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ABSTRACT

Exploration remains a critical challenge in reinforcement learning (RL), with
many existing methods either lacking theoretical guarantees or being computa-
tionally impractical for real-world applications. We introduce Litee, a lightweight
algorithm that repurposes the value network in standard deep RL algorithms to
effectively drive exploration without introducing additional parameters. Litee uti-
lizes linear multi-armed bandit (MAB) techniques, enabling efficient exploration
with provable sub-linear regret bounds while preserving the core structure of ex-
isting RL algorithms. Litee is simple to implement, requiring only around 10 lines
of code. It also substantially reduces computational overhead compared to pre-
vious theoretically grounded methods, lowering the complexity from O(n?) to
O(d?), where n is the number of network parameters and d is the size of the em-
bedding in the value network. Furthermore, we propose Litee+, an extension that
adds a small auxiliary network to better handle sparse reward environments, with
only a minor increase in parameter count (less than 1%) and additional 10 lines
of code. Experiments on the MiniHack suite and MuJoCo demonstrate that Litee
and Litee+ empirically outperform state-of-the-art baselines, effectively bridging
the gap between theoretical rigor and practical efficiency in RL exploration.

1 INTRODUCTION

Exploration remains a fundamental challenge in reinforcement learning (RL), particularly in envi-
ronments with sparse rewards or complex dynamics. Although algorithms such as DQN [26]], PPO
[34], SAC [13], DDPG [24], TD3 [12], and IMPALA [10] have demonstrated impressive perfor-
mance on tasks like Atari games [25} 26], StarCraft [37], and Go [35], they often depend on rudi-
mentary exploration strategies. Common approaches, such as e-greedy policies or injecting noise
into actions, are typically inefficient and can struggle in scenarios with delayed or sparse rewards.

Various exploration methods have been proposed to improve performance and address the challenge
of reward sparsity. For decades, exploration strategies with proven optimality in tabular settings have
been available [20]. More recently, methods with provable regret bounds have been developed for
scenarios involving function approximation, including linear functions [27; 128} (18}, [195 [1]], kernels
[40], and neural networks [40]. However, while linear and kernel-based approaches make strong
assumptions about the structure of RL functions, provable methods based on neural networks often
suffer from prohibitive computational costs—specifically O(n?) complexity, where n is the number
of parameters in the RL network—making these methods impractical for real-world applications.

A more practical approach to exploration relies on heuristics, leading to the development of several
empirically successful methods, such as Pseudocount [3]], ICM [29]], RND [6]], RIDE [30]], NovelD
[42], AGAC [11], and E3B [14;|15]. These methods typically use internally generated bonuses to
incentivize agents to explore novel states based on specific metrics. For instance, RND [6] utilizes
the prediction error of a randomly initialized target network as the exploration bonus, while RIDE
[30] combines the errors from forward and inverse dynamics models. However, these methods
lack theoretical guarantees and are primarily driven by intuitive heuristics. Furthermore, they often
require the training of additional networks beyond the standard value or policy networks in RL
algorithms, which makes them computationally expensive.
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Figure 1: Comparison between a representative exploration approach (a) E3B [14] , (b) Litee, and
(c) Litee+. E3B requires additional networks to generate exploration bonuses, while Litee repur-
poses the value network’s state embeddings, resulting in reduced computational overhead and no
additional parameters. Litee+ extends Litee by incorporating a small auxiliary network to enhance
performance in sparse reward environments, with only a minor increase in parameters.

In this work, we aim to combine the strengths of both theoretically grounded and empirically effec-
tive exploration methods. Provably efficient exploration strategies that leverage function approxi-
mation [18;[19; 40; [27; 128} [32]] are fundamentally rooted in the theory of contextual Multi-Armed
Bandits (MAB) [22;19; 12; 138}, 143 144]. Building on this foundation, we hypothesize that advanced
techniques from neural MAB can be effectively adapted for exploration in deep RL. Empirical re-
sults indicate that decoupling deep representation learning from exploration strategies, such as Upper
Confidence Bound (UCB) or Thompson Sampling in linear MAB [415 |31} [39], shows promise for
achieving efficient exploration in neural MAB.

Motivated by these insights, we propose Litee: a Lite exploration algorithm for deep RL. Unlike
existing methods [ 165 1295 29; [30; [145 [15]], which require training additional embedding networks
for state representation, Litee directly utilizes the state embeddings of the existing value network in
the RL algorithm, applying linear MAB techniques for exploration. As a result, Litee introduces
no new parameters beyond those already present in the original algorithm, demonstrating that RL
algorithms inherently possess strong exploration capabilities when their learned networks are effec-
tively leveraged. Moreover, Litee is simple to implement—requiring only around 10 lines of code.
For more complex tasks, where learning from sparse rewards is especially challenging, Litee can
be enhanced by incorporating a small auxiliary network to accelerate the learning process. This
extended version, Litee-+, results in only a minimal increase in parameter count (less than 1%) and
implementation effort (approximately 10 additional lines of code).

We evaluated Litee+ and Litee on the MiniHack and MuJoCo benchmarks to assess their effective-
ness in both sparse and dense reward environments. Litee either outperforms or at least matches the
performance of state-of-the-art baseline methods such as PPO [34], SAC [13] and TD3 [12], which
are not specifically designed for exploration. In contrast, Litee+ consistently outperforms E3B [[14],
the state-of-the-art exploration method for MiniHack, across all evaluated tasks, demonstrating su-
perior reliability and effectiveness in diverse reinforcement learning settings.

In summary, we make three key contributions in this paper. First, we propose Litee, a lightweight
exploration algorithm that integrates seamlessly with existing RL algorithms without introducing
additional parameters, and extend it to Litee+ for improved performance in sparse-reward environ-
ments. Second, we provide theoretical guarantees, showing that any RL algorithm enhanced with
Litee achieves a sub-linear regret bound over episodes. Finally, we validate the effectiveness of
Litee and Litee+ through experiments on the MiniHack and MuJoCo benchmarks, demonstrating
their superior performance in both sparse and dense reward settings.

2 RELATED WORK

Multi-Armed Bandits. MAB algorithms address the exploitation-exploration dilemma by making
decisions and receiving rewards over time under uncertainty. LinUCB [22] assumes linearity in re-
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Table 1: Comparison of exploration methods on MiniHack tasks. Networks: additional networks re-
quired beyond those in IMPALA, which contains 25,466, 652 parameters; parameters: the number
of additional parameters introduced by the exploration module; T means the percentage of parameter
increase. Networks in bold represent those with significant parameters, while those in gray indicate
substantially fewer parameters. Litee+ refers to Litee with the small auxiliary network added.

Algorithm Networks parameters 1 (%)
ICM Embedding net + Forward dynamics net + Inverse dynamics net 16,074,512 +2, 110,464 + 527,371 73%
RND Embedding net 16,074,512 63%
RIDE Embedding net + Forward dynamics net + Inverse dynamics net 16,074,512 +2, 110,464 + 527,371 73%
NovelD Embedding net 16,074,512 63%
E3B Embedding net + Inverse dynamics net 16,074,512 +527, 371 65%
Litee - - 0%

Litee+ Inverse dynamics net 199. 819 0.8%

wards concerning arm contexts and guarantees a sub-linear regret bound [9]. To relax the linearity
assumption, KernelUCB [36; (8] and NegUCB [23] map contexts to high-dimensional spaces and
apply LinUCB in these transformed settings. Neural-UCB [44] and Neural-TS [43] utilize neural
networks to model the relationship between contexts and rewards, though their computation time
of O(n?), where n is the number of network parameters, limits their scalability in real-world tasks.
Neural-LinTS [31] and Neural-LinUCB [39] effectively decouple representation learning from ex-
ploration, enhancing the practicality of network-based bandit algorithms.

Exploration in RL. Common exploration strategies in RL, such as e-greedy [26] and stochastic
noise [24; 134], often lack sample efficiency and struggle with sparse rewards. While provably
sample-efficient algorithms [20; 27; 285 [185 [195 115 [7] based on MAB theory exist, they face em-
pirical limitations or are primarily theoretical, lacking practical applicability in deep RL [4]]. Many
successful empirical methods [155 [29; 16 305 425 [115 [145 [15] rely on exploration bonuses that incen-
tivize agents to visit novel states, but these approaches often lack theoretical grounding and require
training significantly more parameters. In contrast, Litee utilizes MAB methods for exploration, as-
sisted by embedding layers within the RL value network, providing empirical benefits with minimal
additional parameters. illustrates the differences between E3B and Litee, while
summarizes the additional networks and parameters of various exploration methods.

3 METHODOLOGY

Unless otherwise specified, bold uppercase symbols denote matrices, while bold lowercase symbols
represent vectors. I refers to an identity matrix, and O represents a zero vector. Frobenius norm and
I3 norm are both denoted by |-||,. Mahalanobis norm of a vector « based on matrix A is given by

lz|| , = VaT Ax. For an integer X > 0, the set of integers {1, 2, ..., K'} is represented by [K].

3.1 PRELIMINARY

An episodic Markov Decision Process (MDP) is formally defined as a tuple (S,.A, H, P, r), where
S denotes the state space and A is the action space. Integer H > 0 indicates the duration of each
episode. FunctionsP: S x A x S — [0,1] and r : S x A — [0, 1] are the Markov transition and
reward functions, respectively. During an episode, the agent follows a policy 7 : S x A — [0,1].
At each time step h € [H] in the episode, the agent observes the current state s;, € S and selects an
action aj, ~ 7(+|sp,) to execute, then the environment transits to the next state sp4+1 ~ P(+|sn, an),
yielding an immediate reward r, = r(sp, ap).

Various algorithms have been developed to learn the optimal policy 7* for the agent to select and
execute actions at each time step & in the episode, thus ultimately maximizing the long-term return
ZhH—1 4"~1r;,, where 0 < 7 < 1 is the discount parameter. Notable algorithms include DQN [26],

PPO [34]], SAC [13], IMPALA [10], efc. A common component of these algorithms is the use of a
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network to approximate the action-value function]| Q under a specific policy as where
¢(-,-|W) is the embedding layers, @ and W are trainable parameters. At step h in the episode, the

action-value Q(sp,, ap,) approximates the long-term return Zf[: h i
state sy, and following the specific policy thereafter:

r after executing action ay, at

Q(s,a) = 0T¢>(s,a\W). (D

The Bellman equation [26]] is employed to update the action-value function. Using the most recent
action-value function, the policy can be updated in various ways, depending on the specific algo-
rithm. Since Litee focuses on leveraging for efficient exploration while preserving the
core techniques of existing algorithms, we introduce Litee within the context of DQN for simplicity;
however, it can be easily adapted to other algorithms.

3.2 Litee: EXPLORATION WITH VALUE NETWORK UNDER UNCERTAINTY

For the state-action pair (s, ar) at time step h, the approximated action-value Q(sp, ar) is subject
to an uncertainty term (s, ay, ). This uncertainty arises from the novelty or limited experience with
the particular state-action pair. Similar to MAB problems, it is essential to account for this uncer-
tainty when utilizing the latest approximated action-value function. Incorporating the uncertainty
term encourages exploration, ultimately improving long-term performance. Thus, the action-value
function adjusted for uncertainty is given by [Equation 2] where « > 0 is the exploration coefficient:

Q(s,a) = 0T¢(87G|W) “rOZB(',')- 2

However, defining (-, -) remains a significant challenge. Traditional MAB methods often attempt
to address this by either assuming a linear action-value function or relying on algorithms that require
O(n?) computation time in terms of the number of parameters n in the action-value network. Both
of these approaches have inherent drawbacks. Linearity may fail to capture the complexity of real-
world tasks. On the other hand, algorithms with cubic computation time become impractical.

To overcome these limitations, we draw inspiration from Neural-LinUCB [39]] and Neural-LinTS
[31], which effectively decouple representation learning from exploration. Building on this idea,
Litee adopts a similar approach, decomposing the action-value function into two distinct compo-
nents. This decomposition follows the standard value network structure (Equation 1)), while provid-
ing a flexible and computationally efficient framework for balancing exploration and exploitation:

* Network ¢(s, a|W) extracts the embeddings of state-action pair (s; a);
* Q(s,a) = 8" ¢(s,a|W) is linear in the embedding of (s, a) with parameter 6.

Consequently, MAB theory with the linearity assumption can be applied to the embedding ¢(s, a)
for Vs € S and Va € A. Simultaneously, the action-value function retains its representational
capacity through the neural network ¢(s, a), ensuring promising empirical performance.

details DQN with Lited’] In this algorithm, all lines except those highlighted in blue
follow the standard DQN framework, while the blue lines specifically represent the adjustment of the
action-value function to account for uncertainty. For conciseness, we denote the result of ¢(s}’, a}*)
as the vector ¢}, which is assumed to be d-dimensional, i.e., ¢} € R¢, initializes the
variance matrix as A = AI where A > 0 is the ridge parameter. Based on the latest variance matrix,
we introduce two methods to define the uncertainty term: UCB- and Thompson Sampling-based
uncertainty term, each corresponding to a different exploration strategy.

Uncertainty term based on UCB. Upper Confidence Bound (UCB) is a widely used optimistic
exploration strategy, where the agent assumes the best-case scenario in the face of uncertainty. In
this approach, the uncertainty term is proportional to the estimated variance and serves as a measure

'In some algorithms, the state- instead of the action-value functions are learned. However, this does not
affect the implementation and conclusion of our method, as will be seen in[Section 3.2,
21t is a concise version for easier comprehension. In [Appendix B| we present the complete version in
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Algorithm 1 Deep Q-Network (DQN) with Litee. The lines highlighted in blue represent modifi-
cations that introduce Litee’s exploration enhancements, incorporating uncertainty estimation and
variance updates to improve exploration efficiency.

1: Input: Ridge parameter A > 0, the exploration parameter « > 0, episode length H, episode number K
2: Initialize: Covariance matrix A = AI, parameters 6 ~ %N (0, I), networks ¢(-,-|W) [39], the action-

value network Q = 0" ¢(s, a), and the target value-networks Q(s, a) = Q(s, a)

3: for episode m = 1 to M do
4: Sample the initial state of the episode s7"
5: forsteph=1,2,...,H do
6: Conduct action aj;' = argmax, Q(sy’, a) and get the next state sj', ; and reward 7"
7: Update the parameters of the action-value function 8 and W by Bellman equation [26]
8: Approximate the uncertainty term (-, -) by [Equation 3|or [Equation 4|
9: Approximate the action-value in the face of uncertainty Q(s, a) by [Equation 2]
10: Update the variance matrix A by [Equation J)|
11:  end for B
12:  Update the target network Q(+,-) = Q(+,), h € [H]
13: end for

of uncertainty in the action-value function approximation. The higher the uncertainty, the more
likely the agent is to explore. As uncertainty decreases, the agent gradually shifts towards exploiting
the known information for decision-making. This method defines the uncertainty term as:

B(s,a) = /0(s.0)TA=16(s. a). 3)

Uncertainty term based on Thompson Sampling. Instead of relying on a fixed optimistic uncer-
tainty, this approach samples from a posterior distribution over the possible value functions. By
sampling from this distribution, the agent naturally balances exploration and exploitation based on
the likelihood of each action being optimal. This method defines the uncertainty term as:

AO ~ N(0,A71),

. )
B(s,a) = (AB) ¢(s,a).
At each time step h in episode m, after calculating the uncertainty and approximating the actionn-
value function with uncertainty, we update the variance matrix before proceeding to the next step:

A=A+ (oM. (5)

is straightforward and easy to implement, while offering several advantages over exist-
ing approaches. E3B [14] introduces a bonus term similar to that in however, it relies
on additional networks to approximate the embedding, which is heuristic and lacks theoretical guar-
antees. Other approaches also incorporate MAB methods, but they typically treat the action-value
function as either a linear or kernel function [19; 40]], which limits their applicability to real-world
tasks. Furthermore, some methods [40] require o(n®) computation time where n is the number of
the action-value network’s parameters, making them impractical to implement. Additionally, certain
approaches only provide proofs related to the MAB method while neglecting the theoretical analysis
of the deep RL algorithm [4]]. In contrast to these methods, does not require learning
any additional parameters beyond those already present in the RL algorithms. Computationa time
associated with the uncertainty term is o(d®) where d < n represents the embedding dimension.
Furthermore, it offers theoretical guarantee, which will be elaborated upon in

Adapting to General RL Algorithms. To apply to general RL algorithms, we incor-
porate the UCB- or TS-based uncertainty into the action-value function by reshaping the immediate
rewards. Additionally, depending on the algorithm employed, we may sometimes learn the state-
instead of the action-value network. As a result, the value network can only derive state embeddings
rather than state-action pair embeddings. Even when learning the action-value network, it may still
output only state embeddings if it is designed to take states as input and produce action-values for
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Figure 2: Litee framework. L represents the Bellman loss used to update the action-value function,
while L refers to the loss of the auxiliary network, which will be detailed in

each action. In such cases, the embedding of the next state is utilized to replace the embedding of
the current state-action pair. For notational simplicity, we continue to refer to the state embedding
network as ¢(-) and the output ¢(s}") as ¢}, assuming no ambiguity arises. As a result, the practi-
cal algorithm incorporating Lifee is presented in |Figure 2| and [Algorithm 2| It can seamlessly adapt
to any RL algorithm, with the only additional step being reward shaping.

3.3 Litee+: ENHANCING Litee WITH MINIMAL OVERHEAD

For tasks where learning value networks from sparse rewards is challenging, a small network can
be incorporated to accelerate learning, introducing only a minimal number of additional parameters.
Specifically, we utilize the Inverse Dynamics Network (IDN) [29;|30; [14] to enhance the learning of
the embedding layers contained in the action-value network. This is achieved by a compact network
f that infers the distribution p(a) over actions given consecutive states sj, and s 1, which is trained
by maximum likelihood estimation:

Ly = —logp(an|snh, sh+1)- (6)

To introduce this enhancement with minimal additional parameters, we utilize the state embeddings
@(sn) and ¢(sp41) from the value network. These embeddings are first transformed by a linear layer
u parameterized by W,,, followed by a small network v, which takes the transformed consecutive
embeddings to infer the corresponding action:

plan|sn, shr1) = f(@(sn), P(sht1)) = v(Wud(sn), Wud(sh11))- (7

In our design, the module f is purposefully kept lightweight by significantly reducing the number
of parameters compared to the value network, ensuring minimal computational overhead. To further

enhance efficiency, we update the embedding in Line [7|of |Algorithm 2|as ¢)" = W, ¢(s}", ;).

This design brings several advantages. First, the introduction of u effectively decouples the policy
from the Inverse Dynamics Network (IDN), reducing interdependencies that could hinder learning
and thereby improving empirical performance. Second, since u is a simple linear transformation of
@(sp+1), it also retains the theoretical guarantees of UCB- and Thompson Sampling-based explo-
ration strategies, maintaining the rigor and stability of the exploration process. Third, transforming

7' into a lower-dimensional embedding with d < d not only reduces the number of additional

parameters but also brings down the computational complexity of 5;* to o(d~3), making the method
computationally efficient and scalable for practical applications.

Notably, IDN is also applicable when the embedding network is designed for state-action pairs, i.e.,
@(s,a). In this case, a constant default value is used for the action, while the actual states are input,
with the resulting outputs treated as the state embeddings.
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Algorithm 2 Litee for general deep RL. Either UCB-based or Thompson Sampling-based uncer-
tainty can be used depending on the desired exploration strategy.

1: Input: Ridge parameter A > 0, exploration parameter o > 0, episode length H, episode number K
2: Initialize: Covariance matrix A = I, initial policy 7(+), state- or action-value function V' (-) or Q(-, -)
3: for episode m = 1 to M do

4: Receive the initial state s7* from the environment
5: forsteph=1,2,...,H do
6: Conduct action aj" ~ m(s},") and observe the next state sy, ; and receive reward 75"
7: Get embedding of the next state ¢" = ¢(sh4 1)
8: Calculate action-value variance b} = (o))" A~ o
9: Generate UCB-based action-value uncertainty 3;" = /b}"
10: Generate Thompson Sampling-based action-value uncertainty 3;* ~ N (0, by,")
11: Reshape the reward r))* = r}* + aS3h"
12: Update the covariance matrix A = A + ¢} (o) "
13:  end for

14:  Adopt any RL algorithm to update the value function V'(-) or Q(+, -) and the policy 7(-)
15: end for

4 THEORETICAL ANALYSIS

In this sectimﬂ, we introduce additional notation before delving into the detailed theory. Under
the true optimal policy 7*, assume the corresponding action-value function Q* is structured as in
and parameterized by 6* and W*. In[Algorithm I} the policy executed in episode
m € [M] is denoted by m,,, with its action-value function represented as Q™™ . Cumulative regret

of is as definition [-1]

Definition 4.1. Cumulative Regret. After M episodes of interactions with the environment, the

cumulative regret of| is defined as where u'" is the optimal action at state

sT* generated by policy 7 while a* is that selected by the executed policy T,.

M
Regret,, = Z Q" (s7",uy") — Q™ (1", ai"). ®)
m=1

Cumulative regret quantifies the gap between the optimal return and the actual return accumulated
over M episodes of interaction with the environment. By establishing a sub-linear upper bound on
with respect to the number of episodes M, we can demonstrate the sample efficiency
of Litee. Litee draws inspiration from Neural-LinUCB [39]] and Neural-LinTS [31]], corresponding
to the UCB- and Thompson Sampling-based action-value functions, respectively. The theoretical
analysis of Litee builds on the conclusions from these methods. While Neural-LinUCB is supported
by theoretical analysis, Neural-LinTS has only been validated empirically. In this paper, we present
the regret bound for Neural-LinTS$ in [Section D.2} leading us to the regret bound for [Algorithm 1]
as stated in[Equation 4.2] The proof is

Theorem 4.2. Suppose the standard initializations and assumptions from the literature [40}; 39]
hold. Furthermore, without loss of generality, assume that ||0*||, < 1 and ||(sp;an)|y < 1. For
any o € (0,1), let:

a= \/2(d~10g(1+‘M'k;gA|)logU)+ﬁ

M |A| ©
n<Ci(e- M= LS. log 7)_1,
o
and the number of parameters in each of the L layers of ¢(-,-) is at least + =
poly(L,d, %, log %), where |A| means the action space size and poly(-) means a polynomial
function depending on the incorporated variables, then with probability at least 1 — o, it holds that:

3Conclusions in this section are to|Algorithm 3| the complete version of [Algorithm 1
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where Cy,Cy, Cy are constants independent of problem parameters; q = (qi;q3;...;q4M;...;¢¥)
~ 1ol 1\.l(l 1\, .MM MY. . M(M M .

and § = (Q1(s1,a1); Q1(83,a3); ... Q1" (s1",a1");...; Qyr (sy1 . ag ) are respectively the target

and the estimated value vectors;, H is the neural tangent kernel, as defined in [39].

Specifically, in theorem [4.2] we assume ||0*||, < 1 and ||(sn;an)|, < 1 to make the bound scale-
free. Otherwise, the bound would increase by a scale factor. Neural tangent kernel H is defined in
accordance with a recent line of research [[17; 3] and is essential for the analysis of overparameter-
ized neural networks. Other standard assumptions and initialization are explained in

From[Equation 10] we can conclude that the upper bound of the cumulative regret grows sub-linearly
with the number of episodes M, i.e., O(v/M) where O(-) hide constant and logarithmic dependence
of M, indicating that the executed policy improves over time. Notably, the last term in [Equation 10
arises from the error due to network estimation. Here, M can be traded off against ¢ and the estima-
tion error ||q — q|| ;71 making it often neglected in the literature.

5 EXPERIMENT

In this section, we evaluate Litee+ and Litee across tasks from both MiniHack and MuJoCo, which
feature sparse and dense rewards, respectively. For the MiniHack tasks, we select IMPALA as the
base RL algorithm due to its status as a state-of-the-art method and its frequent use in exploration
problem baselines. Given the sparse reward nature of MiniHack tasks, we choose Litee+ and com-
pare IMPALA with Litee+ against six baselines: IMPALA [10], ICM [29], RND [6], RIDE [30],
NovelD [42], and E3B [14]]. Notably, all except IMPALA are specifically designed for sparse reward
settings and also use IMPALA as their base RL algorithm. For the MuJoCo tasks, which involve
dense rewards, we evaluate three state-of-the-art RL algorithms: SAC [13], PPO [34], and TD3 [12],
with and without Litee.

Reproducibility. The experiments presented in this paper are based on publicly available codebases
from E3B E] [14] and CleanRL E] [16l]. To ensure reproducibility, we provide the core code and
detailed hyperparameters for Litee and Litee+ in[Appendix E|and [Appendix Al respectively. In fact,
the experiments can be easily replicated with minimal modifications to the provided code.

5.1 SPARSE REWARD TASKS

MiniHack [33]] is built on the NetHack Learning Environment [21]], a challenging video game where
an agent navigates procedurally generated dungeons to retrieve a magical amulet. MiniHack tasks
present a diverse set of challenges, such as locating and utilizing magical objects, traversing haz-
ardous environments like lava, and battling monsters. These tasks are characterized by sparse re-
wards, and the state provides a wealth of information, including images, text, and more, though only
a subset is relevant to the specific task at hand.

As shown in Litee+ adds approximately 0.8% more parameters compared to IMPALA,
which does not include a dedicated exploration module. In contrast, other baselines with specifically
designed exploration modules, such as RIDE and E3B, introduce 60% — 80% additional parameters
over IMPALA. This highlights the lightweight nature of Litee.

We present the experimental results for E3B, IMPALA, and Litee+ to conserve computational re-
sources. IMPALA serves as the baseline without a specifically designed exploration module, while

*https://github.com/facebookresearch/e3b
>https://github.com/vwxyzjn/cleanrl
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Figure 3: Experiment results on MiniHack over seeds 1 — 3. The vertical axis represents the average
return, while the horizontal axis denotes the number of frames, in multiples of 1e7. For IMPALA,
we only display its performance upper bounds, as it fails to achieve positive average scores. The
legend includes the percentage of additional parameters introduced by each algorithm compared to
the original network (65% increase for E3B [[14] and 0.8% increase for Litee+).

E3B is recognized as the state-of-the-art method among exploration problem baselines on MiniHack.
Results for additional baselines, including ICM, RND, RIDE, and NovelD, can be found in the E3B
paper [[14]] and can be reproduced using the provided code. Based on previously reported findings as
well as our own reproductions, these baselines typically struggle to achieve positive average scores
without significant human engineering, which is one reason they are not discussed in further detail.

The experimental results presented in [Figure 3(a), [Figure 3(b), and
correspond to three MiniHack tasks, where Litee+ em-

ploys Thompson Sampling-based exploration. It is clear that Litee+ 1.0

consistently outperforms E3B across these various MiniHack tasks. 05 —
While Litee+ may converge slightly more slowly than E3B at times,

this is expected, as Litee+ tends to explore the environment more 0.0 r
thoroughly before heavily exploiting its accumulated experiences. g5

However, once convergence is achieved, Lifee+ demonstrates sig-

nificantly superior performance compared to E3B. Given that E3B — EsB65%

Litee+ UCB 0.8%

relies on bonus-based reward reshaping, it can be challenging toen-  -15 —— Litee+ no U 2.1%
sure that maximizing cumulative return directly aligns with maxi- 05 10 15 20
mizing the reshaped return. In contrast, Litee+ benefits from strong )
theoretical guarantees regarding cumulative regret, which helps ac- (a) Freeze-Horn-Restricted

count for its robust empirical performance.

We also implemented Litee+ with UCB-based exploration. A com-

parison of the results from Litee+ using Thompson Sampling- and 05

UCB-based exploration, shown in [Figure 3| and [Figure 4] respec-

tively, reveals that both methods yield comparable outcomes. Ad- 0.0

ditionally, we conducted an ablation study on U, which is designed

to prevent severe coupling between the policy and the IDN. As il-  -os —— E3B65%
lustrated in |Figure 4(a)|and [Figure 4(b), U is crucial for enhancing . t:i: ‘nJOCS g?;
the empirical performance of Litee+. Without U, Litee+ occasion- ~ -1.0 - ' 25
ally outperforms E3B, though there are instances where it does not.

Furthermore, without U, Litee+ introduces a larger number of ad- (b) MultiRoon-N4-Locked
ditional parameters, specifically 2.1%. For additional experimental ] ]

results on other MiniHack tasks, please refer to Figure 4: Ablation study.

5.2 DENSE REWARD TASKS

For dense reward tasks, we utilize the MuJoCo testbed, a widely used physics-based simulation en-
vironment for benchmarking RL algorithms. MuJoCo provides a suite of continuous control tasks
where agents must learn to perform various actions, such as locomotion, manipulation, and balanc-
ing, within simulated robotic environments.
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Figure 5: Experiment results on MuJoCo over seeds 1 — 5, with the average return on the vertical
axis and steps, in multiples of 1e6, on the horizontal axis.

Since comparisons among state-of-the-art RL baselines, such as PPO, SAC, and TD3, have been
extensively covered in previous studies, our focus is on investigating how Litee can enhance these
algorithms. Thus, we concentrate on comparing the performance of each specific algorithm with
and without Litee. In this subsection, Litee employs UCB-based exploration, as the Thompson

Sampling-based approach has been investigated in[Section 5.1

Given that SAC achieves the best performance among existing RL algorithms on MuJoCo tasks, we
investigate whether Litee enhances its capabilities. The results presented in indicate that
Litee consistently improves the performance of SAC across various tasks. Notably, SAC combined
with Litee demonstrates significantly better performance on the Swimmer task, which, although not
typically considered particularly challenging, has seen limited success with SAC alone. For tasks
with larger action spaces, such as Hopper and Walker2d, SAC incorporating Litee also achieves
superior performance, as shown in[Figure 5(b){and |[Figure 5(c)l

Beyond SAC, we also investigate whether the Litee module can enhance the performance of other
algorithms, such as PPO and TD3. The consistent performance improvements observed across
multiple algorithms highlight the versatility of the Litee module in boosting learning efficiency and
achieving better outcomes. For additional experimental results on various MuJoCo tasks involving

different RL algorithms, please refer to

6 CONCLUSION

In this paper, we introduced a lightweight exploration module, Litee, which seamlessly integrates
with existing reinforcement learning (RL) algorithms without adding extra parameters, making it
computationally efficient. Litee utilizes the state embeddings from the RL value network to drive
exploration, leaving the rest of the RL algorithm unchanged. We provided theoretical guarantees for
Litee, establishing a sub-linear regret bound in terms of the number of interaction episodes, demon-
strating its sample efficiency. For more complex tasks, we extended Lifee to Litee+, incorporating
a small auxiliary network to accelerate learning with only a minimal increase in parameters. Our
experiments on two benchmarks, MiniHack and MuJoCo, evaluated Litee in both sparse and dense
reward settings, and the results demonstrate that Litee consistently outperforms state-of-the-art base-
lines, bridging the gap between theoretical rigor and practical efficiency in RL exploration.

10
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A IMPLEMENTATION

In[Listing 1} we present the core code of Litee, while the rest of the RL algorithm remains unchanged.
As shown, Litee is simple to implement, integrates seamlessly with any existing RL algorithm, and
requires no additional parameter learning beyond what is already in the RL algorithm.

Listing 1: Litee core code

cov = torch.eye(256) * ridge # initialize covariance matrix
cov_inverse = torch.inverse(cov) # inverse of covariance matrix

emb = g _net.get_emb (torch.Tensor (obs), torch.Tensor (action))
emb = emb.squeeze().detach() # embedding of the state-action pair

bouns = torch.matmul (emb.T, torch.matmul (cov_inverse, emb))
bonus = np.sqgrt (bonus.item()) # action-value uncertainty

reward += bonus # reshape the reward

cov += torch.outer (emb, emb) # update the covariance matrix

In we present the additional code for Litee+ alongside that of Litee. As shown, Litee+
minimizes an additional loss, specifically the inverse dynamics loss, in addition to the losses from
the original RL algorithm.

Listing 2: Litee+ additional core code

emb = g_net.get_emb (torch.Tensor (batch[’obs’]), torch.Tensor (batch[’action’])) # embedding of state-action
pairs in a training batch

current_emb = emb[: -1] # embeddings of the current step
next_emb = emb[1l: ] # embeddings of the next step

predict_action = inverse_dynamic_net (current_emb, next_emb) # inferred actions

inverse_dynamics_loss = compute_inverse_dynamics_loss (predict_action, batch([’action’][: -1]) # loss between
the inferred and the executed actions

def compute_inverse_dynamics_loss (predict_action, true_action):

inverse_dynamics_loss=F.nll_loss(F.log_softmax (torch.flatten (predict_action, 0, 1), dim=-1), target=torch.
flatten(true_action, 0, 1), reduction=’none’)
inverse_dynamics_loss = inverse_dynamics_loss.view_as (true_action)

return torch.sum(torch.mean(inverse_dynamics_loss, dim=1)

14
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B LONG VERSION OF ALGORITHM [I]

In section[3.2] algorithm([T]provides a concise version for easier comprehension. For a more thorough
theoretical analysis, we present the complete version in algorithm [3] As per the standard notation
in the literature on provable algorithms [19; |40]], function parameters are not shared across different
time steps . € [H], which is also the case in[Algorithm 3] As we can see, the algorithm itera-
tively updates parameters 6, and W), corresponding to Line[7]in algorithm[T] i.e., learning the two
decomposed components of the action-value function in by Bellman equation. Specifi-
cally, the parameter @}, is updated in Line D using its closed-form solution [22], while the extraction
network ¢y, (-, -) remains fixed. Afterwards, the extraction network ¢y, (s, a|Wh) is updated in Line
. 110, with the parameter 0}, held constant. In this line, 7 is the learning rate, Lj" is the Bellman loss
function, and s, a!,, r! for Vt € [m] and Vh € [H] represent historical experlences.

Algorithm 3 DQN with uncertainty

1: Input: Ridge parameter A > 0, the exploration parameter o > 0, episode length H, episode number K
2: Initialize: Covariance matrix A}, = AI, b}, = 0, parameters 0} ~ 1N(0,1), networks o1 (-, | Wi
1390, Q1. = (8})" 91 (-, -), and the target value-networks Q7. = Q}, where h € [H]

3: for episode m = 1 to M do

4 Sample the initial state of the episode s7"

5 forsteph =1,2,..., H do

6: Conduct action aj," = argmaxa Q7' (s5', a) and get the next state sy, ; and reward r3"
7

8

9

Compute the target value g* = 77 + maxa Q71 (5741, a)
Update A" = A" + i (") and b = b + g} !
Update parameter 8! = (A1) "1y *!
10: Update the extraction network to ¢/ (-, -) with parameters W, ™! = W™ + nVw Ly" where

H
B 2
Z‘ 9m+1 ¢h Sh,ah\Wh ) — rz — mngle(sZH,a)

HMS

11: Obtain UCB-based uncertainty
B;’,”+1( ) \/(bmel A7n+l) 5;7/7,«&»1(_7 )
12: Obtain Thompson Sampling-based uncertainty

ABIT+1 ~ N(Ov (A;-:L+1) ) = ﬁm+1( ) ) = (AOZH+1)T¢ZI+1(.7 )
13: Approximate the action-value function

R =6 e ) F B )

14:  end for
15:  Update the target network Q7" "' (-,-) = Q"' (-,-), h € [H]
16: end for
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C PROOF

Before delving into the detailed theory, we first review the notation used in this appendix.

Let 7* denote the true optimal policy and 7, represent the policy executed in episode m € [M] as
outlined in [ATgorithm 3] The action-value and state-value functions corresponding to the policies
7m* and ,, are represented by Q*, V*, and Q™™, V™ respectively. The relationship between the
state-value and action-value functions under a specific policy is given as follows:

Vi, (s) = max Qj (s, a)
QZ(Sv a) = T(S7 a) + E3h+1~]P)h("S7a)Vf;k+l(Sh+1)

For the sake of presentation clarity, we further define several notations as follows:

(PrVit)(sn'sah') = B lspap) Vata (Shi1)- (11
Oh' (sh'>ap') = ry" + (PaVia)(sy's ap') — Qp' (s, ap’). (12)
Ch' = Vi (si') = Vi (s7) + QR (s, a') — @R (sh', ap’).- (13)
en = (PhVﬁl)(SZ”,GZ”) - (Pthﬁﬁ)(STa ap’) + Vhril(szlﬂ) - Vhﬂf1(52n+1)~ (14)

Specifically, 57" (s}, a}l”) represents the temporal-difference error for the state-action pair (s}, a}*).

The notations (h and €} capture two sources of randomness, i.e., the selection of action aj’ ~
Tm(+|s}") and the generation of the next state s}",  ~ P4 (-[s}", aj") from the environment.

Proof. theorem[d.2]

Based on lemma [D.I] lemma [D.2] and lemma [D.3] we can prove theorem 2] Specifically,
lemma [D.T] decomposes the cumulative regret into three terms, where the third term is no greater
than zero, then the remaining two terms are bounded by lemma[D.2]and lemma|[D.3]

O

D LEMMAS

Lemma D.1. Adapted from Lemma 5.1 of [40]: the regret in can be decomposed as
Fquation 15| where (-, ) means the inner product of two vectors.

I
NE
NE
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=
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>
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Z o (07 (snyan)|s1 = 8] — S (si, ap)] + G+ (16)
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Proof. In the third equation is adapted from Lemma 5.1 of [40]. According to the
definition of 7,,, there is[17}

(@R (sn,7), mh (lsn) = T (+[sn)) < 0 (17)
O

Lemma D.2. Adapted from Lemma 5.3 of [40]: with probability at least 1 — o1, the second term in
can be bounded as follows:

u 2
Z M 4 em) < ,/16MH3log— (18)
01

1h=1

Lemma D.3. With probability at least 1 — o5, the first term in[Equation 13| can be bounded as:

NE

3
I

Mm

I

= 165" (sny an)|s1 = sT'] — 63" (sp", ap’)] (19)
m=1 h:l
2 M
<H\/2MH log — + CoaH/Md -log(1 + —)
09 Ad
Cy H MA) g — Gl g
+ 1
L6

Proof. According to [40], there is:

M H M H
ZZ o [0 (S, an)|s1 = sT'] — op (s, ap') SZZ —op(spt, ant) (20)

m=1h=1

Considering 6} (s}, a}*), it can be decomposed as:

Oy (sn'sap’) =ry" + (BrViti) (s ai’) — QR (s7's ap’) @2
=i+ PaVit) (s ap') — Qp(sy's ap') + Qi (s, af') — QF' (sy', a')
=Pr(Vilts = Vi) (81 a’) + (Qf — Qi) (i, a”)
=PVt = Vi) (s ai”) — (Vi = Vi) (s

m
W

+ i = Vi) (s70) + (@) — @) (875 ap’)

Phipt en

By Azuma-Hoeffding inequality, we can bound an\le Zthl wy' as [Equation 22| with probability

atleast 1 — o3.
—HUQMHlog—2 <ZZM <H,/2MHlog—2 (22)
h g3

m=1h=1
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As py, | can be decomposed as[Equation 23|where u}, | ~ 75 | (+|s}". ), there is|Equation 24

Phiy1 = (Vs — V}:+1)(521+1) = Q?+1(8T+1,a2”+1> - Q2+1(S;Ln+l7uzl+1) (23)
M H
=3 D (P + @) (24)
m=1h=1
H-1 M H
= Q1 (Sh41 ant1) — Qg (Spi1s up'r) + Z (@, — Qi) (sh' ap')
1 m=1h=1

iM= 1M
M= IM= T

Qn (s’ ap') = Qulsi's ui') + (@1 — @) (81", a1")

IN

QZ(SZL7 azﬁb) - QZ(S;:L? uzn) +2H

3
Il
>
I

2

X

Specifically, the second equation is because of Q3,1 (s7;, 1, a% 1) = 0and QF , , (sF 1, af 1) =
0, while the last inequality is because of |Qf| < H and |Q}*| < H under the assumption that
|r(-,-)] < 1 without loss of generality. Consequently, to complete the proof of lemma it
suffices to establish a bound for x. Bounds of y under UCB-based and Thompson Sampling-based
exploration strategies are proved in [Section D.I|and |[Section D.2} respectively. Choosing o9 =
max {03, 04} and Co = max {Cs, C'} completes this proof. O

D.1 UCB-BASED EXPLORATION

In this subsection, we introduce the standard assumptions in the literature of deep representation and
shallow exploration as assumption [D.4] assumption [D.3] and assumption [D.6] which are adapted
from those of [39].

Assumption D.4. ||[(s;a)||, = 1 forVs € S,Va € A; and the entries of (s; a) satisfy:

(s;a); = (s;a)j+% (25)

Assumption D.5. ForVsy, sy € S andVai,as € A, there is a constant l1;;, > 0, such that:

[Vw(s1,a1|Wo) — Vw d(s2, a2l Wo)lly < liip [(s1501) — (s2502) |, (26)
Assumption D.6. The neural tangent kernel H of the action-value network is positive definite.

Lemma D.7. Adapted from Theorem 4.4 of [I39]: suppose the standard initializations and assump-
tions hold. Additionally, assume without loss of generality that ||0*||, < 1, ||(sp,an)|ly < 1, and
lo(sh,an)lly < 1. If with the UCB-based exploration, then for any o4 € (0, 1), let:

-logA
apt = \/Q(d -log(1 + — ) —logay) + VA (27)
MA
n<Ci(t-d®MZ LS log —=) 1, (28)
04
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and 1 = poly(L,d, - oo+ log = MS ) where poly(-) means a polynomial function depending on the in-

corporated variables, then wzth probability at least 1 — oy, it holds that:

MA ~
M. Cs: o) lg = qll g
% gCQaH\/Md log(l+ —)+ ; - (29)
)\d L6
where « is an union bound of {ozl, .. } C4,Cy, Cs are constants independent of the problem;

q=(q1;9; @5 ;g5 ) and § = (Ql(slval) Qi(s5,a3); s QY (1, al"); . Qi (s ajf )
are the target and the estimated value vectors, respectively.

Notably, the proof of the above lemma uses the concentratlon of self-normalized stochastic process.
However, since Q7" is not independent of Q}, Q7 .. Qm* it cannot be directly applied. Alter-
natively, we can adopt a similar approach to that in [40]. For simplicity of presentation, we do not
explicitly handle this issue in the proof above, but it is important to keep in mind.

D.2 THOMPSON SAMPLING-BASED EXPLORATION

Lemma D.8. Under the same settings with those of lemma[D.7] if with the Thompson Sampling-
based exploration, [Equation 30 holds, where C' = Cy + Cy and C'y is another problem-independent
constant.

T s L3d2M\/log L4 YAy )g— Gy
x <CaH\/Md log(1+ —)+ (30)

Ad L

ol

Proof. According to Lemma A.1 of [39], @} (s,u) — Qj (s, a) can be decomposed as [Equation 31]
where g(s,a; W) = Vwo(s,a; W).
Qn(s,u) — Qp(s,a) (€3]
—(0)T [0, W) — 05, s W) ] + (O1)T g, W) — (s, 0 W] (W7 — W)
=(0;)" [9(s,ui; W) — g(s,a; Wy,)] (Wy; — W)

+(67) " [p(s,u; W) — (s, a; W) — (607 — 65:) T [(s,us W) — (s, a; W]
g

According to the Thompson Sampling-based exploration in[Algorithm 3] there is[Equation 32|

(07 + air MG )T b (s, u; W) < (07 + it AG) T (s, a; W) 32)

Consequently, 97" can be bounded as|Equation 33
U <A ape lo(s, a3 W) — (s, s W) || agey 1 (33)

1 ,
SVt 2108 1) 166,05 W7) — 66,0 W) g

Specifically, the last inequality above is because A@" ~ N (0, (A7*)~!). Substituting the bound of
J7" back into further yields:

19



Under review as a conference paper at ICLR 2025

QTL(Sv u) - QZ(& a) (34)
<(0,)" [9(s,u; Wy) — g(s,a; Wy)] (W — Wi

1
(VA 2108 1 oo, W) — 006, W gy

— (67 — 63)7 [0(s,u; Wi™) — (s, a; W]

Comparing[Equation 34 with A.7 of [39], the difference between the regrets of Thompson Sampling-
based and UCB-based exploration strategies is bounded as with probability at least
l1—0 4.

‘RegretThompson Sampling RegretUCB ‘ < (35)

M H
1 m m
<Y (Vd+y[2log S 605, as W) = (s, ws Wi} ap

m=1h=1

M H

M H
+ 3 a0, a Wil apy— + D D ai I6(s, ws W)l ap -
m=1h=1

m=1h=1

<H\/Mdlog<1 + ﬁfix\/dlog(l 3 M8 L 1og 4 V)
g

M
SC4CYH\/Md . log(l + m)

Specifically, the second inequality above is based on the concentration of self-normalized stochas-
tic processes. Similarly to the proof of UCB-based exploration, since Q7" is not independent of

Q. Q3 ..., 21*1, it cannot be directly applied. However, we can alternatively adopt a similar
approach to that in [40]], which we do not discuss more here. [
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E EXPERIMENT

E.1 EXPERIMENT ON MINITHACK
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Figure 6: Additional experiment results on MiniHack.

The hyperparameters for IMPALA, E3B, and Litee+ used in our experiments are summarized in
[Table 2| and [Table 3| matching those used in the experiments of E3B [[14]. Additionally, similar to
the experiments conducted in E3B, we consider the same sixteen tasks from MiniHack; however,
we present results for only a subset of these tasks. This is because E3B achieves near-perfect perfor-
mance—close to the upper bound of 1 on some tasks, while others prove too difficult to complete,
even for humans.

In|Figure 6(a)| and [Figure 6(b), we present additional results for Litee+ with Thompson Sampling-
based exploration across two more tasks. The findings are consistent with those discussed in the
main text. Furthermore, in [Figure 6(c), we provide a comparison between E3B and Litee. As
demonstrated, even when utilizing only Litee instead of Litee+, the performance is comparable to
that of E3B, without requiring any additional parameter learning. However, it is important to note
that Litee is capable of solving only certain tasks in MiniHack, and not all tasks can be successfully
addressed by this approach.
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Table 2: IMPALA Hyperparameters for MiniHack [14].

Learning rate 0.0001
RMSProp smoothing constant | 0.99
RMSProp momentum 0
RMSProp 10~°
Unroll Length 80
Number of buffers 80
Number of learner threads 4
Number of actor threads 256
Max gradient norm 40
Entropy Cost 0.0005
Baseline Cost 0.5
Discounting Factor 0.99

Table 3: E3B and Litee+ Hyperparameters for MiniHack.

Running intrinsic reward normalization | true
E3B and Liteet Ridge regularizer 0.1
Entropy Cost 0.005
Exploration coefficient 1
Litee+ Dimension of U 256

E.2 EXPERIMENT ON MUJOCO

Hyperparameters of various algorithms for the experiments on MuJoCo are completely the same
with those in the public codebase CleanRL. Litee introduces only two more hyperparameters, i.e.,
the exploration coefficient o and the ridge which is set as A = 1. For various tasks, the exploration
coefficients are summarized in Additional experimental results on various MuJoCo tasks
involving different RL algorithms can be found in

Table 4: Exploration coefficient for various MuJoCo tasks.
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Figure 7: Additional experiment results on MuJoCo.
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