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Abstract
We consider the task of identifying and estimat-
ing a parameter of interest in settings where data
is missing not at random (MNAR). In general,
such parameters are not identified without strong
assumptions on the missing data model. In this
paper, we take an alternative approach and in-
troduce a method inspired by data fusion, where
information in the MNAR dataset is augmented
by information in an auxiliary dataset subject to
missingness at random (MAR). We show that
even if the parameter of interest cannot be identi-
fied given either dataset alone, it can be identified
given pooled data, under two complementary sets
of assumptions. We derive inverse probability
weighted (IPW) estimators for identified parame-
ters under both sets of assumptions, and evaluate
the performance of our estimation strategies via
simulation studies, and a data application.

1. Introduction
Missing data is a pervasive and challenging issue in vari-
ous applications of statistical inference, such as healthcare,
economics, and the social sciences. Data are said to be
missing at random (MAR) when the mechanism of miss-
ingness depends only on the observed data. Strategies to
deal with MAR have been extensively investigated in the
literature (Dempster et al., 1977; Robins et al., 1994; Tsiatis,
2006; Little & Rubin, 2019). In many practical settings,
MAR is not a realistic assumption. Instead, missingness
often depends on variables that are themselves missing or
unobserved. Such settings are said to exhibit nonignorable
missingness, with the resulting data being missing not at
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random (MNAR) (Fielding et al., 2008; Schafer & Graham,
2002). A classic example of a scenario with MNAR data
occurs in longitudinal studies, where, due to the treatment’s
toxicity, some patients may become too ill to visit the clinic,
leading to the situation where the outcome of certain pa-
tients with circumstances associated with those outcomes
are more likely to be lost to follow-up (Ibrahim et al., 2012).

Existing MNAR models typically impose constraints on
target distribution and its missingness mechanism, ensuring
the parameter of interest can be identified. This approach
goes back to the work of (Heckman, 1979), who proposed
an outcome-selection model based on parametric modeling
of outcome variable and missing pattern. (Little, 1993) intro-
duced the pattern-mixture model where one needs to specify
the distribution for each missing data pattern independently.
Other related work involves permutation model (Robins,
1997), the discrete choice model (Tchetgen Tchetgen et al.,
2018), the block-sequential MAR model (Zhou et al., 2010),
the no self-censoring (NSC) model (Shpitser, 2016; Sadinle
& Reiter, 2017; Malinsky et al., 2021), the instrumental
variable approaches (Miao et al., 2015; Tchetgen Tchetgen
& Wirth, 2017), and approaches based on graphical models
(Mohan et al., 2013; Bhattacharya et al., 2019; Nabi et al.,
2020) just to name a few.

In some applications where MNAR data is present, re-
searchers may have access to additional auxiliary data on
informative variables that are themselves not missing, or
missing given a simpler missingness process. Hence, it is
of interest to investigate combining the information in the
available datasets. Such a data fusion strategy is natural in
many applications: for example, surveys of HIV patients
containing sensitive questions (such as those on sexual his-
tory) with high degree of missingness may be augmented
with other sources of information with simpler missingness
mechanisms, such as electronic health records. Similarly,
our methods are inspired by settings where large, poorly
structured datasets are enhanced by smaller, well-curated
datasets, such as combining electronic health record data
on patients, which often exhibits complex non-ignorable
missingness patterns, with observational study data on sim-
ilar patients, where missingness is like at random due to
standard study attrition.
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In this paper, we demonstrate that a parameter of interest
may be identified given MNAR data in a primary domain,
and data from an auxiliary domain, even though the same pa-
rameter is not identified from data from either domain alone.
In the primary dataset, information on our target variable of
interest as well as other variables in the model is only par-
tially observed with an MNAR mechanism, which is more
commonly encountered in real-world data. In the auxiliary
dataset, the target variable of interest is fully unobserved,
and the rest of the variables exhibit missingness with a MAR
mechanism. Using the language of graphical models, we
propose two complementary models of the missing mech-
anisms in the MNAR domain that allow different causal
relations among the variables. Specifically, in the proposed
Model 1, we consider the case where the missingness of
the outcome is directly associated with another variable that
may itself be potentially missing. In the proposed Model
2, we consider the case where the missingness is directly
associated with a potentially missing outcome itself. We
introduce a novel data fusion technique that combines in-
formation from the primary and the auxiliary datasets to
achieve identifiaction of the parameter of interest. We illus-
trate our method by estimating the hospitalization rate in
New York during the initial shortage stage of the COVID-
19 pandemic in March 2020 where hospitalization status
was often unrecorded with a complex censoring mechanism,
with the auxiliary data from March 2023, a period charac-
terized by improved conditions and thus reduced level of
missingness with a simpler censoring mechanism.

Similar data fusion approaches exist in the literature of
causal inference considering settings where the presence
of unobserved confounders in the system may render the
causal effect of a treatment on an outcome variable uniden-
tified. For instance, works such as (Athey et al., 2016; 2020;
Ghassami et al., 2022; Imbens et al., 2022) demonstrated
that while information is often missing for long-term effects
in randomized trials (Bouguen et al., 2019), auxiliary ob-
servational studies may contain information on long-term
effects of treatments that can render the causal effect iden-
tified. Note that this is fundamentally different from the
case that the parameter is identified in at least one of the
domains and the purpose of combining datasets is improve-
ment in estimation efficiency, as opposed to identification
(see, for example, (Kallus & Mao, 2020)). To the best of
our knowledge, our work is the first to pursue data fusion
for the purpose of identification in an MNAR setting.

The rest of the paper is organized as follows. In Section 2,
we introduce the concepts of missing data and directed
acyclic graphs (DAGs), providing an overview of the prob-
lem setup and the parameters of interest. In Section 3,
we describe the assumption of our data fusion setting and
present an identification approach from the pooled data un-
der two complementary sets of assumptions. Graphical

models are used to illustrate the idea of data fusion and
missing mechanisms. For estimation, we propose an in-
verse probability weighted (IPW) estimator for the target
parameter in both models, discussed in Section 4. The
study of the performance of the proposed estimators and a
comparison with a MAR estimator and a multiple imputa-
tion by chained equations (MICE) approach (van Buuren
& Groothuis-Oudshoorn, 2011) via a series of simulations
is presented in Section 5. We describe the COVID-19 ap-
plication analysis in Section 6. We conclude and discuss
future work in Section 7. All the proofs are provided in the
Appendix.

2. Preliminaries
Missing Data. We consider a missing data model which
is a collection of distributions that are defined over a set
of random variables {X,R, Y (1), Y,M (1),M}. In this con-
text, X represents a set of covariates that are always ob-
served, Y (1) and M (1) represent the underlying outcome
variable of interest and another covariate (or set of covari-
ates), respectively, that could be potentially missing, R
is a binary indicator variable of missingness for the vari-
ables Y (1) and M (1), and Y and M represent the observed
versions of Y (1) and M (1): when R = 1, the correspond-
ing observed variables are Y ≡ Y (1) and M ≡ M (1),
when R = 0, Y = “?” and M = “?”. The full distribu-
tion (law) of a missing data model is p(X,Y (1),M (1), R),
and it is generally partitioned into two pieces: the target
distribution p(X,Y (1),M (1)) and the missingness mech-
anism p(R|X,Y (1),M (1)). While the target distribution
consists of potentially missing random variables, the miss-
ingness mechanism denotes the patterns exhibited by miss-
ingness indicators given the observed and missing variables.
The observed distribution is p(X,R, Y,M). When deal-
ing with missing data problems, the objective is to obtain
estimations or inferences about functions of variables in
{X,Y (1),M (1)} based on the observed data.

Directed Acyclic Graphs (DAGs). Several widely used
missing data models (Robins, 1997; Shpitser, 2016; Miao
et al., 2015; Zhou et al., 2010) can be thought of as dif-
ferent factorizations of the complete data distribution and
represented by DAGs (Mohan et al., 2013). A DAG, de-
noted by G(V ), is a graph with a vertex set V connected
by direct edges, ensuring that no cycles exist within the
structure. Statistical models associated with a DAG G
entail probability distributions that factorize as p(V ) =∏

Vi∈V p
(
Vi | paG(Vi)

)
, where paG(Vi) are the parents of

node Vi within the DAG G. Conditional independences in
any distribution obeying the above factorization may be read
off via the d-separation criterion (Pearl, 1988). Graphical
models that allow for context-specific dependence structures
have been considered in (Nyman et al., 2014) and will be
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employed in our work.

Problem Setup. We consider a setting with two available
datasets, a primary dataset and an auxiliary dataset. The
primary dataset is drawn from a primary domain referred
to as Domain 1, where the outcome whose mean we would
like to estimate is observed but potentially missing not at
random. The auxiliary dataset is drawn from an auxiliary
domain referred to as Domain 2, where the outcome is
not recorded, but an auxiliary variable set is recorded, but
potentially missing at random.

Let G be the binary indicator of the domain: G = 1 in-
dicates data in Domain 1 which is MNAR, and G = 2
indicates data in the auxiliary MAR domain. Let R1, R2

denote indicators for missingness in Domain 1 and Domain
2, respectively. Therefore, observed variables in the Domain
2 are {G = 2, X,M,R2}. In the Domain 1, we can observe
{G = 1, X,M,R1, Y }, where the missing indicator R1 is
subject to potentially missing variables {M (1), Y (1)}, in-
dicating that M,Y are missing not at random. R1 is the
missing indicator for both M (1) and Y (1), i.e., if R1 = 0,
{M (1), Y (1)} will be missing at the same time, and there-
fore M = “?”, Y = “?”. The cause of missingness in
Domain 1 can be either M (1), or the outcome itself Y (1);
we discuss the identification and estimation of these two
cases in what we will call Model 1 and Model 2, respectively.
In the pooled dataset containing the collection of random
variables {G,X,M,R, Y }, where R = R1 if G = 1 and
R = R2 if G = 2.

Estimands. Our target of inference is the mean of a (po-
tentially missing) outcome Y (1) in the primary domain (de-
noted by G = 1). That is, the parameter of interest in this
work is

β = E[Y (1) | G = 1].

As mentioned earlier, the outcome variable is exclusively
present in the primary domain (Domain 1) where we have
identification challenges due to MNAR condition. In order
to overcome this obstacle, we utilize information from the
auxiliary domain (Domain 2) to construct a framework for
identification and estimation.

3. Identification
In this section, we examine two complementary sets of
assumptions pertaining to the identification of Model 1 and
Model 2. Subsequently, we establish the corresponding
identification theorems. Our discussion commences with
assumptions shared by both models in Section 3.1, followed
by a separate exploration of additional assumptions and
identification for each model. Before proceeding further,
we note that our assumptions lead to graphical models of
missing data spanning two domains, with the conditional

independences defining the model illustrated (via the d-
separation criterion) in the graphs shown in Fig. 1. Note
that any graphical model implying the same conditional
independence restrictions as these figures is also consistent
with our model.

3.1. Data Fusion Assumptions

The full data distribution in the MNAR dataset (Do-
main 1), denoted as p(X,M (1), Y (1), R1, G = 1), can-
not be deduced solely from the observed data distribu-
tion p(X,M, Y,R1, G = 1), unless certain constraints are
placed on the mechanism responsible for data missingness.
In our analysis, we avoid positing strong assumptions for
identification and instead, leverage the information in Do-
main 2. In this domain, data is missing at random which is
formalized in the following.
Assumption 1 (Auxiliary domain MAR). In auxiliary do-
main (G = 2), M (1) is missing at random, i.e., the missing
indicator variable is independent of the potentially missing
variable M (1) conditional on observed covariates X . That
is,

M (1) ⊥⊥ R | X,G = 2. (1)

In order for us to be able to leverage the auxiliary domain,
the information encoded in this domain must be relevant
to the primary domain. Such a relevance requirement is
usually stated by a external validity-type assumption in the
literature (Hotz et al., 2005). We require the relevance of the
information in the two domains in the form of the following
selection assumption.
Assumption 2 (Selection at random). Given covariates X ,
the domain indicator G is conditionally independent of
M (1). That is,

M (1) ⊥⊥ G | X. (2)

Assumption 2 limits the differences of M (1) between the
two populations by requiring that conditioned on the rest of
the covariates, it is as if units are randomly selected to be-
long to the domains. In practice, this assumption should be
discussed and justified by domain experts when combining
the datasets.

3.2. Model 1

In Model 1, we consider the scenario where the covariates X
and the potentially missing variable M (1) contribute to the
missingness in the primary domain, yet the outcome variable
is not directly involved in the missingness mechanism, i.e.,
it is independent of the missing indicator conditioned on
M (1) and X . This restriction is formulatted in the following
Assumption 3.
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Figure 1. Graphical models: (a) The auxiliary MAR data domain in both Model 1 and Model 2. (b) Primary MNAR domain in Model 1.
(c) The pooled data for Model 1, including the selection at random mechanism. (d) Primary MNAR domain in Model 2. (e) The pooled
data for Model 2, including the selection at random mechanism. Notice the text G = 1 on the dotted arrow denotes a context-dependent
relationship. Every vertex in the graph is assumed to have full support.

Assumption 3 (Primary domain MNAR). In primary domain
(G = 1), the missing mechanism is independent of the
outcome Y (1) given both M (1) and covariates X . That is,

Y (1) ⊥⊥ R | X,M (1), G = 1. (3)

The data fusion approach represents the two domains and
the selection among them by a single graphical model is
shown in Fig. 1: Fig. 1 (a), (b) and (c) show graphical repre-
sentations for Domain 1, Domain 2 and the pooled dataset,
respectively, which satisfy Assumptions 1 and 3. Fig. 1 (a)
represents the graphical model in the Domain 2 (which is the
pooled data set conditioned on G = 2). Notice that variable
Y is absent in the second Domain. Fig. 1 (b) represents the
graphical model in Domain 1 (which is the pooled data set
conditioned on G = 1). X is the same list of covariates as
that in Domain 1, and R1 is the missing indicator for both
M (1), Y (1) in Domain 1. We represent the graphical model
of both domains pooled together in Fig. 1 (c), where the
text G = 1 on the dotted arrow from M (1) to R denotes a
conditional relationship that M (1) is parent of R if and only
if G = 1. It is important to note that the presented graphical
models in Fig. 1 are only one example of models that satisfy
our assumptions. For instance, the edges between Y (1) and
M (1) and X and G can be reversed without changing the
model, and thus the identifying assumptions.
Theorem 1 (Identification in Model 1). Under Assump-
tions 1, 2, and 3, parameter β = E[Y (1)|G = 1] is identified
using the following functional

E[E[g1(X,M) | X,G = 2, R = 1] | G = 1], (4)

where g1(X,M) ≡ E[Y |X,M,G = 1, R = 1].

The identifying functional involves three distributions:
p(Y | X,M,G = 1, R = 1), p(M | X,G = 2, R = 1),
and p(X | G = 1). Notice that p(X | G = 1) in-
volves no potentially missing variable and is thus iden-
tified. Distributions p(Y | X,M,G = 1, R = 1) and

p(M | X,G = 2, R = 1) are also identified as they are
conditioned on R = 1. As a result, the mean of the poten-
tially missing outcome variable in the first domain can be
identified from the observational data.

3.3. Model 2

In Model 2, we consider a scenario where the potentially
missing outcome Y (1) is directly associated with the miss-
ingness indicator in Domain 1. This necessitates assump-
tions complementary to those in Model 1 for the identifica-
tion and estimation of the outcome mean. Inspired by the
shadow variable approach in the study of MNAR data (Miao
et al., 2015), we consider the following assumption.
Assumption 4. The potentially missing variable M (1) satis-
fies the following conditional independence requirements

M (1) ⊥⊥ R | X,Y (1), G = 1, (5)

M (1) ⊥̸⊥ Y (1) | X,R = 1, G = 1. (6)

Assumption 4 formalizes the idea that the missingness pro-
cess in Domain 1 may depend on (X,Y (1)), but not on
the potentially missing variable M (1) after conditioning on
(X,Y (1)). One notable distinction from the assumption in
(Miao et al., 2015) is that the counterpart of variable M (1)

in their setting, which is called the shadow variable, is fully
observed, whereas our framework encompasses scenarios
where this variable may potentially be missing. Furthermore,
the outcome variable serves as both the cause of its own
missingness and the missingness of the variable M (1). This,
in turn, creates a situation characterized by not at random
missingness.

The graphical model for Model 2 is shown in Fig. 1 (a), (d)
and (e). The structure of Domain 2 of Model 2 (Fig. 1 (a))
is the same as that in Model 1. However, for Domain 1, a
key difference is that Y (1) contributes to the missingness
instead of M (1), as is shown in Figure 1 (d), while Figure 1
(e) shows both domains pooled together.
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As in the shadow variable approach of (Miao et al., 2015),
we leverage the odds ratio function to encode the devia-
tion between the observed and missing data distributions in
Domain 1, which is defined as

OR
(
Y (1), X,M (1)

)
(7)

=
p
(
Y (1) | R = 0, X,M (1), G = 1

)
p
(
Y (1) | R = 1, X,M (1), G = 1

)
×

p
(
Y (1) = 0 | R = 1, X,M (1), G = 1

)
p
(
Y (1) = 0 | R = 0, X,M (1), G = 1

) .
The following proposition shows that certain parts of the
full data distribution are identified under the assumptions in
Model 2. These results will allow us to obtain identification
of the target parameter.
Proposition 1 (Miao et al. (2015)). Under Assumption 4,
for all (X,Y (1),M (1)) in Domain 1, we have

OR
(
Y (1), X,M (1)

)
= OR

(
Y (1), X

)
=

p
(
R = 0 | X,Y (1), G = 1

)
p
(
R = 1 | X,Y (1), G = 1

)
×

p
(
R = 1 | X,Y (1) = 0, G = 1

)
p
(
R = 0 | X,Y (1) = 0, G = 1

) ,
(8)

p
(
Y (1) | R = 0, X,M (1), G = 1

)
=

p
(
Y (1) | R = 1, X,M (1), G = 1

)
OR

(
X,Y (1)

)
E
[
OR

(
X,Y (1)

)
| R = 1, X,M (1), G = 1

] , (9)

p
(
R = 1 | X,Y (1), G = 1

)−1

= 1 +
OR

(
X,Y (1)

)
p
(
R = 0 | X,Y (1) = 0, G = 1

)
p
(
R = 1 | X,Y (1) = 0, G = 1

) ,

(10)

p
(
R = 1 | X,Y (1) = 0, G = 1

)
=

E
[
OR

(
X,Y (1)

)
| R = 1, X,G = 1

]
E
[
OR

(
X,Y (1)

)
| R = 1, X,G = 1

]
+ p(R=0|X,G=1)

p(R=1|X,G=1)

,

(11)

E{ÕR
(
X,Y (1)

)
| R = 1, X,M (1), G = 1} =

p
(
M (1) | X,R = 0, G = 1

)
p
(
M (1) | X,R = 1, G = 1

) , (12)

where,

ÕR
(
X,Y (1)

)
=

OR
(
X,Y (1)

)
E{OR

(
X,Y (1)

)
| R = 1, X,G = 1}

.

(13)

We present the proof of these results in the Appendix.
Equation (8) shows that the odds ratio function in the
MNAR domain is only related to {X,Y (1)} under Assump-
tion 4. Equation (9) shows that the missing data distribu-
tion of the outcome can be recovered by imposing odds
ratio function and the complete case distribution. Equa-
tion (10) shows that the propensity of missingness given
the outcome, p

(
R = 1 | X,Y (1), G = 1

)
, can be recov-

ered by the odds ratio function and baseline propensity
score p

(
R = 1 | X,Y (1) = 0, G = 1

)
, while the baseline

propensity score depend on the odds ratio function with
p(R = 1|X,G = 1) obtained as stated in Equation (11).

In light of Proposition 1, it becomes evident that the crux
of the matter lies in the identification of the odds ratio func-
tion. Equation (12) serves as a pivotal mathematical ex-
pression for OR(X,Y (1)). With p(M (1)|X,R = 0, G =
1), p(M (1)|X,R = 1, G = 1) and p(Y (1)|M (1), X,R =
1, ), Equation (12) is a Fredholm integral equation of the
first kind with ÕR(X,Y (1)) to be solved for. However,
the distribution of p

(
M (1) | X,R = 0, G = 1

)
cannot be

observed directly from Domain 1. Therefore, to identify
the missing distribution p

(
M (1) | X,R = 0, G = 1

)
effec-

tively, we employ the observed distribution in Domain 2 by
noticing that under Assumption 1 and 2, we have

p(M (1)|X,R = 0, G = 1)p(R = 0|X,G = 1)

= p(M |X,R = 1, G = 2)− p(M,R = 1, |X,G = 1).
(14)

As the distributions on the right-hand side are all observed,
we conclude that ÕR(X,Y (1)) can be solved for, and hence,
odds ratio OR(X,Y (1)) can be obtained by the formula in
Equation (13). Note that Equation (14) serves as a bridge, al-
lowing us to leverage information from Domain 2 to recover
the missing distribution in Domain 1. Yet, to guarantee
unique identification of OR(X,Y (1)), we need to guaran-
tee the uniqueness of the solution for Equation (12). Hence,
we assume the condition below stands.

Assumption 5 (Completeness of p(Y |R = 1,X,M,G = 1)).
For all square integrable functions h(X,Y (1)), we have
E[h(X,Y (1)) | R = 1, X,M,G = 1] = 0 almost surely if
and only if h(X,Y (1)) = 0 almost surely.

Theorem 2. (Identification in Model 2) Under Assump-
tions 1, 2, 4 and 5, odds ratio OR(X,Y (1)) is uniquely
identified and parameter β = E[Y (1)|G = 1] is identified
using the following formula:

E[Y (1)|G = 1]

=
∑
y,m,x

yp(Y = y|X = x,R = 1, G = 1,M = m)

×

(
p(M = m,X = x,R = 1|G = 1)
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+
OR

(
X = x, Y (1) = y

)
E
[
OR

(
X,Y (1)

)
| R = 1, X = x,M = m,G = 1

]
×
[p(M = m|X = x,R = 1, G = 2)

p(R = 0|X = x,G = 1)

− p(M = m,R = 1|X = x,G = 1)

p(R = 0|X = x,G = 1)

]
× p(X = x,R = 0|G = 1)

)
. (15)

4. Estimation
In this section, we focus on the estimation aspect of the
problem and propose estimation strategies for the identified
functionals for our target parameter under Model 1 and
Model 2. We propose inverse probability weighting (IPW)
estimators for both models which rely on the propensity
scores. In what follows, Ê denotes the empirical mean
operator.

4.1. Model 1

Let q(X,M (1)) = 1/p(R = 1 | X,M (1), G = 1). Our
estimation strategy for the parameter in Equation (4) is as
follows.
Proposition 2. Under Assumptions 1, 2, and 3, a correctly
specified working model with parameters α, p(R = 1 |
X,M (1), G = 1;α); and the regularity conditions for esti-
mating equations described by (Newey & McFadden, 1994),
using a user-specified vector function h(X,M (1)), the IPW
estimator, denoted by βIPW , obtained by solving the esti-
mating equations below is consistent.

Ê
[(

q(X,M (1); α̂)R · h(X,M (1))
)
| G = 1

]
, (16)

− Ê
[
Ê
[
h(X,M (1)) | X,R = 1, G = 2

]
| G = 1

]
= 0

Ê
[
q(X,M (1); α̂)R · Y (1) − β̂IPW |G = 1

]
= 0. (17)

4.2. Model 2

We next consider the estimation of the parameter of in-
terest in Model 2. In the context of the shadow variable
configuration, (Miao et al., 2015) formerly introduced an es-
timator relying on odds ratio and baseline propensity score
in MNAR data. We extend that strategy here by leveraging
information from Domain 2 to compensate for the fact that
variable M (1) might be missing.

Our estimation strategy for the parameter in Equation (15)
is as follows.
Proposition 3. Under Assumptions 1, 2, 4 and 5, a working
model for odds ratio function OR(X,Y (1); γ) and the base-
line propensity score p(R = 1|X,Y (1) = 0, G = 1;α),
we can recover w(X,Y (1), G = 1;α, γ) = 1/p(R =

1|X,Y (1), G = 1;α, γ) using Equation (10). With the reg-
ularity conditions for estimating equations described by
(Newey & McFadden, 1994) and a user-specified vector
function h(X,M (1)), the IPW estimator, denoted by βIPW ,
obtained by solving the estimating equations below is con-
sistent.

Ê
[(

w(X,Y (1); α̂, γ̂)R · h(X,M (1))
)
| G = 1

]
(18)

− Ê
[
Ê
[
h(X,M (1)) | X,R = 1, G = 2

]
| G = 1

]
= 0,

Ê
[
(w(X,Y (1); α̂, γ̂)R · Y (1) − β̂IPW |G = 1

]
= 0.

(19)

5. Simulation Studies
We investigate the performance of the proposed framework
in Section 4 to estimate the outcome means in the primary
domain, β = E[Y (1) | G = 1], through a comprehensive
series of simulation experiments. For each model, we gen-
erate data consistent with the correctly specified working
model in estimation (T), and a misspecified one (F) to check
robustness. In both models, to streamline the estimation
process, we notice that flipping the edge from X to G does
not alter the underlying graph statistical model.

5.1. Simulation of Model 1

We first generate a binary grouping variable G with n ob-
servations. Each observation in G is randomly assigned a
value of 1 or 2 with equal probability, dividing the dataset
into Domain 1 (G = 1) and Domain 2 (G = 2).

For the auxiliary domain (G = 2), we assume the following
models for covariates X , variable M (1), and the propensity
score:

X | G = 2 ∼ N (0, 1)

M (1) | X,G = 2 ∼ N
(
0.4X2, 1

)
p(R = 1 | X,G = 2) = logis(1.4 +X)

where logis(x) = (1 + exp(−x))−1. Under this setting,
the missing data proportion of M in Domain 2 is between
50% and 60%.

For primary domain (G = 1), we posit varying distributions
for the covariates X , while maintaining the same distribu-
tion for M (1) given X , satisfying Assumption 2. Moreover,
we assume the distributions for Y (1) is a function of both
X and M (1) by Assumption 3:

X | G = 1 ∼ N (1, 1)

M (1) | X,G = 1 ∼ N
(
0.4X2, 1

)
Y (1) | X,M (1), G = 1 ∼ N

(
X +M (1), 1

)
p(R = 1 | X,M (1), G = 1) = logis(0.3 + 0.1X +M (1))

6
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(a) Model1 - T: model is correctly specified.
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(b) Model1 - F: model is misspecified.
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(c) Model2 - T: model is correctly specified.
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(d) Model2 - F: model is misspecified.

Figure 2. Simulation results for Model 1 and Model 2: Bias for estimation of E[Y (1) | G = 1]. Boxplots of correct and misspecified
settings, calculated from 1000 trials at sample sizes n ∈ {500, 1000, 2000}. The red point indicates the mean. Statistics of boxplots are
in Table 3 and Table 4. (a) MAR are clearly biased upwards while MICE estimates are biased downwards. (b) IPW estimates, though
slightly biased, concentrate around the true value as sample size increases. (c) IPW estimates are less biased than MAR and MICE. (d)
IPW estimates are less biased than MAR and MICE estimates.

Thus, the missing data proportion is between 20% and 40%.

For our IPW estimation approach, we specify a working
model for p(R = 1 | X,M (1), G = 1) = logis(α0 +
α1X +α2M

(1)), and a set of correctly specified estimation
equations for E[M (1) | X,R = 1, G = 2]. Considering
total sample sizes n ∈ {500, 1000, 2000}, we summarize
the results using boxplot in Fig. 2a. We generate additional
misspecified estimation approach by replacing with p(R =
1 | X,M (1), G = 1) = logis(0.3 + 0.1X − [M (1)]2), and
summarized in Fig. 2b.

For each scenario, we compare the result of our IPW esti-
mator with a naive estimator assuming Missing at Random
(MAR), which is derived through linear regression for Y
given X on the complete cases, and an estimator from the
completely imputed dataset using MICE.

For a specific pooled dataset, we used bootstrapping of size
k = 1000 to report correctly specified IPW estimation result
and 95% confidence interval (95% CI), as shown in Table 1.
A detailed comparison with MAR and MICE estimators
for both correctly (T) and incorrectly specified model is
presented in Table 5 in the Appendix.

5.2. Simulation of Model 2

The data generating process for Model 2 is slightly different
due to the factorization. We started by generating the binary
grouping variable G as that for Model 1. For primary do-
main (G = 1), we generate a covariate X|G = 1 ∼ N(0, 1),

Table 1. Bootstrap confidence intervals for Model 1 (T)
(True value of β = 1.8).

n Est. 95% CI Width Bias
500 1.941 [1.594, 2.275] 0.681 0.141
1000 1.744 [1.508, 1.970] 0.462 -0.056
2000 1.767 [1.598, 1.930] 0.332 -0.033

Table 2. Bootstrap confidence intervals for Model 2 (T).
(True value of β = −0.659).

n Est. 95% CI Width Bias
500 -0.557 [-0.815, -0.303] 0.513 0.102
n=1000 -0.760 [-0.949, -0.569] 0.380 -0.101
n=2000 -0.707 [-0.841, -0.561] 0.281 -0.048

and then generate (Y,M,R) as shown below:

M | R = 1, X,G = 1 ∼ N
(
−0.4X2, 1

)
Y | R = 1, X,M,G = 1 ∼ N (X +M, 1)

logit p(R = 1 | X,Y (1) = 0, G = 1) = 0.5 + 0.4X

OR(X,Y (1);G = 1) = exp(−0.3Y (1))

For the auxiliary domain (G = 2), we followed the same
generating process for {X,M (1)} as above, but a different
missing mechanism, p(R = 1 | G = 2, X) = logis(X).

In these specified conditions, the missing rate is between
40% and 50% in both domains. We employed correctly spec-
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ified estimation equations for E[M (1) | X,R = 1, G = 2],
and the above working models in Domain 2. We also gener-
ate a misspecified setting (F) by replacing with logit[p(R =
1|Y (1) = 0, X,G = 1)] = 0.5 + 0.4X + 0.4X2 but al-
ways impose first-order linear regression. We simulate 1000
replicates, with sample sizes n ∈ {500, 1000, 2000}. We
present the results using boxplots with a comparison of an
MAR estimator, a MICE estimator in Fig. 2c and Fig. 2d,
and summarize the statistics of boxplots in in Appendix
Table 4. Bootstrapping result is reported in Table 6.

6. Application to COVID-19 case data
In this section, we employ both Model 1 and Model 2 to
analyze COVID-19 case data in New York State (NYS),
focusing on estimating the hospitalization rate during the
initial wave of the pandemic around March 2020.

Due to surge of COVID-19 cases, the situation in NYS hos-
pitals in March 2020 was critical, with reported shortages,
and a triage system for patient care, leaving some without ad-
equate care (Schmitt-Grohé et al., 2020; Watkins, 2020). By
March 2023, COVID-19 was well on the way to endemicity,
and additional resources had been committed to COVID-19
patient care. Both domains exhibit missingness in hospital-
ization status. However, in our analysis, we assume March
2020 data to exhibit complex MNAR missingness due to
systemic early difficulties with COVID-19 respnose, while
later data from March 2023 to exhibit a more manageable
MAR missingness.

6.1. Data

The data source is the COVID-19 Case Surveillance Public
Use Data with Geography maintained by (Centers for Dis-
ease Control and Prevention, COVID-19 Response, 2024).
New York State was selected as the target population, with
data in March 2020 as the primary domain and in March
2023 as the auxiliary domain. We applied filtering proce-
dures as detailed in the Appendix B.4, resulting in a sample
size of 78119 in March 2020 and 38237 in March 2023.

In this dataset, let X represent the patient’s county, recogniz-
ing that spatial information plays a crucial role in accounting
for the spread of infectious diseases, Y be a binary indicator
of whether the patient reported as ’Hospitalized’ and M be
the race of the patient. The missing rate is 70% in March
2020 and 46% in March 2023.

6.2. Results

It is challenging to determine whether the cause of missing
data is tied to race or hospitalization status in this COVID-
19 case report. Therefore, we investigated both the IPW
estimator of Model 1 and the IPW estimator of Model 2
within the dataset. Additionally, we conducted a compar-

ative analysis with Missing at Random (MAR) estimator,
the Missing Completely at Random (MCAR) estimator, and
results from MICE. Results using bootstrap with 1000 sam-
plings are illustrated in Fig. 3. In Model 1, When attributing
missing data to race, the estimated hospitalization rate (Est:
0.7396, 95% CI: [0.7190, 0.7570]) was found to be lower
than the estimate (0.7533) derived from the MCAR analysis.
Conversely, in Model 2, assuming that missing mechanisms
were linked to hospitalization resulted in an estimated rate
(Est: 0.7836, 95% CI: [0.7558, 0.8071]) surpassing the
MCAR analysis. Same as Model 1, MAR and MICE also
showed the MCAR result was overestimated (MAR: Est:
0.7337, 95% CI: [0.7277, 0.7395], MICE: Est: 0.6564, 95%
CI: [0.6041, 0.7085]). The significant difference in hospi-
talization rate estimates using the more naive complete case
and MAR approaches compared to estimates using model 1
and model 2 underscores the importance of modeling choice
in handling missing data in a principled way.
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Figure 3. Boxplot of Bootstrap results (size = 1000) using IPW
estimator in Model 1 (Est:0.7396, 95%CI: [0.7190,0.7570]), IPW
estimator in Model 2 (Est:0.7836, 95%CI: [0.7558,0.8071]), MAR
estimator (Est:0.7337, 95%CI: [0.7277,0.7395]), MCAR estima-
tor(Est:0.7533, 95%CI: [0.7477,0.7590]) and MICE (Est:0.6564,
95% CI[0.6041,0.7085]). The statistical summary is calculated in
Table 7 in the Appendix.

7. Discussion
In this paper, we introduced a data fusion approach to iden-
tification in settings where data is missing not at random
(MNAR), but an auxiliary data that is missing at random
(MAR) is available. We provided identification results un-
der two complementary models in this setting, as well as a
straightforward-to-implement Inverse Probability Weight-
ing (IPW) estimators for the identified parameters in each
model. We illustrated the consistency of our estimator via
a simulation study. To our knowledge, our work is the first
adoption of data fusion ideas for obtaining identification
in settings where data is missing not at random (MNAR).
We applied both models to the COVID-19 case data in New
York state to estimate the hospitalization rate in March 2020.
It should be noted that our methodology may extend to a
broader class of target parameters, such as the conditional
expectation of the outcome given covarites.

A natural extension of our approach is the development of a
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semiparametrically efficient estimator under our proposed
two models. We leave this extension to future work, as
obtaining such an estimator is nontrivial. This is because
both of our proposed models impose complex restrictions on
the observed data tangent space, in addition to conditional
independences implied by the graph.
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A. PROOFS
Theorem 1 Under Assumptions 1, 2, and 3, parameter β = E[Y (1)|G = 1] is identified using the following functional

E[Y (1)|G = 1]

= E[E[E[Y (1)|X,G = 1,M (1)]|X,G = 1]|G = 1]

=
∑
y,m,x

y · pY (Y (1) = y|X = x,G = 1,M (1) = m)pM (M (1) = m|X = x,G = 1)p(X = x|G = 1)

=
∑
y,m,x

y · pY (Y (1) = y|X = x,G = 1,M (1) = m,R = 1)pM (M (1) = m|X = x,G = 2)p(X = x|G = 1)

=
∑
y,m,x

y · pY (y|X = x,G = 1,M = m,R = 1)pM (m|X = x,G = 2, R = 1)p(X = x|G = 1)

= E[E[g1(X,M) | X,G = 2, R = 1] | G = 1]

where g1(X,M) ≡ E[Y |X,M,G = 1, R = 1].

Here, equality 1 holds by the Law of Iterated Expectation, equality 2 is by definition, equality 3 employed both Assumption 2
and Assumption 3, and equality 4 follows Assumption 1.

Theorem 2 Under Assumption 1, 2,and 4, using equation (9), we have

E[Y (1)|G = 1]

= E[E[E[Y (1)|M (1), X,R,G = 1]|X,R,G = 1]|G = 1]

=
∑

y,m,x,r

yp(Y (1) = y|X = x,R = r,G = 1,M (1) = m)p(M (1) = m|X = x,R = r,G = 1)p(X = x,R = r|G = 1)

=
∑
y,m,x

yp(Y (1) = y|M (1) = m,X = x,R = 1, G = 1)p(M (1) = m|X = x,R = 1, G = 1)p(X = x,R = 1|G = 1)

+
∑
y,m,x

yp(Y (1) = y|M (1) = m,X = x,R = 0, G = 1)p(M (1) = m|X = x,R = 0, G = 1)p(X = x,R = 0|G = 1)

=
∑
y,m,x

yp(Y (1) = y|M (1) = m,X = x,R = 1, G = 1)p(M (1) = m|X = x,R = 1, G = 1)p(X = x,R = 1|G = 1)

+
∑
y,m,x

y
p
(
Y (1) = y | M (1) = m,X = x,R = 1, G = 1

)
OR

(
X = x, Y (1) = y

)
E
[
OR

(
X,Y (1)

)
| R = 1, X = x,M (1) = m,G = 1

]
× p(M (1) = m|X = x,R = 1, G = 2)− p(M (1) = m,R = 1|X = x,G = 1)

p(R = 0|X = x,G = 1)

× p(X = x,R = 0|G = 1)

=
∑
y,m,x

yp(Y (1) = y|X = x,R = 1, G = 1,M (1) = m)

×

(
p(M (1) = m,X = x,R = 1|G = 1)

+
OR

(
X = x, Y (1) = y

)
E
[
OR

(
X,Y (1)

)
| R = 1, X = x,M (1) = m,G = 1

]
×
[p(M (1) = m|X = x,R = 1, G = 2)

p(R = 0|X = x,G = 1)
− p(M (1) = m,R = 1|X = x,G = 1)

p(R = 0|X = x,G = 1)

]
× p(X = x,R = 0|G = 1)

)

where the solution of ÕR(X,Y (1)) in equation (12) is guaranteed by Assumption 5, therefore the solution for OR(X,Y (1))
exists by definition.
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Here, equality 1 follows by the Law of Iterated Expectation, equality 2 is the definition, equality 3 expands for separating
cases R = 0, 1, equality 4 uses equation (9) and equation (14) to denote the missing distribution accordingly.

Note that equation (12) can be written as

E{ÕR
(
X,Y (1)

)
| R = 1, X,M (1), G = 1}

=
p
(
M (1) | X,R = 0, G = 1

)
p
(
M (1) | X,R = 1, G = 1

)
=

p(M |X,R = 1, G = 2)− p(M |X,R = 1, G = 1)p(R = 1|X,G = 1)

p(R = 0|X,G = 1)p
(
M (1) | X,R = 1, G = 1

)

by equation (14), which stands since

p(M (1)|X,R = 0, G = 1)p(R = 0|X,G = 1)

= p(M (1)|X,G = 1)− p(M (1)|X,R = 1, G = 1)p(R = 1|X,G = 1)

= p(M (1)|X,G = 2)− p(M (1)|X,R = 1, G = 1)p(R = 1|X,G = 1)

= p(M (1)|X,R = 1, G = 2)− p(M (1), R = 1|X,G = 1)

(20)

Here, equality 1 is by definition as R is a binary indicator, equality 2 is by Assumption 2, and equality 3 is by Assumption 1.

Proposition 1 [(Miao et al., 2015)] In the interest of being self-contained, we proved here under Assumption 4, for all
(X,Y (1),M (1)) in Domain 1, we have the following properties,

For equation (8), we note that

OR
(
X,Y (1),M (1)

)
=

p
(
Y (1) | R = 0, X,M (1), G = 1

)
p
(
Y (1) = 0 | R = 1, X,M (1), G = 1

)
p
(
Y (1) | R = 1, X,M (1), G = 1

)
p
(
Y (1) = 0 | R = 0, X,M (1), G = 1

)
=

p
(
Y (1), R = 0, X,M (1), G = 1

)
p
(
Y (1) = 0, R = 1, X,M (1), G = 1

)
p
(
Y (1), R = 1, X,M (1), G = 1

)
p
(
Y (1) = 0, R = 0, X,M (1), G = 1

)
=

p
(
R = 0 | Y (1), X,M (1), G = 1

)
p
(
R = 1 | Y (1) = 0, X,M (1), G = 1

)
p
(
R = 1 | Y (1), X,M (1), G = 1

)
p
(
R = 0 | Y (1) = 0, X,M (1), G = 1

)
=

p
(
R = 0 | Y (1), X,G = 1

)
p
(
R = 1 | Y (1) = 0, X,G = 1

)
p
(
R = 1 | Y (1), X,G = 1

)
p
(
R = 0 | Y (1) = 0, X,G = 1

)
= OR

(
X,Y (1)

)
12
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Equation (9) follows by observing that

E
[
OR

(
X,Y (1)

)
| R = 1, X,M (1), G = 1

]
= E

[
p
(
R = 0 | Y (1), X,M (1), G = 1

)
p
(
R = 1 | Y (1) = 0, X,M (1), G = 1

)
p
(
R = 1 | Y (1), X,M (1), G = 1

)
p
(
R = 0 | Y (1) = 0, X,M (1), G = 1

) | R = 1, X,M (1), G = 1

]

=
p
(
R = 1 | Y (1) = 0, X,M (1), G = 1

)
p
(
R = 0 | Y (1) = 0, X,M (1), G = 1

)E[p (R = 0 | Y (1), X,M (1), G = 1
)

p
(
R = 1 | Y (1), X,M (1), G = 1

) | R = 1, X,M (1), G = 1

]

=
p
(
R = 1 | Y (1) = 0, X,M (1), G = 1

)
p
(
R = 0, X,M (1), G = 1

)
p
(
R = 0 | Y (1) = 0, X,M (1), G = 1

)
p
(
R = 1, X,M (1), G = 1

)
E

[
p
(
Y (1) | R = 0, X,M (1), G = 1

)
p
(
Y (1) | R = 1, X,M (1), G = 1

) | R = 1, X,M (1), G = 1

]
︸ ︷︷ ︸

=1

=
p
(
Y (1) = 0 | R = 1, X,M (1), G = 1

)
p
(
Y (1) = 0 | R = 0, X,M (1), G = 1

)
For equation (10),

p
(
R = 1 | X,Y (1), G = 1

)−1

=
1

p
(
R = 1 | Y (1), X,G = 1

)
=

p
(
R = 0 | Y (1), X,G = 1

)
+ p

(
R = 1 | Y (1), X,G = 1

)
p
(
R = 1 | Y (1), X,G = 1

)
= 1 +

p
(
R = 0 | Y (1), X,G = 1

)
p
(
R = 1 | Y (1), X,G = 1

)
= 1 +

p
(
R = 0 | Y (1), X,G = 1

)
p
(
R = 1 | Y (1) = 0, X,G = 1

)
p
(
R = 1 | Y (1), X,G = 1

)
p
(
R = 0 | Y (1) = 0, X,G = 1

) p (R = 0 | X,Y (1) = 0, G = 1
)

p
(
R = 1 | X,Y (1) = 0, G = 1

)
= 1 +

OR
(
X,Y (1)

)
p
(
R = 0 | X,Y (1) = 0, G = 1

)
p
(
R = 1 | X,Y (1) = 0, G = 1

)
Equation (11) stands as we first observed

E
[
OR

(
X,Y (1)

)
| R = 1, X,G = 1

]
= E

[
p
(
R = 0 | Y (1), X,G = 1

)
p
(
R = 1 | Y (1) = 0, X,G = 1

)
p
(
R = 1 | Y (1), X,G = 1

)
p
(
R = 0 | Y (1) = 0, X,G = 1

) | R = 1, X,G = 1

]

=
p
(
R = 1 | Y (1) = 0, X,G = 1

)
p
(
R = 0 | Y (1) = 0, X,G = 1

)E[p (R = 0 | Y (1), X,G = 1
)

p
(
R = 1 | Y (1), X,G = 1

) | R = 1, X,G = 1

]

=
p
(
R = 1 | Y (1) = 0, X,G = 1

)
p (R = 0, X,G = 1)

p
(
R = 0 | Y (1) = 0, X,G = 1

)
p (R = 1, X,G = 1)

E

[
p
(
Y (1) | R = 0, X,G = 1

)
p
(
Y (1) | R = 1, X,G = 1

) | R = 1, X,G = 1

]
︸ ︷︷ ︸

=1

=
p
(
Y (1) = 0 | R = 1, X,G = 1

)
p
(
Y (1) = 0 | R = 0, X,G = 1

)
13
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Then we note that

E
[
OR

(
X,Y (1)

)
| R = 1, X,G = 1

]
E
[
OR

(
X,Y (1)

)
| R = 1, X,G = 1

]
+ p(R = 0 | X,G = 1)/p(R = 1 | X,G = 1)

=

p(Y (1)=0|R=1,X,G=1)
p(Y (1)=0|R=0,X,G=1)

p(Y (1)=0|R=1,X,G=1)
p(Y (1)=0|R=0,X,G=1)

+ p(R=0,X,G=1)
p(R=1,X,G=1)

=
p
(
Y (1) = 0, R = 1, X,G = 1

)
p
(
Y (1) = 0, R = 1, X,G = 1

)
+ p

(
Y (1) = 0, R = 0, X,G = 1

)
=

p
(
R = 1 | Y (1) = 0, X,G = 1

)
p
(
R = 1 | Y (1) = 0, X,G = 1

)
+ p

(
R = 0 | Y (1) = 0, X,G = 1

)
= p

(
R = 1 | Y (1) = 0, X,G = 1

)
Equation (12) is true because

ÕR
(
X,Y (1)

)
=

OR
(
X,Y (1)

)
E{OR

(
X,Y (1)

)
| R = 1, X,G = 1}

=

p(R=0|Y (1),X,G=1)p(R=1|Y (1)=0,X,G=1)
p(R=1|Y (1),X,G=1)p(R=0|Y (1)=0,X,G=1)

p(Y (1)=0|R=1,X,G=1)
p(Y (1)=0|R=0,X,G=1)

=
p
(
Y (1) | R = 0, X,G = 1

)
p
(
Y (1) | R = 1, X,G = 1

)
So by leverageing Assumption 4, we have

E
[
ÕR

(
X,Y (1)

)
| R = 1, X,M (1), G = 1

]
= E

[
p
(
Y (1) | R = 0, X,G = 1

)
p
(
Y (1) | R = 1, X,G = 1

) | R = 1, X,M (1), G = 1

]

=
p
(
M (1) | X,R = 0, G = 1

)
p
(
M (1) | X,R = 1, G = 1

) E[p (Y (1) | M (1), R = 0, X,G = 1
)

p
(
Y (1) | M (1), R = 1, X,G = 1

) | R = 1, X,M (1), G = 1

]
︸ ︷︷ ︸

=1

Proposition 2

we first prove the lemma below:
Lemma 1. Define q(X,Y (1)) = 1/p(R = 1|X,M (1), G = 1), for any specific functin g(X,M (1), Y (1)), under Assump-
tion 3,

E
[(

q(X,M (1))R− 1
)
g(X,M (1), Y (1)) | G = 1

]
= 0 (21)

To prove equation (21), we first notice that

E
[(

q(X,M (1))R− 1
)
g(X,M (1), Y (1)) | X,M (1), G = 1

]
= E

[(
q(X,M (1))R− 1

)
| X,M (1), G = 1

]
︸ ︷︷ ︸

=0

·E
[
g(X,M (1), Y (1) | X,M (1), G = 1

]
= 0

14
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Using the Law of Iterated Expectation, we have

E
[(

q(X,M (1))R− 1
)
g(X,M (1), Y (1)) | G = 1

]
E
[
E
[(

q(X,M (1))R− 1
)
g(X,M (1), Y (1)) | X,M (1), G = 1

]
| G = 1

]
= 0

Noticing E[Y (1) − β | G = 1] = 0 by definition, let g(X,M (1), Y (1)) = Y (1) − β in equation (21),

E
[
(q(X,M (1); α̂)R− 1) · (Y (1) − β)|G = 1

]
= E

[
(q(X,M (1); α̂)R · Y (1) − β|G = 1

]
= 0

Additionally, let g(X,M (1), Y (1)) = h(X,M (1)), where h(X,M (1)) is any specific function of
(
X,M (1)

)
, under Assump-

tion 1 and 2, we have

E
[(

w(X,M (1))R− 1
)
h(X,M (1))|G = 1

]
= E

[(
w(X,M (1))R · h(X,M (1))

)
|G = 1

]
− E

[
h(X,M (1))|G = 1

]
= E

[(
w(X,M (1))R · h(X,M (1))

)
|G = 1

]
−

∑
X,M(1)

h(X,M (1))p(M (1) | X,G = 1)p(X | G = 1)

= E
[(

w(X,M (1))R · h(X,M (1))
)
|G = 1

]
−

∑
X,M(1)

h(X,M (1))p(M (1) | X,G = 2)p(X | G = 1)

= E
[(

w(X,M (1))R · h(X,M (1))
)
|G = 1

]
−

∑
X,M(1)

h(X,M (1))p(M (1) | X,R = 1, G = 2)p(X | G = 1)

= E
[(

w(X,M (1))R · h(X,M (1))
)
− E [h(X,M) | X,R = 1, G = 2] | G = 1

]
= 0

Proof of IPW estimation approach for Model 2 relies on the following lemma, as stated in (Miao et al., 2015):

Proposition 3 we first prove the lemma below:
Lemma 2. Define w(X,Y (1)) = 1/p(R = 1|X,Y (1), G = 1), for any specific functin g(X,M (1), Y (1)), under Assump-
tion 4, we have

E
[(

w(X,Y (1))R− 1
)
g(X,M (1), Y (1))|G = 1

]
= 0 (22)

To prove equation (22), we first notice

E
[(

w(X,Y (1))R− 1
)
g(X,M (1), Y (1)) | X,Y (1), G = 1

]
= E

[(
w(X,Y (1))R− 1

)
| X,Y (1), G = 1

]
︸ ︷︷ ︸

=0

·E
[
g(X,M (1), Y (1) | X,Y (1), G = 1

]
= 0

15
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Using the Law of Iterated Expectation, we have

E
[(

w(X,Y (1))R− 1
)
g(X,M (1), Y (1)) | G = 1

]
E
[
E
[(

w(X,Y (1))R− 1
)
g(X,M (1), Y (1)) | X,Y (1), G = 1

]
| G = 1

]
= 0

Noticing E[Y (1) − β | G = 1] = 0, let g(X,M (1), Y (1)) = Y (1) − β in equation (22),

0 = E
[
(w(X,Y (1); α̂, γ̂)R− 1) · (Y (1) − β)|G = 1

]
= E

[
(w(X,Y (1); α̂, γ̂)R · Y (1) − β|G = 1

] (23)

Also, let g(X,M (1), Y (1)) = h(X,M (1)), where h(X,M (1)) is any specific function of (X,M (1)), under Assumption 1
and 2, we have

0 = E
[(

w(X,Y (1))R− 1
)
h(X,M (1))|G = 1

]
= E

[(
w(X,Y (1))R · h(X,M (1))

)
|G = 1

]
− E

[
h(X,M (1))|G = 1

]
= E

[(
w(X,Y (1))R · h(X,M (1))

)
|G = 1

]
−

∑
X,M(1)

h(X,M (1))p(M (1) | X,G = 1)p(X | G = 1)

= E
[(

w(X,Y (1))R · h(X,M (1))
)
|G = 1

]
−

∑
X,M(1)

h(X,M (1))p(M (1) | X,G = 2)p(X | G = 1)

= E
[(

w(X,Y (1))R · h(X,M (1))
)
|G = 1

]
−

∑
X,M(1)

h(X,M (1))p(M (1) | X,R = 1, G = 2)p(X | G = 1)

= E
[(

w(X,Y (1))R · h(X,M (1))
)
− E [h(X,M) | X,R = 1, G = 2] | G = 1

]
B. DATA GENERATION AND ESTIMATION
B.1. Model 1

We create a binary grouping variable, denoted as G and taking values from the set {1, 2}, for a dataset with a total sample
size of n, assuming that each G follows a Bernoulli distribution with parameters 0.5.

For the primary domain, we assume the data generated as follows satisfying Assumption 3:

X | G = 1 ∼ N (1, 1)

M (1) | X,G = 1 ∼ N
(
βm0 + βm1X + βm2X

2, 1
)

Y (1) | X,M (1), G = 1 ∼ N
(
βy0 + βy1X + βy2X

2 + βy3M
(1), 1

)
p(R = 1 | X,M (1), G = 1) = logis(a0 + a1X + a2M

(1) + a3[M
(1)]2)

For the correctly specified model (T), we assume a3 = 0, and for the misspecified setting, we have a3 = −1 in particular.

The auxiliary domain is generated so as to satisfy Assumption 1 and 2:

X | G = 2 ∼ N (0, 1)

M (1) | X,G = 2 ∼ N
(
βm0 + βm1X + βm2X

2, 1
)

p(R = 1 | X,M (1), G = 2) = logis(b0 + b1X)

The parameters used for presenting results have been discussed in the paper. Details of the simulation setting can be found
in the code scripts.
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B.2. Model 2

For a dataset with total sample size n, we first generate the binary grouping variable G, G ∈ {1, 2},by assuming each
G ∼ Bernouli(0.5)

In the primary domain (G = 1), the data is generated by assuming:

X | G = 1 ∼ N (0, 1)

M (1) | R = 1, X,G = 1 ∼ N
(
βm0 + βm1X + βm2X

2, 1
)

Y (1) | R = 1, X,M (1), G = 1 ∼ N
(
βy0 + βy1X + βy2X

2 + βy3M
(1), 1

)
logit p(R = 1 | X,Y (1) = 0, G = 1) = α0 + α1X + α2X

2

OR(X,Y (1)) = exp(−γY (1))

Overall speaking, we generate the dataset using following the variable order: X → R → M → Y . To achieve such a data
generation order, we leverage the proposed properties in Proposition 1 under Assumption 3.

We first calculated some functions that will be used in the generating process:

For E[OR(X,Y (1)) | R = 1, X,M ], using the above proposed models, let µY = βy0 + βy1X + βy2X
2 + βy3M

(1), then
we have

E[OR(X,Y (1)) | R = 1, X,M,G = 1] =
1√
2π

∫
exp

(
−γy − 1

2
(y − µY )

2

)
dy

=
1√
2π

∫
exp

(
−1

2
(y − µY + γ)

2 − 1

2

(
2µY γ − γ2

))
dy

= exp

(
−µY γ +

1

2
γ2

)

In a similar way, with regard to the conditional expectation E[OR(X,Y ) | R = 1, X,G = 1], let µ̃Y = βy0+βy1X+βy2X
2

and µM = βz0 + βz1X + βz2X
2, we can establish the following functional relationships utilizing the previously mentioned

equation:

E[OR(X,Y (1)) | R = 1, X,G = 1] = E[E[OR(X,Y (1)) | R = 1, X,M,G = 1] | R = 1, X,G = 1]

=
1√
2π

∫
exp

(
−µY γ +

1

2
γ2 − 1

2
(m− µM )

2

)
dm

= exp

(
−µ̃Y γ +

1

2
γ2

)
× 1√

2

∫
exp

(
−γβy3m− 1

2
(m− µM )

2

)
dm

= exp

(
−µ̃Y γ +

1

2
γ2 − µMβy3γ +

1

2
β2
y3γ

2

)

Having assembled the essential components as outlined in the equation (11) we can obtain the distribution of R = 1 |
X,G = 1. Let µR = α0 + α1X + α2X

2, we rewrite equation (11) to be

p(R = 1 | X,Y (1) = 0, G = 1) =
E[OR(X,Y (1)) | R = 1, X,G = 1]

p(R = 0 | X,G = 1)/p(R = 1 | X,G = 1) + E[OR(X,Y (1)) | R = 1, X,G = 1]

17
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Therefore,

p(R = 0 | X,G = 1)

p(R = 1 | X,G = 1)
= E[OR(X,Y (1)) | R = 1, X,G = 1]× 1− p(R = 1 | X,Y (1) = 0, G = 1)

p(R = 1 | X,Y (1) = 0, G = 1)

= exp

(
−µ̃Y γ +

1

2
γ2 − µMβy3γ +

1

2
β2
y3γ

2

)
× exp

(
−α0 − α1X − α2X

2
)

= exp

(
−µ̃Y γ +

1

2
γ2 − µMβy3γ +

1

2
β2
y3γ

2 − µR

)

so that logit p(R = 1 | X,G = 1) = µ̃Y γ − 1
2γ

2 + µMβy3γ − 1
2β

2
y3γ

2 + µR

Then we calculate for M (1)|R = 0, X,G = 1 using the combination of equations (12) and (13),

p(M (1) | R = 0, X,G = 1)

= p(M (1) | R = 1, X,G = 1)× E(OR(X,Y (1)) | R = 1, X,M (1), G = 1)

E(OR(X,Y (1)) | R = 1, X,G = 1)

=
1√
2π

exp

(
−1

2

(
M (1) − µM

)2)
exp

(
−µY γ +

1

2
γ2 −

(
−µ̃Y γ +

1

2
γ2 − µMβy3γ +

1

2
β2
y3γ

2

))
=

1√
2π

exp

(
−1

2

(
M (1) − µM

)2)
× exp

(
−βy3γZ + µMβy3γ − 1

2
β2
y3γ

2

)
=

1√
2π

exp

(
−1

2

(
M (1) − µM

)2
− βy3γ

(
M (1) − µM

)
− 1

2
β2
y3γ

2

)
=

1√
2π

exp

(
−1

2

(
M (1) − µM + βy3γ

)2)

So M (1) | R = 0, X,G = 1 is a normal distribution with mean µM − βy3γ and variance 1 .

Upon acquiring the probability distributions for both the random variables, R and M (1), we employ equation (9) to derive
the conditional probability distribution of Y (1) under the given conditions: R = 0, X,M (1), and G = 1 as follows:

p(Y (1) | R = 0, X,M (1), G = 1)
p
(
Y (1) | R = 1, X,M (1), G = 1

)
OR

(
X,Y (1)

)
E
[
OR

(
X,Y (1)

)
| R = 1, X,M (1), G = 1

]
=

1√
2π

exp

(
−γy − 1

2
(y − µY )

2
+ µY γ − 1

2
γ2

)
=

1√
2π

exp

(
−1

2

(
(y − µY )

2
+ 2γ(y − µY ) + γ2

))
=

1√
2π

exp

(
−1

2
(y − µY + γ)

2

)
As a result, Y (1) | R = 0, X,M(1), G = 1 ∼ N (µY − γ, 1)

In conclusion, we are prepared to articulate the data generation process as follows:

Denoting

µY = βy0 + βy1X + βy2X
2 + βy3M

(1)

µ̃Y = βy0 + βy1X + βy2X
2

µM = βm0 + βm1X + βm2X
2

µR = α0 + α1X + α2X
2
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The dataset of Domain 1 is generated in a sequential order as follows:

X | G = 1 ∼ N (0, 1)

logit p(R = 1 | X,G = 1) = µ̃Y γ − 1

2
γ2 + µMβy3γ − 1

2
β2
y3γ

2 + µR

M | R = 1, X,G = 1 ∼ N

βm0 + βm1X + βm2X
2︸ ︷︷ ︸

µM

, 1


M | R = 0, X,G = 1 ∼ N (µM − βy3γ, 1)

Y | R = 1, X,M (1), G = 1 ∼ N

βy0 + βy1X + βy2X
2 + βy3M︸ ︷︷ ︸

µY

, 1


Y | R = 0, X,M (1), G = 1 ∼ N (µY − γ, 1)

After the data generation of the primary domain, we generate the data of the auxiliary domain. The key constrain of this
auxiliary domain in simulation is Assumption 2. To satisfy that, we first generate a temporary variable Rtmp in order to
obtain the distribution for M (1)|X,G = 2 as follows:

X | G = 2 ∼ N (1, 1)

logit p(Rtmp = 1 | X,G = 2) = µ̃Y γ − 1

2
γ2 + µMβy3γ − 1

2
β2
y3γ

2 + µR

M | Rtmp = 1, X,G = 2 ∼ N
(
βm0 + βm1X + βm2X

2, 1
)

M | Rtmp = 0, X,G = 2 ∼ N (µM − βy3γ, 1)

The missing mechanism only depends on X and we further generate the true R in Domain 2 by assuming

p(R = 1 | X,G = 2) = logis(c0 + c1x)

where logis(x) = (1 + exp(−x))−1.

For the inverse probability weighting estimation method, we need to estimate p(R = 1|X,Y,G = 1;α, γ), as in equation
(10). Recall that logit p(R = 1 | X,Y = 0, G = 1) = α0 + α1X + α2X

2 , OR(X,Y (1)) = exp(−γY (1)), therefore we
have

1

p(R = 1|X,Y (1), G = 1)

=
p(R = 1|X,Y (1) = 0, G = 1;α) +OR(X,Y (1); γ)p(R = 0|X,Y (1) = 0, G = 1;α)

f(R = 1|X,Y (1) = 0, G = 1;α)

= 1 +OR(X,Y (1); γ)
p(R = 0|X,Y (1) = 0, G = 1;α)

p(R = 1|X,Y (1) = 0, G = 1;α)

= 1 + exp(−γY (1)) exp
(
−(α0 + α1X + α2X

2)
)

= 1 + exp
(
−γY (1) − (α0 + α1X + α2X

2)
)

As a result, p(R = 1|X,Y (1), G = 1) = 1

1+exp(−γY (1)−(α0+α1X+α2X2))
. The parameters used for presenting results have

been discussed in the paper. Details of the simulation setting can be found in the code scripts.

B.3. Additional Simulation Results

In this section, we discussed simulation details on true value, and statistics of results for Model 1 displayed in Fig. 2a and
Fig. 2b, and for Model 2 displayed in Fig. 2c and Fig. 2d. Also, we presented the full table of bootstrapping results in
Table 5 and Table 6.

19



Identification and Estimation for Nonignorable Missing Data: A Data Fusion Approach

The true value of model 1 is calculated theoretically, where β = 1.8 for both model 1 (T) and model 1 (F). The true value of
model 2 is calculated by taking the sample mean of Y (1) in the primary domain in 1000 trials of sample size n = 20000.
True value of β = −0.659 for T and β = −0.615 for F settings.

Table 3. Results for Model 1 displayed in Fig. 2a and Fig. 2b. (True value: β = 1.8 for both T and F settings)
Setting Bias %Bias MSE Var
IPW (n=500,T) 0.006 0.003 0.062 0.034
IPW (n=1000,T) 0.005 0.003 0.007 0.017
IPW (n=2000,T) -0.002 -0.001 0.024 0.009
MAR (n=500,T) 0.269 0.149 0.127 0.025
MAR (n=1000,T) 0.270 0.150 0.095 0.011
MAR (n=2000,T) 0.270 0.150 0.010 0.006
MICE (n=500,T) -0.359 -0.200 0.238 0.046
MICE (n=1000,T) -0.378 -0.210 0.137 0.023
MICE (n=2000,T) -0.376 -0.209 0.162 0.012
IPW (n=500,F) -0.040 -0.022 0.026 0.053
IPW (n=1000,F) -0.031 -0.017 0.121 0.027
IPW (n=2000,F) -0.017 -0.010 0.064 0.014
MAR (n=500,F) -0.544 -0.302 0.244 0.027
MAR (n=1000,F) -0.541 -0.300 0.486 0.013
MAR (n=2000,F) -0.544 -0.302 0.403 0.006
MICE (n=500,F) -0.459 -0.255 0.094 0.040
MICE (n=1000,F) -0.420 -0.234 0.298 0.022
MICE (n=2000,F) -0.413 -0.229 0.274 0.011

In Section 5, we presented the bootstrapping result of correctly specified models. Here we have the bootstrapping result of
Model 1 and Model 2 (See Table 5 and Table 6, respectively) for settings including the result of both MAR and IPW, and for
correctly specified model (T) and misspecified model (F).

B.4. Application to COVID-19 case data

In this study, we conducted meticulous data preprocessing on the COVID-19 Case Surveillance Public Use Data obtained
from the Centers for Disease Control and Prevention (CDC), specifically focusing on New York state.

We selected two time periods, March 2020 as the primary MNAR domain, and March 2023 as the auxillary MAR conditions.
The original data in March 2020 comprised 129, 795 records, while the March 2023 subset contained 43, 210 records.
The same preprocessing steps were applied to both datasets to filter out the low-quality entries: we excluded rows with
missing values in critical columns such as the county, age group, sex, case-positive specimen interval, and exposure status.
Additionally, cases were filtered to include only those with a ”Laboratory-confirmed” status. Categorical variables were
transformed into numerical indices, and a county score was recalculated into [−1, 1] to capture the relative positioning
of each county. After these steps, the sample size of datasets in March 2020 and March 2023 are 125, 737 and 38, 237
respectively. Since we assumed the missingness mechanism is shared by race and hospitalization in primary domain, we
further filtered the dataset in March 2020 accordingly and the final dataset consisted of 78, 119 patients.
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Table 4. Results for Model 2 displayed in Fig. 2c and Fig. 2d. (True value: β = −0.659 (T) , β = −0.615 (F)
Setting Bias %Bias MSE Var
IPW (n=500,T) 0.029 -0.044 0.010 0.022
IPW (n=1000,T) 0.018 -0.027 0.023 0.010
IPW (n=2000,T) 0.015 -0.023 0.00007 0.005
MAR (n=500,T) 0.363 -0.551 0.032 0.020
MAR (n=1000,T) 0.363 -0.551 0.241 0.011
MAR (n=2000,T) 0.358 -0.543 0.112 0.005
MICE (n=500,T) 0.113 -0.171 0.000 0.042
MICE (n=1000,T) 0.091 -0.138 0.027 0.021
MICE (n=2000,T) 0.079 -0.120 0.007 0.011
IPW (n=500,F) 0.087 -0.142 0.001 0.018
IPW (n=1000,F) 0.086 -0.139 0.010 0.009
IPW (n=2000,F) 0.084 -0.136 0.028 0.005
MAR (n=500,F) 0.195 -0.317 0.023 0.021
MAR (n=1000,F) 0.193 -0.314 0.044 0.010
MAR (n=2000,F) 0.195 -0.317 0.128 0.005
MICE (n=500,F) -0.094 0.152 0.384 0.044
MICE (n=1000,F) -0.106 0.172 0.002 0.025
MICE (n=2000,F) -0.105 0.171 0.000 0.012

Table 5. Bootstrap confidence intervals for Model 1. (True value of β = 1.8 for both T and F settings).
Setting Est. 95% CI Width Bias
IPW(n=500,T) 1.941 [1.594, 2.275] 0.681 0.141
IPW(n=1000,T) 1.744 [1.508, 1.970] 0.462 -0.056
IPW(n=2000,T) 1.767 [1.598, 1.930] 0.332 -0.033
MAR(n=500,T) 2.350 [2.052, 2.636] 0.584 0.550
MAR(n=1000,T) 1.957 [1.743, 2.184] 0.441 0.157
MAR(n=2000,T) 2.007 [1.869, 2.139] 0.269 0.207
MICE (n=500,T) 1.592 [1.088 ,2.075] 0.988 -0.208
MICE (n=1000,T) 1.305 [0.994 ,1.624 ] 0.630 -0.495
MICE (n=2000,T) 1.505 [1.285 ,1.725] 0.440 -0.295
IPW(n=500,F) 1.630 [1.279, 2.012] 0.733 -0.170
IPW(n=1000,F) 1.842 [1.510, 2.136] 0.627 0.042
IPW(n=2000,F) 1.727 [1.442, 2.011] 0.569 -0.073
MAR(n=500,F) 1.337 [1.013, 1.662] 0.649 -0.463
MAR(n=1000,F) 1.331 [1.095, 1.580] 0.484 -0.469
MAR(n=2000,F) 1.213 [1.053, 1.368] 0.315 -0.587
MICE (n=500,F) 1.379 [0.998 ,1.764] 0.766 -0.421
MICE (n=1000,F) 1.575 [1.256 ,1.885 ] 0.629 -0.225
MICE (n=2000,F) 1.331 [1.114 ,1.531] 0.393 -0.469
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Table 6. Bootstrap confidence intervals for Model 2. (True value of β = −0.659 for T and β = −0.615 for F settings).
Setting Est. 95% CI Width Bias
IPW(n=500,T) -0.557 [-0.815, -0.303] 0.513 0.102
IPW(n=1000,T) -0.760 [-0.949, -0.569] 0.380 -0.101
IPW(n=2000,T) -0.707 [-0.841, -0.561] 0.281 -0.048
MAR(n=500,T) -0.309 [-0.571, -0.044] 0.527 0.350
MAR(n=1000,T) -0.380 [-0.585, -0.177] 0.409 0.279
MAR(n=2000,T) -0.295 [-0.447, -0.150] 0.297 0.364
MICE (n=500,T) -0.453 [-0.792,-0.085] 0.707 0.206
MICE (n=1000,T) -0.743 [-1.090,-0.421] 0.669 -0.084
MICE (n=2000,T) -0.613 [-0.863,-0.355] 0.508 0.046
IPW(n=500,F) -0.502 [-0.756, -0.275] 0.481 0.113
IPW(n=1000,F) -0.621 [-0.806, -0.435] 0.371 -0.006
IPW(n=2000,F) -0.625 [-0.747, -0.505] 0.242 -0.010
MAR(n=500,F) -0.449 [-0.739, -0.153] 0.585 0.166
MAR(n=1000,F) -0.543 [-0.738, -0.354] 0.384 0.072
MAR(n=2000,F) -0.512 [-0.644, -0.368] 0.276 0.103
MICE (n=500,F) 0.672 [-1.078,-0.279] 0.799 -0.057
MICE (n=1000,F) 0.890 [-1.190,-0.559] 0.630 -0.274
MICE (n=2000,F) -0.944 [-1.166, -0.718] 0.449 -0.329

Table 7. Bootstrap confidence intervals for application to COVID-19 dataset
n Est. 95% CI Width
Model 1 0.7396 [0.7190,0.7570] 0.0380
Model 2 0.7836 [0.7558, 0.8071] 0.0513
MAR 0.7337 [0.7277, 0.7395] 0.0117
MCAR 0.7533 [0.7477, 0.7590] 0.0112
MICE 0.6564 [0.6041 ,0.7085] -0.0969
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