 to general RL algorithms, we incor-
porate the UCB- or TS-based uncertainty into the action-value function by reshaping the immediate
rewards. Additionally, depending on the algorithm employed, we may sometimes learn the state-
instead of the action-value network. As a result, the value network can only derive state embeddings
rather than state-action pair embeddings. Even when learning the action-value network, it may still
output only state embeddings if it is designed to take states as input and produce action-values for

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

aa

𝛽ℎ

𝐿𝑓

Environment

𝜙 ∙ 𝐖)

+

𝜽ℎ

𝑠ℎ 𝑎ℎ𝝓ℎ

𝜙 ∙ 𝐖) 𝜽
𝑠ℎ+1 𝑎ℎ+1𝝓ℎ+1

𝜙 ∙ 𝐖) 𝜽
𝑟ℎ

Replay buffer {𝑠ℎ, 𝑎ℎ, ǁ𝑟ℎ|ℎ = 1, … , 𝐻}

ǁ𝑟ℎ

…

{෤𝑟ℎ}, {𝑠ℎ , 𝑎ℎ}

Interaction with environment1 Storage of samples3

Value network learning based on any RL algorithm () and the auxiliary component of Litee+ ()

Litee2

4

𝐿𝑏 𝝓ℎ , 𝝓ℎ+1 𝑝 𝑎ℎ|𝑠ℎ , 𝑠ℎ+1𝑓
𝑄, ത𝑄

Bellman equation loss
𝐿𝑏 = [𝑄 − (෤𝑟ℎ + 𝛾 ത𝑄)]2

Inverse dynamics loss
𝐿𝑓 = −𝑙𝑜𝑔𝑝(𝑎ℎ|𝑠ℎ , 𝑠ℎ+1)

Figure 2: Litee framework. Lb represents the Bellman loss used to update the action-value function,
while Lf refers to the loss of the auxiliary network, which will be detailed in Equation 6.

each action. In such cases, the embedding of the next state is utilized to replace the embedding of
the current state-action pair. For notational simplicity, we continue to refer to the state embedding
network as ϕ(·) and the output ϕ(smh) as ϕm

h , assuming no ambiguity arises. As a result, the practi-
cal algorithm incorporating Litee is presented in Figure 2 and Algorithm 2. It can seamlessly adapt
to any RL algorithm, with the only additional step being reward shaping.

3.3 Litee+: ENHANCING Litee WITH MINIMAL OVERHEAD

For tasks where learning value networks from sparse rewards is challenging, a small network can
be incorporated to accelerate learning, introducing only a minimal number of additional parameters.
Specifically, we utilize the Inverse Dynamics Network (IDN) [29; 30; 14] to enhance the learning of
the embedding layers contained in the action-value network. This is achieved by a compact network
f that infers the distribution p(a) over actions given consecutive states sh and sh+1, which is trained
by maximum likelihood estimation:

Lf = − log p(ah|sh, sh+1). (6)

To introduce this enhancement with minimal additional parameters, we utilize the state embeddings
ϕ(sh) and ϕ(sh+1) from the value network. These embeddings are first transformed by a linear layer
u parameterized by Wu, followed by a small network v, which takes the transformed consecutive
embeddings to infer the corresponding action:

p(ah|sh, sh+1) = f(ϕ(sh), ϕ(sh+1)) = v(Wuϕ(sh),Wuϕ(sh+1)). (7)

In our design, the module f is purposefully kept lightweight by significantly reducing the number
of parameters compared to the value network, ensuring minimal computational overhead. To further
enhance efficiency, we update the embedding in Line 7 of Algorithm 2 as ϕm

h = Wuϕ(s
m
h+1).

This design brings several advantages. First, the introduction of u effectively decouples the policy
from the Inverse Dynamics Network (IDN), reducing interdependencies that could hinder learning
and thereby improving empirical performance. Second, since u is a simple linear transformation of
ϕ(sh+1), it also retains the theoretical guarantees of UCB- and Thompson Sampling-based explo-
ration strategies, maintaining the rigor and stability of the exploration process. Third, transforming
ϕm

h into a lower-dimensional embedding with d̃ < d not only reduces the number of additional
parameters but also brings down the computational complexity of βm

h to o(d̃3), making the method
computationally efficient and scalable for practical applications.

Notably, IDN is also applicable when the embedding network is designed for state-action pairs, i.e.,
ϕ(s, a). In this case, a constant default value is used for the action, while the actual states are input,
with the resulting outputs treated as the state embeddings.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Algorithm 2 Litee for general deep RL. Either UCB-based or Thompson Sampling-based uncer-
tainty can be used depending on the desired exploration strategy.

1: Input: Ridge parameter λ > 0, exploration parameter α ≥ 0, episode length H , episode number K
2: Initialize: Covariance matrix A = λI , initial policy π(·), state- or action-value function V (·) or Q(·, ·)
3: for episode m = 1 to M do
4: Receive the initial state sm1 from the environment
5: for step h = 1, 2, ..., H do
6: Conduct action am

h ∼ π(smh) and observe the next state smh+1 and receive reward rmh
7: Get embedding of the next state ϕm

h = ϕ(smh+1)

8: Calculate action-value variance bmh = (ϕm
h)TA−1ϕm

h

9: Generate UCB-based action-value uncertainty βm
h =

√
bmh

10: Generate Thompson Sampling-based action-value uncertainty βm
h ∼ N(0, bmh)

11: Reshape the reward rmh = rmh + αβm
h

12: Update the covariance matrix A = A+ ϕm
h (ϕm

h)T

13: end for
14: Adopt any RL algorithm to update the value function V (·) or Q(·, ·) and the policy π(·)
15: end for

4 THEORETICAL ANALYSIS

In this section3, we introduce additional notation before delving into the detailed theory. Under
the true optimal policy π∗, assume the corresponding action-value function Q∗ is structured as in
Equation 1 and parameterized by θ∗ and W ∗. In Algorithm 1, the policy executed in episode
m ∈ [M] is denoted by πm, with its action-value function represented as Qπm . Cumulative regret
of Algorithm 1 is as definition 4.1.

Definition 4.1. Cumulative Regret. After M episodes of interactions with the environment, the
cumulative regret of Algorithm 1 is defined as Equation 8, where um

1 is the optimal action at state
sm1 generated by policy π∗ while am1 is that selected by the executed policy πm.

RegretM =

M∑
m=1

Q∗(sm1 , um
1)−Qπm(sm1 , am1). (8)

Cumulative regret quantifies the gap between the optimal return and the actual return accumulated
over M episodes of interaction with the environment. By establishing a sub-linear upper bound on
Equation 8 with respect to the number of episodes M , we can demonstrate the sample efficiency
of Litee. Litee draws inspiration from Neural-LinUCB [39] and Neural-LinTS [31], corresponding
to the UCB- and Thompson Sampling-based action-value functions, respectively. The theoretical
analysis of Litee builds on the conclusions from these methods. While Neural-LinUCB is supported
by theoretical analysis, Neural-LinTS has only been validated empirically. In this paper, we present
the regret bound for Neural-LinTS in Section D.2, leading us to the regret bound for Algorithm 1,
as stated in Equation 4.2. The proof is deferred to Appendix C.

Theorem 4.2. Suppose the standard initializations and assumptions from the literature [40; 39]
hold. Furthermore, without loss of generality, assume that ∥θ∗∥2 ≤ 1 and ∥(sh; ah)∥2 ≤ 1. For
any σ ∈ (0, 1), let:

α =

√
2(d · log(1 + M · log |A|

λ
)− log σ) +

√
λ

η ≤ C1(ι · d2M
11
2 L6 · log M |A|

σ
)−1,

(9)

and the number of parameters in each of the L layers of ϕ(·, ·) is at least ι =

poly(L, d, 1
σ , log

M |A|
σ), where |A| means the action space size and poly(·) means a polynomial

function depending on the incorporated variables, then with probability at least 1−σ, it holds that:
3Conclusions in this section are to Algorithm 3, the complete version of Algorithm 1.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

RegretM ≤C2αH

√
Md · log(1 +

M

λd
) +H

√
16MHlog

2

σ
+H

√
2MH log

2

σ︸ ︷︷ ︸
Õ(

√
M)

+
C3 ·HL3d

5
2M

√
log(ι+ 1

σ + M |A|
σ) ∥q − q̃∥H−1

ι
1
6

,

(10)

where C1, C2, C3 are constants independent of problem parameters; q = (q11 ; q
1
2 ; ...; q

M
1 ; ...; qMH)

and q̃ = (Q1
1(s

1
1, a

1
1);Q

1
1(s

1
2, a

1
2); ...;Q

M
1 (sM1 , aM1); ...;QM

H (sMH , aMH)) are respectively the target
and the estimated value vectors; H is the neural tangent kernel, as defined in [39].

Specifically, in theorem 4.2, we assume ∥θ∗∥2 ≤ 1 and ∥(sh; ah)∥2 ≤ 1 to make the bound scale-
free. Otherwise, the bound would increase by a scale factor. Neural tangent kernel H is defined in
accordance with a recent line of research [17; 3] and is essential for the analysis of overparameter-
ized neural networks. Other standard assumptions and initialization are explained in Section D.1.
From Equation 10, we can conclude that the upper bound of the cumulative regret grows sub-linearly
with the number of episodes M , i.e., Õ(

√
M) where Õ(·) hide constant and logarithmic dependence

of M , indicating that the executed policy improves over time. Notably, the last term in Equation 10
arises from the error due to network estimation. Here, M can be traded off against ι and the estima-
tion error ∥q − q̃∥H−1 , making it often neglected in the literature.

5 EXPERIMENT

In this section, we evaluate Litee+ and Litee across tasks from both MiniHack and MuJoCo, which
feature sparse and dense rewards, respectively. For the MiniHack tasks, we select IMPALA as the
base RL algorithm due to its status as a state-of-the-art method and its frequent use in exploration
problem baselines. Given the sparse reward nature of MiniHack tasks, we choose Litee+ and com-
pare IMPALA with Litee+ against six baselines: IMPALA [10], ICM [29], RND [6], RIDE [30],
NovelD [42], and E3B [14]. Notably, all except IMPALA are specifically designed for sparse reward
settings and also use IMPALA as their base RL algorithm. For the MuJoCo tasks, which involve
dense rewards, we evaluate three state-of-the-art RL algorithms: SAC [13], PPO [34], and TD3 [12],
with and without Litee.

Reproducibility. The experiments presented in this paper are based on publicly available codebases
from E3B 4 [14] and CleanRL 5 [16]. To ensure reproducibility, we provide the core code and
detailed hyperparameters for Litee and Litee+ in Appendix E and Appendix A, respectively. In fact,
the experiments can be easily replicated with minimal modifications to the provided code.

5.1 SPARSE REWARD TASKS

MiniHack [33] is built on the NetHack Learning Environment [21], a challenging video game where
an agent navigates procedurally generated dungeons to retrieve a magical amulet. MiniHack tasks
present a diverse set of challenges, such as locating and utilizing magical objects, traversing haz-
ardous environments like lava, and battling monsters. These tasks are characterized by sparse re-
wards, and the state provides a wealth of information, including images, text, and more, though only
a subset is relevant to the specific task at hand.

As shown in Table 1, Litee+ adds approximately 0.8% more parameters compared to IMPALA,
which does not include a dedicated exploration module. In contrast, other baselines with specifically
designed exploration modules, such as RIDE and E3B, introduce 60%− 80% additional parameters
over IMPALA. This highlights the lightweight nature of Litee.

We present the experimental results for E3B, IMPALA, and Litee+ to conserve computational re-
sources. IMPALA serves as the baseline without a specifically designed exploration module, while

4https://github.com/facebookresearch/e3b
5https://github.com/vwxyzjn/cleanrl

8

https://github.com/facebookresearch/e3b
https://github.com/vwxyzjn/cleanrl

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

(a) Freeze-Horn-Restricted (b) Freeze-Random-Restricted (c) MultiRoon-N4-Locked

Figure 3: Experiment results on MiniHack over seeds 1−3. The vertical axis represents the average
return, while the horizontal axis denotes the number of frames, in multiples of 1e7. For IMPALA,
we only display its performance upper bounds, as it fails to achieve positive average scores. The
legend includes the percentage of additional parameters introduced by each algorithm compared to
the original network (65% increase for E3B [14] and 0.8% increase for Litee+).

E3B is recognized as the state-of-the-art method among exploration problem baselines on MiniHack.
Results for additional baselines, including ICM, RND, RIDE, and NovelD, can be found in the E3B
paper [14] and can be reproduced using the provided code. Based on previously reported findings as
well as our own reproductions, these baselines typically struggle to achieve positive average scores
without significant human engineering, which is one reason they are not discussed in further detail.

(a) Freeze-Horn-Restricted

(b) MultiRoon-N4-Locked

Figure 4: Ablation study.

The experimental results presented in Figure 3(a), Figure 3(b), and
Figure 3(c) correspond to three MiniHack tasks, where Litee+ em-
ploys Thompson Sampling-based exploration. It is clear that Litee+
consistently outperforms E3B across these various MiniHack tasks.
While Litee+ may converge slightly more slowly than E3B at times,
this is expected, as Litee+ tends to explore the environment more
thoroughly before heavily exploiting its accumulated experiences.
However, once convergence is achieved, Litee+ demonstrates sig-
nificantly superior performance compared to E3B. Given that E3B
relies on bonus-based reward reshaping, it can be challenging to en-
sure that maximizing cumulative return directly aligns with maxi-
mizing the reshaped return. In contrast, Litee+ benefits from strong
theoretical guarantees regarding cumulative regret, which helps ac-
count for its robust empirical performance.

We also implemented Litee+ with UCB-based exploration. A com-
parison of the results from Litee+ using Thompson Sampling- and
UCB-based exploration, shown in Figure 3 and Figure 4, respec-
tively, reveals that both methods yield comparable outcomes. Ad-
ditionally, we conducted an ablation study on U , which is designed
to prevent severe coupling between the policy and the IDN. As il-
lustrated in Figure 4(a) and Figure 4(b), U is crucial for enhancing
the empirical performance of Litee+. Without U , Litee+ occasion-
ally outperforms E3B, though there are instances where it does not.
Furthermore, without U , Litee+ introduces a larger number of ad-
ditional parameters, specifically 2.1%. For additional experimental
results on other MiniHack tasks, please refer to Appendix E.

5.2 DENSE REWARD TASKS

For dense reward tasks, we utilize the MuJoCo testbed, a widely used physics-based simulation en-
vironment for benchmarking RL algorithms. MuJoCo provides a suite of continuous control tasks
where agents must learn to perform various actions, such as locomotion, manipulation, and balanc-
ing, within simulated robotic environments.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

(a) Swimmer (b) Walker2d (c) Hopper

(d) Ant (e) HalfCheetah

Figure 5: Experiment results on MuJoCo over seeds 1 − 5, with the average return on the vertical
axis and steps, in multiples of 1e6, on the horizontal axis.

Since comparisons among state-of-the-art RL baselines, such as PPO, SAC, and TD3, have been
extensively covered in previous studies, our focus is on investigating how Litee can enhance these
algorithms. Thus, we concentrate on comparing the performance of each specific algorithm with
and without Litee. In this subsection, Litee employs UCB-based exploration, as the Thompson
Sampling-based approach has been investigated in Section 5.1.

Given that SAC achieves the best performance among existing RL algorithms on MuJoCo tasks, we
investigate whether Litee enhances its capabilities. The results presented in Figure 5 indicate that
Litee consistently improves the performance of SAC across various tasks. Notably, SAC combined
with Litee demonstrates significantly better performance on the Swimmer task, which, although not
typically considered particularly challenging, has seen limited success with SAC alone. For tasks
with larger action spaces, such as Hopper and Walker2d, SAC incorporating Litee also achieves
superior performance, as shown in Figure 5(b) and Figure 5(c).

Beyond SAC, we also investigate whether the Litee module can enhance the performance of other
algorithms, such as PPO and TD3. The consistent performance improvements observed across
multiple algorithms highlight the versatility of the Litee module in boosting learning efficiency and
achieving better outcomes. For additional experimental results on various MuJoCo tasks involving
different RL algorithms, please refer to Appendix E.

6 CONCLUSION

In this paper, we introduced a lightweight exploration module, Litee, which seamlessly integrates
with existing reinforcement learning (RL) algorithms without adding extra parameters, making it
computationally efficient. Litee utilizes the state embeddings from the RL value network to drive
exploration, leaving the rest of the RL algorithm unchanged. We provided theoretical guarantees for
Litee, establishing a sub-linear regret bound in terms of the number of interaction episodes, demon-
strating its sample efficiency. For more complex tasks, we extended Litee to Litee+, incorporating
a small auxiliary network to accelerate learning with only a minimal increase in parameters. Our
experiments on two benchmarks, MiniHack and MuJoCo, evaluated Litee in both sparse and dense
reward settings, and the results demonstrate that Litee consistently outperforms state-of-the-art base-
lines, bridging the gap between theoretical rigor and practical efficiency in RL exploration.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

[1] Alekh Agarwal, Sham Kakade, Mikael Henaff, and Wen Sun. Pc-pg: Policy cover directed ex-
ploration for provable policy gradient learning. In Advances in Neural Information Processing
Systems, 2020.

[2] Shipra Agrawal and Navin Goyal. Thompson sampling for contextual bandits with linear
payoffs. In Proceedings of the 30th International Conference on Machine Learning, pp. 127–
135. PMLR, 2013.

[3] Sanjeev Arora, Simon S. Du, Wei Hu, Zhiyuan Li, Ruslan Salakhutdinov, and Ruosong Wang.
On exact computation with an infinitely wide neural net. In Advances in Neural Information
Processing Systems, 2019.

[4] Jordan T. Ash, Cyril Zhang, Surbhi Goel, Akshay Krishnamurthy, and Sham Kakade. Anti-
concentrated confidence bonuses for scalable exploration. In Proceedings of the 10th Interna-
tional Conference on Learning Representations, 2022.

[5] Marc G. Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi
Munos. Unifying count-based exploration and intrinsic motivation. In Advances in Neural
Information Processing Systems, 2016.

[6] Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random
network distillation. In Proceedings of the 7th International Conference on Learning Repre-
sentations, 2019.

[7] Qi Cai, Zhuoran Yang, Chi Jin, and Zhaoran Wang. Provably efficient exploration in policy
optimization. In Proceedings of the 37th International Conference on Machine Learning, 2020.

[8] Sayak Ray Chowdhury and Aditya Gopalan. On kernelized multi-armed bandits. In Proceed-
ings of the 34th International Conference on Machine Learning. PMLR, 2017.

[9] Wei Chu, Lihong Li, Lev Reyzin, and Robert E. Schapire. Contextual bandits with linear payoff
functions. In Proceedings of the 14th International Conference on Artificial Intelligence and
Statistics, pp. 208–214, 2011.

[10] Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Volodymyr Mnih, Tom Ward,
Yotam Doron, Vlad Firoiu, Tim Harley, Iain Dunning, Shane Legg, and Koray Kavukcuoglu.
Impala: Scalable distributed deep-rl with importance weighted actor-learner architectures. In
Proceedings of the 35th International Conference on Machine Learning. PMLR, 2018.

[11] Yannis Flet-Berliac, Johan Ferret, Olivier Pietquin, Philippe Preux, and Matthieu Geist. Ad-
versarially guided actor-critic. In Proceedings of the 9th International Conference on Learning
Representations, 2021.

[12] Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation er-
ror in actor-critic methods. In Proceedings of the 35th International Conference on Machine
Learning. PMLR, 2018.

[13] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor. In Proceedings
of the 35th International Conference on Machine Learning. PMLR, 2018.

[14] Mikael Henaff, Roberta Raileanu, Minqi Jiang, and Tim Rocktäschel. Exploration via elliptical
episodic bonuses. In Advances in Neural Information Processing Systems, 2022.

[15] Mikael Henaff, Minqi Jiang, and Roberta Raileanu. A study of global and episodic bonuses
for exploration in contextual mdps. In Proceedings of the 40th International Conference on
Machine Learning. PMLR, 2023.

[16] Shengyi Huang, Rousslan Fernand Julien Dossa, Chang Ye, Jeff Braga, Dipam Chakraborty,
Kinal Mehta, and João G.M. Araújo. Cleanrl: High-quality single-file implementations of deep
reinforcement learning algorithms. Journal of Machine Learning Research, pp. 1–18, 2022.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

[17] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and
generalization in neural networks. In Advances in Neural Information Processing Systems,
2018.

[18] Chi Jin, Zeyuan Allen-Zhu, Sebastien Bubeck, and Michael I. Jordan. Is q-learning provably
efficient? In Advances in Neural Information Processing Systems, 2018.

[19] Chi Jin, Zhuoran Yang, Zhaoran Wang, and Michael I. Jordan. Provably efficient reinforcement
learning with linear function approximation. In In Conference on Learning Theory. PMLR,
2020.

[20] Michael Kearns and Satinder Singh. Near-optimal reinforcement learning in polynomial time.
Machine Learning, 2002.

[21] Heinrich Küttler, Nantas Nardelli, Alexander H. Miller, Roberta Raileanu, Marco Selvatici,
Edward Grefenstette, and Tim Rocktäschel. The nethack learning environment. In Advances
in Neural Information Processing Systems, 2020.

[22] Lihong Li, Wei Chu, John Langford, and Robert E. Schapire. A contextual-bandit approach to
personalized news article recommendation. In Proceedings of the 19th International Confer-
ence on World Wide Web, pp. 661–670, 2010.

[23] Yexin Li, Zhancun Mu, and Siyuan Qi. A contextual combinatorial bandit approach to negoti-
ation. In Proceedings of the 41st International Conference on Machine Learning, 2024.

[24] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval
Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning.
In Proceedings of the 4th International Conference on Learning Representations, 2016.

[25] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv: 1312.5602v1, 2013.

[26] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G.
Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Pe-
tersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran,
Daan Wierstra1, Shane Legg, and Demis Hassabis. Human-level control through deep rein-
forcement learning. nature, pp. 529–533, 2015.

[27] Ian Osband, Van Benjamin Roy, and Zheng Wen. Generalization and exploration via ran-
domized value functions. In Proceedings of the 33rd International Conference on Machine
Learning. PMLR, 2016.

[28] Ian Osband, Van Benjamin Roy, J. Daniel Russo, and Zheng Wen. Deep exploration via ran-
domized value functions. Journal of Machine Learning Research, pp. 1–61, 2019.

[29] Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, and Trevor Darrell. Curiosity-driven explo-
ration by self-supervised prediction. In Proceedings of the 34th International Conference on
Machine Learning. PMLR, 2017.

[30] Roberta Raileanu and Tim Rocktäschel. Ride: Rewarding impact-driven exploration for
procedurally-generated environments. In Proceedings of the 8th International Conference on
Learning Representations, 2020.

[31] Carlos Riquelme, George Tucker, and Jasper Snoek. Deep bayesian bandits showdown: An
empirical comparison of bayesian deep networks for thompson sampling. In Proceedings of
the 6th International Conference on Learning Representations, 2018.

[32] Daniel Russo. Worst-case regret bounds for exploration via randomized value functions. In
Advances in Neural Information Processing Systems, 2019.

[33] Mikayel Samvelyan, Robert Kirk, Vitaly Kurin, Jack Parker-Holder, Minqi Jiang, Eric Ham-
bro, Fabio Petroni, Heinrich Kuttler, Edward Grefenstette, and Tim Rocktäschel. Minihack
the planet: A sandbox for open-ended reinforcement learning research. In Advances in Neural
Information Processing Systems, 2021.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

[34] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv: 1707.06347v2, 2017.

[35] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur
Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen, and Timothy
et al. Lillicrap. Mastering the game of go without human knowledge. Nature, 2017.

[36] Michal Valko, Nathaniel Korda, Remi Munos, Ilias Flaounas, and Nelo Cristianini. Finite-time
analysis of kernelised contextual bandits. arXiv preprint arXiv: 1309.6869., 2013.

[37] Oriol Vinyals, Igor Babuschkin, Wojciech M. Czarnecki, Michaël Mathieu, Andrew Dudzik,
Junyoung Chung, David H. Choi, Richard Powell, Timo Ewalds, and Petko et al. Georgiev.
Grandmaster level in starcraft ii using multi-agent reinforcement learning. Nature, 2019.

[38] Zheng Wen, Branislav Kveton, and Azin Ashkan. Efficient learning in large-scale combinato-
rial semi-bandits. In Proceedings of the 32nd International Conference on Machine Learning,
pp. 1113–1122. PMLR, 2015.

[39] Pan Xu, Zheng Wen, Handong Zhao, and Quanquan Gu. Neural contextual bandits with deep
representation and shallow exploration. In Proceedings of the 10th International Conference
on Learning Representations, 2022.

[40] Zhuoran Yang, Chi Jin, Zhaoran Wang, Mengdi Wang, and Michael I. Jordan. On function ap-
proximation in reinforcement learning: Optimism in the face of large state spaces. In Advances
in Neural Information Processing Systems, 2020.

[41] Tom Zahavy and Shie Mannor. Neural linear bandits: Overcoming catastrophic forgetting
through likelihood matching. arXiv preprint arXiv: 1901.08612v2, 2019.

[42] Tianjun Zhang, Huazhe Xu, Xiaolong Wang, Yi Wu, Kurt Keutzer, Joseph E. Gonzalez, and
Yuandong Tian. Noveld: A simple yet effective exploration criterion. In Advances in Neural
Information Processing Systems, 2021.

[43] Weitong Zhang, Dongruo Zhou, Lihong Li, and Quanquan Gu. Neural thompson sampling. In
Proceedings of the 9th International Conference on Learning Representations, 2021.

[44] Dongruo Zhou, Lihong Li, and Quanquan Gu. Neural contextual bandits with ucb-based ex-
ploration. In Proceedings of the 37th International Conference on Machine Learning, pp.
11492–11502. PMLR, 2020.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A IMPLEMENTATION

In Listing 1, we present the core code of Litee, while the rest of the RL algorithm remains unchanged.
As shown, Litee is simple to implement, integrates seamlessly with any existing RL algorithm, and
requires no additional parameter learning beyond what is already in the RL algorithm.

Listing 1: Litee core code
1 cov = torch.eye(256) * ridge # initialize covariance matrix
2
3 cov_inverse = torch.inverse(cov) # inverse of covariance matrix
4
5 emb = q_net.get_emb(torch.Tensor(obs), torch.Tensor(action))
6 emb = emb.squeeze().detach() # embedding of the state-action pair
7
8 bouns = torch.matmul(emb.T, torch.matmul(cov_inverse, emb))
9 bonus = np.sqrt(bonus.item()) # action-value uncertainty

10
11 reward += bonus # reshape the reward
12
13 cov += torch.outer(emb, emb) # update the covariance matrix

In Listing 2, we present the additional code for Litee+ alongside that of Litee. As shown, Litee+
minimizes an additional loss, specifically the inverse dynamics loss, in addition to the losses from
the original RL algorithm.

Listing 2: Litee+ additional core code
1 emb = q_net.get_emb(torch.Tensor(batch[’obs’]), torch.Tensor(batch[’action’])) # embedding of state-action

pairs in a training batch
2
3 current_emb = emb[: -1] # embeddings of the current step
4 next_emb = emb[1:] # embeddings of the next step
5
6 predict_action = inverse_dynamic_net(current_emb, next_emb) # inferred actions
7
8 inverse_dynamics_loss = compute_inverse_dynamics_loss(predict_action, batch[’action’][: -1]) # loss between

the inferred and the executed actions
9

10 def compute_inverse_dynamics_loss(predict_action, true_action):
11 inverse_dynamics_loss=F.nll_loss(F.log_softmax(torch.flatten(predict_action, 0, 1), dim=-1), target=torch.

flatten(true_action, 0, 1), reduction=’none’)
12 inverse_dynamics_loss = inverse_dynamics_loss.view_as(true_action)
13 return torch.sum(torch.mean(inverse_dynamics_loss, dim=1))

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

B LONG VERSION OF ALGORITHM 1

In section 3.2, algorithm 1 provides a concise version for easier comprehension. For a more thorough
theoretical analysis, we present the complete version in algorithm 3. As per the standard notation
in the literature on provable algorithms [19; 40], function parameters are not shared across different
time steps h ∈ [H], which is also the case in Algorithm 3. As we can see, the algorithm itera-
tively updates parameters θh and Wh, corresponding to Line 7 in algorithm 1, i.e., learning the two
decomposed components of the action-value function in Equation 1 by Bellman equation. Specifi-
cally, the parameter θh is updated in Line 9 using its closed-form solution [22], while the extraction
network ϕh(·, ·) remains fixed. Afterwards, the extraction network ϕh(s, a|Wh) is updated in Line
10, with the parameter θh held constant. In this line, η is the learning rate, Lm

h is the Bellman loss
function, and sth, a

t
h, r

t
h for ∀t ∈ [m] and ∀h ∈ [H] represent historical experiences.

Algorithm 3 DQN with uncertainty
1: Input: Ridge parameter λ > 0, the exploration parameter α ≥ 0, episode length H , episode number K
2: Initialize: Covariance matrix A1

h = λI , b1h = 0, parameters θ1
h ∼ 1

d
N(0, I), networks ϕ1

h(·, ·|W 1
h)

[39], Q1
h = (θ1

h)
Tϕ1

h(·, ·), and the target value-networks Q̄1
h = Q1

h, where h ∈ [H]

3: for episode m = 1 to M do
4: Sample the initial state of the episode sm1
5: for step h = 1, 2, ..., H do
6: Conduct action am

h = argmaxa Q
m
h (smh , a) and get the next state smh+1 and reward rmh

7: Compute the target value qmh = rmh +maxa Q̄
m
h+1(s

m
h+1, a)

8: Update Am+1
h = Am

h + ϕm
h (ϕm

h)T and bm+1
h = bmh + qmh ϕm

h

9: Update parameter θm+1
h = (Am+1

h)−1bm+1
h

10: Update the extraction network to ϕm+1
h (·, ·) with parameters Wm+1

h = Wm
h + η∇Wm

h
Lm

h where

Lm
h =

m∑
t=1

H∑
h=1

∣∣∣(θm+1
h)Tϕm

h (sth, a
t
h|Wm

h)− rth −max
a

Q̄m
h+1(s

t
h+1, a)

∣∣∣2
11: Obtain UCB-based uncertainty

βm+1
h (·, ·) =

√
ϕm+1
h (·, ·)T(Am+1

h)−1ϕm+1
h (·, ·)

12: Obtain Thompson Sampling-based uncertainty

∆θm+1
h ∼ N(0, (Am+1

h)−1) =⇒ βm+1
h (·, ·) = (∆θm+1

h)Tϕm+1
h (·, ·)

13: Approximate the action-value function

Qm+1
h (·, ·) = (θm+1

h)Tϕm+1
h (·, ·) + αβm+1

h (·, ·)

14: end for
15: Update the target network Q̄m+1

h (·, ·) = Qm+1
h (·, ·), h ∈ [H]

16: end for

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

C PROOF

Before delving into the detailed theory, we first review the notation used in this appendix.

Let π∗ denote the true optimal policy and πm represent the policy executed in episode m ∈ [M] as
outlined in Algorithm 3. The action-value and state-value functions corresponding to the policies
π∗ and πm are represented by Q∗, V ∗, and Qπm , V πm , respectively. The relationship between the
state-value and action-value functions under a specific policy is given as follows:

V ∗
h (s) = max

a
Q∗

h(s, a)

Q∗
h(s, a) = r(s, a) + Esh+1∼Ph(·|s,a)V

∗
h+1(sh+1)

For the sake of presentation clarity, we further define several notations as follows:

(PhV
m
h+1)(s

m
h , amh) = Esmh+1∼Ph(·|smh ,am

h)V
m
h+1(s

m
h+1). (11)

δmh (smh , amh) = rmh + (PhV
m
h+1)(s

m
h , amh)−Qm

h (smh , amh). (12)

ζmh = V m
h (smh)− V πm

h (smh) +Qm
h (smh , amh)−Qπm

h (smh , amh). (13)

εmh = (PhV
m
h+1)(s

m
h , amh)− (PhV

πm

h+1)(s
m
h , amh) + V m

h+1(s
m
h+1)− V πm

h+1(s
m
h+1). (14)

Specifically, δmh (smh , amh) represents the temporal-difference error for the state-action pair (smh , amh).
The notations ζmh and εmh capture two sources of randomness, i.e., the selection of action amh ∼
πm(·|smh) and the generation of the next state smh+1 ∼ Ph(·|smh , amh) from the environment.

Proof. theorem 4.2.

Based on lemma D.1, lemma D.2, and lemma D.3, we can prove theorem 4.2. Specifically,
lemma D.1 decomposes the cumulative regret into three terms, where the third term is no greater
than zero, then the remaining two terms are bounded by lemma D.2 and lemma D.3.

D LEMMAS

Lemma D.1. Adapted from Lemma 5.1 of [40]: the regret in Equation 8 can be decomposed as
Equation 15, where ⟨·, ·⟩ means the inner product of two vectors.

RegretM =

M∑
m=1

Q∗
1(s

m
1 , um

1)−Qπm
1 (sm1 , am1)

=

M∑
m=1

V ∗
1 (s

m
1)− V πm

1 (sm1)

=

M∑
m=1

H∑
h=1

[Eπ∗ [δmh (sh, ah)|s1 = sm1]− δmh (smh , amh)] +

M∑
m=1

H∑
h=1

(ζmh + εmh) (15)

+

M∑
m=1

H∑
h=1

Eπ∗ [⟨Qm
h (sh, ·), π∗

h(·|sh)− πm(·|sh)⟩ |s1 = sm1]

≤
M∑

m=1

H∑
h=1

[Eπ∗ [δmh (sh, ah)|s1 = sm1]− δmh (smh , amh)] +

M∑
m=1

H∑
h=1

(ζmh + εmh) (16)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Proof. In Equation 15, the third equation is adapted from Lemma 5.1 of [40]. According to the
definition of πm, there is 17.

⟨Qm
h (sh, ·), π∗

h(·|sh)− πm(·|sh)⟩ ≤ 0 (17)

Lemma D.2. Adapted from Lemma 5.3 of [40]: with probability at least 1− σ1, the second term in
Equation 15 can be bounded as follows:

M∑
m=1

H∑
h=1

(ζmh + εmh) ≤
√

16MH3log
2

σ1
(18)

Lemma D.3. With probability at least 1− σ2, the first term in Equation 15 can be bounded as:

M∑
m=1

H∑
h=1

[Eπ∗ [δmh (sh, ah)|s1 = sm1]− δmh (smh , amh)] (19)

≤H

√
2MH log

2

σ2
+ C2αH

√
Md · log(1 +

M

λd
)

+
C3 ·HL3d

5
2M

√
log(ι+ 1

σ2
+ MA

σ2
) ∥q − q̃∥H−1

ι
1
6

Proof. According to [40], there is:

M∑
m=1

H∑
h=1

[Eπ∗ [δmh (sh, ah)|s1 = sm1]− δmh (smh , amh)] ≤
M∑

m=1

H∑
h=1

−δmh (smh , amh) (20)

Considering δmh (smh , amh), it can be decomposed as:

δmh (smh , amh) =rmh + (PhV
m
h+1)(s

m
h , amh)−Qm

h (smh , amh) (21)

=rmh + (PhV
m
h+1)(s

m
h , amh)−Q∗

h(s
m
h , amh) +Q∗

h(s
m
h , amh)−Qm

h (smh , amh)

=Ph(V
m
h+1 − V ∗

h+1)(s
m
h , amh) + (Q∗

h −Qm
h)(smh , amh)

=Ph(V
m
h+1 − V ∗

h+1)(s
m
h , amh)− (V m

h+1 − V ∗
h+1)(s

m
h+1)︸ ︷︷ ︸

ωm
h

+ (V m
h+1 − V ∗

h+1)(s
m
h+1)︸ ︷︷ ︸

ρm
h+1

+(Q∗
h −Qm

h)(smh , amh)︸ ︷︷ ︸
φm

h

By Azuma-Hoeffding inequality, we can bound
∑M

m=1

∑H
h=1 ω

m
h as Equation 22 with probability

at least 1− σ3.

−H

√
2MH log

2

σ3
≤

M∑
m=1

H∑
h=1

ωm
h ≤ H

√
2MH log

2

σ3
(22)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

As ρmh+1 can be decomposed as Equation 23 where um
h+1 ∼ π∗

h+1(·|smh+1), there is Equation 24.

ρmh+1 = (V m
h+1 − V ∗

h+1)(s
m
h+1) = Qm

h+1(s
m
h+1, a

m
h+1)−Q∗

h+1(s
m
h+1, u

m
h+1) (23)

⇒
M∑

m=1

H∑
h=1

(ρmh+1 + φm
h) (24)

=

M∑
m=1

H−1∑
h=1

Qm
h+1(s

m
h+1, a

m
h+1)−Q∗

h+1(s
m
h+1, u

m
h+1) +

M∑
m=1

H∑
h=1

(Q∗
h −Qm

h)(smh , amh)

=

M∑
m=1

H∑
h=2

Q∗
h(s

m
h , amh)−Q∗

h(s
m
h , um

h) + (Q∗
1 −Qm

1)(sm1 , am1)

≤
M∑

m=1

H∑
h=2

Q∗
h(s

m
h , amh)−Q∗

h(s
m
h , um

h)︸ ︷︷ ︸
χ

+2H

Specifically, the second equation is because of Q∗
H+1(s

m
H+1, a

m
H+1) = 0 and Qm

H+1(s
m
H+1, a

m
H+1) =

0, while the last inequality is because of |Q∗
1| ≤ H and |Qm

1 | ≤ H under the assumption that
|r(·, ·)| ≤ 1 without loss of generality. Consequently, to complete the proof of lemma D.3, it
suffices to establish a bound for χ. Bounds of χ under UCB-based and Thompson Sampling-based
exploration strategies are proved in Section D.1 and Section D.2, respectively. Choosing σ2 =
max {σ3, σ4} and C2 = max {C2, C} completes this proof.

D.1 UCB-BASED EXPLORATION

In this subsection, we introduce the standard assumptions in the literature of deep representation and
shallow exploration as assumption D.4, assumption D.5, and assumption D.6, which are adapted
from those of [39].

Assumption D.4. ∥(s; a)∥2 = 1 for ∀s ∈ S,∀a ∈ A; and the entries of (s; a) satisfy:

(s; a)j = (s; a)j+ d
2

(25)

Assumption D.5. For ∀s1, s2 ∈ S and ∀a1, a2 ∈ A, there is a constant lLip > 0, such that:

∥∇Wϕ(s1, a1|W0)−∇Wϕ(s2, a2|W0)∥2 ≤ lLip ∥(s1; a1)− (s2; a2)∥2 (26)

Assumption D.6. The neural tangent kernel H of the action-value network is positive definite.

Lemma D.7. Adapted from Theorem 4.4 of [39]: suppose the standard initializations and assump-
tions hold. Additionally, assume without loss of generality that ∥θ∗∥2 ≤ 1, ∥(sh, ah)∥2 ≤ 1, and
∥ϕ(sh, ah)∥2 ≤ 1. If with the UCB-based exploration, then for any σ4 ∈ (0, 1), let:

αm
h =

√
2(d · log(1 + ι · logA

λ
)− log σ4) +

√
λ (27)

η ≤ C1(ι · d2M
11
2 L6 · log MA

σ4
)−1; (28)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

and ι = poly(L, d, 1
σ4
, log MS

σ4
) where poly(·) means a polynomial function depending on the in-

corporated variables, then with probability at least 1− σ4, it holds that:

χ ≤C2αH

√
Md · log(1 +

M

λd
) +

C3 ·HL3d
5
2M

√
log(ι+ 1

σ4
+ MA

σ4
) ∥q − q̃∥H−1

ι
1
6

(29)

where α is an union bound of
{
α1
1, ..., α

K
H

}
; C1, C2, C3 are constants independent of the problem;

q = (q11 ; q
1
2 ; ...; q

M
1 ; ...; qMH) and q̃ = (Q1

1(s
1
1, a

1
1);Q

1
1(s

1
2, a

1
2); ...;Q

M
1 (sM1 , aM1); ...;QM

H (sMH , aMH))
are the target and the estimated value vectors, respectively.

Notably, the proof of the above lemma uses the concentration of self-normalized stochastic process.
However, since Qm

h is not independent of Q1
h, Q

2
h, ..., Q

m−1
h , it cannot be directly applied. Alter-

natively, we can adopt a similar approach to that in [40]. For simplicity of presentation, we do not
explicitly handle this issue in the proof above, but it is important to keep in mind.

D.2 THOMPSON SAMPLING-BASED EXPLORATION

Lemma D.8. Under the same settings with those of lemma D.7, if with the Thompson Sampling-
based exploration, Equation 30 holds, where C = C2 +C4 and C4 is another problem-independent
constant.

χ ≤CαH

√
Md · log(1 +

M

λd
) +

C3 ·HL3d
5
2M

√
log(ι+ 1

σ3
+ MA

σ3
) ∥q − q̃∥H−1

ι
1
6

(30)

Proof. According to Lemma A.1 of [39], Q∗
h(s, u)−Q∗

h(s, a) can be decomposed as Equation 31,
where g(s, a;W) = ∇Wϕ(s, a;W).

Q∗
h(s, u)−Q∗

h(s, a) (31)

=(θ∗
h)

T [ϕ(s, u;Wm
h)− ϕ(s, a;Wm

h)] + (θ1
h)

T
[
g(s, u;W 1

h)− g(s, a;W 1
h)
]
(W ∗

h −Wm
h)

=(θ1
h)

T
[
g(s, u;W 1

h)− g(s, a;W 1
h)
]
(W ∗

h −Wm
h)

+ (θm
h)T [ϕ(s, u;Wm

h)− ϕ(s, a;Wm
h)]︸ ︷︷ ︸

ϑm
h

−(θm
h − θ∗

h)
T [ϕ(s, u;Wm

h)− ϕ(s, a;Wm
h)]

According to the Thompson Sampling-based exploration in Algorithm 3, there is Equation 32.

(θm
h + αm

h ∆θm
h)Tϕ(s, u;Wm

h) ≤ (θm
h + αm

h ∆θm
h)Tϕ(s, a;Wm

h) (32)

Consequently, ϑm
h can be bounded as Equation 33.

ϑm
h ≤∥∆θm

h ∥Am
h
∥ϕ(s, a;Wm

h)− ϕ(s, u;Wm
h)∥(Am

h)−1 (33)

≤(
√
d+

√
2 log

1

σ4
) ∥ϕ(s, a;Wm

h)− ϕ(s, u;Wm
h)∥(Am

h)−1

Specifically, the last inequality above is because ∆θm
h ∼ N(0, (Am

h)−1). Substituting the bound of
ϑm
h back into Equation 31 further yields:

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Q∗
h(s, u)−Q∗

h(s, a) (34)

≤(θ1
h)

T
[
g(s, u;W 1

h)− g(s, a;W 1
h)
]
(W ∗

h −Wm
h)

+ (
√
d+

√
2 log

1

σ4
) ∥ϕ(s, a;Wm

h)− ϕ(s, u;Wm
h)∥(Am

h)−1

− (θm
h − θ∗

h)
T [ϕ(s, u;Wm

h)− ϕ(s, a;Wm
h)]

Comparing Equation 34 with A.7 of [39], the difference between the regrets of Thompson Sampling-
based and UCB-based exploration strategies is bounded as Equation 35, with probability at least
1− σ4.

∣∣∣RegretThompson Sampling − RegretUCB

∣∣∣ ≤ (35)

≤
M∑

m=1

H∑
h=1

(
√
d+

√
2 log

1

σ4
) ∥ϕ(s, a;Wm

h)− ϕ(s, u;Wm
h)∥(Am

h)−1

+

M∑
m=1

H∑
h=1

αm
h ∥ϕ(s, a;Wm

h)∥(Am
h)−1 +

M∑
m=1

H∑
h=1

αm
h ∥ϕ(s, u;Wm

h)∥(Am
h)−1

≤H

√
Md log(1 +

M

λd
)(

√
d log(1 +

M logMA

λ
) + log

1

σ
+

√
λ)

≤C4αH

√
Md · log(1 +

M

λd
)

Specifically, the second inequality above is based on the concentration of self-normalized stochas-
tic processes. Similarly to the proof of UCB-based exploration, since Qm

h is not independent of
Q1

h, Q
2
h, ..., Q

m−1
h , it cannot be directly applied. However, we can alternatively adopt a similar

approach to that in [40], which we do not discuss more here.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

E EXPERIMENT

E.1 EXPERIMENT ON MINIHACK

(a) Freeze-Wand-Restricted (b) LavaCross-Restricted

(c) MultiRoom-N4-Locked

Figure 6: Additional experiment results on MiniHack.

The hyperparameters for IMPALA, E3B, and Litee+ used in our experiments are summarized in
Table 2 and Table 3, matching those used in the experiments of E3B [14]. Additionally, similar to
the experiments conducted in E3B, we consider the same sixteen tasks from MiniHack; however,
we present results for only a subset of these tasks. This is because E3B achieves near-perfect perfor-
mance—close to the upper bound of 1 on some tasks, while others prove too difficult to complete,
even for humans.

In Figure 6(a) and Figure 6(b), we present additional results for Litee+ with Thompson Sampling-
based exploration across two more tasks. The findings are consistent with those discussed in the
main text. Furthermore, in Figure 6(c), we provide a comparison between E3B and Litee. As
demonstrated, even when utilizing only Litee instead of Litee+, the performance is comparable to
that of E3B, without requiring any additional parameter learning. However, it is important to note
that Litee is capable of solving only certain tasks in MiniHack, and not all tasks can be successfully
addressed by this approach.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 2: IMPALA Hyperparameters for MiniHack [14].

Learning rate 0.0001

RMSProp smoothing constant 0.99

RMSProp momentum 0

RMSProp 10−5

Unroll Length 80

Number of buffers 80

Number of learner threads 4

Number of actor threads 256

Max gradient norm 40

Entropy Cost 0.0005

Baseline Cost 0.5

Discounting Factor 0.99

Table 3: E3B and Litee+ Hyperparameters for MiniHack.

E3B and Litee+

Running intrinsic reward normalization true
Ridge regularizer 0.1

Entropy Cost 0.005

Exploration coefficient 1

Litee+ Dimension of U 256

E.2 EXPERIMENT ON MUJOCO

Hyperparameters of various algorithms for the experiments on MuJoCo are completely the same
with those in the public codebase CleanRL. Litee introduces only two more hyperparameters, i.e.,
the exploration coefficient α and the ridge which is set as λ = 1. For various tasks, the exploration
coefficients are summarized in Table 4. Additional experimental results on various MuJoCo tasks
involving different RL algorithms can be found in Figure 7.

Table 4: Exploration coefficient for various MuJoCo tasks.

Swimmer
0.1

Pusher

Ant 0.7

Walker2d 1.0

Hopper
0.4

HalfCheetah

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

(a) HalfCheetah (b) Swimmer

(c) Ant (d) Pusher

(e) Swimmer (f) HalfCheetah

(g) Hopper (h) Ant

Figure 7: Additional experiment results on MuJoCo.

23

	Introduction
	Related Work
	Methodology
	Preliminary
	Litee: Exploration with Value Network under Uncertainty
	Litee+: Enhancing Litee with Minimal Overhead

	Theoretical Analysis
	Experiment
	Sparse Reward Tasks
	Dense Reward Tasks

	Conclusion
	Implementation
	Long version of alg:primaryalgorithm
	Proof
	Lemmas
	UCB-based Exploration
	Thompson Sampling-based Exploration

	Experiment
	Experiment on MiniHack
	Experiment on Mujoco

