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Abstract

Transformer-based language model ap-
proaches to automated story generation
currently provide state-of-the-art results.
However, they still suffer from plot incoher-
ence when generating narratives over time,
and critically lack basic commonsense reason-
ing. Furthermore, existing methods generally
focus only on single-character stories, or fail
to track characters at all. To improve the co-
herence of generated narratives and to expand
the scope of character-centric narrative gener-
ation, we introduce Commonsense-inference
Augmented neural StoryTelling (CAST), a
framework for introducing commonsense
reasoning into the generation process while
modeling the interaction between multiple
characters. We find that our CAST method
produces significantly more coherent and
on-topic two-character stories, outperforming
baselines in dimensions including plot plausi-
bility and staying on topic. We also show how
the CAST method can be used to further train
language models that generate more coherent
stories and reduce computation cost.

1 Introduction

Al storytelling is a crucial component of computa-
tional creativity. Humans use storytelling to enter-
tain, share experiences, educate, and to facilitate
social bonding. For an intelligent system to be un-
able to generate a story limits its ability to interact
with humans in naturalistic ways. Automated Story
Generation, in particular, has been a grand chal-
lenge in artificial intelligence, requiring a system
to construct a sequence of sentences that can be
read and understood as a story.

A common approach to story generation is to use
neural language models (Roemmele, 2016; Khalifa
et al., 2017; Clark et al., 2018; Martin et al., 2018).
These techniques have improved with the adoption
of Transformer-based models, such as GPT-2 (Rad-
ford et al., 2019). While GPT-2 and similar neural
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Figure 1: Overview of the CAST system. 1. A text
prompt starts the story generation process. 2. The sys-
tem infers facts about the characters’ intents. 3. A lan-
guage model generates candidate continuations. 4. In-
ferences about the candidates are matched against the
previous inferences and the best candidate is added to
the story.
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language models are considered highly fluent from
a grammatical standpoint, they are prone to gener-
ating repetitive or generic continuations (Holtzman
etal., 2019). Furthermore, as the length of the story
grows, these models can lose coherence. One rea-
son for these phenomena is that language models
generate continuations by sampling from a learned
distribution Py(tok,,|tok<, ). Human readers, how-
ever, do not perceive the coherence of a narrative
as a function of the likelihood of seeing particular
words based on the occurrence of previous words.

Previous attempts to enhance the coherence
of generated stories use conditioning on content-
relevant features such as plot outlines (Fan et al.,
2018; Peng et al., 2018; Rashkin et al., 2020), or
character emotional arcs (Brahman and Chaturvedi,
2020). These achieve coherence through adher-
ence to a manually given high-level plan. The high
level plan can be generated (Yao et al., 2019; Am-



manabrolu et al., 2020), which only elevates the
challenges of maintaining coherence to a higher
level of abstraction. Neural language models
can also be fine-tuned on extraneous signals such
as commonsense knowledge or progression re-
wards (Guan et al., 2020; Tambwekar et al., 2019),
which improves the distribution but still relies
solely on sampling.

The latent state of neural language models used
to generate subsequent story continuations are un-
likely to relate to a human reader’s mental model of
the state of a story world. Studies of human reader
comprehension (Trabasso and Van Den Broek,
1985; Graesser et al., 1991, 1994) show that read-
ers comprehend stories by tracking the relations
between events. Reader comprehension relies on
the tracking of at least four types of relations be-
tween events: (1) causal consequence, (2) goal
hierarchies, (3) goal initiation, and (4) character in-
tentions. The perceived coherence of a story is thus
a function of the reader being able to comprehend
how events correlate to each other causally or how
they follow characters’ pursuits of implicit goals.
We hypothesize that a story generation system that
makes decisions on how to continue a story based
on tracking and reasoning about character inten-
tions and action consequences will generate more
coherent stories.

However, stories don’t always explicitly declare
the goals and motivations of characters; sentences
describing character actions are not explicitly an-
notated with the characters’ motivations and goals.
Readers must infer the characters’ goals and the
relationship between their actions and those goals.
The ability to use basic knowledge about goals and
about what is happening in the world falls within
the study of commonsense inference. ATOMIC
(Sap et al., 2019) is a commonsense knowledge
base that contains logical relationships concern-
ing mental states, attributes, and events. COMET
(Bosselut et al., 2019) is a transformer-based gen-
erative model trained on triples from ATOMIC and
infers relations about sentences broadly divided
into four categories: (1) Causes of a person’s ac-
tions (preconditions of the event), (2) Attributes of
a person, (3) Effects of actions on a person (post-
conditions of the event), and (4) Effects of actions
on others (postconditions of the event). We pro-
pose to infer character intentions and effects of
actions using COMET to inform the generation of
subsequent sentences by a neural language model.

To address the challenge of maintaining coher-
ence in language-model-based story generation,
we propose a novel two-character story genera-
tion method, Commonsense inference Augmented
neural StoryTelling (CAST), that infers the causal
relations between events as well as the intents and
motivations of characters in the story context so
far in order to generate story continuations that are
more coherent to readers. CAST uses these inferred
causal relations and character intentions to make
more informed choices about potential story con-
tinuations generated by a neural language model
(GPT-2). We hypothesize that stricter, more explicit
constraints during generation should result in more
coherent narratives than generating via sampling
from a distribution alone, even if the distribution is
fine-tuned.

To evaluate the efficacy of our proposed method,
we conduct a series of human-participant experi-
ments specifically measuring perceptions of logical
coherence of CAST against a number of fine-tuned
variants of GPT-2. Results indicate that the CAST
method significantly increases the perception of
generated stories over baselines.

2 Related Work

Neural networks—recurrent and transformer-
based—have been used to produce stories (Roem-
mele, 2016; Khalifa et al., 2017; Martin et al., 2018;
Clark et al., 2018). In these systems a neural lan-
guage model learns to approximate the distribution
Py(toky|tok<y). Stories are generated by provid-
ing a context sequence and sampling from the dis-
tribution. When the language model is trained on a
corpus of stories, the generated text tends to also
be a story. Sometimes generation is done hierarchi-
cally (Yao et al., 2019; Ammanabrolu et al., 2020).
However, coherence is not guaranteed; statistical
sampling from a distribution is not constrained to
making logical transitions because the rich rela-
tionships that readers make to perceive coherence
are not modeled. Other artifacts of the sampling
process include new characters being arbitrarily in-
troduced at any time, characters being forgotten,
and repetitions.

To control the generation, sometimes a high-
level plot outline is given and a language model is
conditioned or otherwise guided by the high-level
plot outline (Fan et al., 2018; Peng et al., 2018;
Rashkin et al., 2020; Brahman and Chaturvedi,
2020). These high-level guidance specifications



turn the story generation problem into a supervised
learning problem. We do not consider these ap-
proaches further in this paper because we do not
assume the existence of any guidance specification.

The story generation system by Guan et
al. (2020) first fine-tunes GPT-2 on the ATOMIC
dataset and then fine-tunes a second time on the
ROCStories corpus (Mostafazadeh et al., 2016) to
induce GPT-2 to generate short stories. The au-
thors use multi-task learning during the second
fine-tuning stage with an auxiliary objective to dis-
tinguish true and engineered false stories. Even
with such specialized learning, the resulting model
still fails to avoid logical errors, repeats pieces of
narratives, and introduces unrelated entities. This
demonstrates the need for a stronger inductive bias
on how commonsense knowledge is used in story
generation. Brahman and Chaturvedi (2020) gen-
erate stories that follow a given emotional arc for
a protagonist, using COMET to infer the protago-
nist’s emotions. The C2PO system (Ammanabrolu
et al., 2021) uses COMET to generate successor
and predecessor events instead of a language model,
performing a bi-directional search from a given
start event and a given end event. However, C2PO
generates plots made up of highly constrained, tem-
plated text.

3 The CAST Method

The conventional set up for neural k-sentence story
generation is: given the first sentence s; of a story—
a prompt—generate the subsequent £ — 1 sen-
tences, sg, S3, ..., Sg. The Commonsense inference
Augmented neural StoryTelling (CAST) method is
as follows. To generate sentence s; with 2 < i < k:

1. We condition a fine-tuned language model
on the story up to the current sentence
[s1,...,8;—1] followed by a token signifying
the subject of sentence .

2. We sample a sentence candidate ¢ from the
language model and obtain a set of common-
sense inferences.

3. We match commonsense inference sets be-
tween s;—1 and c using a matching criteria
grounded in theory, and produce a score for c.

4. If the score is above a user-specified thresh-
old, c is selected to be s; and is appended
to the generation history. Otherwise, steps 2

through 4 are repeated until a viable candidate
is found.

5. Repeat steps 1 through 4 until k£ — 1 sentences
have been generated.

An overview of the pipeline is given in Figure 2.
The system is simple but effective—CAST reasons
about whether there are sufficient relations between
the candidate sentence and the previous sentence
to support reader comprehension. Unlike models
trained or fine-tuned on commonsense knowledge,
the filtering technique provides a hard constraint
that is likely to persist throughout a generated story
of arbitrary length without degeneration, and it is
not limited in application to the maximum story
length seen during training.

3.1 Language Model

We fine-tune GPT-2 on a pre-processed version of
the ROCStories corpus (Mostafazadeh et al., 2016)
to encourage story generation. Following Guan
et al. (2020), we pre-process the corpus to remove
character names, replacing them with [MALE] or
[FEMALE]. During pre-processing, we annotate
characters with * [T']* where T is a character tag
when that character appears in the next sentence in
the training corpus. This corpus treatment prompts
the language model to learn the pattern of how char-
acters take turns and to prompt itself on the learned
pattern of character turn-taking during generation.
However, in order to compare our system against
that of Guan et al., we must enforce the telling of
a two-character narrative in an interleaving fash-
ion where characters take turns being the subject.
While this is a simplifying adjustment, it allows for
a fair comparison with the baseline. Appendix A.3
details specifically how this is accomplished.

3.2 Commonsense Inferences

To produce commonsense inferences for each sen-
tence, we use the COMET model (Bosselut et al.,
2019) to infer a set of ATOMIC (Sap et al., 2019)
relations for each generated sentence. COMET
generates commonsense inferences for a single sen-
tence, referring to PersonX as the sentence’s sub-
ject, and Others as other characters in the story.
Due to our two-character closed-world assumption,
we assume Others to refer to the second character.

We identify six of ATOMIC’s nine relation
types that are useful for creating coherent relations
between story events: xIntent, xNeed, xAttr,
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Figure 2: The overall procedure of generating two-character narratives with the CAST pipeline.

Type |Description

xIntent|The reason why PersonX would cause the event .....
xNeed |What PersonX might need to do before the event .,

xAttr |How PersonX might be described given the event ¢ :

oReact |The reaction of Others to the event ..................:

oEffect|The effect the event has on Others.....................}

oWant |What Others may want to do after the event ..........

Table 1: Definitions of the six types of ATOMIC re-
lations that CAST uses. The top set describes precon-
ditions of the current sentence and the bottom set de-
scribes postconditions of the previous sentence. Dotted
lines show how we match postconditions to precondi-
tions during the filtering phase.

oReact, oEffect, and oWant. Table 1 provides
the definitions. We treat the first three relation
types as preconditions of an event because they
infer facts that might need to be true for an event to
be enacted, such as a character having an intention,
a goal, or a property. We categorize the final three
as postconditions of an event because they infer
things that might change once an event is enacted,
such as a character reaction, an effect of the action,
or a character forming a new intention.

Once we have inferred relations for the previous
sentence s;_1 and current candidate ¢, we look for
specific patterns between the sets of relations:

¢ The event in s;_1 affects the wants of a char-
acter, which manifests as an intention of the
primary character in ¢ (oWant—xIntent).

¢ An effect of the event in s;_; manifests itself
as something the primary character needs in ¢
(oEffect—xNeed).

* A reaction to the event in s;_; is expected
and matches some property of the primary
character in ¢ (OReact—xAttr).

In this way, we create hard constraints via a form
of chaining that allows us to filter a set of po-
tential sentence generations to find one that ad-
equately matches the expected inferences. The

oWant—xIntent pattern corresponds to how read-
ers track how characters form and carry out

: intentions in reader comprehension models (cf.

: ;(Graesser et al., 1991)). The oEffect—xNeed

- and oReact—xAttr correspond to how readers
: track causal consequences in reader comprehen-

sion models (cf. (Trabasso and Van Den Broek,
1985)).

To filter out “unqualified" sentence candidates
generated by the language model, we match the
inference types described in Table 1 and their ar-
guments. For example, suppose sentence s;_1 is
“[MALE] gives [FEMALE] a burger”. Its oEffect
is “have a burger”. If sentence s; is “[FEMALE]
eats the burger”, it will have an xNeed that is also
“have a burger”, which represents the prerequisite
of “having a burger” in order to “eat a burger”.

In practice, we find that simple string match-
ing does not adequately capture when two inferred
relations’ arguments have slightly different phras-
ing (e.g., “to sleep” versus “sleeping”). We define
a match as the semantic similarity between two
inferences exceeding a certain threshold. We en-
code each relation argument into a fixed-length
vector representation, and then compute the cosine
similarity. We use Sentence-BERT (Reimers and
Gurevych, 2019) for encoding, as it is designed
for semantic similarity tasks and performs better
than the traditional BERT on sentence similarity
benchmarks.

We use 80% semantic similarity as our lower-
bound. Empirically, we find this value best consid-
ers the inferences listed above as matches, but ex-
cludes less-related inferences. Table 2 (top) shows
how the threshold affects success rate—the per-
centage of queries that find a match within 100
generated candidates—and the diversity of results
as measured by self-BLEU score (described in §4).
Each system was conditioned on the same 30 2-
character prompts from ROCStories with 5 differ-
ent random seeds, requiring two of three inference
type pairs to match to qualify as a match. Failure to



Semantic | # of Sentence | Success | Self | Self

Similarity | Candidates Rate B-2 | B-3
0.8 19.10 89.67% | .1426 | .0552
0.85 26.54 82.33% | .1551 | .0634
0.9 26.86 70.85% | .1709 | .0796
0.95 34.00 63.50% | .1889 | .1104

# of # of Sentence | Success | Self | Self

Matching | Candidates Rate B-2 | B-3
1 2.32 100.00% | .1227 | .0548
2 19.10 89.67% | .1426 | .0552
3 104.63 29.54% | .1447 | .0569

Table 2: Ablation study result for semantic similarity
and required matching inference type pairs. # of sen-
tence candidates denotes the average number of sen-
tences candidates generated before finding a matching
inference type pair. Success rate is the percentage
of finding a match within the 100-candidate limit. A
higher Self-BLEU score (B-n) implies less diversity of
the document (Zhu et al., 2018) (see §4).

find a match within the candidates limit (100) will
relax the matching constraints to one pair. Hence,
the average number of sentences candidates might
be over the candidate limit. As observed in Table 2
(top), increasing the semantic similarity threshold
decreases the success rate in obtaining a matching
candidate within the sentence limit, and it results
in more repetitive sentences (see examples in Ta-
ble 3).

In order to balance computation time and quality
of the match, we only require two of three infer-
ence type pairs to match between a seed and a
candidate sentence. When requiring three matches,
CAST only finds a “qualified” sentence 29% of
the time within 100 attempts (see Table 2 (bottom),
computed at 0.8 semantic similarity). In practice
(see examples in Table 3), we find requiring two
pairs results in higher quality sentences than if we
only require one out of three pairs to match, but is
significantly more efficient than three out of three.

3.3 Fine-tuning on Commonense Inferences

CAST generates candidate sentences until one
passes the inference matching process. Each candi-
date considered requires a set of commonsense in-
ferences and semantic matching—computationally
expensive processes. We ask whether it is possible
to train a generative language model to emulate the
heuristic CAST process, thereby producing coher-
ent stories faster, with less computational overhead,
and with less rigid constraints on its language pro-
duction. In this section we fine-tune GPT-2 using a

Seed Prompt:
Bob wanted to ask Alice out on a date.

Semantic Similarity = 0.8; # of matching = 2:
Alice doesn’t have a date to go on.

Bob decided to ask her out.

Alice is getting accepted for his date.

Bob feels so happy and finally enjoyed his date.

Semantic Similarity = 0.95; # of matching = 2:
Alice was nervous but agreed to the date.

Bob prepared to go on the date.

Alice enjoyed the date.

Bob was happy the date went out of style.

Semantic Similarity = 0.8; # of matching = 1:
Alice went out with me.

Bob ordered some cookies.

Alice liked the cookies.

Bob is glad she went out with me.

Semantic Similarity = 0.8; # of matching = 3:
Alice was scared to ask her out.

Bob was nervous she would ask her out.

Alice felt comfortable asking her out.

Bob plans on getting on a date with her.

Table 3: Story examples generated by CAST with dif-
ferent semantic similarity thresholds and numbers of
required matching inference type pairs. The story gen-
erated at 80% and 95% similarity (the first and the sec-
ond story) both follow a single topic (bolded), but the
first story maintains more diversity (underlined). Sto-
ries required to match one inference type pair mostly
only match oReact—xAttr ("happy" emotion in the
third example). Stories required to match three infer-
ence type pairs cannot find matches within candidate
limit.

policy gradient reinforcement learning technique
inspired by Peng et al. (2020), but using CAST to
generate an exemplar dataset.

As CAST generates sentences, it stores sentence
pairs along with a label: O for no relation matches
and 1 for two or more matches. Some examples are
given in Table 4. After generating a full story of &k
sentences, GPT-2 is fine-tuned on the labeled sen-
tence pairs using the reinforcement learning tech-
nique. To punish the generation of “unqualified"
sentences, we use the following loss function:

lossry(s) = losss(s) if label =1
PP losss(s) x p if label =0
(D

where [0sss(s) is the cross-entropy loss given by
Radford et al. (2018) and p is a constant (p > 1)
controlling the strength of punishment—sentences
without matches incur more loss. The first sentence
of the pair is masked so that loss is only calculated
on the logits that produce the successor sentence.



Sentence Pair Inferences

[MALE] had a big crush on [FEMALE].

[FEMALE] was constantly yelling at him. None

[MALE] had a big crush on [FEMALE]. oReact—xAttr
[FEMALE] wanted to go to prom with him. oWant—xIntent
[MALE] took [FEMALE] fishing in the summer. None

[FEMALE] got very sick.

[MALE] took [FEMALE] fishing in the summer.
[FEMALE] was loving it.

OReact—xAttr
oWant—xIntent

Table 4: Examples of generated labeled sentence pairs.
Sentence pairs with no matching inferences are labeled
with 0, while those with two or more matching infer-
ence pairs are labeled with 1.

4 Experiments

We conducted two experiments to evaluate the
CAST technique. The first experiment compares
CAST to two unconstrained neural language model
story generators: GPT-2 and the work by Guan
et al. (2020) (§3.2). The second experiment as-
sesses whether CAST can be used to fine-tune a
neural language model (§3.3). Story examples can
be found in Table 5 and Appendix B.

Metrics. We evaluate performance using hu-
man participant evaluation and automated metrics.
Purdy et al. (2018) proposed a set of questions for
evaluating story generation systems that includes
dimensions such a logical coherence, loyalty to
plot, and enjoyability. A variation of these ques-
tions have been used in evaluations of other story
generation systems (cf. (Tambwekar et al., 2019;
Ammanabrolu et al., 2020, 2021)). We modify a
subset of these questions to simplify the language
and focus more on participants’ overall impressions
of the narrative coherence:

* The story FOLLOWS A SINGLE TOPIC

* The story AVOIDS REPETITION

* The story uses INTERESTING LANGUAGE

* The story makes better LOGICAL SENSE
We conduct our studies on a crowdworking plat-
form. Only those who pass a screening question
are qualified for the study. Participants must also
explain their preferences with more than 50 char-
acters of writing. This helps filter out low-quality
responses and ensures the validity of the study.

Because diversity of generated stories is impor-
tant, we also measure Self-BLEU scores (Zhu et al.,
2018). For each generated story, we take one sen-
tence as the hypothesis and the others as references
and calculate the BLEU score, repeating for every
sentence in the story. We define the self-BLEU

Seed Prompt:
Bob invited Alice to hang out.

CAST:

Alice planned a nice dinner for Bob.

Bob and Alice spent all evening cooking dinner together.
Alice was happy to see her dinner cooked.

Bob was impressed with how delicious her dinner was.

GPT-ROC:

Alice thought Bob was funny.

Bob got mad and threatened Alice with punches.
Alice ended up running away from Bob.

Bob was awarded the fun they had together.

CAST-RL:

Alice invited Bob to hang out.

Bob agreed, and was happy to meet her.
Alice was very happy and liked Bob.
Bob and Alice still hang out after that.

Guan et al. (2020)

Alice thought she would like it.

Bob only wanted to show her the interest of a nerdy rlist.
Alice seemed to like Bob asked Bob because she likes him.

Bob ended up meeting Alice after school.

Table 5: Story examples generated by CAST, CAST-
RL, GPT-ROC and Guan et al. (2020). The story
generated by CAST follows a single topic (bolded) —
cooking dinner, and shows a good plot coherence. The
story generated by GPT-ROC fails to maintain plot co-
herence (underlined) during generation. CAST-RL gen-
erates relatively more repetitive/boring but logically co-
herent narrative (in italic). Guan et al. (2020) also suf-
fers in plot coherence. More examples are given in Ap-
pendix B.

score of the model to be the averaged BLEU score
of its generated stories. A higher self-BLEU score
implies less diversity of the stories. We report 2-
and 3-gram self-BLEU scores (B-2 and B-3).

Baselines. We evaluate CAST against two base-
lines. The first is GPT-2-small fine-tuned on ROC-
Stories (GPT-ROC), following prior work (Guan
et al., 2020). The second baseline is the system
by Guan et al. (2020), which fine-tunes GPT-2-
small on ATOMIC and ROCStories using a multi-
objective training procedure.

4.1 Experiment 1: CAST

We assess whether the CAST constraint method
improves story coherence over the GPT-ROC and
Guan et al. (2020) baselines. We recruited 116 par-
ticipants on a crowdsourcing platform. Each par-
ticipant read a randomly selected subset of 6 story
pairs, comprised of one story from CAST and one
from one of the baselines, GPT-ROC or Guan et al..
For each of the four questions listed above, partic-
ipants answered which story best met the criteria.



Models Story| Logical Sense Single Topic Avoid Repetition [Interesting Language[Num
lengthWin %Lose %Tie %[Win %Lose %Tie %Win %Lose %Tie %Win %Lose %Tie % |resp.

5 83.7%*17.0 29.3 [52.4**14.3 333 |185 253 56.2 30.6 23.8 45.6 147

CAST vs GPT-ROC ‘ 10 ‘63.3**19.3 174 ‘55.0**14.7 30.3 ‘33.9 486 175 ‘34.9 349 302 ‘109
CAST vs Guan et al 5 |64.8**19.4 15.8 62.5%*%18.5 19.0 [26.9 319 412 P74 344 382 |216
Ve ’ 10 [73.9%%11.3 14.8 86.7**7.6 5.7 7.6 50.5%*21.9 29.5 48.6* 21.9 115
GPT-ROC-RL vs GPT-ROC| 5 [68.1*%21.3 10.6 [63.8%%20.2 16.0 [33.0 394 27.6 415 298 287 |94
CAST-RL vs GPT-ROC-RL| 5 [2.7 427 146 P11 256 433 [26.7 356 37.7 P44 256 500 |89
CAST-RL vs CAST | M52 38.1 167 P6.5 31.0 325 [27.2 392 33.6 232 40.8* 360 |126

Table 6: Human-participant evaluation results for experiments 2 and 3, showing the percentage of participants who
preferred the first system, second system, or thought the systems were equal. Each system is conditioned on the
same 30 test-set prompts. * indicates results are significant at p < 0.05 confidence level; ** at p < 0.01 using a

Wilcoxan sign test on win-lose pairs.

Models | Length | B2 | B3
0749 | 0251

GPT-ROC ‘ ‘ 1686 ‘ 0617
1103 | 0279

CAST ‘ ‘ 2017 ‘ 0883
0682 | 0079

Guan et al. ‘ ‘ 1773 ‘ 10520
GPTROCRL | 5 | 2604 | .1329
CASTRL | 5 | .1912 | .0949

Table 7: Self-BLEU n-gram (B-n) scores on 30 test-
set prompts. Lower score indicates more diversity of
generated stories.

Participants read either 5-sentence or 10-sentence
stories. The 10-sentence stories allow us to look at
the effect of story length on coherence for CAST
and the baseline GPT-ROC. To generate the sto-
ries, we again randomly selected 30 2-character
prompts from the ROCStories corpus to seed the
systems. We also calculated self-BLEU scores on
these stories (Table 7).

The results are shown in Table 6 (top). The re-
sults indicate that our model performs significantly
better than the GPT-ROC baseline on the “Logical
Sense” and “Single Topic” dimensions. We con-
clude that CAST improves the coherence of gener-
ated narratives and stays more on topic, while re-
taining comparably interesting language and avoid-
ance of repetition (neither of which are statistically
significantly different from the baseline). When
we increase the lengths of stories to 10 sentences
from 5, a greater proportion of participants prefer
CAST to the baseline in the dimensions of “Logi-
cal Sense” and “Single Topic” (~ 10% increase).
This shows that stories generated by CAST retain

Model | Train Set || Test Set
CAST 20.43 £ 3.40* 28.31 £ 3.39*
CAST-RL | 8.72 4+ 1.95* 11.06 £+ 1.81*

Table 8: The average number of sentence candidates
generated before finding a match. A confidence level
of 95% over 5 random-seed runs for each model is pre-
sented. Each system was conditioned on the same 30
(training) and 10 (test) 2-character prompts from ROC-
Stories. * indicates the difference between CAST and
CAST-RL is statistically significant at p < 0.01 using
the Mann-Whitney U test.

coherence longer relative to the baseline language
model operating without constraints.

CAST also significantly outperforms Guan et al.
in the “Logical Sense” and “Single Topic” dimen-
sions. When increasing story length to 10 sen-
tences, the coherence of stories generated by the
Guan et al. system drops substantially compared
to our model. Our model is worse at avoiding
repetition and using interesting language, though
these differences are only statisically significant on
the 10-sentence stories. Table 7 also indicates the
language diversity of baselines is higher than our
model. We consider this a valuable trade-off for
logical coherence.

4.2 Experiment 2: Reinforcement-Based
Fine-Tuning

Having established that CAST improves coherence,
we ask whether reinforcement-based fine-tuning
(Section 3.3) can be used to teach a language model
to model the CAST filtering method directly. In do-
ing so we hope to (a) increase the robustness of the
neural language model and (b) reduce the overall
computation time by foregoing the inference and



semantic matching steps. We hypothesize that fine-
tuning on CAST labels can increase robustness by
generating continuations that will pass the filtering
process with higher likelihood. This in turn can
decrease the average number of generated sentence
candidates required to find a match.

After generating 30 5-sentence stories with
CAST using 40 different random seeds, we train
GPT-ROC with the 2 x 4 x 30 x 40 generated la-
beled sentence pairs as described in Section 3.3.!
This results in a new fine-tuned language model,
which we refer to as GPT-ROC-RL. 40 different
seeds for the language model are used to generate
sentence pairs in order to simulate fine-tuning on
very small datasets. Consistent with previous ex-
periments, we use GPT-ROC as our baseline. In
addition, we ask whether applying CAST filtering
on top of GPT-ROC-RL further improves story co-
herence. CAST-RL is GPT-ROC-RL (that is, fine
tuned on CAST labels) with CAST filtering applied
to the outputs.

To evaluate whether fine-tuning on CAST labels
improves story coherence, we recruited 59 partic-
ipants and replicated the protocol in Section 4.1,
except participants read pairs of stories from GPT-
ROC, GPT-ROC-RL, CAST, or CAST-RL.

Table 6 (bottom half) shows the percentage of
times stories from each system are preferred for
each metric. GPT-ROC-RL improves coherence
over GPT-ROC to approximately the same degree
as CAST does over GPT-ROC, indicating that RL
fine-tuning can be an alternative to constraint-based
filtering on short (5-sentence) stories. CAST-RL
does not significantly improve the logical sense of
stories over GPT-ROC-RL, indicating that the re-
inforcement learning process has generalized the
CAST inferential constraints into the language
model. GPT-ROC-RL performs better on avoiding
repetition and interesting language than CAST-RL
in human evaluation, however not at a statistically
significant level. Table 7 shows that GPT-ROC-
RL performs worse on diversity than CAST-RL
evaluated with the Self-BLEU metric.

Finally, CAST-RL improves the logical sense
and single topic a small amount over CAST, but
not at a statistically significant level. Despite being
trained on CAST labels, the filtering process can
still improve coherence. However, it does so at
the expense of repetition and interesting language,

'We generate 2 “matched” sentence pairs during each sen-

tence generation, one pair of each label. When £ = 5, 4
sentences are generated to form a 5-sentence story.

which is also shown in Table 7.

Importantly, Table 8 shows that fine-tuning on
CAST labels reduces the average number of can-
didates that need to be generated for a “match”
to 11 from 28. The RL fine-tuning procedure re-
duces CAST’s computation by 60.93%. Further
fine-tuning results in an overfit language model
but this model is sufficient to tie models explicitly
using constraints (e.g., CAST-RL) on the issue of
coherence. Tables 6 and 8 taken together show the
benefit of CAST-RL for efficiency at no cost to
desired model characteristics.

5 Conclusions

Neural language models generate content based on
the likelihood of tokens given a historical context.
Human readers, on the other hand, use complex
inferential processes to connect the relationships
between events. This mismatch between genera-
tive models and reader comprehension is one of the
reasons why stories generated by neural language
models lose coherence over time. We present a
new approach to neural story generation that at-
tempts to model the inferred event relations and
character intentions of human readers in order to
generate more coherent stories. The CAST method
provides hard constraints to neural language model
generation that results in greater story coherence,
which crucially does not degenerate as the story
gets longer. We further show that we can train
neural language models to emulate the logic of the
CAST constraints using reinforcement learning.
Our approach is relatively straightforward; the
CAST method can be applied to any neural lan-
guage model or be used to create a labeled fine-
tuning dataset. The approach presents a first at-
tempt at building text generation systems that rea-
son about their reader along multiple dimensions.
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A Implementation Details

A.1 Data

We use the preprocessed ROCStories corpus of
5-sentence stories (588,966 stories) and joint
ATOMIC and ConceptNet dataset converted to tem-
plate sentences (1,174,267 train/66,856 dev/73,083
test), both provided by Guan et al.> We shuffle
and split the ROCStories dataset into 80% (78,528)
train and 20% (19,633) test sets.

Following Guan et al. (2020), character names in
the ROCStories corpus are replaced with [MALE]
or [FEMALE] tags. This prevents skewed predic-
tions due to the presence of certain names in a
small dataset such as ROCStories and also allows
us to focus on 2-character stories without having
to perform NER on generated sentences to remove
extraneously generated names outside of the two
main characters. It also allows a direct comparison
to prior work. After a story is generated, we replace
the [MALE] and [FEMALE] tags with user-inputted
names, assuming the subject and object of the first
sentence are the subsequently-generated tags.

A.2 Models

Following Guan et al., we use the small version of
GPT-2 with 124M parameters as the base for all
fine-tuned models. When fine-tuning GPT-2 on ei-
ther ROCStories and the commonsense knowledge
resources (done separately), we train with a learn-
ing rate of 0.00005, and using the Adam optimizer
with gradient clipping at a max norm of 1. All
models were trained on single GeForce RTX 2080
GPUs in Pytorch using the Huggingface Transform-
ers library.> We replicate the multi-task baseline
of Guan et al. in Tensorflow using their provided
code.* We train with early stopping on the dev set
(80% train,10% dev,10% test split) loss with a pa-
tience of 10 epochs. Both models converge within
1-2 epochs. All other training details are kept the
same.

We use top-p sampling (Holtzman et al., 2019)
with a value of 0.9, a temperature of 1, and a max
length of 20 tokens per sentence to sample from all
models.

A.3 Character Conditioned Generation

We applied two methods to enforce the telling of a
two-character narrative in an interleaving fashion

Zhttps://cloud.tsinghua.edu.cn/d/670f7787b6554£308226/
3https://huggingface.co/transformers/
“https://github.com/thu-coai/CommonsenseStoryGen

10

wherein characters take turns being the subject of
each sentence. The first method is to directly con-
dition the language model on the concatenation of
the previous story context and the tag denoting the
character who is to take the next turn. For exam-
ple if the last sentence in the story is “[MALE] was
upset with [FEMALE].”, we append the tag of the
opposite character to the context, i.e., [FEMALE].
Since the next sentence now starts with the tag as-
sociated with the opposite character of the one who
acted in the previous sentence, the language model
will be biased toward describing an action for that
character.

The second method is to fine-tune the lan-
guage model by formulating the input as *Tx
[S1,...,8i—1], where T is the tag denoting the char-
acter who is to take a turn. For example, for the
story, “[MALE] was upset with [FEMALE]. Because
of this, [FEMALE] apologized.”, the prompt is for-
mulated as “* [FEMALE] * [MALE] was upset with
[FEMALE].” The language model is fine-tuned by
back-propagating the loss calculated on the sen-
tence “Because of this, [FEMALE] apologized.”

A4 CAST

When producing commonsense inferences from
COMET, we use “beam-5" setting to generate 5
inferences for each inference type, which results
in a higher percent of matched inferences in our
preliminary experiments. We also qualitatively ob-
serve that matching on a larger set of inferences
(as shown in the demo’) more often results in at
least one or a few high-quality inferences, due to
COMET having some error.

As mentioned in the body of the text, we use a
semantic similarity threshold of 80% and require 2
of 3 inferences to match. Runtime is feasible due
to matching on two out of three inference filters
and using the 5-beam COMET output. However, in
some rare cases, no matching next-sentence candi-
date can be found. If no qualified sentence is found
after 50 generated candidates, in order to avoid
potentially infinite search we loosen the filtering
strength to match only one pair of inferences.

AS

Preliminary Study Questions

The story FOLLOWS A SINGLE PLOT.
The story’s events OCCUR IN A PLAUSI-
BLE ORDER.

The story AVOIDS REPETITION.

Shttps://mosaickg.apps.allenai.org/comet_atomic


https://cloud.tsinghua.edu.cn/d/670f7787b6554f308226/
https://huggingface.co/transformers/
https://github.com/thu-coai/CommonsenseStoryGen
https://mosaickg.apps.allenai.org/comet_atomic

* The story IS ENJOYABLE.

A.6 RL Fine-Tuning

We generate 30 5-sentence stories with CAST, us-
ing 40 different seeds. 2 sentence pairs are gener-
ated when generating each following sentence and
each 5-sentence story is composed of 4 following
sentence. Hence, 2 x 4 x 30 x 40 sentence pairs are
generated to fine-tune GPT-ROC with reinforce-
ment learning technique for 1 iteration. We use
p = 0.001 in Section 3.3 to punish the "unmatch"
sentence pairs.

B Additional Story Outputs

Additional 5-sentence story examples are as fol-
lows,

Seed Prompt:
Bob and Alice went hiking together.

CAST:

Alice was excited because she planned a picnic.
Bob was excited because he was staying up late at
night.

Alice felt much better about her camping trip.
Bob spent the night playing in the woods.

GPT-ROC:

Alice was being very loud.

Bob told Alice they did not agree.

Alice ordered pizza to be delivered.

Bob showed up later and Alice was pleased.

CAST-RL:

Alice decided to take a group photo.

Bob shared the picture with Alice.

Alice came over and smiled at Bob.

Bob was so happy that he took the picture.

Guan et al. (2020):

Alice thought that the hike was cool.

Bob was pretty cool.

Alice reminded him of the great fall, especially in
the forest.

Bob was cute, but Alice was lost.

Seed Prompt:
Bob asked Alice to come over for dinner.

CAST:
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Alice wanted to go to a party.

Bob agreed to go with her.

Alice and Bob went to the concert.

Bob bought a bottle of wine, and they enjoyed their
time.

GPT-ROC:

Alice said yes.

Bob put on his clothing.

Alice walked out of the restaurant.
Bob didn’t give Alice her favorite shirt.

CAST-RL:

Alice said yes, so he brought her food.

Bob had dinner with Alice that night.

Alice said yes to the dinner.

Bob was happy that he invited her to dinner with
him.

Guan et al. (2020):

Alice drove and came over Bob ’s house in time.
Bob decided to let Alice choose the foods.

Alice ate some dog food and then she met her hus-
band.

Bob offered Alice a side of anything he had for
dinner.

Seed Prompt:
Bob took Alice fishing in the summer.

CAST:

Alice waited at the lake for hours.

Bob got another boat and brought it back home.
Alice and Bob fished the next day.

Bob enjoyed the fishing and had a great time.

GPT-ROC:

Alice took his friend’s boat.

Bob brought with him to the water.

Alice stuck her hand out a river but the fishing got
stuck.

Bob snapped his fishing line and the boat stopped
in the middle.

CAST-RL:

Alice caught ten fish.

Bob was pleased that he caught ten fish.
Alice was very pleased to have a good fish.
Bob is glad that he caught ten fish.




Guan et al. (2020):

Alice got seasick.

Bob asked Alice to help him.

Alice went to Bob ’s house to tow Bob ’s boat.
Bob got a surfboard for a big fishing trip.

Seed Prompt:
Bob was engaged to Alice.

CAST:

Alice wanted a diamond ring.

Bob thought that ring was the perfect diamond.
Alice loved the diamond ring and decided to buy it.
Bob went to the store and bought the ring.

Bob is grounded because Bob is getting away with
everything.

CAST-RL:

Alice had been waiting for hours at school.

Bob was relieved to see her take the bus to school.
Alice was excited to see the bus arrive.

Bob was proud of her for taking the bus to school.

Guan et al. (2020):

Alice was nervous because Bob didn’t know how
to tap dance.

Bob was excited for his first attempt at tap dancing.
Alice was impressed and wanted to learn.

Bob started his first dance at the dance school.

GPT-ROC:

Alice invited him to her wedding.

Bob refused and immediately broke down.

Alice stormed out of the door.

Bob was very upset that he would never see her
again.

CAST-RL:

Alice was going on a date with Bob.

Bob agreed to the date and married her.

Alice now has two kids and needs the baby.

Bob is very happy he finally realized she was un-

happy.

Guan et al. (2020):

Alice just got a new husband.

Bob wondered what to expect.

Alice bought the nice wedding ring from a daycare.
Bob wore it to the wedding.

Seed Prompt:
Bob took Alice to school today.

CAST:

Alice was a freshman.

Bob took her to the library.

Alice was excited to take the long bus ride to the
library.

Bob continued the long walk through the library.

GPT-ROC:

Alice really needed Bob to come with her.

Bob knew he couldn’t get her to come with him.
Alice saw Bob grow up and change his attitude.
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Additional 10-sentence story examples are as fol-
lows:

Seed Prompt:
Bob went on her very first date with Alice.

CAST:

Alice was very excited about having a date with
Bob.

Bob was excited and eager.

Alice informed Bob she was very excited for him.
Bob was very appreciative.

Alice said it was a perfect time.

Bob and Alice had a wonderful first date.

Alice was surprised she was invited to his birthday.
Bob was thrilled.

Alice was happy to have a new boyfriend.

GPT-ROC:

Alice asked him to meet her at the restaurant.

Bob refused to get her out of the car.

Alice began to panic and began to argue with Bob.
Bob ended up never talking to Alice.

Alice began to return the phone and she called the
restaurant.

Bob got a new date with Alice.

Alice left Bob with a very happy reunion.

Bob is so happy he is now dating Alice.

Alice is so happy she loves her new boyfriend.

Guan et al. (2020):

Alice and Bob didn’t realize that Bob loved movies.
Bob’s friend, Alice, saw the movie with Alice.
Alice and Bob were good friends.

Bob’s friend, Alice, screamed for Alice.



Alice was their eyes met her eyes.

Bob and Alice’s grandparents were never match.
Alice because they had ever though, they thought
the end the words said, she passed with Alice.
Bob and they agreed that they went out the eyes.
Alice felt they got puppies and they do the thought
she was their eyes Alice had.

CAST:

Alice told him about the movie she loved to watch.
Bob grabbed a movie poster from the library.
Alice shared her own reaction to the movie.

Bob watched the movie that night.

Alice felt very satisfied after the movie was over.
Bob went home happy that he watched the movie.
Alice has been a huge fan of the movie ever since.
Bob looks forward to a nice vacation at the movies.

Seed Prompt: Alice is glad that she shared her own comments to
Bob broke up with Alice. the movie.

CAST: GPT-ROC:

Alice was very hurt and very angry. Alice wanted to buy her a necklace.

Bob knew he would have to live with his pain. Bob felt bad for her.

Alice said she could give him a relief. Alice got the necklace.

Bob felt much better after that. Bob made it.

Alice felt even better in peace.

Bob is now happy with himself.

Alice felt much better.

Bob will make himself a happy man.
Alice feels much better after having peace.

GPT-ROC:

Alice had a fake boyfriend.

Bob found out Alice was missing.
Alice promised to find her.

Bob found her in an alley.

Alice never broke up with Bob again.
Bob never broke up with Alice.
Alice was so happy to see him again.
Bob is very happy being close to her.
Alice is happy that he’s okay now.

Guan et al. (2020):

Alice didn’t want to get it.

Bob thought that he was too thin.

Alice said he could give back inside a horse.

Bob could bring along for a ride and to return to
the river.

Alice had to drive for three days and she realized
she was cheating.

Bob and Alice got into a fight.

Alice ran away with Alice and grounded.

Bob and sent Alice.

Alice and a girl kicked each other.

Seed Prompt:
Bob went to see Alice today.

Alice was very happy with the necklace.

Bob was glad that she got to see Alice.

Alice will never forget her great necklace.

Bob will never forget the necklace that Alice
bought.

Alice is glad that she bought her necklace.

Guan et al. (2020):

Alice was nice and gregarious.

Bob had a great time.

Alice had some great food and wine.

Bob couldn’t wait to see Alice again.

Alice let him take a bath.

Bob felt smarter and had a good time again.
Alice also got his great seeing Alice tattoo.
Bob had a good time.

Alice tattooy from his favorite j tomorrow too.

Seed Prompt:
Bob went over to play at Alice’s house.

CAST:

Alice liked to watch movies.

Bob was always there watching movies.

Alice saw a movie she wanted to see.

Bob was very glad to buy that movie.

Alice was so happy with the movie he bought.
Bob was excited to be watching the movie with
Alice.

Alice could not wait to see the movie with Bob.
Bob and Alice had so many fun.

Alice laughed and thanked Bob for the great movie.
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GPT-ROC:

Alice and Bob played soccer.

Bob’s mom told him to throw a kick.

Alice kicked him in the leg.

Bob was glad that he never played there again. Al-
ice’s mom apologized for the incident.

Bob’s mom never learned to kick in the leg again.
Alice was very glad he never stopped playing soc-
cer with her.

Bob was happy that he was never kicked again.
Alice still still plays soccer every now and loves
hertime.

Guan et al. (2020):

Alice was a baby dolls.

Bob told Alice he could save a doll.

Alice went to the video game section to change the
game.

Bob was amazed to see who did the laundry to the
last minute.

Alice waved and proposed the doll girls.

Bob wished her that she was getting a doll.

Alice helped him with the $40 and she gave her
$100, but by buttering buttering a doll.

Bob’s doll broke.

Alice had an ruined doll and they would buy her.
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