Under review as a conference paper at ICLR 2026

FUN2SPEC: CODE CONTRACT SYNTHESIS AT SCALE

Anonymous authors
Paper under double-blind review

ABSTRACT

We present FUN2SPEC, the first industrial-strength tool guiding LLMs to synthesize
C++ specifications in first-order logic with quantifiers. FUN2SPEC’s very high
accuracy (85%) employs an automated validation procedure with error-driven
oracle feedback, and can even generate the strongest code contract 60% of the
time. Our approach significantly outperforms previous methods, achieving 20-
25% higher validity on standard benchmarks. We applied FUN2SPEC to very
large scale industrial C++ codebases containing many millions of lines of code and
performed comprehensive manual validation to confirm the quality and utility of the
specification. FUN2SPEC stands as the first effective code contract synthesis tool
for real-world large-scale low-level C++ programs, advancing the state-of-the-art
in automated software analysis using LLMs.

1 INTRODUCTION

Formal specifications provide essential descriptions for understanding and reasoning about pro-
grams (Gaudel, |1994). However, the significant manual effort required to write and maintain formal
specifications in large codebases forces many large-scale projects to rely solely on natural language
documentation to convey program intent. Specification synthesis—the problem of automatically
inferring formal specifications from program implementations—offers a promising solution to this
challenge. While specification synthesis is theoretically undecidable (like its dual problem, program
synthesis), recent Large Language Models (LLMs) have demonstrated impressive capabilities in
generating complex programs and reasoning about code semantics, making practical specification
synthesis increasingly feasible. LLM-based agent systems have successfully addressed issues in large
real-world codebases (Chen et al.|, |2021} Jimenez et al.,|2024)). This raises a compelling question: can
LLM-based frameworks effectively synthesize formal specifications for large codebases at scale?

We present FUN2SPEC, a framework that generates formal specifications for complex, real-world
codebases. While LLMs have shown promise in generating postconditions for small, independent
problems (Endres et al., [2024b)), real-world repositories present substantial challenges: complex inter-
dependencies, diverse programming patterns, and extensive codebases where manual specification
becomes impractical. FUN2SPEC addresses these challenges through an expressive specification lan-
guage and a self-correcting refinement process. Our comprehensive evaluation not only demonstrates
FUN2SPEC’s effectiveness at scale but also includes extensive manual validation and qualitative
analysis, confirming that these automatically generated specifications accurately capture program
intent and provide practical utility for developers.

While recent code generation agents |Anthropic| (2024); [Wang et al.|(2025)) have shown remarkable
capabilities in writing and modifying code, formal specification synthesis addresses a fundamentally
different challenge: understanding program semantics to generate logical postconditions rather than
executable code. We envision future coding agents integrating automated specification synthesis
to provide formal contracts for generated code, making our work a foundational step toward more
rigorous Al-assisted development.

Our framework FUN2SPEC processes large C++ codebases through five interconnected components.
First, our Code Miner extracts functions, type information, and unit tests from the repository. Next,
we prompt the LLM with mined contextual information to generate specifications in our structured
first-order logic syntax. We validate these specifications using a parser and translate them into
executable C++ assertions. Our Specification Tester embeds these translated assertions into the
codebase and executes existing unit tests to validate their semantic correctness. When parsing or

Under review as a conference paper at ICLR 2026

Code Miner LLM Generator Specification

@ Fugz::)n / Vi.a[i] >0 = len(out) >0
",) ol ; » Reasoning
8 an
> 9 q < The elements of array a have ...

e
& Tree-sitter TGS ’ 1 E - Ve|3e ‘

Error y Parser
Summary \=

1 d Assertion

— [1(const std::vector<int>& a,
« p— « const std::vector<int>& out) {
— return std::none_of(a.begin(), a.end(),
[1@nt i) { returni > 0; })

Specification Tester I| outssize® > 0; };

@ Repository

Figure 1: Workflow of FUN2SPEC: First, the code miner parses the repository to extract relevant
context and tests for each function. Next, the LLM is prompted with context to infer the postcondition
specification using CoT reasoning. The generated postcondition is then validated and translated by a
parser into valid C++ expressions. If parsing or compilation fails, error summaries are fed back to the
LLM in a self-correcting loop. Successfully validated postconditions are embedded into the function
and validated through unit tests.

compilation errors occur, our system generates targeted error summaries and feeds them back to the
LLM, creating a self-correcting refinement loop that improves specification quality.

Contributions. We make these significant contributions:

* We create FUN2SPEC, a framework that synthesizes formal specifications for large-scale C++
repositories through our Al pipeline (Mine, Generate, Parse, Test, and Refine) using a formal
first-order logic syntax that includes quantifiers.

* We implement an effective parsing approach that validates and translates LLM-generated logical
specifications into executable C++ assertions, with error-driven feedback that enables refinement.

* We demonstrate FUN2SPEC outperforms the state-of-the-art NL2POST (Endres et al.l [2024a)
approach by 20-35 percentage points in test validity on HumanEval and FormalSpecCPP bench-
marks (Chen et al.} 2021 |Chakraborty et al.,2025) across multiple models.

* We comprehensively evaluate FUN2SPEC with SOTA LLMs on industrial-scale C++ projects
containing millions of lines of code used daily by thousands of engineers, and conduct extensive
manual validation to confirm specification quality.

The practical importance of FUN2SPEC is underscored by ongoing efforts to standardize C++ contracts
within the language specification, with major compilers (GNU C v16, LLVM clang 22) planned to
support native contracts by 2025, positioning FUN2SPEC’s automated specification synthesis as a
critical capability for the broader software engineering ecosystem.

2 PROBLEM STATEMENT

Formal Specifications. A specification for a program defines its intended behavior, describing what
the program should do rather than how it achieves it. It is a formal contract between the program and
its users, outlining the inputs, outputs, and expected behavior. For example, the intent of function
max(int X, int y) is to return x if x > x or y otherwise.

A contract relates the values of the input program variables (pre-state of a program) to the values of
the program variables and the output value of the function after it executes (post-state of a program).
A precondition is a formula in formal logic whose literals are the program variables before the
function starts. Similarly, a postcondition is a formula over the program variables that must hold
true after a function or program completes their execution. Common choices for logics used in these
formulas are propositional logic (consisting of variables, constants, arithmetic, logical and relational
operators) or first-order predicate logic (which also includes existential and universal quantifiers). In
FUN2SPEC, we use a first-order logic (FOL) formula to represent specifications.

Under review as a conference paper at ICLR 2026

Definition 2.1 (First-Order Logic Formula). A first-order logic formula ¢ is defined recursively as:

¢ = Pr(ty,...,tn) | Q| dAY | VY | d—= ¢ | Vr.¢p | Ta.d
where Pr is a predicate symbol applied to terms ¢;, ¢ and 1) are FOL formulas, =, A, VV, — are logical
connectives, and V, 3 are universal and existential quantifiers, respectively.

A precondition and postcondition are generally related using a semantic triple of the form (P)c(Q)
where P stands for the precondition, ¢ is the program fragment under consideration, and () is the
postcondition. As introduced in Hoare|(1969), this triple is valid when for all pre-states satisfying P,
once code fragment c has executed and if its execution terminates, then all post-states will satisfy Q.

Definition 2.2 (Postcondition inference). Given a code fragment c and the predicate P that is assumed
to be the precondition for ¢, determine the postcondition () that yields a valid semantic triple (P)c(Q).

Postcondition inference is the main feature of FUN2SPEC whose design and architecture are described
in Section[3] Postconditions are typically expressed as logical statements, ensuring that the program
adheres to its intended behavior. A C++ postcondition is shown in listing |1} The verification of
postconditions presents significant challenges and is often undecidable. Due to this complexity
and the notable absence of mature C++ tools specifically designed for automated postcondition
verification, we employ test suites as a practical proxy for validating the correctness of our inferred
postconditions.

While documentation in natural language can be

ambiguous, postconditions enforce guarantees
during execution, providing stronger assurances
of program reliability and easier debugging.

Large Language Models. Autoregressive large
language models (LLMs) are trained to predict
the next token in a sequence given its preceding

// Sorts elements in ascending order

void sort(vector<int>& arr);

// Postcondition: For all adjacent elements

// i and i+1, it holds that arr[i] <= arr[i+1]

assert ([&]() (

for (size_t i = @; i < arr.size() - 1;
if (arr[i] > arr[i+1]) return false;

return true;

i++)

context. Recent works have shown they can J07;

effectively translate natural language into formal
languages like programming code, mathematical
expressions, or structured queries.

Listing 1: Example of a postcondition in C++

Our work focuses on solving the postcondition inference problem for functions f in large real-world
repository R using an LLM.

3 FUN2SPEC

In this section, we describe the design of our solution FUN2SPEC for postcondition inference of
functions in large C++ projects. FUN2SPEC’s workflow has three main stages as shown in Figure [T}
(1) mine the target code repository to extract contextual information; (2) synthesize candidate
postconditions by prompting the LLM with this context; and (3) validate candidate postconditions
through automated testing. First, the Code Miner parses the codebase to extract relevant function-level
context, including type information and comments. This context is combined with few-shot examples
to prompt the LLM, which generates postcondition specifications. The generated post-conditions
are then translated into valid language expressions, temporarily embedded within the codebase, and
validated by running the existing unit tests to ensure correctness. If there is an issue in parsing or
compiling the LLM-generated postcondition, the model is reprompted with an error summary to
refine its output. The next sections describe each of the FUN2SPEC components.

3.1 CODE MINER

Code Miner extracts functions and relevant function data from the source code of the program. We
iterate through each file in the repository and obtain the abstract syntax-tree (AST) representation
using the [Tree-sitter| library. The AST representation is used to extract the documentation for the
function, which FUN2SPEC later uses to query the LLM. We use the Clang] library to retrieve function
return types and unit tests. Extracting tests is challenging as many functions are tested indirectly
through transitive calls rather than direct unit tests. We address this by tracing call paths to identify
all tests that exercise each function, regardless of call depth.

Under review as a conference paper at ICLR 2026

Let F denote the set of all functions in the repository, and T represent the set of all unit tests in
the repository. For each f € F, the Code Miner extracts a mapping U : F — P(T) where U(f)
denotes the set of all unit tests corresponding to the function f. This mapping is used for validating
the postconditions generated by FUN2SPEC.

Additionally, FUN2SPEC extracts the canonical return types of each function using Clang. In real-
world repositories, top-level return types are often aliased using typedef or using directives. It is
important to provide the LLM with the resolved, canonical type information to ensure understanding
of the underlying types. Failure to do so leads to inferring candidates contracts that are not well-typed
for the program of interest, and therefore should never be considered as candidate contracts.

3.2 LLM GENERATOR

In the LLM generator step, FUN2SPEC uses an LLM to synthesize postconditions for C++ functions.
Recent research has shown that LLMs are in-context learners and providing a small number of
input-output examples in the prompt significantly improve their overall accuracy |Brown et al.| (2020).
Similarly, chain-of-thought (CoT) reasoning, which encourages the model to generate intermediate
reasoning steps before arriving at a final answer, has been proven to be an effective prompting
technique for LLMs Wei et al.| (2023)).

The prompt templ?te useq by F[_jN?SPEC n- postcondition: logical_expr

cludes a structured instruction specifying the ex- 1logical_expr : implication

pected syntax of the postcondition. FUN2SPEC : éﬁg;i?hiirzxpr

uses the grammar of first-order logic to represent ippiication: logical_term ”==>" logical_expr

postconditions, where logical operators (such as logical_term: cpp_expression

conjunction, disjunction, implication, and quan- | logical_term ("88" | "11")

. . . logical_term

tifiers) are applied to atoms of C++ expressions | "!" logical_term

as shown in Listing[2] While we only construct | "(" logical_expr ")"

such logical formulae to represent postcondi- g antifier_expr: quantifier "(* CNAME ", expr
tions, the same grammar could also be used for "," logical_expr ")"

preconditions and loop invariant inference. Our
postcondition syntax is similar to ACSL (AN-
SI/ISO C Specification Language) (Baudin et al.; cpp_expr: /x Any valid C++ expression x/
Correnson et al.), which is a popular specifica-
tion language for C programs.

quantifier: "FORALL" | "EXISTS"

Listing 2: Grammar for postcondition expression

The inclusion of quantifiers (FORALL and EXISTS) significantly expands the expressiveness of our
contract language, allowing FUN2SPEC to reason about properties that apply to collections of elements
or ranges of values. For instance, a postcondition can now specify that all elements in an array meet
certain criteria (FORALL(i, arr, arr[i] > @)) or that at least one element satisfies a given
condition (EXISTS(i, arr, arr[i] == target)).

The instructions for the syntax are followed by four few-shot examples that demonstrate CoT
reasoning, and the desired postconditions corresponding to the examples. Each example introduces
a specific type of logical operation to the model. The LLM output includes both the derived
postcondition and the step-by-step reasoning process used to reach it. In addition to improving the
accuracy the reasoning provides a form of explanability to the result through the logical steps leading
to the synthesized postcondition. Appendix [A.T|presents the full template for the prompt.

3.3 SPECIFICATION TESTER

We now introduce the specification tester, whose role in FUN2SPEC is to filter out invalid candidate
contracts by instrumenting available built-in tests for the project. In the Specification Tester, we use
the unit test mapping U, computed by the Code Miner, to evaluate the validity of the postcondition.
A postcondition is deemed invalid if it fails to hold for even a single execution of a unit test. Since
the program’s intent is expressed only in natural language, it is not feasible to definitively evaluate
the true validity of the postcondition. In practice, test-validity serves as an over-approximation of the
post-condition validity, and will not guarantee contract correctness in itself.

Formal Validity Measure. We define the average test validity for set of functions F as:

Under review as a conference paper at ICLR 2026

Definition 3.1 (Average Test Validity). If Q)¢ denotes the postcondition for function f, U(f) is the
set of unit tests associated with f, as determined by the mapping U and

ATV(F) = Z II tFes

fe]—‘teU(f)

where t F @)y denotes that test ¢ semantically entails the specification () y, meaning the execution of
test ¢ respects the constraints specified by () ; for all possible inputs and outputs. This evaluates to
true (1) if test ¢ satisfies the specification @) ¢ or false (0) otherwise. It is necessary for all tests to
hold in U(f) for the function f and its inferred postcondition to contribute to the overall ATV.

Postcondition Parsing and Translation. We employ an Earley parser (Earley, |1970) to validate and
translate the LLM-generated postconditions from our defined syntax into valid C++ assertions. The
Earley parsing algorithm is particularly well-suited for this task as it can handle ambiguous grammars
and provides detailed information about parsing failures.

The translation process converts logical con- Algorithm 1 FUN2SPEC Algorithm for Spec-
structs like implications, quantifiers, and logical ification Synthesis
operators into their C++ equivalents. For ex- Require: Code repository R, model M, tests T~
ample, a quantifier expression FORALL(i, arr, Ensure: Average Test Validity Score ATV
. . . 1: 7,U + MINE(R)
arr[i] > 0) is translated into a C++ lambda 5. 47y ¢
expression that iteratively checks the condition ~ 3: for each function f € F do

3] 4' del <~ @
for all elements in the array. This approach can 5 Q‘j — GENCANDIDATES(M, f)

be easily extended to other statically-typed pro- 6 success < false, attempts <— max_attempts
gramming languages by modifying the trans- g while !success and attempts > 0 do
former component to generate assertions in g Q o & PARSE(Quna)
the target language syntax, making FUN2SPEC 10 err + ERRORSUMMARY (error)
adaptable to diverse development environments. 1! else ,

12 f’ < INSTRUMENT(f, Q")
Error Handling and Feedback Loop. When %43‘ if compilation error then

. A . : err < ERRORSUMMARY (error)
parsing fails, a compilation error occurs, or a 15: else
unit test fails to pass, we generate a succinct %g }f/v<—thTESTVAUD(f’7 U(f))
. 1 en

error summary as feedback to the LLM. This g SuCCess < true
summary includes the specific error location 19 Quaiia + Q'
and error type. Upon receiving such feedback, 20 else

21: err < ERRORSUMMARY(V)

FUN2SPEC automatically reprompts the LLM 5.

if !success then

with this error information, creating a feedback 23: Qeand
loop that allows the model to learn from its mis- 24 4 GENCANDIDATES (M, f, err)
takes and regenerate an improved postcondition 25: attempts ¢ attempts - |
g p p © 26 if success then
Test Instrumentation. Testing whether a post- 27‘ é{;;;;ﬁg‘é: 1)

condition holds on every execution of the funct102191s,@tﬁmlbpgyag problem. To address this issue,
we parse the function f and modify its implementatiomrby reptacingevery occurrence of thereturn
statement with a block of code that creates a temporary return value and evaluates the postcondition.
This instrumentation ensures that the postcondition is checked at each possible exit point of the func-
tion, providing comprehensive validation across all execution paths exercised by the unit tests. For
example, consider the function divideArray in Figure[2]that returns a pointer. The LLM generated
postcondition (Listing [) is transformed to a valid C++ expression (Listing [3)). Next, a code block
is inserted at every return statement to assign the return expression to a temporary variable and to
evaluate the postcondition (Listing[6).

3.4 FUN2SPEC POSTCONDITION SYNTHESIS ALGORITHM

Algorithm [T] outlines our postcondition synthesis procedure and its connection to the ATV metric.
Given a code repository R, a language model M, and unit tests 7, we begin by mining the repository
to extract the function set F and their associated test mappings U(f) (line 1). For each function
f € F (line 3), we invoke M to generate candidate postconditions (line 5). The algorithm then
enters a validation feedback loop (lines 7-17) where each candidate postcondition undergoes multiple
validation stages:

First, the Earley parser both validates the syntactic correctness of the candidate postcondition and
transforms it from our formal syntax into valid C++ expressions (line 8). If parsing fails, an error

SIS

Under review as a conference paper at ICLR 2026

int* divideArray(const int* arr, int size, I (!(arr == nullptr || divider == 0)
.1nt (j_l\{lder)__{ 2 || (res_tmp == nullptr))
17 (@ivider = @) ¢ 3 && (!(arr != nullptr || divider!= @)
) return nullptr; 4 || size(arr) == size(res_tmp))

it Carr == nullptr) Listing (5) Transformed postcondition to C++ syntax

return nullptr;

}

1 intx divideArray(const int* arr, int size,

intx out_arr = new int[size]; e cividery {

int *x res_tmp = out_arr;

} RERIGT - GUREBFTE 4 assert(/* From Listing 5: =%/

5 (!Carr == nullptr || divider == 0)
Listing (3) Original Function Implementation 0 &&lz,ng;t"ﬂz :ElT:iipH)divideM:o)
8 || size(arr) == size(res_tmp))
s 9)
(arr == nullptr || divider == 0) 10 return res_tmp;
==> res_tmp == nullptr 1 3 B
&& (arr != nullptr || divider != 0)
==> size(arr) == size(res_tmp) Listing (6) Transformed Function Implementation
Listing (4) LLM generated postcondition for the final return expression in Listing 3 Line 12

Figure 2: Transformed function implementations for specification testing

summary is generated to provide detailed feedback. If parsing succeeds, the function is instrumented
with the transformed C++ postcondition (line 11), where we insert assertions at every return point to
validate the postcondition. This instrumentation may lead to compilation errors, which also generate
error summaries for feedback to the language model.

If compilation succeeds, we execute the unit tests associated with f to verify that the instrumented
function satisfies the postcondition across all test cases (line 16). At each failure point (parsing or
compilation), error summaries guide the language model to generate improved candidates (lines
23-24), creating a self-correcting loop until success or exhaustion. This final score (line 29) measures
both our approach’s effectiveness and specification quality.

4 EVALUATION

Models. We experiment on state-of-the-art open-weight LLMs, including Qwen (Qwen, [2024),
Llama-3.1 (Llamal 2024}, Gemma-2-9b-it (Abdin et al., [2024)), and Phi-4 (Mesnard et al., [2024)).

Repositories. We evaluate on HumanEval- o))
CPP (Zheng et al|[2023) (a C++ translation Table 1: Summary of repositories used in evaluation

of the original Python benchmark (Chen

et al.l [2021)) with corresponding unit tests) Repositories BDE BLAZINGMQ

and FormalSpecCPP (Chakraborty et al., Lines of Code 3.4M 727K
S Functions w/ Tests 3992 834

2025)’ a dataset contamlng C++ programs Functions w/ Comments+Tests 794 590

with well-defined ground truth precondi-
tions and postconditions that are verified in
Dafny and manually validated on translation. Additionally, we consider two large open-source C++
repositories, | BDE| and BlazingMQ)| for the evaluation on large real-world repositories. BDE is a
modular C++ library suite containing foundational components such as data structure algorithms and
utilities used by thousands of developers. BLAZINGMAQ is a high-performance, fault-tolerant message
queue library used by thousands of low-latency applications. These projects are representative of
common infrastructure libraries that have well-documented interfaces and strong test suites. Both
analyzed projects are open-source GitHub projects and are heavily deployed within the technology
industry. We automatically extract public functions with documentation and existing unit tests from
both repositories as summarized in Table|[T]

Baseline. We implement NL2POST |[Endres et al.| (2024a) as a baseline, which translates natural
language specifications into formal postconditions. The original code is not publicly available, so

Under review as a conference paper at ICLR 2026

we reimplement and adapt the algorithm to work with C++ while maintaining the same few-shot
examples and hyperparameters as FUN2SPEC for fair comparison.

Hyperparameters. We use a prompt with four few-shot examples (Brown et al.,2020). The few-shot
examples include CoT reasoning manually designed to show distinct types of postconditions. We use
greedy decoding to sample the LLM output and set the maximum new tokens to 400 for standard
instruct-tuned models and 800 tokens for reasoning models.

Implementation. We run experiments on a 48-core Intel Xeon Silver 4410Y CPU with one NVidia
H100 GPU. FUN2SPEC is implemented using Hugging Face transformers library (Wolf et al., [2020)
for LLM inference |Clang and [Tree-sitter| for parsing the C++ code.

Metric. We use the following metrics to evaluate the quality of generated postconditions: (1)
Test Valid (%): Postconditions that hold across all unit tests (Def. 3.I). (2) Test Invalid (%):
Postconditions that fail on at least one test. (3) Compilation Error (%): Cases where the postcondition
causes a compilation error or a timeout. (4) Invalid Formatting (%): LLM output is ill-formatted; no
postcondition extracted. (5) Nontrivial (%): Postconditions that do not simplify to True. The model
defaults to trivial (True) if unable to generate a valid one (e.g., “result != NULL || result == NULL").
(6) Avg. Atoms: Average number of atomic expressions in postconditions, indicating complexity.

4.1 BENCHMARK RESULTS

We evaluate FUN2SPEC against

NL2POST [Endres et al| (2024a) Taple 2: Test-Validity (%) comparison between FUN2SPEC and

on two standard benchmarks: Np2pP0ST on benchmark datasets
HumanEval-CPP and Formal-

SpeCCPP' Table E] presents the HumanEval-CPP FormalSpecCPP

-validi rcen T Model
te.St valid ty percentages ac .OSS FUN2SPEC NL2POST A FUN2SPEC NL2POST A
different models. We permit 1
Qwen3-32B 55.8 19.6 4362 74.0 422 +31.8
refinement attempt and present 55 63.2 20.2 +43.0 76.0 43.1 4329
results for scaling up the num- Qwen2.5-Coder-7B 52.1 30.7 4214 67.6 52.9 +147
ber Of feedback iterations in Ap_ Llama-3.1-8B 17.2 8.0 +9.2 20.0 30.4 —104
. Gemma-2-9b-it 36.2 14.1 +22.1 59.0 373 +21.7
pendix [A.4 On HumanEval- ;4 2.1 117 +10.4 57.8 382 +19.6
CPP, FUN2SPEC consistently Phi-4-mini 252 16.6 +8.6 43.1 284 +14.7
outperforms NL2POST across all —_ QVQ-32B 6.1 3.1 +3.0 48.0 118 +36.2

models, with improvements rang-

ing from 8 to 43 percentage points and an average improvement of 19.2 points. The most notable gain
is observed with Qwen3-32B, where FUN2SPEC achieves 55.8% test validity compared to NL2POST’s
19.6%.

Similarly, on FormalSpecCPP, FUN2SPEC again shows stronger overall performance, particularly
with larger models. Qwen2.5-32B-Instruct achieves the highest test validity at 76% with FUN2SPEC,
compared to 43.1% with NL2POST. On average, FUN2SPEC improves test-validity by 20.1 percentage
points over NL2POST on this benchmark. The improved performance of FUN2SPEC can be attributed
to its feedback loop and systematic parsing approach, which allows it to refine postconditions.

We provide additional details on complexity of generated postconditions in Appendix [A.2.T] We
perform ablation in Appendix which shows that the standard setting with both reprompting and
quantifier support consistently yields the best postcondition validity. For detailed comparison across
all models and ablation settings, see Table E]

4.2 POSTCONDITION GENERATION ON LARGE CODEBASES

Table 3] presents a comparative analysis of the performance of different models in generating postcon-
ditions for functions in repository BDE and BLAZINGMQ. The table shows varying performance
across models. For instance, Qwen2.5-32B-Instruct achieves the highest rate of test-valid postcondi-
tions for both BDE (69.49%) and BLAZINGMQ (76.47%). When scaling the number of re-promting
iterations from 1 to 10 (Appendix [A.5), Qwen2.5-32B-Instruct achieves 86.94% test validity on BDE.
In contrast, small models such as Phi-4-mini get relatively lower (33.44% and 20.13%) test-validity.
We observe that majority of postconditions that are not test-valid are primarily due to compilation or

Under review as a conference paper at ICLR 2026

Table 3: Model Performance with FUN2SPEC on large C++ repositories

Repo. Model Name Test Test Compilation Formatting Trivial Avg.
Valid (%) Invalid (%) Error (%) Error (%) (%) Atoms
Qwen3-32B 69.37 7.62 14.57 8.44 10.10 2.19
Qwen2.5-32B-Instruct 69.41 6.09 14.80 9.70 14.97 2.29
Qwen2.5-Coder-7B-Instruct 57.61 19.48 12.77 10.15 12.93 1.86
BDE Llama-3.1-8B-Instruct 8.01 67.65 20.10 4.25 0.65 1.61
Gemma-2-9b-it 4435 31.42 18.82 5.40 2.45 1.66
Phi-4 46.19 5.56 19.52 28.73 4.44 222
Phi-4-mini-instruct 33.44 20.13 34.90 11.53 0.16 2.95
QwQ-32B 12.36 0.57 5.89 81.18 1.15 1.44
Qwen3-32B 75.06 4.40 10.02 10.51 13.45 2.33
Qwen2.5-32B-Instruct 73.00 3.52 12.44 11.03 11.74 223
Qwen2.5-Coder-7B-Instruct ~ 62.80 11.61 14.93 10.66 19.67 1.92
BLAZINGMQ Llama-3.1-8B-Instruct 11.86 51.82 30.02 6.30 1.45 1.53
Gemma-2-9b-it 35.25 19.35 35.02 10.37 0.92 2.24
Phi-4 40.23 2.73 20.00 37.05 6.59 223
Phi-4-mini-instruct 27.19 13.26 47.64 11.91 0.00 3.75
QwQ-32B 30.37 0.83 13.64 55.17 8.68 1.68

formatting errors. For example, out of 30.63% cases where Qwen2.5-32B-Instruct for BDE does not
generate a test-valid postcondition, 23.01% are due to compilation or formatting errors.

In Appendix we present ablation study on few-shot examples that demonstrates a strong
positive correlation between the number of examples and postcondition quality. Additionally, we
present ablation study on return types showing that postcondition generation effectiveness varies
significantly across type categories, with numeric types achieving the highest validity (76.6%) and
lowest compilation error rate (14.6%), while compound types (pointers, references, structs) present
greater challenges with a 35.9% compilation error rate (see Appendix [A.3]|for detailed breakdown).

4.3 QUALITATIVE ANALYSIS

In this section, we introduce our methodology for assessing the correctness of specification synthesis
in FUN2SPEC. Our approach combines automated oracles with systematic manual validation by
three independent reviewers with formal methods expertise. Each specification was evaluated by two
reviewers using standardized criteria for semantic correctness, completeness, and precision, with
disagreements resolved by a third reviewer.

Classification of synthesized postconditions falls into the following categories:

* Incorrect: the test-valid candidate postcondition incorrectly captures the function intent.

* Correct but not strongest: the candidate postcondition correctly captures the function intent, but
behavior is not fully specified.

* Strongest: the candidate postcondition was the strongest correct postcondition for the function.

We employ the following automated oracles to supplement manual assessment and classify LLM
outputs:

» Conditional behavior must be specified using logical implication, so that program if P then Q
else Ris captured as P =) V - P = R in the post-condition.

* Iterative loop behavior is directly specified in the function post-condition using first order logic,
so that a predicate P P can be specified as V 0 < i < sizeof(array) : P(array[i]) when P is
true of all container elements, or 3 0 < j < sizeof(array) : =P(array[j]) when at least one
container element negates P P.

We distinguish between several types of correct candidates, whether they were trivially representing
all possible executions, or they were unnecessarily too verbose and could be simplified. Through
this rigorous evaluation process, FUN2SPEC generates remarkably accurate postconditions with only
2 incorrect cases, though some aren’t the strongest. Listing 7 illustrates the distinction between
correct and strongest postconditions. For function containsDescriptor, FUN2SPEC successfully
generates the strongest postcondition by asserting that a true return implies the existence of a
matching descriptor in the transition vector, while false implies no matches exist.

Under review as a conference paper at ICLR 2026

// Generated Postcondition

2 (__out == true
3 ==> EXISTS(transitions.begin(), transitions.end(), it,
descriptor == it->descriptor()))
4 && (__out == false
. . . . 5 ==> FORALL(transitions.begin(), transitions.end(), it,
Figure 3: Classification of a sample descriptor 1= it->descriptor()))

of inferred pOStCOHditiOHS 6 static bool containsDescriptor(
7 const bsl::vector<baltzo::ZoneinfoTransition>&
transitions,

Contract Propo First 8 const baltzo::LocalTimeDescriptor& descriptor
Type -sitional ~ Order 9) {
Incorrect 2 0 10 auto it = transitions.begin();
Correct (Trivial) 5 0 11 auto end = transitions.end();
Correct 59 6 12 for (; it != end; ++it)
Correct Strongest 34 7 13 if (descriptor == it->descriptor())
Total 100 13 14 return true;
15 return false;

16 |}

Listing 7: Example of Correct and Strongest postcondition
inferred with FUN2SPEC

5 RELATED WORK

Classical Techniques: Contract inference has received significant attention over two decades (Ernst}
2000; [Ernst et al., 2007; [Lahiri and Vanegue} 2011} |Pandita et al.| 2012 Nimmer and Ernst, [2002;
Dillig et al., 2013). Static analysis approaches like Houdini (Lahiri and Vanegue, 2011; Nimmer
and Ernst, |2002)) infer pre and postconditions for C programs but require user-provided specification
templates that are difficult to generalize (Dillig et al.[2013). Houdini’s iterative check-and-refute
cycle is scalable but presents challenges in understanding why specific candidates fail (Lahir1 and
Vaneguel [2011)). Dynamic invariant detection tools like Daikon (Ernst et al., 2007 |Ernst, [2000)
overcome the template requirement by observing program executions. However, Daikon faces
significant limitations with C++ codebases (Kusano et al.,|2015). It struggles with complex memory
management, pointer manipulation, and intricate data structures common in industrial C++ systems.

LLM-based Approaches: ML techniques were widely adopted to improve formal verification |Garg
et al.| (2014);|S1 et al.| (2020). More recently, LLMs have demonstrated remarkable capabilities for
code generation and understanding (Chen et al., 2021} | Xu et al.| 2022;|Ugare et al.,2024). Building on
this foundation, researchers have leveraged LLMs for automated formal verification (Pei et al., 2023}
Orenes-Vera et al., 2023} [First et al.,|2023; Ma et al., 2024} |Wen et al., 2024} |He et al., |2024; Wu et al.}
2024} Lahiri, [2024; Ma et al., 2024} Ruan et al., 20245 [Liu et al.| [2025} |Yang et al.,2025). Significant
progress has emerged in generating formal contracts using LLMs, including preconditions (Dinella
et al., |2024), postconditions (Endres et al., 20244a)), and invariants (Pei et al., [2023; [Pirzada et al.,
2024} [Sun et al.| [2025)) and more specifically inductive loop invariants (Kamath et al., 2023} Yu et al.|
2023} |Liu et al.,[2024bza). The most relevant prior work, NL2POST (Endres et al., [2024a), focuses
on inferring postconditions from function implementations and natural language comments, but it is
limited to small, standalone Python functions from HumanEval (Chen et al.,2021). Their method
achieves only 20-30% test-validity with open-source models. In contrast, FUN2SPEC targets more
realistic C++ codebases and consistently outperforms NL2POST across both HumanEval-CPP and
FormalSpecCPP benchmarks. Specifically, FUN2SPEC achieves average improvements of 19.2 and
20.1 percentage points over NL2POST on HumanEval-CPP and FormalSpecCPP, respectively, with
test-validity reaching up to 76% on the strongest model.

Limitations While verification competitions like SV-COMP (Beyer, 2024) and frameworks such
as CBMC (Kroening et al., [2023), SMACK (Carter et al., 2016), and SeaHorn (Gurfinkel et al.,
2015) have made significant progress in program verification, these tools still struggle with large
modern C++ codebases due to complex language features and scale limitations. There have been
efforts to incorporate formal specifications directly into the C++ standard, with proposals for contract
programming features (Doumler and Krzemienskil, [2025)). However, these standardization efforts
remain ongoing and not yet widely implemented. Consequently, FUN2SPEC generated specifications
cannot be verified automatically and we rely on test-validity as a proxy for formal verification.

Under review as a conference paper at ICLR 2026

REFERENCES

Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed Awadallah, Ammar Ahmad Awan, Nguyen
Bach, Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat Behl, Alon Benhaim, Misha Bilenko,
Johan Bjorck, Sébastien Bubeck, Martin Cai, Qin Cai, Vishrav Chaudhary, Dong Chen, Dongdong
Chen, Weizhu Chen, Yen-Chun Chen, Yi-Ling Chen, Hao Cheng, Parul Chopra, Xiyang Dai,
Matthew Dixon, Ronen Eldan, Victor Fragoso, Jianfeng Gao, Mei Gao, Min Gao, Amit Garg,
Allie Del Giorno, Abhishek Goswami, Suriya Gunasekar, Emman Haider, Junheng Hao, Russell J.
Hewett, Wenxiang Hu, Jamie Huynh, Dan Iter, Sam Ade Jacobs, Mojan Javaheripi, Xin Jin,
Nikos Karampatziakis, Piero Kauffmann, Mahoud Khademi, Dongwoo Kim, Young Jin Kim, Lev
Kurilenko, James R. Lee, Yin Tat Lee, Yuanzhi Li, Yunsheng Li, Chen Liang, Lars Liden, Xihui
Lin, Zeqi Lin, Ce Liu, Liyuan Liu, Mengchen Liu, Weishung Liu, Xiaodong Liu, Chong Luo,
Piyush Madan, Ali Mahmoudzadeh, David Majercak, Matt Mazzola, Caio César Teodoro Mendes,
Arindam Mitra, Hardik Modi, Anh Nguyen, Brandon Norick, Barun Patra, Daniel Perez-Becker,
Thomas Portet, Reid Pryzant, Heyang Qin, Marko Radmilac, Liliang Ren, Gustavo de Rosa,
Corby Rosset, Sambudha Roy, Olatunji Ruwase, Olli Saarikivi, Amin Saied, Adil Salim, Michael
Santacroce, Shital Shah, Ning Shang, Hiteshi Sharma, Yelong Shen, Swadheen Shukla, Xia Song,
Masahiro Tanaka, Andrea Tupini, Praneetha Vaddamanu, Chunyu Wang, Guanhua Wang, Lijuan
Wang, Shuohang Wang, Xin Wang, Yu Wang, Rachel Ward, Wen Wen, Philipp Witte, Haiping
Wu, Xiaoxia Wu, Michael Wyatt, Bin Xiao, Can Xu, Jiahang Xu, Weijian Xu, Jilong Xue, Sonali
Yadav, Fan Yang, Jianwei Yang, Yifan Yang, Ziyi Yang, Donghan Yu, Lu Yuan, Chenruidong
Zhang, Cyril Zhang, Jianwen Zhang, Li Lyna Zhang, Yi Zhang, Yue Zhang, Yunan Zhang, and
Xiren Zhou. Phi-3 technical report: A highly capable language model locally on your phone, 2024.
URL https://arxiv.org/abs/2404.14219.

Anthropic. Claude code: Command line tool for agentic coding, 2024. URL https://docs.claude.
com/en/docs/claude-code.

Patrick Baudin, Jean-Christophe Filliatre, Claude Marché, Benjamin Monate, Yannick Moy, and
Virgile Prevosto. ACSL: ANSI/ISO C Specification Language. URL http://frama-c.com/
download/acsl.pdf.

BDE. https://github.com/bloomberg/bde.

Dirk Beyer. State of the art in software verification and witness validation: Sv-comp 2024. In Tools
and Algorithms for the Construction and Analysis of Systems: 30th International Conference,
TACAS 2024, Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2024, Luxembourg City, Luxembourg, April 6—11, 2024, Proceedings, Part III, page
299-329, Berlin, Heidelberg, 2024. Springer-Verlag. ISBN 978-3-031-57255-5. doi: 10.1007/
978-3-031-57256-2_15. URL https://doi.org/10.1007/978-3-031-57256-2_15|

BlazingMQ. Blazingmq - a modern, high-performance message queue.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-shot learners, 2020.

Montgomery Carter, Shaobo He, Jonathan Whitaker, Zvonimir Rakamari¢, and Michael Emmi.
Smack software verification toolchain. In Proceedings of the 38th International Conference
on Software Engineering Companion, ICSE ’16, page 589-592, New York, NY, USA, 2016.
Association for Computing Machinery. ISBN 9781450342056. doi: 10.1145/2889160.2889163.
URL https://doi.org/10.1145/2889160.2889163.

Madhurima Chakraborty, Peter Pirkelbauer, and Qing Yi. Formalspeccpp: A dataset of c++ formal
specifications created using 1lms, 2025. URL https://arxiv.org/abs/2502.15217.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,

10

https://arxiv.org/abs/2404.14219
https://docs.claude.com/en/docs/claude-code
https://docs.claude.com/en/docs/claude-code
http://frama-c.com/download/acsl.pdf
http://frama-c.com/download/acsl.pdf
https://doi.org/10.1007/978-3-031-57256-2_15
https://doi.org/10.1145/2889160.2889163
https://arxiv.org/abs/2502.15217

Under review as a conference paper at ICLR 2026

Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios
Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino,
Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa,
Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob
McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating
large language models trained on code, 2021. URL https://arxiv.org/abs/2107.03374,

Clang. clang: a C language family frontend for LLVM.

Loic Correnson, Pascal Cuoq, Florent Kirchner, André Maroneze, Virgile Prevosto, Armand Puccetti,
Julien Signoles, and Boris Yakobowski. Frama-C User Manual. URL http://frama-c.com/
download/frama-c-user-manual. pdf.

Isil Dillig, Thomas Dillig, Boyang Li, and Ken McMillan. Inductive invariant generation via abductive
inference. In Proceedings of the 2013 ACM SIGPLAN International Conference on Object
Oriented Programming Systems Languages & Applications, OOPSLA ’13, page 443-456,
New York, NY, USA, 2013. Association for Computing Machinery. ISBN 9781450323741. doi:
10.1145/2509136.2509511. URL https://doi.org/10.1145/2509136.2509511|

Elizabeth Dinella, Shuvendu Lahiri, and Mayur Naik. Program structure aware precondition genera-
tion, 2024. URL https://arxiv.org/abs/2310.02154.

Timur Doumler and Andrzej Krzemiefiski. Contracts for c++. ISO/IEC JTC1/SC22/WG21, January
2025. URL https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2025/p2900ri3,
pdf.

Jay Earley. An efficient context-free parsing algorithm. Commun. ACM, 13(2):94-102, February
1970. ISSN 0001-0782. doi: 10.1145/362007.362035. URL https://doi.org/10.1145/362007,
362035.

Madeline Endres, Sarah Fakhoury, Saikat Chakraborty, and Shuvendu K Lahiri. Can large language
models transform natural language intent into formal method postconditions?, 2024a.

Madeline Endres, Sarah Fakhoury, Saikat Chakraborty, and Shuvendu K. Lahiri. Can large language
models transform natural language intent into formal method postconditions?, 2024b. URL
https://arxiv.org/abs/2310.01831.

Michael D. Ernst. Dynamically Discovering Likely Program Invariants. Ph.D., University of
Washington Department of Computer Science and Engineering, Seattle, Washington, August 2000.

Michael D Ernst, Jeff H Perkins, Philip J Guo, Stephen McCamant, Carlos Pacheco, Matthew S
Tschantz, and Chen Xiao. The daikon system for dynamic detection of likely invariants, 2007.

Emily First, Markus N. Rabe, Talia Ringer, and Yuriy Brun. Baldur: Whole-proof generation and
repair with large language models, 2023. URL https://arxiv.org/abs/2303.04910.

Pranav Garg, Christof Loding, P. Madhusudan, and Daniel Neider. Ice: a robust framework for learn-
ing invariants. In Armin Biere and Roderick Bloem, editors, Computer Aided Verification, pages
69-87, Cham, 2014. Springer International Publishing. ISBN 978-3-319-08867-9.

M.-C. Gaudel. Formal specification techniques. In Proceedings of 16th International Conference on
Software Engineering, pages 223-227, 1994. doi: 10.1109/ICSE.1994.296781.

Arie Gurfinkel, Temesghen Kahsai, Anvesh Komuravelli, and Jorge A. Navas. The seahorn verification
framework. In Daniel Kroening and Corina S. Pasareanu, editors, Computer Aided Verification -
27th International Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015, Proceedings,
Fart I, volume 9206 of Lecture Notes in Computer Science, pages 343-361. Springer, 2015. doi:
10.1007/978-3-319-21690-4\ _20. URL https://doi.org/10.1007/978-3-319-21690-4_20.

Fusen He, Juan Zhai, and Minxue Pan. Beyond code generation: Assessing code 1lm maturity with
postconditions, 2024. URL https://arxiv.org/abs/2407.14118.

11

https://arxiv.org/abs/2107.03374
http://frama-c.com/download/frama-c-user-manual.pdf
http://frama-c.com/download/frama-c-user-manual.pdf
https://doi.org/10.1145/2509136.2509511
https://arxiv.org/abs/2310.02154
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2025/p2900r13.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2025/p2900r13.pdf
https://doi.org/10.1145/362007.362035
https://doi.org/10.1145/362007.362035
https://arxiv.org/abs/2310.01831
https://arxiv.org/abs/2303.04910
https://doi.org/10.1007/978-3-319-21690-4_20
https://arxiv.org/abs/2407.14118

Under review as a conference paper at ICLR 2026

Charles Antony Richard Hoare. An axiomatic basis for computer programming, 1969.

Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues?, 2024. URL
https://arxiv.org/abs/2310.06770.

Adharsh Kamath, Aditya Senthilnathan, Saikat Chakraborty, Pantazis Deligiannis, Shuvendu K.
Lahiri, Akash Lal, Aseem Rastogi, Subhajit Roy, and Rahul Sharma. Finding inductive loop
invariants using large language models, 2023. URL https://arxiv.org/abs/2311.07948.

Daniel Kroening, Peter Schrammel, and Michael Tautschnig. Cbmc: The ¢ bounded model checker,
2023. URL https://arxiv.org/abs/2302.02384.

Markus Kusano, Arijit Chattopadhyay, and Chao Wang. Dynamic generation of likely invariants for
multithreaded programs. In 2015 IEEE/ACM 37th IEEE International Conference on Software
Engineering, volume 1, pages 835-846, 2015. doi: 10.1109/ICSE.2015.95.

Shuvendu K. Lahiri. Evaluating llm-driven user-intent formalization for verification-aware languages,
2024. URL |https://repositum.tuwien.at/handle/20.500.12708/200786.

Shuvendu K Lahiri and Julien Vanegue. Explainhoudini: making houdini inference transparent, 2011.

Chang Liu, Xiwei Wu, Yuan Feng, Qinxiang Cao, and Junchi Yan. Towards general loop invariant
generation: A benchmark of programs with memory manipulation, 2024a. URL |https://arxiv,
org/abs/2311.10483.

Ruibang Liu, Guoqiang Li, Minyu Chen, Ling-I Wu, and Jingyu Ke. Enhancing automated loop
invariant generation for complex programs with large language models, 2024b. URL https:
//arxiv.org/abs/2412.10483.

Ye Liu, Yue Xue, Daoyuan Wu, Yuqiang Sun, Yi Li, Miaolei Shi, and Yang Liu. Propertygpt:
Llm-driven formal verification of smart contracts through retrieval-augmented property generation.
In Proceedings 2025 Network and Distributed System Security Symposium, NDSS 2025. Internet
Society, 2025. doi: 10.14722/ndss.2025.241357. URL http://dx.doi.org/10.14722/ndss.
2025.241357.

Llama. The llama 3 herd of models, 2024. URL https://arxiv.org/abs/2407.21783.

Lezhi Ma, Shangqing Liu, Yi Li, Xiaofei Xie, and Lei Bu. Specgen: Automated generation of formal
program specifications via large language models, 2024. URL https://arxiv.org/abs/2401)|
08807.

Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya Pathak, Laurent Sifre,
Morgane Riviere, Mihir Sanjay Kale, Juliette Love, Pouya Tafti, Léonard Hussenot, Pier Giuseppe
Sessa, Aakanksha Chowdhery, Adam Roberts, Aditya Barua, Alex Botev, Alex Castro-Ros,
Ambrose Slone, Amélie Héliou, Andrea Tacchetti, Anna Bulanova, Antonia Paterson, Beth Tsai,
Bobak Shahriari, Charline Le Lan, Christopher A. Choquette-Choo, Clément Crepy, Daniel Cer,
Daphne Ippolito, David Reid, Elena Buchatskaya, Eric Ni, Eric Noland, Geng Yan, George
Tucker, George-Christian Muraru, Grigory Rozhdestvenskiy, Henryk Michalewski, Ian Tenney,
Ivan Grishchenko, Jacob Austin, James Keeling, Jane Labanowski, Jean-Baptiste Lespiau, Jeff
Stanway, Jenny Brennan, Jeremy Chen, Johan Ferret, Justin Chiu, Justin Mao-Jones, Katherine
Lee, Kathy Yu, Katie Millican, Lars Lowe Sjoesund, Lisa Lee, Lucas Dixon, Machel Reid, Maciej
Mikuta, Mateo Wirth, Michael Sharman, Nikolai Chinaev, Nithum Thain, Olivier Bachem, Oscar
Chang, Oscar Wahltinez, Paige Bailey, Paul Michel, Petko Yotov, Rahma Chaabouni, Ramona
Comanescu, Reena Jana, Rohan Anil, Ross Mcllroy, Ruibo Liu, Ryan Mullins, Samuel L Smith,
Sebastian Borgeaud, Sertan Girgin, Sholto Douglas, Shree Pandya, Siamak Shakeri, Soham De,
Ted Klimenko, Tom Hennigan, Vlad Feinberg, Wojciech Stokowiec, Yu hui Chen, Zafarali Ahmed,
Zhitao Gong, Tris Warkentin, Ludovic Peran, Minh Giang, Clément Farabet, Oriol Vinyals, Jeff
Dean, Koray Kavukcuoglu, Demis Hassabis, Zoubin Ghahramani, Douglas Eck, Joelle Barral,
Fernando Pereira, Eli Collins, Armand Joulin, Noah Fiedel, Evan Senter, Alek Andreev, and
Kathleen Kenealy. Gemma: Open models based on gemini research and technology, 2024. URL
https://arxiv.org/abs/2403.08295.

12

https://arxiv.org/abs/2310.06770
https://arxiv.org/abs/2311.07948
https://arxiv.org/abs/2302.02384
https://repositum.tuwien.at/handle/20.500.12708/200786
https://arxiv.org/abs/2311.10483
https://arxiv.org/abs/2311.10483
https://arxiv.org/abs/2412.10483
https://arxiv.org/abs/2412.10483
http://dx.doi.org/10.14722/ndss.2025.241357
http://dx.doi.org/10.14722/ndss.2025.241357
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2401.08807
https://arxiv.org/abs/2401.08807
https://arxiv.org/abs/2403.08295

Under review as a conference paper at ICLR 2026

Jeremy W. Nimmer and Michael D. Ernst. Invariant inference for static checking:. In Proceedings of
the 10th ACM SIGSOFT Symposium on Foundations of Software Engineering, SIGSOFT *02/FSE-
10, page 11-20, New York, NY, USA, 2002. Association for Computing Machinery. ISBN
1581135149. doi: 10.1145/587051.587054. URL |https://doi.org/10.1145/587051.587054.

Marcelo Orenes-Vera, Margaret Martonosi, and David Wentzlaff. Using 1lms to facilitate formal
verification of rtl, 2023. URL https://arxiv.org/abs/2309.09437.

Rahul Pandita, Xusheng Xiao, Hao Zhong, Tao Xie, Stephen Oney, and Amit Paradkar. Inferring
method specifications from natural language api descriptions. In Proceedings of the 34th Interna-
tional Conference on Software Engineering, ICSE *12, page 815-825. IEEE Press, 2012. ISBN
9781467310673.

Kexin Pei, David Bieber, Kensen Shi, Charles Sutton, and Pengcheng Yin. Can large language models
reason about program invariants? In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara
Engelhardt, Sivan Sabato, and Jonathan Scarlett, editors, Proceedings of the 40th International
Conference on Machine Learning, volume 202 of Proceedings of Machine Learning Research,
pages 27496-27520. PMLR, 23-29 Jul 2023. URL https://proceedings.mlr.press/v202/
pei23a.html.

Muhammad A. A. Pirzada, Giles Reger, Ahmed Bhayat, and Lucas C. Cordeiro. LIm-generated invari-
ants for bounded model checking without loop unrolling. In Proceedings of the 39th IEEE/ACM
International Conference on Automated Software Engineering, ASE *24, page 1395-1407, New
York, NY, USA, 2024. Association for Computing Machinery. ISBN 9798400712487. doi:
10.1145/3691620.3695512. URL https://doi.org/10.1145/3691620.3695512.

Qwen. Qwen2.5: A party of foundation models, September 2024. URL https://qwenlm.github!|
io/blog/qwen2.5/.

Haifeng Ruan, Yuntong Zhang, and Abhik Roychoudhury. Specrover: Code intent extraction via
Ilms, 2024. URL https://arxiv.org/abs/2408.02232.

Xujie Si, Aaditya Naik, Hanjun Dai, Mayur Naik, and Le Song. Code2inv: A deep learning framework
for program verification. In Computer Aided Verification: 32nd International Conference, CAV
2020, Los Angeles, CA, USA, July 21-24, 2020, Proceedings, Part II, page 151-164, Berlin,
Heidelberg, 2020. Springer-Verlag. ISBN 978-3-030-53290-1. doi: 10.1007/978-3-030-53291-8_9.
URL https://doi.org/10.1007/978-3-030-53291-8_9.

Chuyue Sun, Viraj Agashe, Saikat Chakraborty, Jubi Taneja, Clark Barrett, David Dill, Xiaokang
Qiu, and Shuvendu K. Lahiri. Classinvgen: Class invariant synthesis using large language models,
2025. URL https://arxiv.org/abs/2502.18917.

Tree-sitter. An incremental parsing system for programming tools.

Shubham Ugare, Tarun Suresh, Hangoo Kang, Sasa Misailovic, and Gagandeep Singh. Syncode:
Llm generation with grammar augmentation, 2024.

Xingyao Wang, Boxuan Li, Yufan Song, Frank F. Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan,
Yueqi Song, Bowen Li, Jaskirat Singh, Hoang H. Tran, Fuqiang Li, Ren Ma, Mingzhang Zheng, Bill
Qian, Yanjun Shao, Niklas Muennighoff, Yizhe Zhang, Binyuan Hui, Junyang Lin, Robert Brennan,
Hao Peng, Heng Ji, and Graham Neubig. Openhands: An open platform for Al software developers
as generalist agents. In The Thirteenth International Conference on Learning Representations,
2025. URL |https://openreview.net/forum?id=0Jd3ayDDoF.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le,
and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models, 2023.
URL https://arxiv.org/abs/2201.11903.

Cheng Wen, Jialun Cao, Jie Su, Zhiwu Xu, Shengchao Qin, Mengda He, Haokun Li, Shing-Chi Che-
ung, and Cong Tian. Enchanting program specification synthesis by large language models using
static analysis and program verification, 2024. URL https://arxiv.org/abs/2404.00762.

13

https://doi.org/10.1145/587051.587054
https://arxiv.org/abs/2309.09437
https://proceedings.mlr.press/v202/pei23a.html
https://proceedings.mlr.press/v202/pei23a.html
https://doi.org/10.1145/3691620.3695512
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://arxiv.org/abs/2408.02232
https://doi.org/10.1007/978-3-030-53291-8_9
https://arxiv.org/abs/2502.18917
https://openreview.net/forum?id=OJd3ayDDoF
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2404.00762

Under review as a conference paper at ICLR 2026

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von
Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama
Drame, Quentin Lhoest, and Alexander Rush. Transformers: State-of-the-art natural language
processing. In Qun Liu and David Schlangen, editors, Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing: System Demonstrations, pages 38—45, Online,
October 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-demos.6.
URL https://aclanthology.org/2020.emnlp-demos. 6.

Haoze Wu, Clark Barrett, and Nina Narodytska. Lemur: Integrating large language models in auto-
mated program verification. In The Twelfth International Conference on Learning Representations,
2024. URL |https://openreview.net/forum?id=0Q3YaCghZNt.

Frank F Xu, Uri Alon, Graham Neubig, and Vincent Josua Hellendoorn. A systematic evaluation of
large language models of code. In Proceedings of the 6th ACM SIGPLAN international symposium
on machine programming, pages 1-10, 2022.

Chenyuan Yang, Xuheng Li, Md Rakib Hossain Misu, Jianan Yao, Weidong Cui, Yeyun Gong, Chris
Hawblitzel, Shuvendu Lahiri, Jacob R. Lorch, Shuai Lu, Fan Yang, Zigiao Zhou, and Shan Lu.
Autoverus: Automated proof generation for rust code, 2025. URL https://arxiv.org/abs/
2409.13082.

Shiwen Yu, Ting Wang, and Ji Wang. Loop invariant inference through smt solving enhanced
reinforcement learning. In Proceedings of the 32nd ACM SIGSOFT International Symposium
on Software Testing and Analysis, ISSTA 2023, page 175-187, New York, NY, USA, 2023.
Association for Computing Machinery. ISBN 9798400702211. doi: 10.1145/3597926.3598047.
URL https://doi.org/10.1145/3597926.3598047.

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan Wang, Yufei Xue, Zihan Wang, Lei Shen, Andi
Wang, Yang Li, Teng Su, Zhilin Yang, and Jie Tang. Codegeex: A pre-trained model for code
generation with multilingual benchmarking on humaneval-x. In Proceedings of the 29th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, pages 5673-5684, 2023.

14

https://aclanthology.org/2020.emnlp-demos.6
https://openreview.net/forum?id=Q3YaCghZNt
https://arxiv.org/abs/2409.13082
https://arxiv.org/abs/2409.13082
https://doi.org/10.1145/3597926.3598047

[T O}

Under review as a conference paper at ICLR 2026

A APPENDIX.

A.1 PROMPT INSTRUCTIONS

As an expert language model trained in understanding code, your task is to generate a
postcondition (POST) for the provided C++ function.

A postcondition is a predicate wrapped in POST(any_predicate) that represents a
condition guaranteed to be true after the function returns.

Follow these rules to construct the postcondition:

1. Syntax: Wrap the postcondition in POST(any_predicate).

2. Implications: Use the symbol "==>" for logical implication. For example, conditioni
==> condition2 indicates that if condition1 is true, then condition2 must also be
true.

3. Logical Operators: You may use "&&" (logical AND) and "||" (logical OR) to combine
multiple conditions within a single predicate. conditionl && condition2 indicates
that both conditions must be true. conditionl || condition2 indicates that at least

one of the conditions is true.
4. Quantifiers: You may use EXISTS and FORALL to express quantified conditions:
- EXISTS(start, end, var, condition): There exists a value var in range [start, end)
that satisfies condition
- FORALL(start, end, var, condition): All values var in range [start, end) satisfy
condition

Example: POST(res_tmp == true ==> EXISTS(Q, numbers.size(), i, numbers[i] == target))

5. All predicates used in postcondition should be valid C++ expressions. All predicates

will be executed using C++ compiler.

6. Valid Function Names: All function/method calls used in the predicate should exist in
the context of the function. Do not hallucinate use and any hypothetical function

name! Instead give a simpler postcondition.

7. Naming the Return Value: Use "res_tmp"” as the name of the return value.

8. Trivial Postcondition: If no specific predicates must hold for the function, return a
trivial postcondition, POST(true).

9. Single Postcondition: Return only one postcondition per function.

10. Always include the appropriate namespace in postconditions if the constant, type, or
function is qualified with a namespace in the code. If no namespace is used in the
code, refer to the constant or type directly without a namespace in the

postcondition.

Listing 8: Postcondition Generation Instruction

A.2 ABLATION STUDY
A.2.1 POSTCONDITION COMPLEXITY.

Figure {4|illustrates the distribution of the number of
atomic expressions present in the generated postcon-
ditions for the model Qwen/Qwen2.5-32B-Instruct
on repository BDE. The x-axis represents the num-
ber of atoms in each predicate, while the y-axis in-
dicates the count of postconditions containing the
corresponding number of atoms. We observe a wide
range of complexity in the generated postconditions,
as the atoms in the generated postconditions range
from 1 to 16.

Distribution of Atoms in Generated Predicates

102

|
|
|
|
10! |
i
|
|

T

0 2 4 6 8 10 12 14 16
Number of Atoms in Predicate

Number of Postconditions (log scale)

A.2.2 FEEDBACK AND QUANTIFIERS. Figure 4: Distribution of the number of atoms
in the generated predicates for the model
Qwen2.5-32B-Instruct. The y-axis is loga-
rithmic, showing the frequency of postcondi-
tions with varying atom counts.

Table [presents the effectiveness of FUN2SPEC
in generating valid postconditions across both the
HumanEval-CPP and FormalSpecCPP benchmarks.
We evaluate each model under three settings: (1)

15

Under review as a conference paper at ICLR 2026

Table 4: Postcondition test-valid percentage for each model on HumanEval and FormalSpecCPP
benchmarks across three settings.

Model Benchmark Postcondition test-valid (%)
Standard Reprompt Quantifiers +
Setting Off Reprompt Off
HumanEval 55.83 52.76 52.15
Qwen3-32B FormalSpecCPP 74.00 7451 57.84
HumanEval 63.19 47.85 48.47
Qwen2.5-32B FormalSpecCPP 76.00 7451 50.98
HumanEval 52.15 39.88 46.63
Qwen2.5-Coder-TB g alSpecCPP 6765 56.86 54.90
HumanEval 17.18 0.61 1.23
Llama-3.1-8B FormalSpecCPP 20.00 0.98 0.98
Gemma-2-Ob-it HumanEval 36.20 33.13 28.22
emma-2->b- FormalSpecCPP 59.00 60.78 40.20
Phi-4-mini HumanEval 25.15 22.70 20.86
1-4-mint FormalSpecCPP 43.14 38.24 3333
Phi-4 HumanEval 22.09 22.70 19.63
FormalSpecCPP 57.84 53.92 38.24
HumanEval 6.13 12.88 12.27
QwQ-32B FormalSpecCPP 48.04 43.14 19.61

Table 5: FUN2SPEC performance with varying number of few-shot examples with
Qwen2.5-32B-Instruct

Few-shot Test Test Compilation
Examples Valid (%) Invalid (%) Error (%)
4 69.49 6.36 23.33
3 69.22 8.31 22.15
2 60.91 9.93 27.85
1 57.42 9.62 30.18
0 43.06 8.29 32.70

our standard FUN2SPEC setting with all features en-

abled, (2) with reprompting disabled (error feedback

removed), and (3) with both quantifiers and reprompting disabled. The reprompting mechanism
proves crucial for most models. Additionally, quantifier support significantly impacts effectiveness,
where disabling quantifiers causes performance decreases of up to 25 percentage points, highlighting
the importance of supporting rich specification language features when inferring postconditions.

A.2.3 FEW-SHOT EXAMPLES.

Table [] presents the impact of the number of few-shot examples on performance with
Qwen2.5-32B-Instruct. As the number of few-shot examples increases, the percentage of test-valid
results consistently improves. For instance, with 4 few-shot examples, the test-valid rate is the
highest at 69.49%, whereas with 0 examples, it drops significantly to 43.06%. This trend indi-
cates that providing more examples significantly enhances the FUN2SPEC’s ability to produce valid
postconditions.

A.3 EFFECT OF RETURN TYPES ON GENERATION

We aggregate testing results for the Qwen2.5-32B-Instruct model into three main categories based
on the return type of the function: Numeric Types, Compound Types (pointers, references, structs),
and Other Types (booleans, enums, char). As shown in Table |§|, FUN2SPEC achieves a 76.6%
success rate for numeric types, with a relatively low compilation error rate of 14.6%. Generating
postconditions for compound types is challenging, as FUN2SPEC encounters a 35.9% compilation
error rate due to the complexity of pointers and references, though it still maintains a 60.8% validity.
Other Types, including miscellaneous categories such as enums and character types, showed moderate
performance with a 65.5% validity, 29.7% compilation errors, and a 4.7% failure rate.

16

Under review as a conference paper at ICLR 2026

Table 6: Postcondition validation results categorized by the return type of functions. The counts
represent the number of valid, invalid, and failed-to-compile (Compilation Error) postconditions.

Category Test Test Compilation
Valid (%) Invalid (%) Error (%)
Numerical Types 76.6 14.6 8.8
Compound Types 60.8 359 33
Other Types 65.5 29.7 4.7

A.4 SCALING THE REFINEMENT ITERATIONS ON BENCHMARKS

Table 7: Test-Validity (%) comparison between FUN2SPEC (across retries) and NL2POST on
HumanEval-CPP

Model NL2POST FUN2SPEC 1 retry FUN2SPEC 5 retries FUN2SPEC 10 retries (A)
Qwen2.5-32B 20.2 63.2 74.8 76.1 (+55.9)
Qwen2.5-Coder-7B 30.7 52.1 65.3 67.5 (+36.8)

Table 8: Test-Validity (%) comparison between FUN2SPEC (across retries) and NL2POST on Formal-
SpecCPP

Model NL2POST FUN2SPEC 1 retry FUN2SPEC 5 retries FUN2SPEC 10 retries (A)
Qwen2.5-32B 43.1 76.0 80.5 80.5 (+37.4)
Qwen2.5-Coder-7B 529 67.6 69.6 70.6 (+17.7)

As shown in Tables [7]and [§] on both HumanEval-CPP and FormalSpecCPP, FUN2SPEC consistently
outperforms the NL2POST baseline by a large margin. Even with just 1 retry, FUN2SPEC already
surpasses NL2POST by 2040 percentage points. Increasing retries further improves performance:
gains plateau by 5-10 retries, but the improvements remain substantial. For example, on HumanEval-
CPP, Qwen2.5-32B improves from 20.2% (NL2POST) to 76.1% (FUN2SPEC, 10 retries), a +55.9
point gain.

A.5 SCALING THE REFINEMENT ITERATIONS ON LARGE CODEBASES

As shown in Table [scaling retries with FUN2SPEC substantially improves test validity while
runtime grows sublinearly with the number of retries. For Qwen2.5-32B-Instruct, validity rises from
69.4% (1 retry) to 86.9% (10 retries), with compilation and formatting errors reduced by over half.
Similarly, Qwen2.5-Coder-7B-Instruct improves from 57.6% to 73.5%. These results show that
retries yield strong improvements in accuracy with relatively moderate additional computational cost.

A.6 QUALITATIVE ANALYSIS

In this section, we classify 100 generated postconditions on BDE with Qwen2.5-32B-Instruct
model.

A.7 POSTCONDITIONS WITH QUANTIFIERS

1. Filename: baljsn_datumutil.cpp, Function: int encodeArray, Classification: correct

int encodeArraycorrect

(__out == 0 == FORALL(0, datum.length(), i, u::encodeValue(formatter, datum[i],
strictTypesCheckStatus) == 0))

&& (--out != 0 == EXISTS(0, datum.length(), i, u::encodeValue(formatter, da-
tum[i], strictTypesCheckStatus) != 0))

2. Filename: baljsn_datumutil.cpp, Function: int encodeObject, Classification: correct

17

Under review as a conference paper at ICLR 2026

Table 9: Model Performance with FUN2SPEC after scaling the number of retries on BDE

Model Name Test Test Compilation Formatting Trivial Avg.
Valid (%) Invalid (%) Error (%) Error (%) (%) Atoms Time (s)

Qwen2.5-32B-Instruct (1 retry) 69.41 6.09 14.80 9.70 14.97 2.29 628.3
Qwen2.5-32B-Instruct (5 retries) 84.52 4.81 6.98 3.69 6.37 3.21 1247.2
Qwen2.5-32B-Instruct (10 retries) 86.94 4.81 4.56 3.69 5.78 322 1831.9
Qwen2.5-Coder-7B-Instruct (1 retry) 57.61 19.48 12.77 10.15 12.93 1.86 773.42
Qwen2.5-Coder-7B-Instruct (5 retries) 72.16 19.48 12.77 10.15 6.78 2.36 1585.8
Qwen?2.5-Coder-7B-Instruct (10 retries) 73.45 19.48 12.77 10.15 6.42 2.41 2485.3

int encodeObjectcorrect

(_out != == EXISTS(0, datum.size(), i, u::encodeValue(formatter, da-
tum[i].value(), strictTypesCheckStatus, &datum[i].key()) != 0))

&& (FORALL(O, datum.size(), 1, u::encodeValue(formatter, datum([i].value(), strict-
TypesCheckStatus, &datumli].key()) == 0) == __out ==0)

3. Filename: ball_managedattributeset.cpp, Function: bool ManagedAttributeSet::evaluate,
Classification: correct strongest

bool ManagedAttributeSet::evaluatecorrect strongest
_out == true == FORALL(begin(), end(), iter, containerList.hasValue(iter-
attribute()))

4. Filename: ball_managedattributeset.cpp, Function: bool ball::operator==, Classification:
correct strongest

bool ball::operator==correct strongest
_out == true == (lhs.numAttributes() == rhs.numAttributes() &&
FORALL(lhs.begin(), lhs.end(), attr, rhs.isMember(attr)))

5. Filename: ball_recordjsonformatter.cpp, Function: int FixedFieldFormatter::parse, Classi-
fication: correct

int FixedFieldFormatter::parsecorrect
(——out == 0 == FORALL(O0, v.size(), i, v[i].value().isString())) && (__out ==-1 ==
EXISTS(0, v.size(), i, !v[i].value().isString()))

6. Filename: ball _ruleset.cpp, Function: bool ball::operator==, Classification: correct
strongest

bool ball::operator==correct strongest

(-—out == true == FORALL(O0, Ihs.numRules(), i, rhs.ruleld(*lhs.getRuleByld(i)) >=
0))

&& (_out == false == lhs.numRules() != rhs.numRules() || EXISTS(O,
lhs.numRules(), i, !(rhs.ruleld(*lhs.getRuleByld(i))>= 0)))

7. Filename: baltzo_zoneinfo.cpp, Function: static bool containsDescriptor, Classification:
correct strongest

18

Under review as a conference paper at ICLR 2026

10.

11.

12.

13.

static bool containsDescriptorcorrect strongest

(--out == true == EXISTS(transitions.begin(), transitions.end(), it, descriptor ==
it- descriptor()))

&& (__out == false == FORALL(transitions.begin(), transitions.end(), it, descriptor
!= it- descriptor()))

. Filename: baltzo_zoneinfobinaryreader.cpp, Function: static bool areAllPrintable, Classifi-

cation: correct strongest

static bool areAllPrintablecorrect strongest
(-—out == true == FORALL(O, length, i, bdlb::CharType::isPrint(buffer[i])))
&& (__out == false == EXISTS(0, length, i, !bdlb::CharType::isPrint(buffer[i])))

. Filename: balxml_prefixstack.cpp, Function: const PredefinedPrefix& lookupPredefined-

Prefix, Classification: correct strongest

(~\
const PredefinedPrefix& lookupPredefinedPrefixcorrect strongest

FORALL(0, ARRAY_LEN(predefinedPrefixes), i, prefix == predefinedPre-
fixes[i].d_prefix == &__out == &predefinedPrefixes[i])

|| &__out == &nullPrefix

|\ J

Filename: bdlc_indexclerk.cpp, Function: arelnvariantsPreserved, Classification: correct

'd N\
arelnvariantsPreservedcorrect

_out == true == FORALL(0, unusedStack.size(), i, 0 j= unusedStack[i] && un-
usedStack[i] ; nextNewIndex && bin[unusedStack[i]] j 2)

g J

Filename: bldc_charconvertutf16.cpp, Function: const OctetType *skipContinuations,
Classification: vacuous

s N
const OctetType *skipContinuationsvacuous
FORALL(octets, _out, i, (*i & CONTINUE.MASK) != CON-
TINUE_Classification)

(. J

Filename: bdlt_fixutil.cpp, Function: int asciiTolnt, Classification: correct

'd N\
int asciiTolntcorrect

(—out == 0 == (*nextPos == end && *result == tmp)) && (__out == -1 ==
IFORALL(begin, end, i, isdigit(*1)))

g J

Filename: bdlt_timetable.cpp, Function: Timetable::const_iterator Timetable::begin(),
Classification: correct strongest

Timetable::const_iterator Timetable::begin()correct strongest
FORALL(0, __out.dayIndex(), i, d_timetable[i].size() == 0)

A.8 POSTCONDITIONS WITHOUT QUANTIFIERS

1.

Filename: balb_controlmanager.cpp, Function: ControlManager::registerHandler, Classifi-
cation: correct

19

Under review as a conference paper at ICLR 2026

ControlManager::registerHandlercorrect
_out==0|| __out ==

2. Filename: balb_leakybucket.cpp, Function: calculateNumberOfUnitsToDrain, Classifica-
tion: correct

calculateNumberOfUnitsToDraincorrect
__out>= 0 && (*fractionalUnitDrainedInNanoUnits | kK NANOUNITS_PER _UNIT)

3. Filename: balb_leakybucket.cpp, Function: calculateTimeToSubmit, Classification: cor-
rect

calculateTimeToSubmitcorrect
__out>= bsls::Timelnterval(0, 0)

4. Filename: balb_performancemonitor.cpp, Function: nearlyEqual, Classification: correct
strongest

nearlyEqualcorrect strongest
__out == (bsl::fabs(lhs - rhs) j bsl::numeric_limitsjdouble;::epsilon())

5. Filename: balb_pipetaskmanager.cpp, Function: makeControlChannel, Classification:
correct

makeControlChannelcorrect
__out !=NULL

6. Filename: balb_ratelimiter.cpp, Function: RateLimiter::calculateTimeToSubmit, Classifi-
cation: correct

RateLimiter::calculateTimeToSubmitcorrect
__out>= timeToSubmitPeak && __out>= timeToSubmitSustained

7. Filename: balber_berdecoder.cpp, Function: BerDecoder_Node::startPos, Classification:
correct strongest

BerDecoder_Node::startPoscorrect strongest
_out>=0

8. Filename: balber_berdecoderoptions.cpp, Function: BerDecoderOp-
tions::lookupAttributeInfo, Classification: correct strongest

BerDecoderOptions::lookupAttributeInfo
[big string]

9. Filename: balber_berdecoder.cpp, Function: BerEncoder::logError, Classification: correct
strongest

BerEncoder::logErrorcorrect strongest
static_castjint; (__out)>= static_cast;int; (BloombergLP::balber::BerEncoder::e_BER_ERROR)

20

Under review as a conference paper at ICLR 2026

10. Filename: balber_beruniversalClassificationnumber.cpp, Function: BerUniversalClassifica-
tionNumber::toString, Classification: correct

BerUniversalClassificationNumber::toStringcorrect
_—out !=NULL

11. Filename: balber_berutil.cpp, Function: ReadRestFunctor::operator(), Classification:
correct

ReadRestFunctor::operator()correct
_out>= d_oldSize && __out = newSize

12. Filename: balber_berutil.cpp, Function: BerUtil_IdentifierlmpUtil::getldentifierOctets,
Classification: correct

BerUtil_IdentifierImpUltil::getldentifierOctetscorrect
_out == SUCCESS || -_out == FAILURE

13. Filename: balber_berutil.cpp, Function: BerUtil IdentifierImpUtil::putldentifierOctets,
Classification: correct

BerUtil_IdentifierImpUtil::putldentifierOctetscorrect
__out == SUCCESS || __out == FAILURE

14. Filename: balber_berutil.cpp, Function: BerUtil_IntegerImpUltil::getNumOctetsToStream,
Classification: correct

BerUtil_IntegerImpUtil::getNumOctetsToStreamcorrect
(value == 0== _out==1) && (value !=0== __out> 0)

15. Filename: balber_berutil.cpp, Function: BerUtil_TimezoneOffsetimpUltil::is ValidTimezoneOffsetInMinutes,
Classification: correct strongest

BerUtil_TimezoneOffsetImpUtil::is ValidTimezoneOffsetInMinutescorrect strongest
(_—out == true == (k_.MIN_OFFSET ;= value && value ;= k MAX_OFFSET)) &&
(__out == false == (value ; k MIN_OFFSET || value> k MAX_OFFSET))

16. Filename: balcl_commandline.cpp, Function: EnvironmentVariableAccessor::value(),
Classification: correct strongest

EnvironmentVariableAccessor::value()correct strongest
__out == d_returnValue

17. Filename: balcl_commandline.cpp, Function: bsl::ostream& u::operator;;j, Classification:
correct

bsl::ostreamé& u::operator;jjcorrect
&__out == &stream

18. Filename: balcl_commandline.cpp, Function: isValidEnvironmentVariableName, Classifi-
cation: correct but overfit

21

Under review as a conference paper at ICLR 2026

19.

20.

21.

22.

23.

24.

25.

26.

isValidEnvironmentVariableNamecorrect but overfit
[big string]

Filename: balcl_commandline.cpp, Function: parseEnvironmentVariable, Classification:
correct

parseEnvironmentVariablecorrect
(_out==-1) || (__out==1) || (__out>=0)

Filename: balcl_commandline.cpp, Function: CommandLine::operator=, Classification:
correct

CommandLine::operator=correct
&__out == this

Filename: balcl_commandline.cpp, Function: CommandLine::hasOption, Classification:
correct strongest

CommandLine::hasOptioncorrect strongest
(findName(name)>= 0 == __out == true) && (findName(name) ; 0 == __out ==
false)

Filename: balcl_commandline.cpp, Function: balcl::operator==, Classification: correct
strongest

balcl::operator==correct strongest
__out == (lhs.isParsed() && rhs.isParsed() && lhs.options() == rhs.options())

Filename: balcl_commandline.cpp, Function: CommandLineOptionsHandle::index, Clas-
sification: correct

CommandLineOptionsHandle::indexcorrect
_out>= -1

Filename: balcl_occurrenceinfo.cpp, Function: Occurrencelnfo::operator=, Classification:
correct strongest

Occurrencelnfo::operator=correct strongest
&__out == this && d_defaultValue == rhs.d_defaultValue &&
d_isRequired == rhs.d_isRequired && d_isHidden == rhs.d_isHidden

Filename: balcl_occurrenceinfo.cpp, Function: balcl::operator==, Classification: correct
strongest

(~\

balcl::operator==correct strongest
[big string]

g J

Filename: balcl_option.cpp, Function: Option::operator=, Classification: correct

(\

Option::operator=correct
&__out != nullptr

22

Under review as a conference paper at ICLR 2026

27.

28.

29.

30.

31.

32.

33.

34.

35.

Filename: balcl_option.cpp, Function: balcl::operator==, Classification: trivial

balcl::operator==trivial
__out == true || __out == false

Filename: balcl_optioninfo.cpp, Function: bsl::ostreamé& balcl::operator;;, Classification:
correct

bsl::ostreamé& balcl::operator;jcorrect
& __out == &stream

Filename: balcl_optiontype.cpp, Function: bsl::ostream& OptionType::print, Classifica-
tion: correct

bsl::ostream& OptionType::printcorrect
&__out == &stream

Filename: balcl_typeinfo.cpp, Function: const char *elemTypeToString, Classification:
correct

const char *elemTypeToStringcorrect
_out !=NULL

Filename: balcl_typeinfo.cpp, Function: OptionType::Enum_BoolConstraint::type(), Clas-
sification: correct strongest

OptionType::Enum_BoolConstraint::type()correct strongest
__out == OptionType::e_BOOL

Filename: balcl_typeinfo.cpp, Function: Typelnfo& Typelnfo::operator=, Classification:
correct

Typelnfo& Typelnfo::operator=correct
& __out == this

Filename: balcl_typeinfo.cpp, Function: bool balcl::operator==, Classification: correct
strongest

bool balcl::operator==correct strongest
[big string]

Filename: baljsn_datumutil.cpp, Function: int decodeObject, Classification: correct

int decodeObjectcorrect
_out==0|| __out==-1|| _out==-2 || __out==-3 || __out ==-4

Filename: baljsn_datumutil.cpp, Function: int decodeArray, Classification: correct

23

Under review as a conference paper at ICLR 2026

36.

37.

38.

39.

40.

41.

42.

43.

int decodeArraycorrect

(maxNestedDepth ; 0 == __out ==-4)

&& (tokenizer-;tokenType() == baljsn::Tokenizer::e_.ERROR == __out == -1)
&& (decodeValue(&elementValue, errorStream, tokenizer, maxNestedDepth) != 0
== __out== —2)

&& (_out==0|| __out == -4 || __out ==-1|| __out == -2)

(. J

Filename: baljsn_datumutil.cpp, Function: int extractValue, Classification: correct

e N
int extractValuecorrect
—out==0|| __out ==-1

& J

Filename: baljsn_datumutil.cpp, Function: int DatumUtil::decode, Classification: correct

e N

int DatumUtil::decodecorrect
—out==0|| __out==-1|| __out==-2 || __out==-3

g J

Filename: baljsn_decoder.cpp, Function: bsl::ostreamé& Decoder::logTokenizerError, Clas-
sification: correct

bsl::ostream& Decoder::logTokenizerErrorcorrect
&__out == &d_logStream

Filename: baljsn_encoder.cpp, Function: int Encoder_EncodelmplUtil::encodeCharArray,
Classification: trivial

int Encoder_EncodeImplUtil::encodeCharArraycorrect trivial
_out>=0| __out< 0

Filename: ball_administration.cpp, Function: int Administration::addCategory, Classifica-
tion: trivial

int Administration::addCategorycorrect trivial
_out==0|| __out ==1

Filename: ball_asyncfileobserver.cpp, Function: bool isStopRecord, Classification: cor-
rect strongest

bool isStopRecordcorrect strongest
__out == (0 == record.d_record.get())

& J

Filename: ball_attribute.cpp, Function: int Attribute::hash, Classification: correct

(N

int Attribute::hashcorrect
0 j= _-out && __out < size

|\ J

Filename: ball_attribute.cpp, Function: bsl::ostream& Attribute::print, Classification:
correct

bsl::ostreamé& Attribute::printcorrect
&__out == &stream

24

Under review as a conference paper at ICLR 2026

44,

45.

46.

47.

48.

49.

50.

51.

52.

Filename: ball_attributecollectorregistry.cpp, Function: int AttributeCollectorReg-
istry::addCollector, Classification: correct

int AttributeCollectorRegistry::addCollectorcorrect
_out==0|| __out==1

Filename: ball_attributecontainerlist.cpp, Function: AttributeContainerList& Attribute-
ContainerList::operator=, Classification: correct

AttributeContainerList& AttributeContainerList::operator=correct
& __out == this

Filename: ball_attributecontainerlist.cpp, Function: bool ball::operator==, Classification:
correct strongest

bool ball::operator==correct strongest
__out == (lhs.numContainers() == rhs.numContainers() &&
std::equal(lhs.begin(), lhs.end(), rhs.begin()))

Filename: ball_attributecontainerlist.cpp, Function: RuleSet::MaskType AttributeCon-
text_RuleEvaluationCache::update, Classification: correct

RuleSet::MaskType AttributeContext_RuleEvaluationCache::updatecorrect
_out>=0

Filename: ball _attributecontainerlist.cpp, Function: bsl::ostream& AttributeCon-
text_RuleEvaluationCache::print, Classification: correct

bsl::ostream& AttributeContext_RuleEvaluationCache::printcorrect
&__out == &stream

Filename: ball_attributecontainerlist.cpp, Function: const bslmt::ThreadUtil::Key& At-
tributeContext::contextKey, Classification: correct

const bslmt:: ThreadUtil::Key& AttributeContext::contextKeycorrect
&__out == &s_contextKey

Filename: ball_attributecontainerlist.cpp, Function: AttributeContext *AttributeCon-
text::getContext, Classification: correct

AttributeContext *AttributeContext::getContextcorrect
_out !=NULL

Filename: ball_attributecontainerlist.cpp, Function: bsl::ostreamé& AttributeContext::print,
Classification: correct

bsl::ostream& AttributeContext::printcorrect
&__out == &stream

Filename: ball_broadcastobserver.cpp, Function: int BroadcastOb-
server::deregisterObserver, Classification: correct

25

Under review as a conference paper at ICLR 2026

int BroadcastObserver::deregisterObservercorrect
_out==0|| __out ==

53. Filename: ball_broadcastobserver.cpp, Function: bsl::shared_ptrjconst Observer; Broad-
castObserver::findObserver, Classification: correct strongest

bsl::shared_ptrjconst Observer; BroadcastObserver::findObservercorrect strongest
(_—out.use_count()> 0) || (-_out.get() == nullptr)

54. Filename: ball_category.cpp, Function: int Category::setLevels, Classification: correct

int Category::setLevelscorrect
—out==0|| __out ==-1

55. Filename: ball_categorymanager.cpp, Function: Category *CategoryMan-
ager::addNewCategory, Classification: correct

Category *CategoryManager::addNewCategorycorrect
_—out !=NULL

56. Filename: ball_categorymanager.cpp, Function: const Category *CategoryMan-
ager::lookupCategory, Classification: correct strongest

const Category *CategoryManager::lookupCategorycorrect strongest
(__out != 0 == d_registry.find(categoryName) != d_registry.end()) &&
(-—out == 0 == d_registry.find(categoryName) == d_registry.end())

57. Filename: ball_context.cpp, Function: bool Context::isValid, Classification: incorrect

bool Context::isValidincorrect
!(transmissionCause == Transmission::e_.PASSTHROUGH
&& __out == (recordIndex == 0 && sequencelength == 1))

58. Filename: ball_context.cpp, Function: bsl::ostream& Context::print, Classification: cor-
rect

bsl::ostream& Context::printcorrect
&__out == &stream

59. Filename: ball_defaultattributecontainer.cpp, Function: DefaultAttributeContainer& De-
faultAttributeContainer::operator=, Classification: correct strongest

DefaultAttributeContainer& DefaultAttributeContainer::operator=correct strongest
&__out == this && &__out == &rhs

60. Filename: ball_defaultattributecontainer.cpp, Function: bool ball::operator==, Classifica-
tion: incorrect

26

Under review as a conference paper at ICLR 2026

61.

62.

63.

64.

65.

66.

67.

68.

bool ball::operator==incorrect

!(Ihs.numAttributes() != rhs.numAttributes() == !__out)

&& (Ihs.numAttributes() == rhs.numAttributes()

&& std::all_of(lhs.begin(), lhs.end(), [&rhs](const auto& attr) return
rhs.hasValue(attr);) == __out)

Filename: ball_fileobserver.cpp, Function: bslma::Allocator *FileObserver::allocator,
Classification: correct strongest

bslma::Allocator *FileObserver::allocatorcorrect strongest
_—out !=NULL

Filename: ball_fileobserver2.cpp, Function: static int getErrorCode, Classification: correct
strongest

(~\

static int getErrorCodecorrect strongest
_out>=0

| J

Filename: ball_fileobserver2.cpp, Function: static int openLogFile, Classification: correct

(\

static int openLogFilecorrect
_out==0|| __out==-1

|\ J

Filename: ball_fileobserver2.cpp, Function: static bdlt::Datetime computeNextRotation-
Time, Classification: correct

()
static bdlt::Datetime computeNextRotationTimecorrect

__out>= fileCreationTimeUtc && (fuzzyEqual(referenceStartTime, fileCreation-
TimeUtc, interval)

== __out>= fileCreationTimeUtc + interval)

| J

Filename: ball_log.cpp, Function: Log::format, Classification: correct strongest

Log::formatcorrect strongest
((bsl::size_t)__out>= numBytes == __out ==-1)
&& ((bsl::size_t)__out < numBytes == __out !=-1)

g J

Filename: ball_loggercategoryutil.cpp, Function: Category *LoggerCategoryU-
til::addCategoryHierarchically, Classification: correct strongest

Category *LoggerCategoryUtil::addCategoryHierarchicallycorrect strongest
(__out == 0) || (__out != 0 && loggerManager-;lookupCategory(categoryName) ==
__out)

Filename: ball_loggermanager.cpp, Function: Record *RecordSharedPtrU-
til::disassembleSharedPtr, Classification: correct

Record *RecordSharedPtrUtil::disassembleSharedPtrcorrect
__out != nullptr

Filename: ball_loggermanager.cpp, Function: const char *filterName, Classification:
correct strongest

27

Under review as a conference paper at ICLR 2026

69.

70.

71.

72.

73.

74.

75.

const char *filterNamecorrect strongest
(nameFilter ? __out == filteredNameBuffer-;c_str() : __out == originalName)

Filename: ball_loggermanager.cpp, Function: inline static ball::Severity::Level convertB-
slsLogSeverity, Classification: correct

inline static ball::Severity::Level convertBslsLogSeveritycorrect
(severity == bsls::LogSeverity::e_ FATAL == __out == ball::Severity::e_FATAL)

Filename: ball_loggermanager.cpp, Function: bsl::shared_ptrjRecord; Log-
ger::getRecordPtr, Classification: correct strongest

bsl::shared_ptrjRecord; Logger::getRecordPtrcorrect strongest
__out-; fixedFields().getFileName() == fileName &&
__out-; fixedFields().getLineNumber() == lineNumber

Filename: ball_loggermanager.cpp, Function: Record *Logger::getRecord, Classification:
trivial

Record *Logger::getRecordcorrect trivial
__out != nullptr

Filename: ball_loggermanager.cpp, Function: bool LoggerManager::isCategoryEnabled,
Classification: correct strongest

bool LoggerManager::isCategoryEnabledcorrect strongest

(category-¢relevantRuleMask() && _out ==
(ThresholdAggregate::maxLevel(levels)>= severity))

|| (lcategory-;relevantRuleMask() && _out == (category-;maxLevel()>=
severity))

Filename: ball loggermanagerconfiguration.cpp, Function: LoggerManagerConfigura-
tion::operator=, Classification: correct strongest

(\

LoggerManagerConfiguration::operator=correct strongest

__out.d_defaults == rhs.d_defaults && __out.d_userPopulator == rhs.d _userPopulator
&& __out.d_categoryNameFilter == rhs.d_categoryNameFilter

&& __out.d_defaultThresholdsCb == rhs.d_defaultThresholdsCb

&& __out.dlogOrder == rhs.d_logOrder && __out.d_triggerMarkers ==
rhs.d_triggerMarkers

. J

Filename: ball loggermanagerconfiguration.cpp, Function: const LoggerManagerDe-
faults& LoggerManagerConfiguration::defaults(), Classification: correct strongest

const LoggerManagerDefaults& LoggerManagerConfiguration::defaults()correct
strongest
&__out == &d_defaults

Filename: ball_loggermanagerdefaults.cpp, Function: bool LoggerManagerDe-
faults::isValidDefaultRecordBufferSize, Classification: correct strongest

28

Under review as a conference paper at ICLR 2026

76.

7.

78.

79.

80.

81.

82.

bool LoggerManagerDefaults::isValidDefaultRecordBufferSize correct strongest
__out == (0 < numBytes)

Filename: ball_managedattribute.cpp, Function: bsl::ostream& ManagedAdttribute::print,
Classification: correct

bsl::ostream& ManagedAttribute::printcorrect
& __out == &stream

Filename: ball_managedattributeset.cpp, Function: int ManagedAttributeSet::hash, Classi-
fication: correct strongest

int ManagedAttributeSet::hashcorrect strongest
(0 <= __out) && (__out < size)

Filename: ball_managedattributeset.cpp, Function: ManagedAttributeSet& ManagedAt-
tributeSet::operator=, Classification: correct

ManagedAttributeSet& ManagedAttributeSet::operator=correct
this-; d_attributeSet == rhs.d_attributeSet

Filename: ball_managedattributeset.cpp, Function: bool ManagedAttributeSet::evaluate,
Classification: correct strongest

(\

bool ManagedAttributeSet::evaluatecorrect strongest

(__out == true ==

std::all_of(begin(), end(), [&](auto& attr) return contain-
erList.hasValue(attr.attribute());))

&& (__out == false == std::any_of(begin(), end(), [&](auto& attr)

return !containerList.hasValue(attr.attribute());))

(. J

Filename: ball_record.cpp, Function: bsl::ostream& Record::print, Classification: correct

(N

bsl::ostream& Record::printcorrect
& __out == &stream && __out-;rdstate() == std::ios_base::goodbit

|\ J

Filename: ball_recordattributes.cpp, Function: ball_recordattributes.cpp, Classification:
correct strongest

(™\

ball_recordattributes.cppcorrect strongest

(Ihs.d_timestamp == rhs.d_timestamp && lhs.d_processID == rhs.d_processID
&& 1hs.d_threadID == rhs.d_threadID && lhs.d_severity == rhs.d_severity &&
lhs.d_lineNumber == rhs.d_lineNumber && lhs.d_fileName == rhs.d_fileName &&
lhs.d_category == rhs.d_category && lhs.messageRef() == rhs.messageRef()) ==
__out

& J

Filename: ball_recordjsonformatter.cpp, Function: int FixedFieldFormatter::parse, Classi-
fication: correct

int FixedFieldFormatter::parsecorrect
—out==0|| __out==-1

29

Under review as a conference paper at ICLR 2026

83.

84.

85.

86.

87.

88.

89.

90.

91.

Filename: ball_recordjsonformatter.cpp, Function: const bsl::string& AttributeFormat-
ter::key(), Classification: correct strongest

const bsl::string& AttributeFormatter::key()correct strongest
&__out == &d key

Filename: ball_recordjsonformatter.cpp, Function: RecordJsonFormatter_FieldFormatter *
DatumParser::make, Classification: correct

RecordJsonFormatter_FieldFormatter * DatumParser::makecorrect
_—out != nullptr

Filename: ball_recordjsonformatter.cpp, Function: int RecordJsonFormatter::setFormat,
Classification: trivial

int RecordJsonFormatter::setFormattrivial
_out==-1]| _out==0|| __out !=0

Filename: ball_rule.cpp, Function: int Rule::hash, Classification: correct

int Rule::hashcorrect
(rule.d_hashValue>= 0 && rule.d_hashValue < size)
&& (rule.d_hashValue == __out && rule.d_hashSize == size)

Filename: ball _rule.cpp, Function: Rule& Rule::operator=, Classification: correct
strongest

()
Rule& Rule::operator=correct strongest

&__out == this && __out.d_pattern == rhs.d_pattern && __out.d_thresholds ==
rhs.d_thresholds

&& __out.d_attributeSet == rhs.d_attributeSet && __out.d_hashValue ==
rhs.d_hashValue
&& __out.d_hashSize == rhs.d_hashSize

|\ J

Filename: ball_rule.cpp, Function: bsl::ostream& Rule::print, Classification: correct

(\

bsl::ostream& Rule::printcorrect
& __out == &stream
|\ J

Filename: ball ruleset.cpp, Function: int RuleSet::addRule, Classification: correct

e N
int RuleSet::addRulecorrect
_out==-1|| __out==-2|| _out>=0

\§ J

Filename: ball_ruleset.cpp, Function: int RuleSet::ruleld, Classification: correct

(\

int RuleSet::ruleldcorrect
_out==-1]| _out>=10

|\ J

Filename: ball_ruleset.cpp, Function: bool ball::operator==, Classification: correct
strongest

30

Under review as a conference paper at ICLR 2026

92.

93.

94.

95.

96.

97.

98.

bool ball::operator==correct strongest

(Ihs.numRules() != rhs.numRules() == ! _out) && (lhs.numRules() ==
rhs.numRules()

&& std::all_of(lhs.begin(), lhs.end(), [&](const Rule& r)return rhs.ruleld(r)>= 0;)
== __out)

Filename: ball_scopedattribute.cpp, = Function: bsl::ostream& ScopedAt-
tribute_Container::print, Classification: correct

e N

bsl::ostream& ScopedAttribute_Container::printcorrect
&__out == &stream
|\ J

Filename: ball_severity.cpp, Function: int Severity::fromAscii, Classification: correct

(™\

int Severity::fromAsciicorrect
—out==0|| __out ==-1

g J

Filename: ball_severityutil.cpp, Function: int SeverityUtil::fromAsciiCaseless, Classifica-
tion: correct

int SeverityUtil::fromAsciiCaselescorrect
__out == BALL _SUCCESS || __out == BALL_FAILURE

Filename: ball_thresholdaggregate.cpp, Function: int ThresholdAggregate::hash, Classifi-
cation: correct

int Threshold Aggregate::hashcorrect
_out>= 0 && __out < size

Filename: ball_thresholdaggregate.cpp, Function: ThresholdAggregate& ThresholdAggre-
gate::operator=, Classification: correct strongest

ThresholdAggregate& Threshold Aggregate::operator=correct strongest
(d_recordLevel == rhs.d_recordLevel) && (d_passLevel == rhs.d_passLevel)

&& (d-triggerLevel == rhs.d_triggerLevel) && (d-triggerAllLevel ==
rhs.d_triggerAllLevel)

&& (&__out == this)

Filename: ball_thresholdaggregate.cpp, Function: bsl::ostream& ThresholdAggre-
gate::print, Classification: correct

bsl::ostream& ThresholdAggregate::printcorrect
& __out == &stream

Filename: ball_transmission.cpp, Function: const char *Transmission::toAscii, Classifica-
tion: correct

const char *Transmission::toAsciicorrect

__out=="PASSTHROUGH?” || __out == "TRIGGER” || __out == "TRIGGER_ALL”
|| _out =="MANUAL _PUBLISH” || __out == "MANUAL_PUBLISH_ALL” ||
__out == "(* UNKNOWN *)”

31

Under review as a conference paper at ICLR 2026

99. Filename: ball_userfields.cpp, Function: bsl::ostream& UserFields::print, Classification:
correct

bsl::ostream& UserFields::printcorrect
& __out == &stream

32

	Introduction
	Problem Statement
	Fun2spec
	Code Miner
	LLM Generator
	Specification Tester
	Fun2spec Postcondition Synthesis Algorithm

	Evaluation
	Benchmark Results
	Postcondition Generation on Large Codebases
	Qualitative Analysis

	Related Work
	Appendix.
	Prompt Instructions
	Ablation Study
	Postcondition Complexity.
	Feedback and Quantifiers.
	Few-shot examples.

	Effect of Return Types on Generation
	Scaling the Refinement Iterations on Benchmarks
	Scaling the Refinement Iterations on Large Codebases
	Qualitative analysis
	Postconditions with quantifiers
	Postconditions without quantifiers

