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Abstract

Transformer-based language model ap-001
proaches to automated story generation002
currently provide state-of-the-art results.003
However, they still suffer from plot incoher-004
ence when generating narratives over time,005
and critically lack basic commonsense reason-006
ing. Furthermore, existing methods generally007
focus only on single-character stories, or fail008
to track characters at all. To improve the co-009
herence of generated narratives and to expand010
the scope of character-centric narrative gener-011
ation, we introduce Commonsense-inference012
Augmented neural StoryTelling (CAST), a013
framework for introducing commonsense014
reasoning into the generation process while015
modeling the interaction between multiple016
characters. We find that our CAST method017
produces significantly more coherent and018
on-topic two-character stories, outperforming019
baselines in dimensions including plot plausi-020
bility and staying on topic. We also show how021
the CAST method can be used to further train022
language models that generate more coherent023
stories and reduce computation cost.024

1 Introduction025

AI storytelling is a crucial component of computa-026

tional creativity. Humans use storytelling to enter-027

tain, share experiences, educate, and to facilitate028

social bonding. For an intelligent system to be un-029

able to generate a story limits its ability to interact030

with humans in naturalistic ways. Automated Story031

Generation, in particular, has been a grand chal-032

lenge in artificial intelligence, requiring a system033

to construct a sequence of sentences that can be034

read and understood as a story.035

A common approach to story generation is to use036

neural language models (Roemmele, 2016; Khalifa037

et al., 2017; Clark et al., 2018; Martin et al., 2018).038

These techniques have improved with the adoption039

of Transformer-based models, such as GPT-2 (Rad-040

ford et al., 2019). While GPT-2 and similar neural041

Figure 1: Overview of the CAST system. 1. A text
prompt starts the story generation process. 2. The sys-
tem infers facts about the characters’ intents. 3. A lan-
guage model generates candidate continuations. 4. In-
ferences about the candidates are matched against the
previous inferences and the best candidate is added to
the story.

language models are considered highly fluent from 042

a grammatical standpoint, they are prone to gener- 043

ating repetitive or generic continuations (Holtzman 044

et al., 2019). Furthermore, as the length of the story 045

grows, these models can lose coherence. One rea- 046

son for these phenomena is that language models 047

generate continuations by sampling from a learned 048

distribution Pθ(tokn|tok<n). Human readers, how- 049

ever, do not perceive the coherence of a narrative 050

as a function of the likelihood of seeing particular 051

words based on the occurrence of previous words. 052

Previous attempts to enhance the coherence 053

of generated stories use conditioning on content- 054

relevant features such as plot outlines (Fan et al., 055

2018; Peng et al., 2018; Rashkin et al., 2020), or 056

character emotional arcs (Brahman and Chaturvedi, 057

2020). These achieve coherence through adher- 058

ence to a manually given high-level plan. The high 059

level plan can be generated (Yao et al., 2019; Am- 060
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manabrolu et al., 2020), which only elevates the061

challenges of maintaining coherence to a higher062

level of abstraction. Neural language models063

can also be fine-tuned on extraneous signals such064

as commonsense knowledge or progression re-065

wards (Guan et al., 2020; Tambwekar et al., 2019),066

which improves the distribution but still relies067

solely on sampling.068

The latent state of neural language models used069

to generate subsequent story continuations are un-070

likely to relate to a human reader’s mental model of071

the state of a story world. Studies of human reader072

comprehension (Trabasso and Van Den Broek,073

1985; Graesser et al., 1991, 1994) show that read-074

ers comprehend stories by tracking the relations075

between events. Reader comprehension relies on076

the tracking of at least four types of relations be-077

tween events: (1) causal consequence, (2) goal078

hierarchies, (3) goal initiation, and (4) character in-079

tentions. The perceived coherence of a story is thus080

a function of the reader being able to comprehend081

how events correlate to each other causally or how082

they follow characters’ pursuits of implicit goals.083

We hypothesize that a story generation system that084

makes decisions on how to continue a story based085

on tracking and reasoning about character inten-086

tions and action consequences will generate more087

coherent stories.088

However, stories don’t always explicitly declare089

the goals and motivations of characters; sentences090

describing character actions are not explicitly an-091

notated with the characters’ motivations and goals.092

Readers must infer the characters’ goals and the093

relationship between their actions and those goals.094

The ability to use basic knowledge about goals and095

about what is happening in the world falls within096

the study of commonsense inference. ATOMIC097

(Sap et al., 2019) is a commonsense knowledge098

base that contains logical relationships concern-099

ing mental states, attributes, and events. COMET100

(Bosselut et al., 2019) is a transformer-based gen-101

erative model trained on triples from ATOMIC and102

infers relations about sentences broadly divided103

into four categories: (1) Causes of a person’s ac-104

tions (preconditions of the event), (2) Attributes of105

a person, (3) Effects of actions on a person (post-106

conditions of the event), and (4) Effects of actions107

on others (postconditions of the event). We pro-108

pose to infer character intentions and effects of109

actions using COMET to inform the generation of110

subsequent sentences by a neural language model.111

To address the challenge of maintaining coher- 112

ence in language-model-based story generation, 113

we propose a novel two-character story genera- 114

tion method, Commonsense inference Augmented 115

neural StoryTelling (CAST), that infers the causal 116

relations between events as well as the intents and 117

motivations of characters in the story context so 118

far in order to generate story continuations that are 119

more coherent to readers. CAST uses these inferred 120

causal relations and character intentions to make 121

more informed choices about potential story con- 122

tinuations generated by a neural language model 123

(GPT-2). We hypothesize that stricter, more explicit 124

constraints during generation should result in more 125

coherent narratives than generating via sampling 126

from a distribution alone, even if the distribution is 127

fine-tuned. 128

To evaluate the efficacy of our proposed method, 129

we conduct a series of human-participant experi- 130

ments specifically measuring perceptions of logical 131

coherence of CAST against a number of fine-tuned 132

variants of GPT-2. Results indicate that the CAST 133

method significantly increases the perception of 134

generated stories over baselines. 135

2 Related Work 136

Neural networks—recurrent and transformer- 137

based—have been used to produce stories (Roem- 138

mele, 2016; Khalifa et al., 2017; Martin et al., 2018; 139

Clark et al., 2018). In these systems a neural lan- 140

guage model learns to approximate the distribution 141

Pθ(tokn|tok<n). Stories are generated by provid- 142

ing a context sequence and sampling from the dis- 143

tribution. When the language model is trained on a 144

corpus of stories, the generated text tends to also 145

be a story. Sometimes generation is done hierarchi- 146

cally (Yao et al., 2019; Ammanabrolu et al., 2020). 147

However, coherence is not guaranteed; statistical 148

sampling from a distribution is not constrained to 149

making logical transitions because the rich rela- 150

tionships that readers make to perceive coherence 151

are not modeled. Other artifacts of the sampling 152

process include new characters being arbitrarily in- 153

troduced at any time, characters being forgotten, 154

and repetitions. 155

To control the generation, sometimes a high- 156

level plot outline is given and a language model is 157

conditioned or otherwise guided by the high-level 158

plot outline (Fan et al., 2018; Peng et al., 2018; 159

Rashkin et al., 2020; Brahman and Chaturvedi, 160

2020). These high-level guidance specifications 161
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turn the story generation problem into a supervised162

learning problem. We do not consider these ap-163

proaches further in this paper because we do not164

assume the existence of any guidance specification.165

The story generation system by Guan et166

al. (2020) first fine-tunes GPT-2 on the ATOMIC167

dataset and then fine-tunes a second time on the168

ROCStories corpus (Mostafazadeh et al., 2016) to169

induce GPT-2 to generate short stories. The au-170

thors use multi-task learning during the second171

fine-tuning stage with an auxiliary objective to dis-172

tinguish true and engineered false stories. Even173

with such specialized learning, the resulting model174

still fails to avoid logical errors, repeats pieces of175

narratives, and introduces unrelated entities. This176

demonstrates the need for a stronger inductive bias177

on how commonsense knowledge is used in story178

generation. Brahman and Chaturvedi (2020) gen-179

erate stories that follow a given emotional arc for180

a protagonist, using COMET to infer the protago-181

nist’s emotions. The C2PO system (Ammanabrolu182

et al., 2021) uses COMET to generate successor183

and predecessor events instead of a language model,184

performing a bi-directional search from a given185

start event and a given end event. However, C2PO186

generates plots made up of highly constrained, tem-187

plated text.188

3 The CAST Method189

The conventional set up for neural k-sentence story190

generation is: given the first sentence s1 of a story—191

a prompt—generate the subsequent k − 1 sen-192

tences, s2, s3, ..., sk. The Commonsense inference193

Augmented neural StoryTelling (CAST) method is194

as follows. To generate sentence si with 2 ≤ i ≤ k:195

1. We condition a fine-tuned language model196

on the story up to the current sentence197

[s1, . . . , si−1] followed by a token signifying198

the subject of sentence i.199

2. We sample a sentence candidate c from the200

language model and obtain a set of common-201

sense inferences.202

3. We match commonsense inference sets be-203

tween si−1 and c using a matching criteria204

grounded in theory, and produce a score for c.205

4. If the score is above a user-specified thresh-206

old, c is selected to be si and is appended207

to the generation history. Otherwise, steps 2208

through 4 are repeated until a viable candidate 209

is found. 210

5. Repeat steps 1 through 4 until k− 1 sentences 211

have been generated. 212

An overview of the pipeline is given in Figure 2. 213

The system is simple but effective—CAST reasons 214

about whether there are sufficient relations between 215

the candidate sentence and the previous sentence 216

to support reader comprehension. Unlike models 217

trained or fine-tuned on commonsense knowledge, 218

the filtering technique provides a hard constraint 219

that is likely to persist throughout a generated story 220

of arbitrary length without degeneration, and it is 221

not limited in application to the maximum story 222

length seen during training. 223

3.1 Language Model 224

We fine-tune GPT-2 on a pre-processed version of 225

the ROCStories corpus (Mostafazadeh et al., 2016) 226

to encourage story generation. Following Guan 227

et al. (2020), we pre-process the corpus to remove 228

character names, replacing them with [MALE] or 229

[FEMALE]. During pre-processing, we annotate 230

characters with *[T]* where T is a character tag 231

when that character appears in the next sentence in 232

the training corpus. This corpus treatment prompts 233

the language model to learn the pattern of how char- 234

acters take turns and to prompt itself on the learned 235

pattern of character turn-taking during generation. 236

However, in order to compare our system against 237

that of Guan et al., we must enforce the telling of 238

a two-character narrative in an interleaving fash- 239

ion where characters take turns being the subject. 240

While this is a simplifying adjustment, it allows for 241

a fair comparison with the baseline. Appendix A.3 242

details specifically how this is accomplished. 243

3.2 Commonsense Inferences 244

To produce commonsense inferences for each sen- 245

tence, we use the COMET model (Bosselut et al., 246

2019) to infer a set of ATOMIC (Sap et al., 2019) 247

relations for each generated sentence. COMET 248

generates commonsense inferences for a single sen- 249

tence, referring to PersonX as the sentence’s sub- 250

ject, and Others as other characters in the story. 251

Due to our two-character closed-world assumption, 252

we assume Others to refer to the second character. 253

We identify six of ATOMIC’s nine relation 254

types that are useful for creating coherent relations 255

between story events: xIntent, xNeed, xAttr, 256
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COMET

COMET

Generate
candidate

s1 ... si-1 si

PREFIX

candidate
inferences

previous
inferences

si+1

candidate

Match?no yes

oWant → xIntent
oReact → xAttr

context

"[MALE] had a big
crush on [FEMALE]."

"[FEMALE] wanted to
go to prom with him."

"[MALE] had a big crush
on [FEMALE]. [FEMALE]"

"[FEMALE]"

Figure 2: The overall procedure of generating two-character narratives with the CAST pipeline.

Type Description

xIntent The reason why PersonX would cause the event
xNeed What PersonX might need to do before the event
xAttr How PersonX might be described given the event

oReact The reaction of Others to the event
oEffect The effect the event has on Others
oWant What Others may want to do after the event

Table 1: Definitions of the six types of ATOMIC re-
lations that CAST uses. The top set describes precon-
ditions of the current sentence and the bottom set de-
scribes postconditions of the previous sentence. Dotted
lines show how we match postconditions to precondi-
tions during the filtering phase.

oReact, oEffect, and oWant. Table 1 provides257

the definitions. We treat the first three relation258

types as preconditions of an event because they259

infer facts that might need to be true for an event to260

be enacted, such as a character having an intention,261

a goal, or a property. We categorize the final three262

as postconditions of an event because they infer263

things that might change once an event is enacted,264

such as a character reaction, an effect of the action,265

or a character forming a new intention.266

Once we have inferred relations for the previous267

sentence si−1 and current candidate c, we look for268

specific patterns between the sets of relations:269

• The event in si−1 affects the wants of a char-270

acter, which manifests as an intention of the271

primary character in c (oWant→xIntent).272

• An effect of the event in si−1 manifests itself273

as something the primary character needs in c274

(oEffect→xNeed).275

• A reaction to the event in si−1 is expected276

and matches some property of the primary277

character in c (oReact→xAttr).278

In this way, we create hard constraints via a form279

of chaining that allows us to filter a set of po-280

tential sentence generations to find one that ad-281

equately matches the expected inferences. The282

oWant→xIntent pattern corresponds to how read- 283

ers track how characters form and carry out 284

intentions in reader comprehension models (cf. 285

(Graesser et al., 1991)). The oEffect→xNeed 286

and oReact→xAttr correspond to how readers 287

track causal consequences in reader comprehen- 288

sion models (cf. (Trabasso and Van Den Broek, 289

1985)). 290

To filter out “unqualified" sentence candidates 291

generated by the language model, we match the 292

inference types described in Table 1 and their ar- 293

guments. For example, suppose sentence si−1 is 294

“[MALE] gives [FEMALE] a burger”. Its oEffect 295

is “have a burger”. If sentence si is “[FEMALE] 296

eats the burger”, it will have an xNeed that is also 297

“have a burger”, which represents the prerequisite 298

of “having a burger” in order to “eat a burger”. 299

In practice, we find that simple string match- 300

ing does not adequately capture when two inferred 301

relations’ arguments have slightly different phras- 302

ing (e.g., “to sleep” versus “sleeping”). We define 303

a match as the semantic similarity between two 304

inferences exceeding a certain threshold. We en- 305

code each relation argument into a fixed-length 306

vector representation, and then compute the cosine 307

similarity. We use Sentence-BERT (Reimers and 308

Gurevych, 2019) for encoding, as it is designed 309

for semantic similarity tasks and performs better 310

than the traditional BERT on sentence similarity 311

benchmarks. 312

We use 80% semantic similarity as our lower- 313

bound. Empirically, we find this value best consid- 314

ers the inferences listed above as matches, but ex- 315

cludes less-related inferences. Table 2 (top) shows 316

how the threshold affects success rate—the per- 317

centage of queries that find a match within 100 318

generated candidates—and the diversity of results 319

as measured by self-BLEU score (described in §4). 320

Each system was conditioned on the same 30 2- 321

character prompts from ROCStories with 5 differ- 322

ent random seeds, requiring two of three inference 323

type pairs to match to qualify as a match. Failure to 324
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Semantic # of Sentence Success Self Self
Similarity Candidates Rate B-2 B-3

0.8 19.10 89.67% .1426 .0552
0.85 26.54 82.33% .1551 .0634
0.9 26.86 70.85% .1709 .0796

0.95 34.00 63.50% .1889 .1104

# of # of Sentence Success Self Self
Matching Candidates Rate B-2 B-3

1 2.32 100.00% .1227 .0548
2 19.10 89.67% .1426 .0552
3 104.63 29.54% .1447 .0569

Table 2: Ablation study result for semantic similarity
and required matching inference type pairs. # of sen-
tence candidates denotes the average number of sen-
tences candidates generated before finding a matching
inference type pair. Success rate is the percentage
of finding a match within the 100-candidate limit. A
higher Self-BLEU score (B-n) implies less diversity of
the document (Zhu et al., 2018) (see §4).

find a match within the candidates limit (100) will325

relax the matching constraints to one pair. Hence,326

the average number of sentences candidates might327

be over the candidate limit. As observed in Table 2328

(top), increasing the semantic similarity threshold329

decreases the success rate in obtaining a matching330

candidate within the sentence limit, and it results331

in more repetitive sentences (see examples in Ta-332

ble 3).333

In order to balance computation time and quality334

of the match, we only require two of three infer-335

ence type pairs to match between a seed and a336

candidate sentence. When requiring three matches,337

CAST only finds a “qualified” sentence 29% of338

the time within 100 attempts (see Table 2 (bottom),339

computed at 0.8 semantic similarity). In practice340

(see examples in Table 3), we find requiring two341

pairs results in higher quality sentences than if we342

only require one out of three pairs to match, but is343

significantly more efficient than three out of three.344

3.3 Fine-tuning on Commonense Inferences345

CAST generates candidate sentences until one346

passes the inference matching process. Each candi-347

date considered requires a set of commonsense in-348

ferences and semantic matching—computationally349

expensive processes. We ask whether it is possible350

to train a generative language model to emulate the351

heuristic CAST process, thereby producing coher-352

ent stories faster, with less computational overhead,353

and with less rigid constraints on its language pro-354

duction. In this section we fine-tune GPT-2 using a355

Seed Prompt:
Bob wanted to ask Alice out on a date.

Semantic Similarity = 0.8; # of matching = 2:
Alice doesn’t have a

::::
date to go on.

Bob decided to
::

ask
:::
her

::
out.

Alice is getting
::::
accepted for his date.

Bob feels so
::::

happy and finally
::::::
enjoyed

:::
his

:::
date.

Semantic Similarity = 0.95; # of matching = 2:
Alice was nervous but agreed to the date.
Bob prepared to go on the date.
Alice enjoyed the date.
Bob was happy the date went out of style.

Semantic Similarity = 0.8; # of matching = 1:
Alice went out with me.
Bob ordered some cookies.
Alice liked the cookies.
Bob is glad she went out with me.

Semantic Similarity = 0.8; # of matching = 3:
Alice was scared to ask her out.
Bob was nervous she would ask her out.
Alice felt comfortable asking her out.
Bob plans on getting on a date with her.

Table 3: Story examples generated by CAST with dif-
ferent semantic similarity thresholds and numbers of
required matching inference type pairs. The story gen-
erated at 80% and 95% similarity (the first and the sec-
ond story) both follow a single topic (bolded), but the
first story maintains more diversity (

:::::::::
underlined). Sto-

ries required to match one inference type pair mostly
only match oReact→xAttr ("happy" emotion in the
third example). Stories required to match three infer-
ence type pairs cannot find matches within candidate
limit.

policy gradient reinforcement learning technique 356

inspired by Peng et al. (2020), but using CAST to 357

generate an exemplar dataset. 358

As CAST generates sentences, it stores sentence 359

pairs along with a label: 0 for no relation matches 360

and 1 for two or more matches. Some examples are 361

given in Table 4. After generating a full story of k 362

sentences, GPT-2 is fine-tuned on the labeled sen- 363

tence pairs using the reinforcement learning tech- 364

nique. To punish the generation of “unqualified" 365

sentences, we use the following loss function: 366

lossRL(s) =

{
losss(s) if label = 1

losss(s)× ρ if label = 0

(1)

367

where losss(s) is the cross-entropy loss given by 368

Radford et al. (2018) and ρ is a constant (ρ ≥ 1) 369

controlling the strength of punishment—sentences 370

without matches incur more loss. The first sentence 371

of the pair is masked so that loss is only calculated 372

on the logits that produce the successor sentence. 373
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Sentence Pair Inferences

[MALE] had a big crush on [FEMALE]. None
[FEMALE] was constantly yelling at him.

[MALE] had a big crush on [FEMALE]. oReact→xAttr
[FEMALE] wanted to go to prom with him. oWant→xIntent

[MALE] took [FEMALE] fishing in the summer. None
[FEMALE] got very sick.

[MALE] took [FEMALE] fishing in the summer. oReact→xAttr
[FEMALE] was loving it. oWant→xIntent

Table 4: Examples of generated labeled sentence pairs.
Sentence pairs with no matching inferences are labeled
with 0, while those with two or more matching infer-
ence pairs are labeled with 1.

4 Experiments374

We conducted two experiments to evaluate the375

CAST technique. The first experiment compares376

CAST to two unconstrained neural language model377

story generators: GPT-2 and the work by Guan378

et al. (2020) (§3.2). The second experiment as-379

sesses whether CAST can be used to fine-tune a380

neural language model (§3.3). Story examples can381

be found in Table 5 and Appendix B.382

Metrics. We evaluate performance using hu-383

man participant evaluation and automated metrics.384

Purdy et al. (2018) proposed a set of questions for385

evaluating story generation systems that includes386

dimensions such a logical coherence, loyalty to387

plot, and enjoyability. A variation of these ques-388

tions have been used in evaluations of other story389

generation systems (cf. (Tambwekar et al., 2019;390

Ammanabrolu et al., 2020, 2021)). We modify a391

subset of these questions to simplify the language392

and focus more on participants’ overall impressions393

of the narrative coherence:394

• The story FOLLOWS A SINGLE TOPIC395

• The story AVOIDS REPETITION396

• The story uses INTERESTING LANGUAGE397

• The story makes better LOGICAL SENSE398

We conduct our studies on a crowdworking plat-399

form. Only those who pass a screening question400

are qualified for the study. Participants must also401

explain their preferences with more than 50 char-402

acters of writing. This helps filter out low-quality403

responses and ensures the validity of the study.404

Because diversity of generated stories is impor-405

tant, we also measure Self-BLEU scores (Zhu et al.,406

2018). For each generated story, we take one sen-407

tence as the hypothesis and the others as references408

and calculate the BLEU score, repeating for every409

sentence in the story. We define the self-BLEU410

Seed Prompt:
Bob invited Alice to hang out.

CAST:
Alice planned a nice dinner for Bob.
Bob and Alice spent all evening cooking dinner together.
Alice was happy to see her dinner cooked.
Bob was impressed with how delicious her dinner was.

GPT-ROC:
Alice thought Bob was funny.
Bob got mad and threatened Alice with punches.
Alice ended up running away from Bob.
:::
Bob

:::
was

:::::::
awarded

:::
the

::
fun

::::
they

:::
had

:::::::
together.

CAST-RL:
Alice invited Bob to hang out.
Bob agreed, and was happy to meet her.
Alice was very happy and liked Bob.
Bob and Alice still hang out after that.

Guan et al. (2020)
Alice thought she would like it.
Bob only wanted to show her the interest of a nerdy rlist.
Alice seemed to

:::
like

:::
Bob

:::::
asked

:::
Bob

:::::::
because

::
she

::::
likes

::::
him.

:::
Bob

:::::
ended

::
up

::::::
meeting

:::::
Alice

::::
after

:::::
school.

Table 5: Story examples generated by CAST, CAST-
RL, GPT-ROC and Guan et al. (2020). The story
generated by CAST follows a single topic (bolded) –
cooking dinner, and shows a good plot coherence. The
story generated by GPT-ROC fails to maintain plot co-
herence (

:::::::::
underlined) during generation. CAST-RL gen-

erates relatively more repetitive/boring but logically co-
herent narrative (in italic). Guan et al. (2020) also suf-
fers in plot coherence. More examples are given in Ap-
pendix B.

score of the model to be the averaged BLEU score 411

of its generated stories. A higher self-BLEU score 412

implies less diversity of the stories. We report 2- 413

and 3-gram self-BLEU scores (B-2 and B-3). 414

Baselines. We evaluate CAST against two base- 415

lines. The first is GPT-2-small fine-tuned on ROC- 416

Stories (GPT-ROC), following prior work (Guan 417

et al., 2020). The second baseline is the system 418

by Guan et al. (2020), which fine-tunes GPT-2- 419

small on ATOMIC and ROCStories using a multi- 420

objective training procedure. 421

4.1 Experiment 1: CAST 422

We assess whether the CAST constraint method 423

improves story coherence over the GPT-ROC and 424

Guan et al. (2020) baselines. We recruited 116 par- 425

ticipants on a crowdsourcing platform. Each par- 426

ticipant read a randomly selected subset of 6 story 427

pairs, comprised of one story from CAST and one 428

from one of the baselines, GPT-ROC or Guan et al.. 429

For each of the four questions listed above, partic- 430

ipants answered which story best met the criteria. 431
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Models Story Logical Sense Single Topic Avoid Repetition Interesting LanguageNum
lengthWin %Lose %Tie %Win %Lose %Tie %Win %Lose %Tie %Win %Lose %Tie % resp.

CAST vs GPT-ROC 5 53.7**17.0 29.3 52.4**14.3 33.3 18.5 25.3 56.2 30.6 23.8 45.6 147
10 63.3**19.3 17.4 55.0**14.7 30.3 33.9 48.6 17.5 34.9 34.9 30.2 109

CAST vs Guan et al. 5 64.8**19.4 15.8 62.5**18.5 19.0 26.9 31.9 41.2 27.4 34.4 38.2 216
10 73.9**11.3 14.8 86.7**7.6 5.7 27.6 50.5** 21.9 29.5 48.6* 21.9 115

GPT-ROC-RL vs GPT-ROC 5 68.1**21.3 10.6 63.8**20.2 16.0 33.0 39.4 27.6 41.5 29.8 28.7 94

CAST-RL vs GPT-ROC-RL 5 42.7 42.7 14.6 31.1 25.6 43.3 26.7 35.6 37.7 24.4 25.6 50.0 89

CAST-RL vs CAST 5 45.2 38.1 16.7 36.5 31.0 32.5 27.2 39.2 33.6 23.2 40.8* 36.0 126

Table 6: Human-participant evaluation results for experiments 2 and 3, showing the percentage of participants who
preferred the first system, second system, or thought the systems were equal. Each system is conditioned on the
same 30 test-set prompts. * indicates results are significant at p < 0.05 confidence level; ** at p < 0.01 using a
Wilcoxan sign test on win-lose pairs.

Models Length B-2 B-3

GPT-ROC 5 .0749 .0251
10 .1686 .0617

CAST 5 .1103 .0279
10 .2017 .0883

Guan et al. 5 .0682 .0079
10 .1773 .0520

GPT-ROC-RL 5 .2604 .1329

CAST-RL 5 .1912 .0949

Table 7: Self-BLEU n-gram (B-n) scores on 30 test-
set prompts. Lower score indicates more diversity of
generated stories.

Participants read either 5-sentence or 10-sentence432

stories. The 10-sentence stories allow us to look at433

the effect of story length on coherence for CAST434

and the baseline GPT-ROC. To generate the sto-435

ries, we again randomly selected 30 2-character436

prompts from the ROCStories corpus to seed the437

systems. We also calculated self-BLEU scores on438

these stories (Table 7).439

The results are shown in Table 6 (top). The re-440

sults indicate that our model performs significantly441

better than the GPT-ROC baseline on the “Logical442

Sense” and “Single Topic” dimensions. We con-443

clude that CAST improves the coherence of gener-444

ated narratives and stays more on topic, while re-445

taining comparably interesting language and avoid-446

ance of repetition (neither of which are statistically447

significantly different from the baseline). When448

we increase the lengths of stories to 10 sentences449

from 5, a greater proportion of participants prefer450

CAST to the baseline in the dimensions of “Logi-451

cal Sense” and “Single Topic” (∼ 10% increase).452

This shows that stories generated by CAST retain453

Model Train Set Test Set

CAST 20.43± 3.40* 28.31± 3.39*
CAST-RL 8.72± 1.95* 11.06± 1.81*

Table 8: The average number of sentence candidates
generated before finding a match. A confidence level
of 95% over 5 random-seed runs for each model is pre-
sented. Each system was conditioned on the same 30
(training) and 10 (test) 2-character prompts from ROC-
Stories. * indicates the difference between CAST and
CAST-RL is statistically significant at p < 0.01 using
the Mann-Whitney U test.

coherence longer relative to the baseline language 454

model operating without constraints. 455

CAST also significantly outperforms Guan et al. 456

in the “Logical Sense” and “Single Topic” dimen- 457

sions. When increasing story length to 10 sen- 458

tences, the coherence of stories generated by the 459

Guan et al. system drops substantially compared 460

to our model. Our model is worse at avoiding 461

repetition and using interesting language, though 462

these differences are only statisically significant on 463

the 10-sentence stories. Table 7 also indicates the 464

language diversity of baselines is higher than our 465

model. We consider this a valuable trade-off for 466

logical coherence. 467

4.2 Experiment 2: Reinforcement-Based 468

Fine-Tuning 469

Having established that CAST improves coherence, 470

we ask whether reinforcement-based fine-tuning 471

(Section 3.3) can be used to teach a language model 472

to model the CAST filtering method directly. In do- 473

ing so we hope to (a) increase the robustness of the 474

neural language model and (b) reduce the overall 475

computation time by foregoing the inference and 476
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semantic matching steps. We hypothesize that fine-477

tuning on CAST labels can increase robustness by478

generating continuations that will pass the filtering479

process with higher likelihood. This in turn can480

decrease the average number of generated sentence481

candidates required to find a match.482

After generating 30 5-sentence stories with483

CAST using 40 different random seeds, we train484

GPT-ROC with the 2× 4× 30× 40 generated la-485

beled sentence pairs as described in Section 3.3.1486

This results in a new fine-tuned language model,487

which we refer to as GPT-ROC-RL. 40 different488

seeds for the language model are used to generate489

sentence pairs in order to simulate fine-tuning on490

very small datasets. Consistent with previous ex-491

periments, we use GPT-ROC as our baseline. In492

addition, we ask whether applying CAST filtering493

on top of GPT-ROC-RL further improves story co-494

herence. CAST-RL is GPT-ROC-RL (that is, fine495

tuned on CAST labels) with CAST filtering applied496

to the outputs.497

To evaluate whether fine-tuning on CAST labels498

improves story coherence, we recruited 59 partic-499

ipants and replicated the protocol in Section 4.1,500

except participants read pairs of stories from GPT-501

ROC, GPT-ROC-RL, CAST, or CAST-RL.502

Table 6 (bottom half) shows the percentage of503

times stories from each system are preferred for504

each metric. GPT-ROC-RL improves coherence505

over GPT-ROC to approximately the same degree506

as CAST does over GPT-ROC, indicating that RL507

fine-tuning can be an alternative to constraint-based508

filtering on short (5-sentence) stories. CAST-RL509

does not significantly improve the logical sense of510

stories over GPT-ROC-RL, indicating that the re-511

inforcement learning process has generalized the512

CAST inferential constraints into the language513

model. GPT-ROC-RL performs better on avoiding514

repetition and interesting language than CAST-RL515

in human evaluation, however not at a statistically516

significant level. Table 7 shows that GPT-ROC-517

RL performs worse on diversity than CAST-RL518

evaluated with the Self-BLEU metric.519

Finally, CAST-RL improves the logical sense520

and single topic a small amount over CAST, but521

not at a statistically significant level. Despite being522

trained on CAST labels, the filtering process can523

still improve coherence. However, it does so at524

the expense of repetition and interesting language,525

1We generate 2 “matched” sentence pairs during each sen-
tence generation, one pair of each label. When k = 5, 4
sentences are generated to form a 5-sentence story.

which is also shown in Table 7. 526

Importantly, Table 8 shows that fine-tuning on 527

CAST labels reduces the average number of can- 528

didates that need to be generated for a “match” 529

to 11 from 28. The RL fine-tuning procedure re- 530

duces CAST’s computation by 60.93%. Further 531

fine-tuning results in an overfit language model 532

but this model is sufficient to tie models explicitly 533

using constraints (e.g., CAST-RL) on the issue of 534

coherence. Tables 6 and 8 taken together show the 535

benefit of CAST-RL for efficiency at no cost to 536

desired model characteristics. 537

5 Conclusions 538

Neural language models generate content based on 539

the likelihood of tokens given a historical context. 540

Human readers, on the other hand, use complex 541

inferential processes to connect the relationships 542

between events. This mismatch between genera- 543

tive models and reader comprehension is one of the 544

reasons why stories generated by neural language 545

models lose coherence over time. We present a 546

new approach to neural story generation that at- 547

tempts to model the inferred event relations and 548

character intentions of human readers in order to 549

generate more coherent stories. The CAST method 550

provides hard constraints to neural language model 551

generation that results in greater story coherence, 552

which crucially does not degenerate as the story 553

gets longer. We further show that we can train 554

neural language models to emulate the logic of the 555

CAST constraints using reinforcement learning. 556

Our approach is relatively straightforward; the 557

CAST method can be applied to any neural lan- 558

guage model or be used to create a labeled fine- 559

tuning dataset. The approach presents a first at- 560

tempt at building text generation systems that rea- 561

son about their reader along multiple dimensions. 562
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A Implementation Details674

A.1 Data675

We use the preprocessed ROCStories corpus of676

5-sentence stories (588,966 stories) and joint677

ATOMIC and ConceptNet dataset converted to tem-678

plate sentences (1,174,267 train/66,856 dev/73,083679

test), both provided by Guan et al.2 We shuffle680

and split the ROCStories dataset into 80% (78,528)681

train and 20% (19,633) test sets.682

Following Guan et al. (2020), character names in683

the ROCStories corpus are replaced with [MALE]684

or [FEMALE] tags. This prevents skewed predic-685

tions due to the presence of certain names in a686

small dataset such as ROCStories and also allows687

us to focus on 2-character stories without having688

to perform NER on generated sentences to remove689

extraneously generated names outside of the two690

main characters. It also allows a direct comparison691

to prior work. After a story is generated, we replace692

the [MALE] and [FEMALE] tags with user-inputted693

names, assuming the subject and object of the first694

sentence are the subsequently-generated tags.695

A.2 Models696

Following Guan et al., we use the small version of697

GPT-2 with 124M parameters as the base for all698

fine-tuned models. When fine-tuning GPT-2 on ei-699

ther ROCStories and the commonsense knowledge700

resources (done separately), we train with a learn-701

ing rate of 0.00005, and using the Adam optimizer702

with gradient clipping at a max norm of 1. All703

models were trained on single GeForce RTX 2080704

GPUs in Pytorch using the Huggingface Transform-705

ers library.3 We replicate the multi-task baseline706

of Guan et al. in Tensorflow using their provided707

code.4 We train with early stopping on the dev set708

(80% train,10% dev,10% test split) loss with a pa-709

tience of 10 epochs. Both models converge within710

1-2 epochs. All other training details are kept the711

same.712

We use top-p sampling (Holtzman et al., 2019)713

with a value of 0.9, a temperature of 1, and a max714

length of 20 tokens per sentence to sample from all715

models.716

A.3 Character Conditioned Generation717

We applied two methods to enforce the telling of a718

two-character narrative in an interleaving fashion719

2https://cloud.tsinghua.edu.cn/d/670f7787b6554f308226/
3https://huggingface.co/transformers/
4https://github.com/thu-coai/CommonsenseStoryGen

wherein characters take turns being the subject of 720

each sentence. The first method is to directly con- 721

dition the language model on the concatenation of 722

the previous story context and the tag denoting the 723

character who is to take the next turn. For exam- 724

ple if the last sentence in the story is “[MALE] was 725

upset with [FEMALE].”, we append the tag of the 726

opposite character to the context, i.e., [FEMALE]. 727

Since the next sentence now starts with the tag as- 728

sociated with the opposite character of the one who 729

acted in the previous sentence, the language model 730

will be biased toward describing an action for that 731

character. 732

The second method is to fine-tune the lan- 733

guage model by formulating the input as ∗T∗ 734

[s1, . . . , si−1], where T is the tag denoting the char- 735

acter who is to take a turn. For example, for the 736

story, “[MALE]was upset with [FEMALE]. Because 737

of this, [FEMALE] apologized.”, the prompt is for- 738

mulated as “* [FEMALE] * [MALE] was upset with 739

[FEMALE].” The language model is fine-tuned by 740

back-propagating the loss calculated on the sen- 741

tence “Because of this, [FEMALE] apologized.” 742

A.4 CAST 743

When producing commonsense inferences from 744

COMET, we use “beam-5" setting to generate 5 745

inferences for each inference type, which results 746

in a higher percent of matched inferences in our 747

preliminary experiments. We also qualitatively ob- 748

serve that matching on a larger set of inferences 749

(as shown in the demo5) more often results in at 750

least one or a few high-quality inferences, due to 751

COMET having some error. 752

As mentioned in the body of the text, we use a 753

semantic similarity threshold of 80% and require 2 754

of 3 inferences to match. Runtime is feasible due 755

to matching on two out of three inference filters 756

and using the 5-beam COMET output. However, in 757

some rare cases, no matching next-sentence candi- 758

date can be found. If no qualified sentence is found 759

after 50 generated candidates, in order to avoid 760

potentially infinite search we loosen the filtering 761

strength to match only one pair of inferences. 762

A.5 Preliminary Study Questions 763

• The story FOLLOWS A SINGLE PLOT. 764

• The story’s events OCCUR IN A PLAUSI- 765

BLE ORDER. 766

• The story AVOIDS REPETITION. 767

5https://mosaickg.apps.allenai.org/comet_atomic
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• The story IS ENJOYABLE.768

A.6 RL Fine-Tuning769

We generate 30 5-sentence stories with CAST, us-770

ing 40 different seeds. 2 sentence pairs are gener-771

ated when generating each following sentence and772

each 5-sentence story is composed of 4 following773

sentence. Hence, 2×4×30×40 sentence pairs are774

generated to fine-tune GPT-ROC with reinforce-775

ment learning technique for 1 iteration. We use776

ρ = 0.001 in Section 3.3 to punish the "unmatch"777

sentence pairs.778

B Additional Story Outputs779

Additional 5-sentence story examples are as fol-780

lows,781

782

Seed Prompt:783

Bob and Alice went hiking together.784

785

CAST:786

Alice was excited because she planned a picnic.787

Bob was excited because he was staying up late at788

night.789

Alice felt much better about her camping trip.790

Bob spent the night playing in the woods.791

792

GPT-ROC:793

Alice was being very loud.794

Bob told Alice they did not agree.795

Alice ordered pizza to be delivered.796

Bob showed up later and Alice was pleased.797

798

CAST-RL:799

Alice decided to take a group photo.800

Bob shared the picture with Alice.801

Alice came over and smiled at Bob.802

Bob was so happy that he took the picture.803

804

Guan et al. (2020):805

Alice thought that the hike was cool.806

Bob was pretty cool.807

Alice reminded him of the great fall, especially in808

the forest.809

Bob was cute, but Alice was lost.810

811

812

Seed Prompt:813

Bob asked Alice to come over for dinner.814

815

CAST:816

Alice wanted to go to a party. 817

Bob agreed to go with her. 818

Alice and Bob went to the concert. 819

Bob bought a bottle of wine, and they enjoyed their 820

time. 821

822

GPT-ROC: 823

Alice said yes. 824

Bob put on his clothing. 825

Alice walked out of the restaurant. 826

Bob didn’t give Alice her favorite shirt. 827

828

CAST-RL: 829

Alice said yes, so he brought her food. 830

Bob had dinner with Alice that night. 831

Alice said yes to the dinner. 832

Bob was happy that he invited her to dinner with 833

him. 834

835

Guan et al. (2020): 836

Alice drove and came over Bob ’s house in time. 837

Bob decided to let Alice choose the foods. 838

Alice ate some dog food and then she met her hus- 839

band. 840

Bob offered Alice a side of anything he had for 841

dinner. 842

843

844

Seed Prompt: 845

Bob took Alice fishing in the summer. 846

847

CAST: 848

Alice waited at the lake for hours. 849

Bob got another boat and brought it back home. 850

Alice and Bob fished the next day. 851

Bob enjoyed the fishing and had a great time. 852

853

GPT-ROC: 854

Alice took his friend’s boat. 855

Bob brought with him to the water. 856

Alice stuck her hand out a river but the fishing got 857

stuck. 858

Bob snapped his fishing line and the boat stopped 859

in the middle. 860

861

CAST-RL: 862

Alice caught ten fish. 863

Bob was pleased that he caught ten fish. 864

Alice was very pleased to have a good fish. 865

Bob is glad that he caught ten fish. 866

867

11



Guan et al. (2020):868

Alice got seasick.869

Bob asked Alice to help him.870

Alice went to Bob ’s house to tow Bob ’s boat.871

Bob got a surfboard for a big fishing trip.872

873

874

Seed Prompt:875

Bob was engaged to Alice.876

877

CAST:878

Alice wanted a diamond ring.879

Bob thought that ring was the perfect diamond.880

Alice loved the diamond ring and decided to buy it.881

Bob went to the store and bought the ring.882

883

GPT-ROC:884

Alice invited him to her wedding.885

Bob refused and immediately broke down.886

Alice stormed out of the door.887

Bob was very upset that he would never see her888

again.889

890

CAST-RL:891

Alice was going on a date with Bob.892

Bob agreed to the date and married her.893

Alice now has two kids and needs the baby.894

Bob is very happy he finally realized she was un-895

happy.896

897

Guan et al. (2020):898

Alice just got a new husband.899

Bob wondered what to expect.900

Alice bought the nice wedding ring from a daycare.901

Bob wore it to the wedding.902

903

904

Seed Prompt:905

Bob took Alice to school today.906

907

CAST:908

Alice was a freshman.909

Bob took her to the library.910

Alice was excited to take the long bus ride to the911

library.912

Bob continued the long walk through the library.913

914

GPT-ROC:915

Alice really needed Bob to come with her.916

Bob knew he couldn’t get her to come with him.917

Alice saw Bob grow up and change his attitude.918

Bob is grounded because Bob is getting away with 919

everything. 920

921

CAST-RL: 922

Alice had been waiting for hours at school. 923

Bob was relieved to see her take the bus to school. 924

Alice was excited to see the bus arrive. 925

Bob was proud of her for taking the bus to school. 926

927

Guan et al. (2020): 928

Alice was nervous because Bob didn’t know how 929

to tap dance. 930

Bob was excited for his first attempt at tap dancing. 931

Alice was impressed and wanted to learn. 932

Bob started his first dance at the dance school. 933

934

Additional 10-sentence story examples are as fol- 935

lows: 936

937

Seed Prompt: 938

Bob went on her very first date with Alice. 939

940

CAST: 941

Alice was very excited about having a date with 942

Bob. 943

Bob was excited and eager. 944

Alice informed Bob she was very excited for him. 945

Bob was very appreciative. 946

Alice said it was a perfect time. 947

Bob and Alice had a wonderful first date. 948

Alice was surprised she was invited to his birthday. 949

Bob was thrilled. 950

Alice was happy to have a new boyfriend. 951

952

GPT-ROC: 953

Alice asked him to meet her at the restaurant. 954

Bob refused to get her out of the car. 955

Alice began to panic and began to argue with Bob. 956

Bob ended up never talking to Alice. 957

Alice began to return the phone and she called the 958

restaurant. 959

Bob got a new date with Alice. 960

Alice left Bob with a very happy reunion. 961

Bob is so happy he is now dating Alice. 962

Alice is so happy she loves her new boyfriend. 963

964

Guan et al. (2020): 965

Alice and Bob didn’t realize that Bob loved movies. 966

Bob’s friend, Alice, saw the movie with Alice. 967

Alice and Bob were good friends. 968

Bob’s friend, Alice, screamed for Alice. 969
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Alice was their eyes met her eyes.970

Bob and Alice’s grandparents were never match.971

Alice because they had ever though, they thought972

the end the words said, she passed with Alice.973

Bob and they agreed that they went out the eyes.974

Alice felt they got puppies and they do the thought975

she was their eyes Alice had.976

977

978

Seed Prompt:979

Bob broke up with Alice.980

981

CAST:982

Alice was very hurt and very angry.983

Bob knew he would have to live with his pain.984

Alice said she could give him a relief.985

Bob felt much better after that.986

Alice felt even better in peace.987

Bob is now happy with himself.988

Alice felt much better.989

Bob will make himself a happy man.990

Alice feels much better after having peace.991

992

GPT-ROC:993

Alice had a fake boyfriend.994

Bob found out Alice was missing.995

Alice promised to find her.996

Bob found her in an alley.997

Alice never broke up with Bob again.998

Bob never broke up with Alice.999

Alice was so happy to see him again.1000

Bob is very happy being close to her.1001

Alice is happy that he’s okay now.1002

1003

Guan et al. (2020):1004

Alice didn’t want to get it.1005

Bob thought that he was too thin.1006

Alice said he could give back inside a horse.1007

Bob could bring along for a ride and to return to1008

the river.1009

Alice had to drive for three days and she realized1010

she was cheating.1011

Bob and Alice got into a fight.1012

Alice ran away with Alice and grounded.1013

Bob and sent Alice.1014

Alice and a girl kicked each other.1015

1016

1017

Seed Prompt:1018

Bob went to see Alice today.1019

1020

CAST: 1021

Alice told him about the movie she loved to watch. 1022

Bob grabbed a movie poster from the library. 1023

Alice shared her own reaction to the movie. 1024

Bob watched the movie that night. 1025

Alice felt very satisfied after the movie was over. 1026

Bob went home happy that he watched the movie. 1027

Alice has been a huge fan of the movie ever since. 1028

Bob looks forward to a nice vacation at the movies. 1029

Alice is glad that she shared her own comments to 1030

the movie. 1031

1032

GPT-ROC: 1033

Alice wanted to buy her a necklace. 1034

Bob felt bad for her. 1035

Alice got the necklace. 1036

Bob made it. 1037

Alice was very happy with the necklace. 1038

Bob was glad that she got to see Alice. 1039

Alice will never forget her great necklace. 1040

Bob will never forget the necklace that Alice 1041

bought. 1042

Alice is glad that she bought her necklace. 1043

1044

Guan et al. (2020): 1045

Alice was nice and gregarious. 1046

Bob had a great time. 1047

Alice had some great food and wine. 1048

Bob couldn’t wait to see Alice again. 1049

Alice let him take a bath. 1050

Bob felt smarter and had a good time again. 1051

Alice also got his great seeing Alice tattoo. 1052

Bob had a good time. 1053

Alice tattooy from his favorite j tomorrow too. 1054

1055

1056

Seed Prompt: 1057

Bob went over to play at Alice’s house. 1058

1059

CAST: 1060

Alice liked to watch movies. 1061

Bob was always there watching movies. 1062

Alice saw a movie she wanted to see. 1063

Bob was very glad to buy that movie. 1064

Alice was so happy with the movie he bought. 1065

Bob was excited to be watching the movie with 1066

Alice. 1067

Alice could not wait to see the movie with Bob. 1068

Bob and Alice had so many fun. 1069

Alice laughed and thanked Bob for the great movie. 1070

1071
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GPT-ROC:1072

Alice and Bob played soccer.1073

Bob’s mom told him to throw a kick.1074

Alice kicked him in the leg.1075

Bob was glad that he never played there again. Al-1076

ice’s mom apologized for the incident.1077

Bob’s mom never learned to kick in the leg again.1078

Alice was very glad he never stopped playing soc-1079

cer with her.1080

Bob was happy that he was never kicked again.1081

Alice still still plays soccer every now and loves1082

hertime.1083

1084

Guan et al. (2020):1085

Alice was a baby dolls.1086

Bob told Alice he could save a doll.1087

Alice went to the video game section to change the1088

game.1089

Bob was amazed to see who did the laundry to the1090

last minute.1091

Alice waved and proposed the doll girls.1092

Bob wished her that she was getting a doll.1093

Alice helped him with the $40 and she gave her1094

$100, but by buttering buttering a doll.1095

Bob’s doll broke.1096

Alice had an ruined doll and they would buy her.1097

1098

1099
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