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ABSTRACT

Modern neural networks used for classification are notoriously prone to overly
confident predictions. With multiple calibration methods proposed so far, there
has been noteworthy progress in addressing overconfidence issues. However, to
the best of our knowledge, prior methods have exclusively focused on those factors
that affect calibration, leaving open the question of how (mis)calibration circles
back to negatively impact network training. Aiming to better understand such de-
pendencies, we propose a temperature-based Cooling method to calibrate classifi-
cation neural networks during training. Cooling results in better gradient scaling
and reduces the need for a learning rate schedule. We investigate different variants
of Cooling, with the simplest, last layer Cooling, being also the best-performing
one, improving network performance for a range of datasets, network architec-
tures, and hyperparameter settings.

1 INTRODUCTION

Training neural networks can be a challenging task, with optimal performance depending on the right
setting of hyperparameters. For this reason, finding a suitable network configuration can often take
multiple costly training runs with varying parameters of the learning rate schedule, the optimizer
and the batch size. Apart from standard learning rate schedules like piecewise constant schedules
and exponential decay schedules, there has been activate research in developing better schedules:
Among the most prominent of these are learning rate warmup (Goyal et al., 2017; He et al., 2016a)
and cosine decay (Loshchilov & Hutter, 2017) schedules.

Complementary to these challenges, (Guo et al., 2017) found that modern convolutional classifica-
tion networks are often poorly calibrated, leading to overly confident predictions. They investigated
multiple methods to improve calibration, with a simple temperature scaling method performing
best: the network’s output logits are multiplied by a temperature parameter, optimised on a valida-
tion dataset after training. Importantly, this leaves the maximal value and therefore the predicted
class label unchanged since all the logits are multiplied by the same temperature value.

Since then, multiple papers (Kull et al., 2019; Kumar et al., 2019; 2018; Müller et al., 2019; Gupta
et al., 2021) proposed methods aiming to even better calibrated networks. More recently, (De-
sai & Durrett, 2020; Minderer et al., 2021) investigated the calibration of state-of-the-art non-
convolutional Transformer networks (Vaswani et al., 2017; Dosovitskiy et al., 2021) and MLP-
Mixers (Tolstikhin et al., 2021). They concluded that such architectures may have benefits, with
further work needed to fully understand the factors contributing to calibration.

Despite initially leaving the accuracy unchanged, we have noticed that temperature scaling can have
an intriguing effect as training continues: scaling the output logits results in a change in the cross-
entropy loss, which in turn leads to scaled gradient updates and subsequently new parameter values.
During training, this can lead to a significant increase in accuracy. To the best of our knowledge,
temperature scaling has until now only been applied post hoc after completing network training.
However, our investigation shows that networks become gradually overconfident during training
(they overheat), which seems to have a detrimental effect on learning. This has motivated us to
modify the original temperature scaling and propose a Cooling method to calibrate neural networks
during training.
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Our Contributions

• A Cooling method for calibrating classification neural networks during training. We pro-
pose two basic variants called last layer Cooling and distributed Cooling, and one hybrid
variant called periodically redistributed Cooling.

• A mathematical analysis of the effect of Cooling on the network gradients, with a compar-
ison of different Cooling variants.

• An empirical investigation of the effects of Cooling on a range of metrics, including net-
work weights, gradients, output logits and the ECE (expected calibration error) calibration
measure.

• A broad set of experiments for different tasks (image classification and semantic segmen-
tation), datasets and network architectures. We also include an extensive ablation study, in-
volving different activation functions, optimizers, and hyperparameters such as the learning
rate schedule, the Cooling factor and the use of weight decay and data augmentation. Our
experiments indicate an interplay between the learning rate and calibration during training.
Importantly, if well-calibrated, networks can train well without the use of a learning rate
schedule.

2 BACKGROUND AND NOTATION

Let fθ : Rd → Rs denote the function of a classification neural network with parameters θ, mapping
a d-dimensional input (in our case an image) x to an s-dimensional logits vector z = fθ(x). During
training, each input x comes with a class-probability or label vector y, denoting probabilities of x
belonging each of s classes. This is usually (but not necessarily) a one-hot vector corresponding to
a so-called ground-truth class label, i∗.

In its simplest variant, we suppose the network consists of L affine (dense or convolutional) layers,
each followed by a non-linear activation function. For the ith layer (1 ≤ i ≤ L) this gives an
expression of the form xi = ρ(pi) = ρ(Wixi−1 + bi) with weight matrices Wi, bias vectors
bi, non-linearities ρ, pre-activation values pi and layer inputs and outputs xi−1 and output xi,
respectively. (More generally, our method can be applied to any neural network, involving arbitrary
functions and layers like e.g. attention, batch normalization and skip connections.) The output
logits are then passed through the softmax function σ which results in a vector ŷ = σ(z) of class
probabilities. The classification network is trained to minimize the categorical cross-entropy loss
function

L(z) = H(y, σ(z)) = −
s∑

i=1

yi log(ŷi) . (2.1)

We say that a network is well-calibrated if the output values ŷ can be interpreted as true probabilities.
Intuitively, if a network makes 100 predictions with 90% confidence, we would expect that 90% are
correctly classified. (Guo et al., 2017) observed that convolutional neural networks tend to display
over-confidence in their results, in that ŷi∗ gives an over-estimate of the probability that λi is the
correct label. Thus the networks are badly calibrated, which we metaphorically express by saying
that the networks become overheated.

(Guo et al., 2017) found that simply multiplying the pre-softmax logits zi by a factor τ does an
excellent task of improving the network’s calibration. Thus, the task of correcting the calibration of
the network is to find a constant τ to correct its output, so that it becomes

y = σ(τz) = σ(τfθ(x)) . (2.2)

The optimal τ is found by minimizing the log-likelihood cost function on a small calibration set,
held back from the training data. This operation is carried out when the network is fully trained.
Usually, one finds that the optimum value is τ < 1. This process is known as temperature scaling.

We refer to (Guo et al., 2017) for a more detailed introduction to network calibration.
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3 METHOD: COOLING WHILE TRAINING

3.1 FUNDAMENTALS

When the network overheats, the predicted values ŷi become too close to 0 or 1. This can cause
problems with gradients becoming large. We hypothesise therefore that keeping the network at the
correct temperature during training can lead to improved convergence. Our proposed operation is to
periodically correct the network, by multiplying the logits zi by the optimal temperature correcting
constant. There are multiple ways to implement Cooling, the most basic being last layer Cooling:

Definition 3.1. A network performs last layer Cooling if before the softmax function there is a final
scaling layer, multiplying the network output logits z by a constant scalar τ > 0. This value τ is not
modified during the batch updates of the gradients, but is corrected using a held-out validation set at
the end of the Cooling period.

Cooling factor. We investigate the effect of taking the optimal temperature parameter τ to some
power κ, which we call the Cooling factor. Let us assume that τ < 1 (which is mostly the case).
Then for κ > 1, multiplying by τκ results in smaller logits, a scenario which we call overcooling.
Conversely, κ < 1 produces larger logits, resulting in an undercooling of the network. We note that
as κ→ 0, we approach standard network training without Cooling. As we show in the experiments,
using a suitable value for κ can have positive effects on the training stability and performance.

Cooling period. We call the periodic time interval after which we perform temperature scaling
the Cooling period. Typically, we let the Cooling period be equal to one epoch of training. We
trained the VGG-style network described in §4.2 on CIFAR10, using an Nvidia GeForce GTX Titan
Z GPU and a 16-core Intel Xeon CPU E5-2640 v3. The actual training takes approximately 56
seconds per epoch, whereas Cooling takes approximately 1.05 seconds. Hence, one run of Cooling
takes approximately 1.9% of the time of one training epoch. We experimented on CIFAR10 with
a Cooling period of one batch, but found no additional performance benefits. Thus, it seems that
Cooling once per epoch is sufficient.

3.2 DISTRIBUTED COOLING

Instead of waiting to perform scaling after the final layer, it is possible to redistribute the temperature
correction across the network, by scaling layers other than the last.

Suppose the optimal temperature is τ ∈ R+. When we redistribute the temperature across the
network, we would like the temperature correction to gradually take effect. More precisely, we want
to ensure that (1) each layer multiplies its input by an additional factor of β = τ1/L, so that the
output of the ith layer is now x′

i = βixi. Moreover, (2) the inputs to the non-linearities ρ have to be
the same as before scaling because we would otherwise change the network output in a non-linear
manner. Finally, (3) the output logits z should be multiplied by βL = τ .

Definition 3.2. Let the notation be as in § 2. Let β = τ1/L. A network performs distributed Cooling
if after each Cooling period,

1. the weight matrix Wi is multiplied by β, resulting in a new matrix W′
i := βWi;

2. the bias vector bi is multiplied by βi, resulting in a new vector b′
i := βibi;

3. the activation ρ is changed to ρβi , defined by ρβi(x) = βiρ(β−ix).

Lemma 3.3. If a network performs distributed Cooling, then, compared to no Cooling,

1. the output of the ith layer is x′
i = βixi, for 1 ≤ i ≤ L− 1;

2. the input to each of the non-linearities is left unchanged;

3. the output logits are scaled by a factor of τ : z′ = τz.

Proof. We give the proof in in Appendix A.
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Algorithm 3.1 Periodically Redistributed Cooling (simplified)
Inputs: Neural network fθ with L linear layers (Wi,bi)

Final Cooling layer sτ
Validation data set Xval
Cooling factor κ
Maximal temperature τmax; reset temperature τre

Output: Calibrated Network fθ′

After each Cooling period:
1: τ ← temperature minimising cross entropy on Xval
2: τ ← τκ ▷ over- or undercooling
3: if τ > τmax then
4: excess← τ/τre
5: τ ← τre
6: kernel scale← L

√
excess

7: bias scale← 1
8: for i = 1 to L do
9: bias scale← bias scale ∗ kernel scale

10: Wi ←Wi/kernel scale
11: bi ← bi/bias scale
12: Update sτ using new τ

It may be observed that if ρ is the ReLU function, then ρβi = ρ, so the activation layer is not
changed. (More generally, this holds for piecewise-linear ReLU variants such as CReLU, Leaky
ReLU and PRELU.) Note also that τ is usually less than 1, indicating overheating of the network,
and hence multiplications by β and βi result in a decrease in the values of the parameters Wi and
bi.

When performing last layer Cooling, we have observed that the network can correct for this by
overheating even more. This means that the required temperature correction τ becomes smaller and
smaller, towards zero. At the same time, this means that the parameters of the layers (for instance W
and b in affine layers) become larger and larger, eventually causing numerical overflow. A possible
solution to this problem is to keep track of the overheating parameter τ , and when it becomes too
small, redistribute the temperature correction over all layers:

Definition 3.4. A network performs periodically redistributed Cooling if for some τmax, τre > 0,

• it performs last layer Cooling as long as τ < τmax (i.e. the optimal temperature is less than
a specified maximal temperature);

• it redistributes the excess temperature τ/τre across the layers as in Definition 3.2 if τ >
τmax.

The values τmax and τre are manually specified. In our experiments, we used τmax = τre = 100 for
periodically redistributed Cooling, but other values can also be considered.

Summary. Algorithm 3.1 gives the pseudocode of our proposed Cooling method. The algorithm
shows periodically redistributed Cooling, since it is the most general case. We can recover last layer
Cooling and distributed Cooling as special cases with (τmax, τre) = (∞,∞) and (τmax, τre) = (0, 1),
respectively. The algorithm displayed above is simplified for the sake of clarity: it does not take
heed of layers like attention and batch normalization and excludes skip connections. These layers
are straightforward to address in a general implementation of the Cooling method.

3.3 EFFECTS ON GRADIENT VALUES

We now perform an analysis of the effect Cooling on the network gradients.

4



Under review as a conference paper at ICLR 2023

3.3.1 LAST LAYER COOLING

Proposition 3.5 (Gradients of last layer Cooling). Let the notation be as in § 2. If C = L(σ(τz))
where σ is the softmax function and L is the cross-entropy loss, the derivative with respect to any
network parameter w ∈ θ is given by

∂C

∂w
=

〈
σ(τz)− y,

∂τz

∂w

〉
= τ

〈
σ(τz)− y,

∂z

∂w

〉
, (3.1)

expressed as the inner-product of two vectors.

Proof. When τ = 1, Equation 3.1 is a known result of a simple computation. The general case is an
application of the chain rule.

Interpretation. The difference ϵ = σ(z)− y may be termed the residual, namely the difference
between the ground-truth label probabilities y and the label probabilities σ(z) computed by the
network. The derivative ∂C/∂w is then the inner product of this residual with the vector ∂z/∂w.

We can use this formula to analyze the effect of temperature-scaling by τ . Suppose τ = 1, so there
is no heating correction. As is known, in this case probabilities tend to be overestimated, so that
σ(z) approaches y. All values of σ(z) other than the ground truth become very small, meaning that
values of ∂zi/∂w are multiplied by small values, and so are ultimately ignored, with harmful effects
on convergence.

Setting τ < 1 results in a more evenly distributed (less peaked) vector σ(τz), meaning that all values
of zi and ∂zi/∂w have an effect on the gradient.

3.3.2 DISTRIBUTED COOLING

Now, we consider what happens to gradients when distributed Cooling is applied. We simplify the
analysis by thinking of scaling occurring in two steps. First global temperature scaling is applied
by modifying the final layer so that its output is multiplied by τ . Subsequently, distributed scaling
is applied to all layers resulting in the output of the i-th layer being multiplied by βi, in a way that
the network output is unchanged. The effect of the final-layer scaling on gradients was addressed
earlier. Now we concentrate on the effect of distributed scaling on gradients in the network.

Consider a network with N layers, labelled 0 to N − 1, let xi be the input to the i-th layer (which is
also the output of the i− 1-th layer), and xN the output of the last layer. Let another network have
layer inputs denoted by x′

i.

Definition 3.6. We will say that two networks are scale-equivalent if for inputs x0 = x′
0 there are

constants βi with β0 = βN = 1 such that x′
i = βixi. Evidently, for the same input x0 = x′

0, the
outputs xN = x′

N are the same, since βN = 1.

It will be observed, however that the gradients of the parameters of these networks will be different.
Let the first (unprimed) network be represented by xi+1 = ρi(Wixi +bi) where ρi is an activation
function, possibly different for each i. Then, given numbers βi with β0 = βN = 1, an equivalent
network is given by x′

i+1 = ρ′i(W
′
ix

′
i + b′

i) where

W′
i = βi+1β

−1
i Wi and b′

i = βi+1bi and ρ′i = ρ
βi+1

(3.2)

and ρ
β

is a modified activation function given by ρ
β
(x) = βρ(β−1x). (It should be noted that if ρ is

a ReLU activation, then ρ = ρ
β

.) Then, x′
i = βixi for all i, as required.

Thus, with Ti representing the transformation xi 7→ ρi(Wixi + bi) = xi+1, (and similarly T ′) we
compare the two networks:

σ ◦ TN−1 ◦ TN−2 ◦ . . . ◦ T0(x0) and σ ◦ T ′
N−1 ◦ T ′

N−2 ◦ . . . ◦ T ′
0(x0) ,

where σ represents the final softmax layer.

It is evident that these two networks carry out the same operation. However, it will be shown that if
optimized using a gradient-descent based method, the update of their parameters will be different,
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and the trajectory of the parameters in the path towards the optimum during training will be quite
different.

Let Wi,jk be one of the entries of Wi and bi,j be one of the parameters of bi. Similarly, let W′
i,jk

and b′i,j be the corresponding parameter of the primed (distributively scaled) network. The following
will be shown:
Theorem 3.7. Let C = L(z) where z = σ ◦ fθ(x0) = σ ◦ f ′

θ′(x0) for scale equivalent networks
fθ and f ′

θ′ . Functions σ and L are softmax and loss functions. Let Wi,jk be the (j, k)-th entry of
parameter matrix Wi and bi,j the j-th entry of parameter vector bi. Then

∂C

∂W′
i,jk

=
βi

βi+1

∂C

∂Wi,jk
and

∂C

∂b′i,j
=

1

βi+1

∂C

∂bi,j
(3.3)

Proof. Define pi+1 = Wixi + bi, and xi+1 = ρi(pi+1), and similarly primed quantities. We see
that x′

i = βixi and p′
i = βipi for all i. Let fi+1 be the mapping defined by

C = fi+1(pi+1) = L ◦ σ ◦ TN−1 ◦ TN−2 ◦ . . . ◦ Ti+1 ◦ ρi(pi+1)

namely, the part of the network “downstream” from pi+1 (including the activation function ρi in the
i-th layer, and the softmax and loss functions). Function f ′

i+1 is similarly defined for the primed
network.

We apply the chain rule:
∂C

∂Wi,jk
=

∂C

∂pi+1

∂pi+1

∂Wi,jk

A similar formula holds for the primed case.

Now, since C = fi+1(pi+1) = f ′
i+1(p

′
i+1) = f ′

i+1(βi+1pi+1) we see

∂C

∂p′
i+1

= β−1
i+1

∂C

∂pi+1
(3.4)

Next, we compare ∂pi+1/∂Wi,jk and ∂p′
i+1/∂W

′
i,jk.

Let Ejk be the matrix with an entry 1 in position (j, k) and 0 elsewhere. Then ∂pi+1/∂Wi,jk =
Ejkxi . On the other hand,

∂p′
i+1/∂W

′
i,jk = Ejkx

′
i = Ejk(βixi) = βi ∂pi+1/∂Wi,jk

Putting this together with equation equation 3.4 we see that ∂C/∂W′
i,jk = (βi/βi+1) ∂C/∂Wi,jk

as required.

In the case where bi,j is an entry of bi, we see that ∂p′
i+1/∂b

′
i,j = ∂pi+1/∂bi,j so,

∂C/∂b′i,j = (1/βi+1) ∂C/∂bi,j .

Relative gradients. Since a small change to a small parameter is more important to the same
change to a large parameter, it is perhaps more important to determine the ratio (∂C/∂θ)/θ, which
determines by what ratio a parameter is changed during gradient update. This gives:

∂C/∂W′
i,jk

W′
i,jk

=
β2
i

β2
i+1

∂C/∂Wi,jk

Wi,jk

∂C/∂b′i,j
b′i,j

=
1

β2
i+1

∂C/∂bi,j
bi,j

Interpretation. The effect of distributed scaling is to individually change the relative effect of
gradients over the network. In particular, if βi = τ i/N , for i = 0, . . . , N−1 and βN = 1, distributing
the scale evenly across the network, with τ < 1, then the effect is to modify the gradients and relative
gradients across the network. This may have the effect of mitigating the effect of gradient vanishing.
Distributed scaling can be used to control the magnitudes of the output xi at each level.
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Figure 1: Plots showing the test accuracy of networks trained with last layer Cooling and various
Cooling factors. Left: VGG network trained on CIFAR10. Right: ResNet50 network trained on
CIFAR100. The non-Cooling baselines are shown as dashed. All Cooling factors κ ≤ 1 outperform
the baseline, the best one by 4.6%. Training diverges for Cooling factors κ > 1. (All means and
standard deviations are computed over three runs.)

4 EXPERIMENTS

4.1 GENERAL SETUP

We explore the use of Cooling on two image classification datasets and one semantic segmentation
dataset. We use 99% of the CIFAR ”training sets” (corresponding to 50,000 images in total) for
training and 1% as a validation set to optimise the temperature τ on. We train our networks using
either the SGD optimizer with a momentum of 0.9 or the Adam optimizer (Kingma & Ba, 2015)
with ϵ = 0.1, β1 = 0.9, β2 = 0.999. All networks are trained using the TensorFlow (Abadi et al.,
2015) framework.

4.2 IMAGE CLASSIFICATION: CIFAR10

Setup. We train a small VGG-style network (Simonyan & Zisserman, 2014) on the CIFAR10
dataset (Krizhevsky, 2009). The network consists of a sequence of 6 convolutional layers of filter
size 3×3 with 32, 32, 64, 64, 128 and 128 channels, respectively, followed by two dense layers with
128 and 10 output nodes, respectively. In total, the network has approximately 620,000 trainable
parameters. The hidden layers either use the ReLU (Fukushima, 1980; Nair & Hinton, 2010) or the
CReLU (Shang et al., 2016) activation. When we use learning rate warmup, we linearly increase the
learning rate from 0 to 0.01 over 2 epochs. When we do not use warmup, we directly start with a
learning rate of 0.01. In our learning rate schedule ablations, we experiment with (1) no schedule,
(2) a piecewise linear schedule which drops by a factor of 0.1 after 30 and 40 epochs, (3) a schedule
with linear decay from the initial rate to 0, a (4) schedule with exponential decay with a total drop
by either a factor of 0.01 (”slow”) or 0.001 (”fast”) and (5) a cosine decay schedule (Loshchilov &
Hutter, 2017). We train the network for 50 epochs. We use a batch size of 64.

Results. As shown in Table 1, Cooling can have a significantly positive impact on network perfor-
mance. We see a stark difference between various LR schedules. Whereas smooth schedules (where
the learning rate changes after each batch) hardly benefit from Cooling, there is a noticeable benefit
for piecewise constant schedules and a drastic improvement when no schedule is employed. Starting
from the lowest performance at 74.7% test accuracy, last layer Cooling increases the test accuracy
by 4.6%.

Figure 1 (left) shows an ablation of last layer Cooling, involving various Cooling factors κ. Last
layer Cooling shows little sensitivity to the Cooling factor, as long as κ ≤ 1.0. Values greater than
1.0 lead to divergence. On the other hand, all values of κ ≤ 1.0 produce networks outperforming
the non-Cooling baseline.
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LR Schedule No Cooling Distributed Periodic Last Layer
Cosine 78.6±0.2 78.3±0.1 78.9±0.3 78.9±0.1

Exp Decay Fast 77.0±0.1 77.1±0.1 77.3±0.2 76.8±0.6

Exp Decay Slow 77.7±0.3 77.3±0.4 77.6±0.1 77.5±0.3

Linear 78.7±0.6 78.4±0.3 78.8±0.5 78.7±0.1

None 74.7±1.1 77.6±0.2 79.2±0.4 79.2±0.2

Piecewise Const 78.0±0.2 79.1±0.5 79.1±0.5 79.2±0.0

Table 1: Test accuracy of a VGG network trained on CIFAR10 with various learning rate schedules
and Cooling modes. The different Cooling modes perform at least on par with baselines on all LR
schedules. Cooling considerably outperforms the baseline when no schedule is used. Significant
gains are also achieved when a piecewise constant schedule is used. (All means and standard devia-
tions are computed over three runs.)

Table 2 shows that Cooling works well for both ReLU and CReLU activation functions. In particular,
CReLU diverged in all of our experiments without learning rate schedules, but converged when
Cooling was used. As for ReLU, we note that last layer and periodically redistributed Cooling
outperform pure distributed Cooling.

Activation No Cooling Distributed Periodic Last Layer
CReLU divergence 79.7±0.4 84.2±0.1 84.4±0.2

ReLU 74.7±1.1 77.6±0.2 79.2±0.4 79.2±0.2

Table 2: Test accuracies of a VGG network trained without a learning rate schedule on CIFAR10
with different activation functions and Cooling modes. Last layer scaling and periodically redis-
tributed scaling perform best for both activation functions. Training diverges for CReLU without
Cooling and without a LR schedule. (All means and standard deviations are computed over three
runs.)

The effect of the Cooling factor on the inverse of the network temperatures is shown in Figure 2. In
the left plot, where a smaller Cooling factor and last layer Cooling is used, the inverse temperature
grows much more slowly and only exceeds 100 after 19 epochs. In the right plot, where periodically
redistributed Cooling with τre = τmax = 100 is used, the first temperature reset already happens after
9 epochs.

We present further experimental results on CIFAR10 in Appendix B.

4.3 IMAGE CLASSIFICATION: CIFAR100

Setup. We train a ResNet50 network (He et al., 2016b) on the CIFAR100 dataset (Krizhevsky,
2009). The network consists of a sequence of 50 convolutional layers of varying filter sizes and
channel numbers, followed by a global average pooling layer. The network uses skip connections
and has approximately 23.5 million trainable parameters in total. The hidden layers either use the
ReLU (Fukushima, 1980; Nair & Hinton, 2010) or the CReLU (Shang et al., 2016) activation. In
our learning rate schedule ablations, we try out (1) no schedule, (2) a piecewise linear schedule with
drops by a factor of 0.1 after 80, 120, 160 and 180 epochs. We train the network for 200 epochs. We
use a batch size of 64.

Results. Similar to the CIFAR10 experiments, we present an ablation on the effect of different
Cooling factors on last layer Cooling. In Figure 1 (right) we notice the same pattern: Cooling
factors κ that do not exceed 1.0 yield neural network models that outperform the baseline. On the
other hand, we observe once more that κ > 1 leads to the divergence of network training.

4.4 SEMANTIC SEGMENTATION: ADE20K DATASET

Setup. We train a small U-Net Ronneberger et al. (2015) architecture on the challenging ADE20K
dataset Zhou et al. (2019), which includes 150 semantic categories. This dataset contains 20,000
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Figure 2: Comparison of the increase of network temperatures for different Cooling factors. Both
images show the training of a VGG network on CIFAR10 with ReLU activations. Left: last layer
Cooling, CF: 0.75. Right: periodically redistributed Cooling, CF: 1.0. We note that a larger Cooling
factor causes a much steeper increase in the temperature. For last layer Cooling, the temperature
keeps on growing, whereas for periodically redistributed Cooling, the temperature is redistributed
whenever it exceeds a value of 100.

images for training and 2,000 images for validation, on which we report results. We leave aside 320
images from the training set when performing Cooling. We work with images of size 256×256 and
our U-Net architecture has ≈ 9 million trainable parameters.

Results. We compare our proposed last layer Cooling against the baseline, with no temperature
scaling. For the former we obtain 22.1 mIoU and 71.9% accuracy, while for the latter we obtain
21.0 mIoU and 70.9% accuracy. This shows that our proposed cooling method is also beneficial
on denser, pixel-wise classification tasks. Further investigation on larger architectures and across
multiple design choices could further reveal the full potential of Cooling.

5 DISCUSSION AND CONCLUSION

Our proposed Cooling method to adaptively calibrate classification neural networks produces sig-
nificant benefits in terms of network performance and training stability. Theoretical and empirical
findings point to significant benefits resulting from differently scaled gradients during network train-
ing. As a result of experiments on different tasks, datasets and network architectures, as well as an
ablation study on different hyperparameter settings we find that that Cooling gives a significant per-
formance benefit over relevant baselines. In particular, we notice that Cooling greatly reduces the
need for a learning rate schedule.

Even though all versions of Cooling re-scale the network to the same mathematical function, they
all produce differently parameterised networks. This reparameterisation has a strong impact on
gradients, resulting in different network functions as training progresses. This raises the question:
What are the general conditions on the parametrisation of a network to achieve optimal training?

Another highlight of our work is the connection between calibration and the learning rate. There are
indications that well-calibrated networks are more stable in training and less reliant on the ’right’
learning rate schedule. Since training stability is critical in a number of classification tasks (e.g.
when training the discriminator of a GAN), a deeper investigation into the relation between calibra-
tion and training stability could be a promising direction for future research.
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