
Received: 10 September 2020 Revised: 10 August 2021 Accepted: 20 August 2021

DOI: 10.1111/biom.13554

B IOMETRIC PRACT ICE

Causal inference with outcomes truncated by death in
multiarm studies

Shanshan Luo1 Wei Li2 Yangbo He1

1 School of Mathematical Sciences, Peking
University, Beijing, China
2 Center for Applied Statistics and School
of Statistics, Renmin University of China,
Beijing, China

Correspondence
WeiLi,Center forApplied Statistics and
School of Statistics, RenminUniversity of
China, Beijing 100872,China.
Email:weilistat@ruc.edu.cn

Funding information
NSFC,Grant/AwardNumbers: 11671020,
11971040;HuaweiTechnologies; TheFun-
damentalResearchFunds for theCentral
Universities and theResearchFunds of
RenminUniversity ofChina

Abstract
It is challenging to evaluate causal effects when the outcomes of interest suffer
from truncation-by-death in many clinical studies; that is, outcomes cannot
be observed if patients die before the time of measurement. To address this
problem, it is common to consider average treatment effects by principal
stratification, for which, the identifiability results and estimation methods with
a binary treatment have been established in previous literature. However, in
multiarm studies with more than two treatment options, estimation of causal
effects becomes more complicated and requires additional techniques. In this
article, we consider identification, estimation, and bounds of causal effects with
multivalued ordinal treatments and the outcomes subject to truncation-by-
death. We define causal parameters of interest in this setting and show that they
are identifiable either using some auxiliary variable or based on linear model
assumption. We then propose a semiparametric method for estimating the
causal parameters and derive their asymptotic results. When the identification
conditions are invalid, we derive sharp bounds of the causal effects by use
of covariates adjustment. Simulation studies show good performance of the
proposed estimator. We use the estimator to analyze the effects of a four-level
chronic toxin on fetal developmental outcomes such as birth weight in rats and
mice, with data from a developmental toxicity trial conducted by the National
Toxicology Program. Data analyses demonstrate that a high dose of the toxin
significantly reduces the weights of pups.
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1 INTRODUCTION

In many multiarm chronic toxicity studies, it is common
that the interested nonmortality outcomes are truncated
by death during a long-term experiment. For instance,
in our motivating example from a developmental toxic-
ity study conducted by the National Toxicology Program
(NTP; Price et al., 1985; Elliott et al., 2006; NTP, 2017),
pup mice and rats were randomly exposed to one of

four ordinal toxin doses by whole body inhalation. Lab-
oratory scientists were interested in evaluating relative
effects of toxin doses on the weights of pups at the end
of 2 years after the receipt of treatment. However, dur-
ing this long-term study, some pups died before their final
weights were measured; that is, their outcomes are trun-
cated by death, and hence the outcomes of these dead
individuals are not well defined. Direct comparison of
pups that survived at high doses of the toxin with those
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that survived at low doses may lead to selection bias,
because some unhealthy pups may be included in the lat-
ter group, and they would die if exposed to higher levels of
toxins.
Methods for dealing with such truncation-by-death data

rely heavily on the principal stratification approach pro-
posed by Frangakis and Rubin (2002). The main parame-
ter of interest in these studies is the principal causal effect
in the subpopulation of pups who would survive irrespec-
tive of toxin levels, which is also termed (always-) sur-
vivor average causal effect (Rubin et al., 2006). Although
some criticisms may question about its interpretations
(e.g., Pearl, 2011), the principal stratification framework
has been widely adopted as a tool to handle truncation-
by-death problems. One body of research considers the
identifiability of the principal causal effect under various
assumptions (Zhang et al., 2009; Ding et al., 2011; Tchet-
gen Tchetgen, 2014; Wang and Richardson, 2017). When
these assumptions are invalid, an alternative strand of
work focuses on estimation of bounds or conducts sensitiv-
ity analysis (Gilbert et al., 2003; Hayden et al., 2005; Shep-
herd et al., 2006; Lee et al., 2010; Chiba and VanderWeele,
2011; Ding and Lu, 2017).
However, most of previous work is devoted to stud-

ies with a binary treatment, and there has not been
much discussion on truncation-by-death problems with
multivalued ordinal treatments. From a practical point
of view, it is necessary to develop approaches to han-
dle this setting, because multiarm trials are fairly com-
mon in clinical studies, for example, a four-level treatment
in our motivating example. Before our work, Frangakis
et al. (2004) imposed the exclusion restriction assump-
tion (Angrist et al., 1996) to guarantee identification of
the principal causal effects. Some other scholars did not
consider identification issues. For example, Elliott et al.
(2006) proposed a hierarchical Bayesian approach to esti-
mate the principal causal effects. A more recent work by
Wang et al. (2017) developed a hypothesis testing method
to detect nonnull principal causal effects for a binary
outcome.
In this article, we consider identification, estimation,

and bounds of principal causal effects in multiarm stud-
ies. Different from Frangakis et al. (2004), our identifica-
tion assumptions allow the treatment to directly affect the
outcome. We provide two sets of identification assump-
tions, in which the observed common causes of the treat-
ment, survival status, and the outcome are allowed. This
is more feasible in observational studies. We then pro-
pose a semiparametric method for estimating the principal
causal effects and derive asymptotic results for the estima-
tor. When the identification assumptions are invalid, we
provide sharp bounds of the principal causal effects with

available covariates and perform sensitivity analysis in our
real data example.
The remainder of this paper is organized as fol-

lows. Section 2 introduces notation, definitions, and
assumptions. In Section 3, we develop the identifia-
bility results, estimation, and inference procedures for
the principal causal effects. We also derive their sharp
bounds when the identifiability conditions are violated.
We illustrate the proposed approach via simulation stud-
ies and a real data set from the NTP experiment in
Sections 4 and 5, respectively. All proofs and com-
putational details are provided in the Supplementary
Material.

2 NOTATION, DEFINITION, AND
ASSUMPTIONS

Assume that there are 𝑛 individuals who are indepen-
dently sampled from an infinite superpopulation of
interest. We define the observed and potential random
variables for individual 𝑖 (𝑖 = 1, … , 𝑛). Notation for these
variables suppress index 𝑖 for simplicity. Let 𝑍 denote
an ordinal treatment assignment with 𝑚 (𝑚 ⩾ 2) levels:
𝑍 ∈ {1, … ,𝑚}, and let 𝑿 denote a vector of covariates
observed at baseline. Let 𝑆 denote the survival status with
1 indicating survival and 0 for death. Let𝑌 denote the non-
mortality outcome of interest. In our example, the outcome
𝑌 denotes the logarithmic weight gain of a pup within
2 years. We use the potential outcomes framework and
make the stable unit treatment value assumption; that is,
there is only one version of potential outcomes and there is
no interference between units (Rubin, 1990). Let 𝑆(𝑧) and
𝑌(𝑧) denote the potential survival indicator and potential
outcome that would be observed under treatment 𝑍 = 𝑧.
Here, 𝑌(𝑧) is well defined only if 𝑆(𝑧) = 1. The observed
values 𝑆 and 𝑌 are deterministic functions of the treat-
ment assignment and their respective potential values: 𝑆 =

𝑆(𝑍) =
∑𝑚

𝑧=1
𝐼(𝑍 = 𝑧)𝑆(𝑧) and𝑌 = 𝑌(𝑍) =

∑𝑚

𝑧=1
𝐼(𝑍 = 𝑧)

𝑌(𝑧). Based on the potential survival status, we define the
basic principal stratum as 𝐺 = {𝑆(1), … , 𝑆(𝑚)}. Following
Wang et al. (2017), we use the letter 𝐿 to denote 𝑆(𝑧) = 1

(meaning “live”) and the letter 𝐷 to denote 𝑆(𝑧) = 0

(meaning “die”). Then 𝐺 can be rewritten as a string
consisting of letters 𝐿 and 𝐷. For instance, in our example
with a four-level toxic treatment, 𝐺 = 𝐿𝐷𝐷𝐷 indicates
that a pup would survive at the control level 1 but would
die at the toxicity level 2, 3, or 4. We introduce the basic
assumptions which are commonly used in previous
literature.

Assumption 1. {𝑆(1), … , 𝑆(𝑚), 𝑌(1), … , 𝑌(𝑚)} ⟂⟂ 𝑍 ∣ 𝑿.
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TABLE 1 Data structure under the monotonicity assumption

Ordinal treatment and potential survival status
Latent principal stratum 𝒁 = 𝟏 𝒁 = 𝟐 ⋯ 𝒁 = 𝒎− 𝟏 𝒁 = 𝒎

𝐺 = 0 𝑆(1) = 0 𝑆(2) = 0 ⋯ 𝑆(𝑚 − 1) = 0 𝑆(𝑚) = 0

𝐺 = 1 𝑆(1) = 1 𝑆(2) = 0 ⋯ 𝑆(𝑚 − 1) = 0 𝑆(𝑚) = 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝐺 = 𝑚 − 1 𝑆(1) = 1 𝑆(2) = 1 ⋯ 𝑆(𝑚 − 1) = 1 𝑆(𝑚) = 0

𝐺 = 𝑚 𝑆(1) = 1 𝑆(2) = 1 ⋯ 𝑆(𝑚 − 1) = 1 𝑆(𝑚) = 1

Mixture of principal stratum
Observed subgroup 𝑮 = 𝟎 𝑮 = 𝟏 ⋯ 𝑮 = 𝒎− 𝟏 𝑮 = 𝒎

𝑍 = 1, 𝑆 = 1 ∗
√

⋯
√ √

𝑍 = 2, 𝑆 = 1 ∗ ∗ ⋯
√ √

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝑍 = 𝑚 − 1, 𝑆 = 1 ∗ ∗ ⋯
√ √

𝑍 = 𝑚, 𝑆 = 1 ∗ ∗ ⋯ ∗
√

Note:
√
: existence of the corresponding principal stratum. ∗ : nonexistence of the corresponding principal stratum.

Assumption 1means that the observed treatment assign-
ment is independent of all potential survival status and
potential outcomes conditional on observed covariates.
This allows for possible observed confounders but pre-
cludes unobserved ones between treatment and survival
status or the outcome, as the classical ignorable treat-
ment assignment assumption does (Imbens and Rubin,
2015). Because the treatment assignment is random-
ized in our example, Assumption 1 is automatically
satisfied.

Assumption 2. For each individual 𝑖, 𝑆𝑖(𝑧1) ⩾ 𝑆𝑖(𝑧2) for
all 𝑧1 ⩽ 𝑧2, where 𝑧1, 𝑧2 ∈ {1, … ,𝑚} are treatment levels.

Assumption 2 is a generalization of the monotonicity
assumption for a binary treatment assignment imposed in
Angrist et al. (1996). This monotonicity assumption in our
example formally reflects that if a pup would not survive
at some toxicity level, then the pup would also not survive
at a higher toxicity level.
Under monotonicity assumption, each principal stra-

tum 𝐺 takes the form 𝐿⋯𝐿𝐷⋯𝐷. To compress the
notation, we write 𝐺 as 𝐿𝑘𝐷𝑚−𝑘, or simply as label 𝑘
for 𝑘 = 0,… ,𝑚. Each value of 𝐺 is equivalent to the
subject-specific threshold (maximum) level that the treat-
ment assignment can be, above which the pup would not
survive. In other words, the principal stratum 𝐺 roughly
represents the hidden physical condition of pups, and
pups that are in good health are more resistant to toxicity.
We present the ordinal structure of 𝐺 and its relationship
with the observed data in Table 1. For example, the
subpopulation {𝑖 ∶ 𝐺𝑖 = 0} includes pups that die at all
treatment levels, and {𝑖 ∶ 𝐺𝑖 = 𝑘} represents pups that

survive only at treatment level 𝑍 = 𝑧 for 1 ⩽ 𝑧 ⩽ 𝑘, where
𝑘 = 1,… ,𝑚.
Analogous to the survivor average causal effect of a

binary treatment, we can also define our causal param-
eters of interest as potential outcome contrasts within
some basic principal stratum. Let 𝜇𝑔(𝑧) = 𝐸{𝑌(𝑧) ∣ 𝐺 =

𝑔} denote the mean potential outcome under treatment
assignment 𝑍 = 𝑧 within principal stratum 𝐺 = 𝑔. As dis-
cussed earlier, for members of principal stratum 𝐺 = 𝑔,
𝑆(𝑧) = 1 if and only if the treatment level 𝑧 satisfies 1 ⩽ 𝑧 ⩽

𝑔. We thus define the pairwise causal estimands of interest
as follows:

Δ𝑔(𝑧1, 𝑧2) = 𝜇𝑔(𝑧1) − 𝜇𝑔(𝑧2) for 𝑔 ⩾ 𝑧1 ⩾ 𝑧2 and 𝑔 ⩾ 2.
(1)

Therefore, if 𝜇𝑔(𝑧) is identifiable for any 𝑧 ⩽ 𝑔, then
Δ𝑔(𝑧1, 𝑧2) is also identifiable. In what follows, we focus on
identification and estimation of 𝜇𝑔(𝑧) for 𝑔 ⩾ 𝑧.
Let 𝜋𝑘(𝒙) = pr(𝐺 = 𝑘 ∣ 𝑿 = 𝒙) denote the probability

of principal stratum 𝐺 = 𝑘 conditional on covariates
𝑿 = 𝒙 for 𝑘 = 0, 1, … ,𝑚. Let 𝜇(𝑧, 𝑘, 𝒙) = 𝐸(𝑌 ∣ 𝑍 = 𝑧, 𝐺 =

𝑘,𝑿 = 𝒙) denote the conditional mean response given
(𝑍 = 𝑧, 𝐺 = 𝑘,𝑿 = 𝒙) for each 𝑘 ⩾ 𝑧. Then 𝜇𝑔(𝑧) can be
expressed as follows (see the Supplementary Material for
proof):

𝜇𝑔(𝑧) = 𝜋−1
𝑔 𝐸

{
𝜋𝑔(𝑿)𝜇(𝑧, 𝑔, 𝑿)

}
, (2)

where 𝜋𝑔 = 𝐸{𝜋𝑔(𝑿)}. Under Assumptions 1 and 2, 𝜋𝑘(𝒙)

is identifiable for each 𝑘. The intuition is as follows. Table 1
shows that for any treatment level 𝑍 = 𝑧 (𝑧 = 1,… ,𝑚),
the observed subgroup (𝑍 = 𝑧, 𝑆 = 1) is a mixture of the
latent subgroups (𝐺 = 𝑧), … , (𝐺 = 𝑚); that is, the event
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{𝑍 = 𝑧, 𝑆 = 1} is equivalent to ∪𝑚
𝑘=𝑧

{𝑍 = 𝑧, 𝐺 = 𝑘}. Hence,
by Assumption 1,

pr(𝑆 = 1 ∣ 𝑍 = 𝑧, 𝑿 = 𝒙) =
∑𝑚

𝑘=𝑧
pr(𝐺 = 𝑘 ∣ 𝑍 = 𝑧, 𝑿

= 𝒙) =
∑𝑚

𝑘=𝑧
𝜋𝑘(𝒙)

(3)

This implies that

𝜋𝑘(𝒙) = pr(𝑆 = 1 ∣ 𝑍 = 𝑘,𝑿 = 𝒙)

−pr(𝑆 = 1 ∣ 𝑍 = 𝑘 + 1,𝑿 = 𝒙) (1 ⩽ 𝑘 ⩽ 𝑚 − 1),

𝜋𝑚(𝒙) = pr(𝑆 = 1 ∣ 𝑍 = 𝑚,𝑿 = 𝒙),

𝜋0(𝒙) = 1 −
∑𝑚

𝑘=1
𝜋𝑘(𝒙).

(4)
Thus, according to (2) and (4), the identifiability of 𝜇𝑔(𝑧)
further requires identifiability of 𝜇(𝑧, 𝑔, 𝒙) for each 𝒙.

3 IDENTIFICATION, ESTIMATION,
INFERENCE, AND BOUNDS

3.1 Identification

In this subsection, we discuss further assumptions to
identify 𝜇𝑔(𝑧). We consider two different assumptions:
one is based on an auxiliary variable that is similar to
an instrumental variable for the latent principal stra-
tum, and the other relies on the specification of a linear
model. Under the first assumption, 𝜇𝑔(𝑧) is nonpara-
metrically identifiable. If we remove this assumption,
then 𝜇𝑔(𝑧) can also be identifiable in a linear model
setting.
For the first case, we assume that the covariates 𝑿

can be written as (𝐴, 𝑪T)T such that the scalar covari-
ate 𝐴 affects the outcome 𝑌 only through its associ-
ation with 𝐺 conditional on treatment assignment 𝑍

and the remaining covariates 𝑪. For convenience, we
may use the notations 𝑿 and (𝐴, 𝑪T)T interchangeably
below.

Assumption 3. 𝑌 ⟂⟂ 𝐴 ∣ (𝑍, 𝐺, 𝑪).

Assumption 3 precludes the direct effect of 𝐴 on 𝑌,
which is similar to the exclusion restriction assumption
in the instrumental variable analysis (Angrist et al., 1996).
The main difficulty with the identifiability problem is
that the principal stratum 𝐺 is a latent variable. Assump-
tion 3makes it possible to identify 𝜇𝑔(𝑧) since the observed
covariate 𝐴 can be seen as a substitution variable for
𝐺. Assumption 3 is adapted from Ding et al. (2011), and
we relax theirs by incorporating baseline covariates 𝑪 in

F IGURE 1 A causal diagram illustrating Assumptions 1 and 3.
The solid circle represents observed variables, and the dotted circle
represents latent principal stratum 𝐺. Note that observed covariates
𝑪 can affect all variables in this plot and we omit it for simplicity

this assumption. Similar assumptions for a binary treat-
ment can be found in Wang et al. (2017). Figure 1 gives a
causal diagram illustrating Assumption 3. In our motivat-
ing example, we take 𝐴 as the baseline logarithmic weight
of each pup. To alleviate the direct impact of 𝐴 on out-
come 𝑌, we take 𝑌 as the logarithmic weight gain of each
pup at the end of study, compared with the baseline data.
In addition, because the baseline weight is an important
physical condition indicator of each pup and the princi-
pal stratum can be understood as the underlying healthy
levels based on previous discussions, it is thus reason-
able to consider 𝐴 as a substitute for 𝐺 in our motivating
example.

Theorem 1. Suppose Assumptions 1–3 hold. If for any 𝑪 =

𝒄, there exist 𝐿 = 𝑚 − 𝑧 + 1 different values 𝑎1, … , 𝑎𝐿 of 𝐴,
such that the𝐿 × 𝐿matrix𝑴 = {𝜋𝑘(𝒙𝑙)}𝑘𝑙 (𝑘 = 𝑧,… ,𝑚; 𝑙 =

1, … , 𝐿) is of full rank for 𝒙𝑙 = (𝑎𝑙, 𝒄
T)T, then 𝜇𝑔(𝑧) is identi-

fiable for 𝑔 ⩾ 𝑧.

The nonsingularity condition for matrix 𝑴 in Theo-
rem 1 requires the dependence between 𝐴 and 𝐺, which
is similar to the instrumental relevance assumption in
instrumental variable analyses. In particular, this con-
dition implies that there are at least 𝐿 different lev-
els of 𝐴 related to the principal stratum 𝐺 for each
value of 𝑪. Because 𝜋𝑘(𝒙) is identifiable, we can test
the full rank condition by an estimate of 𝜋𝑘(𝒙). Specif-
ically, if 𝑿 has only low-dimensional discrete variables,
then 𝜋𝑘(𝒙) can be estimated by their corresponding fre-
quency ratios. Otherwise, we need to specify models for
𝜋𝑘(𝒙).
In the above context, we impose the additional Assump-

tion 3 for identification. This assumptionmay be question-
able if all covariates in 𝑿 can directly affect the outcome.
To relax Assumption 3 to some extent, we now consider a
semiparametric linear model that includes all covariates.
Specifically, we model 𝑌 in the group 𝑍 = 𝑧 by the follow-
ing linear model allowing for interactions between 𝑍 and

shanshanluo
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𝐺, and interactions between 𝑍, 𝐺 and 𝑿:

𝐸(𝑌 ∣ 𝑍 = 𝑧, 𝐺 = 𝑘,𝑿 = 𝒙; 𝜷𝑧𝑘) = 𝛽𝑧𝑘,0 + 𝛽𝑧𝑘,1𝑎 + 𝜷T

𝑧𝑘,2
𝒄,

(𝑘 = 𝑧,… ,𝑚), (5)

where𝒙 = (𝑎, 𝒄T)T and 𝜷𝑧𝑘 ≡ (𝛽𝑧𝑘,0, 𝛽𝑧𝑘,1, 𝜷
T

𝑧𝑘,2
)T is a vector

of unknown parameters. Note that Assumption 3 requires
𝛽𝑧𝑘,1 to be zero in the above linear model.

Theorem 2. Suppose that Assumptions 1–2 and model (5)
hold. If {𝜋𝑘(𝒙), 𝜋𝑘(𝒙)𝒙

T}𝑚
𝑘=𝑧

are linearly independent func-
tions of 𝒙, then 𝜇𝑔(𝑧) is identifiable for 𝑔 ⩾ 𝑧.

Because 𝜋𝑘(𝒙) is identifiable, we can assess the validity
of the linear independence condition in Theorem 2 by
observed data. This theorem implies that even when
Assumption 3 is violated, we can still obtain the identifi-
ability of 𝜇𝑔(𝑧), provided that the semiparametric linear
model (5) holds. Verifications of model (5) or Assumption
3 based only on observed data are both challenging,
because they involve a latent variable 𝐺. Nevertheless,
since the linear model (5) is quite general for a con-
tinuous outcome, we suggest using this model in such
cases.

3.2 Estimation and inference

As shown earlier, 𝜇𝑔(𝑧) is nonparametrically identifiable
based on an auxiliary variable or semiparametrically iden-
tifiable under a linear model setting. Although nonpara-
metric estimation and inference can be obtained in the
first case, it may not be applicable especially when the
set of covariates is large due to the curse of dimension-
ality. In this section, we provide a unified estimation
method for 𝜇𝑔(𝑧). To make progress, we posit a para-
metric model for principal stratum 𝐺 = 𝑘 conditional
on 𝑿 = 𝒙:

𝜋𝑘(𝒙) = 𝜋𝑘(𝒙; 𝜽), (𝑘 = 0,… ,𝑚) (6)

and a semiparametric model for outcome𝑌 conditional on
𝑍 = 𝑧, 𝐺 = 𝑘 and 𝑿 = 𝒙:

𝜇(𝑧, 𝑘, 𝒙) = 𝜇(𝑧, 𝑘, 𝒙; 𝜷𝑧𝑘), (𝑘 = 𝑧,… ,𝑚), (7)

where both 𝜽 and 𝜷𝑧𝑘 are vectors of unknown parameters.
Define 𝜷𝑧 = (𝜷T

𝑧𝑧, … , 𝜷T
𝑧𝑚)

T, and let 𝜽0 and 𝜷0𝑧 denote the
true parameters in (6) and (7), respectively.
The expression in (2) implies that for estimation of𝜇𝑔(𝑧),

we only need to estimate 𝜽0 and 𝜷0𝑧𝑔. We first obtain an
estimator of 𝜽0 by maximum likelihood estimation. Based

on (3) and (6), we have the following equation:

pr(𝑆 = 1 ∣ 𝑍 = 𝑧, 𝑿 = 𝒙) =
∑𝑚

𝑘=𝑧
𝜋𝑘(𝒙; 𝜽).

The observed conditional log-likelihood function of
(𝑍, 𝑆, 𝑿) is thus given by

𝑙(𝜽; 𝑍, 𝑆, 𝑿)

=
∑𝑛

𝑖=1

∑𝑚

𝑧=1

[
𝐼(𝑍𝑖 = 𝑧, 𝑆𝑖 = 1) log

{∑𝑚

𝑘=𝑧
𝜋𝑘(𝑿𝑖; 𝜽)

}
+𝐼(𝑍𝑖 = 𝑧, 𝑆𝑖 = 0) log

{∑𝑧−1

𝑘=0
𝜋𝑘(𝑿𝑖; 𝜽)

}]
,

where 𝐼(⋅) denotes an indicator function. Since estima-
tion of 𝜽 via directly maximizing the observed likelihood
function is difficult, we thus employ the EM algorithm to
obtain a maximum likelihood estimator 𝜽 by specifying
a multinomial logistic model for 𝜋𝑘(𝒙; 𝜽). The computa-
tional details are given in the Supplementary Material.
Next we provide an estimating equation-based approach

for estimation of 𝜷𝑧 after obtaining 𝜽. Define

𝜔𝑘(𝑧, 𝒙) = pr(𝐺 = 𝑘 ∣ 𝑍 = 𝑧, 𝑆 = 1, 𝑿 = 𝒙). (8)

Under Assumptions 1 and 2, 𝜔𝑘(𝑧, 𝒙) is identifiable and
𝜔𝑘(𝑧, 𝒙) = 𝜋𝑘(𝒙)∕{

∑𝑚

𝑘=𝑧
𝜋𝑘(𝒙)}. In addition, the condi-

tional expectation of 𝑌 given (𝑍 = 𝑧, 𝑆 = 1, 𝑿 = 𝒙) can be
expressed as follows:

𝐸(𝑌 ∣ 𝑍 = 𝑧, 𝑆 = 1, 𝑿 = 𝒙) =
∑𝑚

𝑘=𝑧
𝜇(𝑧, 𝑘, 𝒙)𝜔𝑘(𝑧, 𝒙).

(9)
This, combined with (6) and (7), implies that
𝐸{𝐻(𝑍, 𝑆, 𝑿, 𝑌; 𝜽0, 𝜷0𝑧 ) ∣ 𝑿} = 0, where

𝐻(𝑍, 𝑆, 𝑿, 𝑌; 𝜽, 𝜷𝑧) = 𝐼(𝑍 = 𝑧, 𝑆 = 1){
𝑌 −

∑𝑚

𝑘=𝑧
𝜇(𝑧, 𝑘, 𝑿; 𝜷𝑧𝑘)𝜔𝑘(𝑧, 𝑿; 𝜽)

}
(10)

and

𝜔𝑘(𝑧, 𝒙; 𝜽) =
𝜋𝑘(𝒙; 𝜽)∑𝑚

𝑘=𝑧
𝜋𝑘(𝒙; 𝜽)

(𝑘 = 𝑧,… ,𝑚). (11)

We then obtain a consistent estimator 𝜷𝑧 by solving the
estimating equations

ℙ𝑛

{
𝑩𝑧(𝑿; 𝜽)𝐻(𝑍, 𝑆, 𝑿, 𝑌; 𝜽, 𝜷𝑧)

}
= 𝟎, (12)

where ℙ𝑛(𝑈) =
∑𝑛

𝑖=1
𝑈𝑖∕𝑛 for a generic variable 𝑈, and

𝑩𝑧(𝑿; 𝜽) is an arbitrary vector of functions of covariates 𝑿
with dimension no smaller than that of 𝜷𝑧. If the dimen-
sion of the user-specified function is larger than that of 𝜷𝑧,
wemay adopt the generalizedmethod ofmoments (GMM)

shanshanluo
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(Hansen, 1982) for estimation. Then in view of (2), we can
obtain our proposed estimator 𝜇𝑔(𝑧) of 𝜇𝑔(𝑧) as follows:

𝜇𝑔(𝑧) =
ℙ𝑛

{
𝜋𝑔(𝑿; 𝜽)𝜇(𝑧, 𝑔, 𝑿; 𝜷𝑧𝑔)

}
ℙ𝑛

{
𝜋𝑔(𝑿; 𝜽)

} . (13)

Let 𝐼𝑔 denote the index set of (𝜽T, 𝜷T
𝑧𝑔) in (𝜽T, 𝜷T

𝑧), and we
obtain the following asymptotic normality of 𝜇𝑔(𝑧).

Theorem 3. Suppose that the conditions in Theorem 1
or 2 hold and models (6)–(7) are correctly specified. Then
under regularity conditions in the sense of Hansen (1982),
𝑛1∕2{𝜇𝑔(𝑧) − 𝜇𝑔(𝑧)} converges in distribution to 𝑁(0, 𝜎2𝑧𝑔)

with 𝜎2𝑧𝑔 = 𝝉T𝑧𝑔𝛀𝑧𝑔𝝉𝑧𝑔∕𝜋
2
𝑔, where

𝝉𝑧𝑔 =

[
𝐸

{
𝜕𝜋𝑔(𝑿; 𝜽0)

𝜕𝜽T
𝜇(𝑧, 𝑔, 𝑿; 𝜷0𝑧𝑔)

}
,

𝐸

{
𝜋𝑔(𝑿; 𝜽0)

𝜕𝜇(𝑧, 𝑔, 𝑿; 𝜷0𝑧𝑔)

𝜕𝜷T
𝑧𝑔

}]T

,

𝛀𝑧𝑔 is the 𝐼𝑔 × 𝐼𝑔 submatrix of𝛀 = 𝑽−1𝚺𝑽−1T,

𝑽 =

[
𝐸(𝜕𝝍∕𝜕𝜽T) 𝟎

𝐸{𝜕(𝐻𝑩)∕𝜕𝜽T} 𝐸{𝜕(𝐻𝑩)∕𝜕𝜷T
𝑧}

]
,

and 𝚺 =

{
𝐸(𝝍𝝍T) 𝐸(𝐻𝝍𝑩T)

𝐸(𝐻𝑩𝝍T) 𝐸(𝐻2𝑩𝑩T)

}

with the score function 𝝍 = 𝜕𝑙(𝜽0; 𝑍, 𝑆, 𝑿)∕𝜕𝜽 at the true
value 𝜽0,𝐻 = 𝐻(𝑍, 𝑆, 𝑿, 𝑌; 𝜽0, 𝜷0𝑧 ), and 𝑩 = 𝑩𝑧(𝑿; 𝜽0).

Theorem 3 shows that the estimator obtained by (13)
is asymptotically normal and

√
𝑛-consistent. In order to

construct confidence intervals for 𝜇𝑔(𝑧), we need to pro-
vide a consistent estimator for the asymptotic variance
𝜎2𝑧𝑔. Such an estimator can be obtained by replacing the
expectations in 𝜎2𝑧𝑔 with their sample analogues. How-
ever, due to complexity issues in calculating derivatives,
we suggest bootstrap procedures to obtain estimators of the
variance.

3.3 Bounds

When the identification assumptions are violated, the
estimation of bounds of principal causal effects may be
preferred (Cheng and Small, 2006; Grilli and Mealli,
2008; Imai, 2008; Lee, 2009). In this subsection, we
derive bounds of 𝜇𝑔(𝑧) under Assumptions 1 and 2.

According to (2), we only need to obtain lower and
upper bounds of 𝜇(𝑧, 𝑔, 𝒙) for bounds of 𝜇𝑔(𝑧). We note
from (9) that the average of 𝑌 conditional on (𝑍 =

𝑧, 𝑆 = 1, 𝑿 = 𝒙) is a weighted average of {𝜇(𝑧, 𝑘, 𝒙)}𝑚
𝑘=𝑧

with weights {𝜔𝑘(𝑧, 𝒙)}
𝑚
𝑘=𝑧

defined in (8). Thus intu-
itively, 𝜇(𝑧, 𝑔, 𝒙) is bounded below by an average of the
bottom 100 × 𝜔𝑔(𝑧, 𝒙)% of values of 𝑌 conditional on
(𝑍 = 𝑧, 𝑆 = 1, 𝑿 = 𝒙), and we denote this lower bound
by 𝜇𝐿(𝑧, 𝑔, 𝒙). Similarly, the upper bound of 𝜇(𝑧, 𝑔, 𝒙),
denoted by 𝜇𝑈(𝑧, 𝑔, 𝒙), is an average of the top 100 ×

𝜔𝑔(𝑧, 𝒙)% of values of 𝑌 conditional on (𝑍 = 𝑧, 𝑆 =

1, 𝑿 = 𝒙). To formally state these results, we let 𝑄𝑧𝒙(𝑦)

denote the distribution function of outcome 𝑌 condi-
tional on (𝑍 = 𝑧, 𝑆 = 1, 𝑿 = 𝒙), and define the 𝑞-quantile
of 𝑄𝑧𝒙(𝑦) as 𝑦𝑧𝒙,𝑞 = inf{𝑦 ∶ 𝑄𝑧𝒙(𝑦) ⩾ 𝑞}. Let 𝐿𝑧𝒙,𝑞(𝑦) and
𝑈𝑧𝒙,𝑞(𝑦) denote the truncated distributions of𝑄𝑧𝒙(𝑦) at the
lower 𝑞-quantile and upper 𝑞-quantile, respectively; that
is,

𝐿𝑧𝒙,𝑞(𝑦) =

{
𝑄𝑧𝒙(𝑦)∕𝑞 if 𝑦 < 𝑦𝑧𝒙,𝑞,

1 if 𝑦 ⩾ 𝑦𝑧𝒙,𝑞,

𝑈𝑧𝒙,𝑞(𝑦) =

{
0 if 𝑦 < 𝑦𝑧𝒙,1−𝑞,

{𝑄𝑧𝒙(𝑦) − 1 + 𝑞}∕𝑞 if 𝑦 ⩾ 𝑦𝑧𝒙,1−𝑞.

Then the lower and upper bounds of 𝜇(𝑧, 𝑔, 𝒙) are, respec-
tively, given by

𝜇𝐿(𝑧, 𝑔, 𝒙) = ∫ 𝑦 d 𝐿𝑧𝒙,𝜔𝑔(𝑧,𝒙),

and 𝜇𝑈(𝑧, 𝑔, 𝒙) = ∫ 𝑦 d𝑈𝑧𝒙,𝜔𝑔(𝑧,𝒙). (14)

Based on (2) and (14), we immediately obtain the following
result.

Theorem 4. If Assumptions 1 and 2 hold, then 𝜇𝐿
𝑔 (𝑧) and

𝜇𝑈
𝑔 (𝑧) are sharp lower and upper bounds for 𝜇𝑔(𝑧), where

𝜇𝐿
𝑔 (𝑧) = 𝜋−1

𝑔 𝐸
{
𝜋𝑔(𝑿)𝜇𝐿(𝑧, 𝑔, 𝑿)

}
and 𝜇𝑈

𝑔 (𝑧) = 𝜋−1
𝑔 𝐸

{
𝜋𝑔(𝑿)𝜇𝑈(𝑧, 𝑔, 𝑿)

}
.

Let Δ𝐿
𝑔(𝑧1, 𝑧2) = 𝜇𝐿

𝑔 (𝑧1) − 𝜇𝑈
𝑔 (𝑧2) and Δ𝑈

𝑔 (𝑧1, 𝑧2) =

𝜇𝑈
𝑔 (𝑧1) − 𝜇𝐿

𝑔 (𝑧2). Then Δ𝐿
𝑔(𝑧1, 𝑧2) and Δ𝑈

𝑔 (𝑧1, 𝑧2) are the
sharp lower and upper bounds of Δ𝑔(𝑧1, 𝑧2), respectively.

Theorem 4 is not only applicable to observational stud-
ies when the ignorable treatment assignment assump-
tion holds, but also serves as a complementary to the
bound results derived by Wang et al. (2017) in the con-
text of multiarm randomized trials. Specifically, Wang
et al. (2017) derived sharp bounds of principal causal
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effects without covariates for a binary outcome, whereas
we provide bounds using covariates for a general out-
come in Theorem 4. In addition, if these new results are
applied to randomized trials, we can potentially obtain
tighter bounds than those obtained fromWang et al. (2017).
The following proposition provides necessary and suffi-
cient conditions for how to obtain strictly tighter bounds
when a binary covariate is utilized for adjustment. Let
𝜇𝐿
𝑔 (𝑧) and 𝜇𝑈

𝑔 (𝑧) denote the unadjusted lower and upper
bound of 𝜇𝑔(𝑧), respectively. The specific expressions of
these two bounds are provided in the Supplementary
Material.

Proposition 1. Under randomized and monotonicity
assumptions, we have that 𝜇𝐿

𝑔 (𝑧) ⩾ 𝜇𝐿
𝑔 (𝑧) and 𝜇𝑈

𝑔 (𝑧) ⩽

𝜇𝑈
𝑔 (𝑧). Let𝑌 be a continuous or binary outcome, andwe con-
sider a scenario where a binary covariate 𝑿 ∈ {0, 1} is uti-
lized for 𝜇𝐿

𝑔 (𝑧) and 𝜇𝑈
𝑔 (𝑧). If 𝑧 < 𝑚, then

(1) 𝜇𝐿
𝑔 (𝑧) > 𝜇𝐿

𝑔 (𝑧) if and only if 𝑦𝑧0,𝜔𝑔(𝑧,0) ≠ 𝑦𝑧1,𝜔𝑔(𝑧,1), and
when 𝑌 is binary, the if and only if condition further
requires𝑄𝑧𝒙(0) ≠ 𝜔𝑔(𝑧, 𝒙) (𝒙 = 0, 1), where𝑄𝑧𝒙(𝑦) and
𝑦𝑧𝒙,𝑞 are defined earlier in this section and 𝜔𝑔(𝑧, 𝒙) is
defined in (8);

(2) 𝜇𝑈
𝑔 (𝑧) < 𝜇𝑈

𝑔 (𝑧) if and only if 𝑦𝑧0,1−𝜔𝑔(𝑧,0) ≠ 𝑦𝑧1,1−𝜔𝑔(𝑧,1),
andwhen𝑌 is binary, the if and only if condition further
requires 1 − 𝑄𝑧𝒙(0) ≠ 𝜔𝑔(𝑧, 𝒙) (𝒙 = 0, 1).

Under randomized and monotonicity assumptions,
𝜇𝑚(𝑚) = 𝐸{𝑌(𝑚) ∣ 𝐺 = 𝑚} = 𝐸(𝑌 ∣ 𝑍 = 𝑚, 𝑆 = 1) is iden-
tifiable, and hence the adjusted and unadjusted bounds
for 𝜇𝑚(𝑚) are equal. We exclude such a case by assum-
ing 𝑧 < 𝑚 in Proposition 1. Similar results to Proposi-
tion 1 are established in Long and Hudgens (2013) for
the case where both the treatment 𝑍 and outcome 𝑌 are
binary. This proposition provides practitioners a simple
regime for bounds improvement in multiarm randomized
trials. For example, to improve bounds of 𝜇𝑔(𝑧) in the
case of a continuous outcome, one can simply choose a
binary covariate 𝑿 satisfying that 𝑦𝑧0,𝜔𝑔(𝑧,0) ≠ 𝑦𝑧1,𝜔𝑔(𝑧,1) or
𝑦𝑧0,1−𝜔𝑔(𝑧,0) ≠ 𝑦𝑧1,1−𝜔𝑔(𝑧,1). These conditions are testable,
because 𝜔𝑔(𝑧, 𝒙) is identifiable and can be easily esti-
mated under randomized and monotonicity assumptions.
The verification details of conditions in Proposition 1
can be found in Section S3.3 of the Supplementary
Material.

4 SIMULATION STUDIES

In this section, we conduct simulation studies to eval-
uate the finite sample performance of the proposed

estimators. We carry out the simulation in the following
steps.

Step 1. We create a random sample (𝑍, 𝑿, 𝑆, 𝑌) of size
𝑛 = 500 (or 2000, 5000) as follows: we first gen-
erate 𝑍 according to pr(𝑍 = 𝑧) = 1∕𝑚 for 𝑧 =

1,… ,𝑚, and generate covariates 𝑿 = (1, 𝐴, 𝑪)T,
where (𝐴, 𝑪)T are joint normal with mean (1, 1)T,
unit variance, and correlation 0.5; under Assump-
tion 2, we generate the principal stratum 𝐺 =

𝑘 from a multinomial logistic model: 𝜋𝑘(𝒙; 𝜽) =

exp(𝜽T

𝑘
𝒙)∕

∑𝑚

𝑘=0
exp(𝜽T

𝑘
𝒙) for 𝑘 = 0,… ,𝑚, where

𝜽 = (𝜽T

1, … , 𝜽T
𝑚)

T; then we let 𝑆 = 1 if 𝐺 ⩾ 𝑍

and 𝑆 = 0 otherwise; finally, we generate 𝑌∗

from a linear model: 𝑌∗ ∣ 𝑍 = 𝑧, 𝐺 = 𝑘,𝑿 = 𝒙 ∼

𝑁(𝜷T

𝑧𝑘
𝒙, 0.52) for 𝑧 = 1,… ,𝑚, 𝑘 ⩾ 𝑧, and let 𝑌 =

𝑌∗ if 𝑆 = 1.
Step 2. We apply the proposed approach in Sections 3.1

and 3.2 to the generated data set and estimate
the principal causal effects Δ𝑔(𝑧1, 𝑧2) within some
principal stratum 𝐺 = 𝑔.

Step 3. Repeat Steps 1 and 2 for 200 times.

Since there are four values of the treatment variable
in our application, we consider 𝑚 = 4 in the simulation
study. The true values of parameters in Step 1 are set
as follows: 𝜽0 = (0, 0, 0)T, 𝜽1 = (2, 1, 2)T, 𝜽2 = (2, 1.2, 1.5)T,
𝜽3 = (2, 1.4, 2)T and 𝜽4 = (2, 1.6, 2.5)T, andwe consider two
sets of true values of 𝜷𝑧𝑘: (I) 𝜷𝑧𝑘 = (−𝑧 + 𝑘, 0, 1)T so that
Assumption 3 is satisfied; (II) 𝜷𝑧𝑘 = (−𝑧 + 𝑘, 1, 1)T under
model (5).
For estimation in Step 2, we first obtain an esti-

mate 𝜽 by maximum likelihood with the EM algo-
rithm. Then we postulate linear models with 𝑪 and
𝑿 as predictors for the outcome in cases (I) and (II),
respectively. We solve estimating equations in (12) with
𝑩𝑧(𝑿; 𝜽) = {𝜔𝑧(𝑧, 𝑿; 𝜽), … , 𝜔𝑚(𝑧, 𝑿; 𝜽), 𝑪T}T for case (I)
and 𝑩𝑧(𝑿; 𝜽) = {𝜔𝑧(𝑧, 𝑿; 𝜽), … , 𝜔𝑚(𝑧, 𝑿; 𝜽), 𝑿T}T for case
(II) to obtain estimators of {𝜷𝑧𝑘}

𝑚
𝑘=𝑧

, where 𝜔𝑘(𝑧, 𝒙; 𝜽)

is defined in (11) for 𝑧 = 1,… ,𝑚 and 𝑘 ⩾ 𝑧. Finally,
we obtain an estimator of Δ𝑔(𝑧1, 𝑧2) according to (13)
and (1), and employ bootstrap procedures with 200
replications to calculate its variance. In this simula-
tion study, we choose causal estimands Δ𝑔(𝑧1, 𝑧2) with
𝑧1 = 1 and 𝑧2, 𝑔 ∈ {2, 3, 4} for illustration purposes, and
the performances of estimators for other estimands are
similar.
We report the average bias, empirical standard error

(SE), and 95% confidence interval coverage probabilities
for estimators of Δ𝑔(1, 𝑧2) based on 200 replications under
sample sizes 500, 2000, and 5000. Table 2 shows simula-
tion results for cases (I) and (II). The results in these two
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TABLE 2 The average bias, empirical standard error (SE), and 95% coverage probability (CP) across 200 replications of the proposed
estimators for Δ𝑔(𝑧1, 𝑧2) in two cases at different sample sizes, respectively

𝒛𝟏 𝒛𝟐 Sample size Bias SE CP Bias SE CP Bias SE CP
𝒈 = 𝟐 𝒈 = 𝟑 𝒈 = 𝟒

Case (I) 500 −0.41 2.86 0.79 −0.29 2.73 0.76 0.15 1.14 0.87
1 2 2000 −0.15 1.50 0.88 −0.01 2.23 0.88 0.11 0.86 0.89

5000 −0.03 1.07 0.94 0.01 1.13 0.95 0.01 0.35 0.94
500 −0.40 2.52 0.79 0.12 1.04 0.89

1 3 2000 NA −0.01 2.02 0.85 0.13 0.83 0.90
5000 0.01 0.97 0.94 −0.00 0.30 0.93
500 −0.06 0.95 0.91

1 4 2000 NA NA 0.10 0.77 0.91
5000 0.00 0.22 0.93

𝒛𝟏 𝒛𝟐 Sample size Bias SE CP Bias SE CP Bias SE CP
𝒈 = 𝟐 𝒈 = 𝟑 𝒈 = 𝟒

Case (II) 500 −0.14 2.13 0.80 0.03 2.49 0.80 −0.07 1.06 0.86
1 2 2000 −0.03 1.45 0.81 0.15 1.31 0.90 −0.05 0.73 0.93

5000 0.01 0.97 0.91 0.09 0.82 0.91 −0.00 0.27 0.93
500 −0.08 2.48 0.81 −0.15 0.96 0.91

1 3 2000 NA 0.08 1.16 0.91 −0.06 0.70 0.93
5000 −0.04 0.67 0.92 −0.01 0.23 0.93
500 −0.18 0.88 0.88

1 4 2000 NA NA −0.04 0.68 0.93
5000 −0.03 0.18 0.95

Note: NA: not applicable for Δ𝑔(1, 𝑧2) with 𝑔 < 𝑧2.

cases are similar. We first observe that for each fixed treat-
ment level 𝑧2 and sample size, the estimator of Δ4(1, 𝑧2)

performs better than others. This is because the proportion
of principal stratum 𝐺 = 4 accounts for the largest and it
can be well estimated away from zero. Using such a well-
estimated quantity as the denominator, the proposed esti-
mator in (13) for 𝜇4(𝑧2), and then for Δ4(1, 𝑧2), exhibits
smaller bias and variance. Second, we observe that for
each fixed principal stratum 𝑔 and sample size, the perfor-
mance of the estimator for Δ𝑔(1, 𝑧2) improves as the treat-
ment level 𝑧2 increases. According to (13), the performance
of our estimator mainly depends on how well 𝜷𝑧2𝑔 can
be estimated. For estimation of 𝜷𝑧2𝑔, although the effec-
tive sample sizes (i.e.,

∑𝑛

𝑖=1
𝐼(𝑍𝑖 = 𝑧2, 𝑆𝑖 = 1)) are approxi-

mately the same for all levels of 𝑧2, there exist more mixed
unknown components for smaller 𝑧2 as indicated by (10).
This would make the corresponding estimator more vari-
able. Finally, we observe that as sample size increases,
both biases and standard errors of the proposed estimators
become smaller and the coverage probabilities are close to
the nominal value. These results support the consistency
and asymptotic results of estimators obtained by the pro-
posed approach.

5 APPLICATION TO NTP DATA

In this section, we apply the proposed approach to a real
data set from the developmental toxicology experiment
of antimony trioxide in rats and mice conducted by NTP
(NTP, 2017). In this experiment, 800 Wistar Han rats and
B6C3F1/N mice were randomly exposed to one of four dif-
ferent dose levels of antimony trioxide aerosol by whole
body inhalation: 0, 3, 10, and 30 mg/m3. The data of each
pup include gender (male/female), species (rat/mouse),
body weights every week for 2 years, and survival status.
The data set does not include pretreatment weights for
pups. However, because this is a chronic experiment, we
assume that the first-weekweights are not affected by their
exposed doses, and hence, we treat their first-weekweights
as the baseline weights.
In our analysis, we consider the administered toxin lev-

els as different treatment arms 𝑍, which are coded as 1–4
corresponding to dose levels from low to high. For exam-
ple, 𝑍 = 1 denotes the group with zero toxin dose level or
the control group. Let 𝑆 = 1, if a pup survived at the 2 years
since the receipt of the treatment and 𝑆 = 0 otherwise. We
choose outcome 𝑌 to be the difference between a survived
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TABLE 3 Estimate and 95% confidence interval of each 𝜋𝑘 for NTP data set

Probability 𝑘 = 0 𝑘 = 1 𝑘 = 2 𝑘 = 3 𝑘 = 4

𝜋𝑘 0.28 (0.23, 0.33) 0.07 (0.00, 0.14) 0.11 (0.02, 0.20) 0.20 (0.10, 0.30) 0.34 (0.27, 0.41)

pup’s logarithmic weight at the end of 2 years and its base-
line logarithmic weight. Thus, the outcome𝑌 is undefined
if a pup diedwithin 2 years.We are interested in evaluating
causal effects of toxin levels on pups’ weights reduction.

5.1 Estimation under the monotonicity
assumption

We first analyze the data set under the monotonicity
assumption. In fact, a simple descriptive statistical analy-
sis implies that as the toxin level increases, the survival rate
of pups decreases. This does not contradict with mono-
tonicity assumption 2. According to the expressions in (4),
we estimate each principal stratum probability 𝜋𝑘 (𝑘 =

0,… , 4) and its corresponding 95% confidence interval. The
results are shown in Table 3. We see that 28% of pups will
die and 34% of them will be alive, no matter what level of
toxin is assigned; for the remaining 38% of pups, their sur-
vival status will be affected by the amount of toxin levels in
2 years. We focus on the average causal effect comparing
each treatment level with the control within the always-
survival group, that is,Δ4(𝑧1, 𝑧2) for 𝑧1 = 2, 3, 4 and 𝑧2 = 1.
We next consider three scenarios: (i) with Assump-

tion 3; (ii) with model (5); and (iii) without Assumption 3
ormodel (5). In scenario (i), we choose𝐴 to be the baseline
logarithmic weights and let 𝑪 denote the other covariates.
It is likely that the weight difference, that is, the outcome
𝑌, is not directly affected by the baseline weights. Such
a way of choosing 𝐴 can be similarly found in Ding et al.
(2011) and Wang et al. (2017). We calculated the partial
correlation between the baseline weight 𝐴 and the weight
difference 𝑌 after adjusting for 𝑍 and 𝑪, and the result is
nearly null. We also made a plot between 𝐴 and 𝑌 within
each level of 𝑍 and 𝑪, and we found that all correlations
between 𝐴 and 𝑌 in the plot are quite small (see Figure S1
in the Supplementary Material). These empirical evi-
dences may also provide the validity of Assumption 3. We
then postulate a linear model in 𝑪 for the outcome in this
scenario. In scenario (ii), we employ a linearmodel in both
𝐴 and 𝑪 for the outcome. Under these two different mod-
els, we use the unified approach presented in Section 3.2
for estimation. The approach involves EM-based maxi-
mum likelihood method and GMM estimation, both of
which require optimization about unknown parameters.
The convergence of these two procedures may depend on
initial values. Therefore, we choose 10,000 initial values

for optimization, obtain each estimator, and calculate its
corresponding variance. We find that estimators with vari-
ances around the minimum one are close to each other,
showing good convergence and stability, but estimators
with large variances are unstable. We thus finally select
the estimator with the minimum variance. Based on the
estimator, we also calculate the 95% confidence interval
of the always-survival average causal effect. Finally, when
the identification conditions are removed as in scenario
(iii), we provide estimation of bounds of the principal
causal effects with and without covariate adjustment. All
these results are shown in Table 4.
Table 4 shows that the proposed approach yields similar

results in scenarios (i) and (ii), where the point estimates
under these two scenarios exhibit the same sign and are
relatively close for each principal stratum effect. Compar-
ing them in terms of the estimated 95% confidence inter-
vals, we find that the approach under the linear model
with all covariates as predictors results in narrower con-
fidence intervals. These results generally imply that if the
always-survival pups are exposed to the highest level of tox-
ins (i.e., 30mg/m3), then they will have lower weight than
had they been given no toxins. In contrast, if these pups are
exposed tomoremoderate toxin levels (i.e., 3 or 10mg/m3),
then there is little evidence that these moderate toxins will
impact the pups’ weights. The bound results shown in
Table 4 further support our findings. For example, since
the bounds of Δ4(2, 1) and Δ4(3, 1) both include zero, the
causal effects of lower toxin levels on pups’ weights are
not significant. We also observe that adjusting for a binary
covariate (i.e., species) yields narrower bounds, compared
with the bounds without covariates adjustment. We illus-
trate this by verifying conditions in Proposition 1. Note
that the principal stratum effect Δ4(𝑧1, 𝑧2) is defined as
𝜇4(𝑧1) − 𝜇4(𝑧2) for 𝑧1 = 2, 3, 4 and 𝑧2 = 1. We only need
to focus on bounds of 𝜇4(𝑧) for each level of 𝑧. In fact,
after some calculations provided in Section S4.2 of the Sup-
plementaryMaterial, we find that 𝑦𝑧0,𝜔4(𝑧,0) ≠ 𝑦𝑧1,𝜔4(𝑧,1) for
𝑧 = 1, 2, 3. According to Proposition 1, this implies that the
adjusted lower bound 𝜇𝐿

4 (𝑧) is larger than the unadjusted
one 𝜇𝐿

4 (𝑧). Similarly, since 𝑦𝑧0,1−𝜔4(𝑧,0) ≠ 𝑦𝑧1,1−𝜔4(𝑧,1), the
adjusted and unadjusted upper bounds satisfy 𝜇𝑈

4 (𝑧) <

𝜇𝑈
4 (𝑧) for 𝑧 = 1, 2, 3. Finally, because 𝜇4(4) is identifiable,
it can be pointly estimated. The bounds with and with-
out adjustment for 𝜇4(4) should be equal. These results
together indicate that adjusting for covariates can indeed
sharpen the bound of Δ4(𝑧1, 𝑧2), as shown in Table 4. In
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TABLE 4 The estimates of principal causal effects Δ4(𝑧1, 𝑧2) under various assumptions for NTP data set

Methods 𝒛𝟏 = 𝟐 versus 𝒛𝟐 = 𝟏 𝒛𝟏 = 𝟑 versus 𝒛𝟐 = 𝟏 𝒛𝟏 = 𝟒 versus 𝒛𝟐 = 𝟏

Estimates and 95% confidence intervals
Estimation under Assumption 3 −0.04 (−0.24, 0.15) −0.10 (−0.26, 0.06) −0.36 (−0.51, −0.21)

Estimation under linear model −0.05 (−0.19, 0.09) −0.08 (−0.19, 0.03) −0.29 (−0.40, −0.19)

Lower and upper bounds
Unadjusted bounds (−0.46, 0.36) (−0.50, 0.26) (−0.45, −0.01)

Adjusted bounds (−0.37, 0.23) (−0.40, 0.15) (−0.39, −0.11)

summary, lower levels of antimony trioxide (e.g., 3mg/m3)
have little impact on the pups’ weights, but a high level
of antimony trioxide (e.g., 30 mg/m3) can have a signifi-
cant causal effect on pups’ weights reduction, which may
be useful information to laboratory scientists.

5.2 Sensitivity analysis with violation of
monotonicity assumption

In this subsection, we perform sensitivity analysis to assess
the robustness of the empirical results when the mono-
tonicity assumption is violated, as was usually done in
truncation-by-death problems with a binary treatment.
However, completely violating the monotonicity assump-
tion in our setting with a four-level treatment is a lot more
complicated than that in settings with a binary treatment.
We thus consider a simpler version by allowing the mono-
tonicity assumption violated only between any two adja-
cent treatment levels. This is reasonable in our example.
If two toxicity levels are too close, the potential survival
status of a pup under one dose level cannot determine the
survival status under the other dose level. Thus, it is pos-
sible that a pup survived at some toxicity level, but it did
not survive at a slightly lower toxicity level. If we addition-
ally decreased the toxicity level, the pupmaywould survive
again. Under the relaxed monotonicity assumption, three
new principal strata, namely 𝑑𝑒𝑓𝑖𝑒𝑟𝑘 for 𝑘 = 1, 2, 3, were
introduced in our empirical study (see Table S2 in the Sup-
plementary Material). The principal stratum 𝐺 = 𝑑𝑒𝑓𝑖𝑒𝑟𝑘
is introduced as a consequence of monotonicity violations
between treatment levels 𝑘 and 𝑘 + 1. Hence, the defi-
nition of 𝐺 = 𝑑𝑒𝑓𝑖𝑒𝑟𝑘 is similar to that of 𝐺 = 𝑘 except
that only values of {𝑆(𝑘), 𝑆(𝑘 + 1)} are reversed. For exam-
ple,𝐺 = 1 implies that 𝑆(1) = 1, 𝑆(2) = 0, but𝐺 = 𝑑𝑒𝑓𝑖𝑒𝑟1
implies that 𝑆(1) = 0, 𝑆(2) = 1; values of 𝑆(3) and 𝑆(4) in
these two strata are both equal to 0. In this specific appli-
cation, pups in the subgroup𝐺 = 1 survive only at the con-
trol level, whereas pups in 𝐺 = 𝑑𝑒𝑓𝑖𝑒𝑟1 survive only at the
toxicity level of 3 mg/m3.
In parallel with the three additional principal strata,

three sensitivity parameters are required for our analy-

sis. Specifically, we introduce 𝜂𝑘(𝒙) = 𝜋defier𝑘 (𝒙)∕𝜋𝑘(𝒙)

to capture the deviation from monotonicity, where
𝜋defier𝑘 (𝒙) = pr(𝐺 = 𝑑𝑒𝑓𝑖𝑒𝑟𝑘 ∣ 𝑿 = 𝒙) for 𝑘 = 1, 2, 3.
Given these sensitivity parameters, one can show the
identification of principal causal effects under a linear
model. Details can be found in Section S5 of the Supple-
mentary Material. For ease of presentation, we consider
a simple case where these three parameters are equal to a
constant, that is, 𝜂1(𝒙) = 𝜂2(𝒙) = 𝜂3(𝒙) = 𝜂. The sensitiv-
ity parameter 𝜂 can take value from 0 to ∞, and we have
monotonicity if 𝜂 = 0. Based on the discussions in Ding
and Lu (2017), we may assume without loss of generality
that 0 ⩽ 𝜂 ⩽ 1. Additionally, to ensure that proportions of
the principal strata are all between 0 and 1, the range of 𝜂
should be [0, 0.283]. Figure 2 presents how the estimated
principal causal effects change as the sensitivity param-
eter 𝜂 increases. We find that the estimated confidence
intervals of the effect of moderate toxicity levels (i.e., 3
or 10 mg/m3) on pups’ weights almost always contain 0,
and the estimated effects of the highest toxicity level (i.e.,
30 mg/m3) are always significantly negative. These results
indicate that our previous findings are relatively robust to
such a kind of deviation from monotonicity assumption.
Scientific considerations may allow us to specify more
accurate sensitivity parameters and thus obtain more
precise conclusions about these effects.

6 DISCUSSION

In this paper, we develop a principal stratification-based
approach to address the truncation-by-death problem in
multiarm studies with ordinal treatments. We establish
the identifiability of principal causal effects via an aux-
iliary variable or under a linear model setting, and pro-
vide a unified semiparametric estimation approach. We
also derive asymptotic normality results of our proposed
estimator. Besides, when those identifiability conditions
are not valid, we provide sharp bounds of the princi-
pal causal effects. In multiarm randomized trials, the
derived bounds are narrower than thosewithout covariates
adjustment.
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F IGURE 2 Sensitivity analysis for NTP data set with violation of monotonicity assumption. Point estimate and 95% confidence interval
of the principal causal effect Δ4(𝑧1, 𝑧2) are shown for each value of the sensitivity parameter 𝜂. In each plot, the dot-dashed line indicates the
point estimate under monotonicity assumption

The truncation-by-death problems have been exten-
sively studied in the binary treatment setting (Ding et al.,
2011; Tchetgen Tchetgen, 2014;Wang et al., 2017). Although
we are still interested in pairwise comparisons of average
potential outcomes in multiarm studies, one should not
directly apply existing approaches to estimate the causal
estimand by focusing analysis to the two treatment groups.
In that manner, one can only obtain an estimate of a mix-
ture of the causal parameter of interest defined in (1),
because the principal stratum determined by potential sur-
vival status of two treatment levels is actually a coarse set of
the basic principal stratum 𝐺. Therefore, it is necessary to
develop approaches to address truncation-by-death prob-
lems in the multivalued treatment setting.
There are several possible directions for future research.

First, the proposed approach may be generalized to deal
with longitudinal and time-to-event data (Frangakis et al.,
2004). Second, although we focus on a four-arm trial in
our application, the proposed sensitivity analysis method
is applicable to general multiarm studies. Third, since

treatment variables of interest may be continuous in some
truncation-by-death problems, it would be of interest to
develop a principal stratification-based method to handle
such settings. The study of these issues is beyond the scope
of this paper and we leave them as future research topics.
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