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Abstract

Despite the importance of denoising in modern machine learning and ample empir-1

ical work on supervised denoising, its theoretical understanding is still relatively2

scarce. One concern about studying supervised denoising is that one might not3

always have noiseless training data from the test distribution. It is more reasonable4

to have access to noiseless training data from a different dataset than the test dataset.5

Motivated by this, we study supervised denoising and noisy-input regression under6

distribution shift. We add three considerations to increase the applicability of our7

theoretical insights to real-life data and modern machine learning. First, while8

most past theoretical work assumes that the data covariance matrix is full-rank and9

well-conditioned, empirical studies have shown that real-life data is approximately10

low-rank. Thus, we assume that our data matrices are low-rank. Second, we drop11

independence assumptions on our data. Third, the rise in computational power12

and dimensionality of data have made it important to study non-classical regimes13

of learning. Thus, we work in the non-classical proportional regime, where data14

dimension d and number of samples N grow as d/N = c+ o(1).15

For this setting, we derive general test error expressions for both denoising and16

noisy-input regression, and study when overfitting the noise is benign, tempered17

or catastrophic. We show that the test error exhibits double descent under general18

distribution shift, providing insights for data augmentation and the role of noise as19

an implicit regularizer. We also perform experiments using real-life data, where we20

match the theoretical predictions with under 1% MSE error for low-rank data.21

1 Introduction22

Denoising and noisy-input problems have a rich history in machine learning [1–3]. Aside from23

its natural application to noisy input data, the idea of noise as a regularizer has led to denoising24

being tied to many areas of modern machine learning, such as pretraining and feature extraction25

[4], data-augmentation for representation learning [5], generative modeling [6]. While unsupervised26

methods like PCA [7] and low rank matrix recovery [8] have been addressed in prior theoretical work27

[9], supervised methods like denoising autoencoders are theoretically less well-understood.28

One of the biggest practical qualms to studying a supervised setting is that a learner needs access to29

noiseless data sampled from the test distribution. However, this is resolved by considering distribution30

shift, which is when the training and test data can come from different distributions. Given this31

practical motivation, we study supervised denoising and noisy-input regression under distribution32

shift. It is well understood that non-trivial denoising is made possible by the presence of additional33

structure in the data (see, for example, Section 3.2 of [1]). One of the most natural such structures34

is low rank, specifically the idea that the true inputs live in a low dimensional space. In fact, past35
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work such as [10] has demonstrated that a lot of real-life data is approximately low-rank – that is, its36

covariance matrix only has a few significant eigenvalues.37

The classical theory of learning problems would keep the data dimension d fixed and let the number38

of samples N grow to ∞. These can be theoretically analysed using elementary tools. However,39

with growing access to computational power and richness of data, it has become important to study40

non-classical regimes. One important and popular example is the proportional regime, where d ∝ N41

and so d is comparable to N [11, 12]. However, there is very little work on learning with noisy inputs42

in non-classical regimes. Our paper takes one of the first steps towards filling this gap.43

Additionally, most past theoretical works in non-classical regimes do not test on real-life data. As44

argued above and in [11], a big reason for this issue is that past work assumes that the data covariance45

matrix is well-conditioned, while real-life data covariance matrices are better modeled by low-rank46

assumptions. We aim to address this issue by testing our theory for low-rank data on real-life datasets.47

In real life, one has little control over the independence or even the distribution of the data [13].48

There is also a growing need to be robust to adversarially chosen data in machine learning [14]. We49

would thus like to drop the assumption that the data is IID or even independent. Additionally, explicit50

structural assumptions made about distribution shift in past work are often quite restrictive, involving51

requirements like the simultaneous diagonalizability of the train and test covariance matrices [15]52

or joint distributions of the training data’s eigenvalues and certain overlap coefficients [16, 17]. We53

would like to drop such assumptions and work with general distribution shift, decoupling assumptions54

on the test and train data. We thus aim to address the following question:55

Q.1. Can we derive test error expressions for denoising and noisy-input regression that:
(a) work with data from a low-dimensional subspace under a non-classical regime,
(b) make minimal assumptions on the training data, test data and how they are related,
(c) match experiments that use real-life data distributions?

Q.2. What insights can we obtain from these?
56

Contributions. Answering our questions, we fill the gap in theoretically studying supervised57

denoising in a non-classical regime. We drop independence assumptions on data and work with58

arbitrary test data from our low-dimensional subspace. We also experiment using real-life data,59

achieving under 1% MSE error.1 Finally, we provide insights about double descent, overfitting60

phenomena and data augmentation, all in the context of denoising under general distribution shift.61

2 Problem Setup and Notation62

Consider training data Xtrn ∈ Rd×N , β ∈ Rd×k with target outputs Ytrn = βTXtrn, and a training63

noise matrix Atrn ∈ Rd×N . We assume that we have access to Ytrn and Xtrn +Atrn while training.64

The goal is to study the test error of the minimum norm linear function Wopt that minimizes the MSE65

training error. MSE error is also one of the most common targets for non-linear auto-encoders [1].66

We formalize the definition of Wopt below.67

Wopt = argmin
W

{
∥W∥2F

∣∣∣∣W ∈ argmin
W

∥Ytrn −W (Xtrn +Atrn)∥2F
}

Given test data Xtst ∈ Rd×Ntst and Ytst = βTXtst, we formally define the test error for arbitrary68

linear functions W by R(W,Xtst) below. Since we are not assuming anything about the distribution69

of the training or test data, we only take the expectation over the training and test noise.70

R(W,Xtst) := EAtrn,Atst

[
∥Ytst −W (Xtst +Atst)∥2F

Ntst

]
. (1)

We study the test error R(Wopt, Xtst) of Wopt in terms of properties of the data matrices Xtrn71

and Xtst as well as the noise distributions. For simplicity, we assume access to noiseless outputs72

Y . Notice that when β = I , we are studying the linear denoising problem, and when β ∈ Rd, we73

are studying real-valued regression with noisy inputs. We work in the proportional regime, where74

1The code for the experiments can be found in the following anonymized repository [Link].
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d/N = c+ o(1) as N grows, for some constant c > 0. We discuss the generality of our assumptions75

in Appendix A, providing a comparison with prior work and justifications for our assumptions.76

Assumption 1 (Data). We have d-dimensional data Xtrn ∈ Rd×N and Xtst ∈ Rd×Ntst so that77

1. Low-rank: There is a fixed r > 0 so that Xtrn and Xtst have data-points lying in an78

r-dimensional subspace V ⊂ Rd, and the column span of Xtrn is V .79

2. Data growth: ∥Xtrn∥2F = O(N).80

3. Low-rank well-conditioning: For the r singular values σi of Xtrn, σj

σi
= Θ(1) and 1

σi
=81

o(1) as N grows, for any i, j.82

Assumption 2 (Noise). Let the train and test noise matrices Atrn, Atst ∈ Rd×N be sampled from83

distributions Dtrn and Dtst such that Atrn satisfies points 1− 4 below and Atst satisfies points 1, 2.84

1. For all i, j, ED[Aij ] = 0, and ED[A
2
ij ] = η2/d. Here η = Θ(1) as N grows.85

2. For all {i1, j1} ≠ {i2, j2}, ED[Ai1j1Ai2j2 ] = ED[Ai1j1 ]ED[Ai2j2 ].86

3. D is a rotationally bi-invariant distribution2 and A ∼ D is full rank with probability one.87

4. Suppose Ad,N is a sequence of matrices such that with d/N = c+ o(1) as N grows, for c > 0.88

Let λd,N1 , . . . , λd,NN be the eigenvalues of (Ad,N )TAd,N . Let µd,N =
∑

i δλd,N
i

be the sum of89

dirac delta measures for the eigenvalues. Then we shall assume that µd,N converges weakly in90

probability to the Marchenko-Pastur measure with shape c as N grows (see Appendix C).91

Terminology. We now define the overfitting paradigms that we will study. Motivated by past92

work on benign overfitting, we present a reasonable generalization of overfitting paradigms (benign,93

tempered and catastrophic, see [18]) to our setting. Consider the minimum norm denoiser that94

minimizes expected MSE training error, similar in spirit to θ∗ in [19].95

W ∗ = argmin
W

{
∥W∥2F

∣∣∣∣W ∈ argmin
W

EAtrn
[∥Ytrn −W (Xtrn +Atrn)∥2F ]

}
Recall that we obtain Wopt by minimizing the MSE error for a single noise instance Atrn. So, Wopt96

overfits Atrn in the overparametrized regime. We would like to see if this overfitting is benign,97

tempered or catastrophic for test error. Following the definition of overfitting paradigms in [18],98

we want to take N → ∞. Since we are in the proportional regime, we must let d → ∞ as well,99

maintaining the relation d/N = c+ o(1). For studying overfitting, a natural goal would be to study100

how the excess error R(Wopt, Xtst)−R(W ∗, Xtst) behaves as d,N → ∞. This is analogous to the101

excess risk studied in overfitting for noiseless inputs [19]. However, we will see that both errors in our102

difference individually tend to zero as d,N → ∞, making this a somewhat meaningless criterion. As103

noted in [20], benign overfitting is traditionally restricted to scenarios where the minimum possible104

error is non-zero. A natural generalization to consider then is to instead study the limit of relative105

excess error R(Wopt,Xtst)−R(W∗,Xtst)
R(W∗,Xtst)

as d,N → ∞ with d/N = c+ o(1).106

Definition 1. We say that overfitting is benign when this limit is 0, tempered when it is finite and107

positive, and catastrophic when it is ∞.108

3 Theoretical Results109

This section presents our main result – Theorem 1. We present the results here and discuss insights at110

the end of the paper. All proofs are in Appendix F.111

Theorem 1 (In-Subspace Test Error). Let r < |d − N |. Let the SVD of Xtrn be UΣtrnV
T
trn, let112

L := UTXtst, βU := UTβ, and c := d/N . Under our setup and Assumptions 1 and 2, the test error113

(Equation 1) is given by the following. If c < 1 (under-parameterized regime)114

R(Wopt, UL) =
η4trn
Ntst

∥∥βT
U (Σ

2
trnc+ η2trnI)

−1L
∥∥2
F

+
η2tst
d

c2

1− c
Tr

(
βUβ

T
UΣ

2
trn

(
Σ2

trn +
1

η2trn
I

)(
Σ2

trnc+ η2trnI
)−2
)
+ o

(
1

N

)
2A distribution over matrices A ∈ Rm×n is rotationally bi-invariant if for all orthogonal U1 ∈ Rm×m and all

orthogonal U2 ∈ Rn×n, U1AU2 has the same distribution as A. Another way to phrase rotational bi-invariance
is if the SVD of A is given by A = UAΣAV

T
A , then UA and VA are uniformly random orthogonal matrices and

are independent of ΣA and each other.
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If c > 1 (over-parameterized regime)115

R(Wopt, UL) =
η4trn
Ntst

∥∥βT
U (Σ

2
trn + η2trnI)

−1L
∥∥2
F

+
η2tst
d

c

c− 1
Tr(βUβ

T
U (I + η2trnΣ

−2
trn)

−1) +O

(
∥Σtrn∥2

N2

)
+ o

(
1

N

)
Theorem 1 is significant, non-trivial and can be used to understand OOD and out-of-subspace test116

error, special cases with IID data, as well as overfitting paradigms. We present consequences for in-117

subspace distribution shift and overfitting paradigms below, relegating other results to Appendix E.118

Corollary 1 (Distribution Shift Bound). Let Wopt be tested on test data Xtst,1 = UL1 and Xtst,2 =
UL2 generated possibly dependently from distributions supported in the span of U with mean Uµi

and covariance ΣU,i = UΣiU
T respectively. Let f(c) = c for c < 1 and f(c) = 1. Then, the

difference in generalization errors Gi := EXtst,i
[R(Wopt, Xtst,i)] is bounded for c < 1 by

|G2 − G1| ≤
σ1(β)

2η4trnr

(σr(Xtrn)2f(c) + η2trn)
2
∥Σ2 − Σ1 + µ2µ

T
2 − µ1µ

T
1 ∥F + o

(
1

N

)
.

We add O(∥Σtrn∥2F /N2) to the bound when c ≥ 1.119

Corollary 2 (Relative Excess Error). Let ∥Σtrn∥2F = Ω(N1/2+ϵ). As d,N → ∞ with d/N → c, the120

relative excess error tends to c
1−c in the underparametrized regime. In the overparametrized regime,121

when ∥Σtrn∥2F = o(N), it tends to 1
c−1 and to 1

c−1 +k for some constant k when ∥Σtrn∥2F = Θ(N).122
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Figure 1: Test error for β = I vs 1/c = N/d. Test error is averaged over 200 trials with fresh Atst.
Similar results are obtained for single-variable regression with β ∈ Rd in Appendix D.2.

Experimental Verification Since d is fixed, we vary c by varying N . Figure 7 shows the empirical123

performance of Wopt trained on CIFAR data and applied to various datasets. We use Principal124

Component Regression to impose the low-rank condition here, details for which are in Appendix D125

along with other experiments which use raw real-life data.126

Insights. Recall from Corollary 2 that when ∥Σtrn∥2F = o(N), the relative excess error is given by127
1

c−1 when c > 1 and by c
1−c when c < 1. This means that we experience catastrophic overfitting128

when c = 1, tempered overfitting for c ̸= 1, and approach benign overfitting only as c becomes129

arbitrarily large or arbitrarily small (the latter is essentially the classical regime). If ∥Σtrn∥2F = Θ(N),130

the relative excess error may increase by a constant. We expand on this in Appendix B, also providing131

insights on double descent and data augmentation under distribution shift.132

4 Conclusion133

We studied the problem of denoising low-dimensional input data perturbed with high-dimensional134

noise. Under very general assumptions, we provided estimates test error in terms of the specific135

instantiations of the training data and test data. This result is significant, as there is scarce prior work136

in the area of generalization for noisy inputs as well as generalization for low-rank data. Further,137

we tested our results using real data and achieve a relative MSE of 1%. Finally, the data-dependent138

estimate lets us provide many insights that would be harder to get with results on generalization error,139

such as showing double descent for arbitrary test data in our low-dimensional subspace, theoretically140

understanding data augmentation and provably demonstrating as well as explaining the lack of benign141

overfitting. Our work opens the door for the analysis of non-linear denoising in a similar setting.142
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A Discussion of Assumptions332

Assumptions about the data. We recall the assumptions below. Note that they formalize three333

natural requirements on the data – (1) that it lies in a low-dimensional subspace as argued above; (2)334

that the norm of the training data does not grow too much faster than the norm of the training noise,335

otherwise there will not be enough noise to train on; (3) that the training data “sees enough" of the336

subspace containing the data.337

Assumption 1 (Data). We have d-dimensional data Xtrn ∈ Rd×N and Xtst ∈ Rd×Ntst so that338

1. Low-rank: There is a fixed r > 0 so that Xtrn and Xtst have data-points lying in an339

r-dimensional subspace V ⊂ Rd, and the column span of Xtrn is V .340

2. Data growth: ∥Xtrn∥2F = O(N).341

3. Low-rank well-conditioning: For the r singular values σi of Xtrn, σj

σi
= Θ(1) and 1

σi
=342

o(1) as N grows, for any i, j.343

Notice that we don’t assume that Xtrn is IID or even independent, and Xtst is completely arbitrary,344

besides lying in the subspace V . In our results, we will characterize the dependence of the error on345

Xtrn and Xtst using their singular values. These intuitively measure "how much each direction is346

sampled," and don’t depend on the distribution of the data. Finally, let Xtrn = UΣtrnV
T
trn be the347

SVD of Xtrn with U ∈ Rd×r, Σtrn ∈ Rr×r and V T
trn ∈ Rr×N . Note that the columns of U span V .348

Then there exists a matrix L such that Xtst = UL. For Theorem 3, we will relax our assumption on349

Xtst to say that there exists L and α > 0 so that ∥Xtst − UL∥ < α.350

Comparison with assumptions in prior work. Most prior work assumes that the data comes from351

a Gaussian or Gaussian-like distribution. Specifically, [16, 17, 21–26] assume that x ∼ N (0,Σ).352

Most real data cannot be modeled as Gaussian data. Another common assumption is that x = Σ1/2z353

where the coordinates of z are independent, centered, and have a variance of 1. This setting is a little354

bit more general than the previous setting. The independence of data is still a limiting assumption355

that prevents it from modeling real-life data well. In addition, as the dimension increases, due to356

the (Lyapunov’s) central limit theorem, the data’s higher moments tend towards those of a Gaussian357

distribution again. This makes this assumption nearly as limiting as the first one. Papers with this (or358

very similar) assumption include [11, 19, 27, 28].359

In conclusion, we provide results on test error in a very different low-rank setting inspired by real-life360

data, and drop many restrictive assumptions. A small number of papers [25, 26, 29] that do assume a361

low-rank structure. However, the first two further assume that the data is low-rank Gaussian, while362

the third only provides results for one-dimensional data. Notice that our assumptions completely363

subsume both of these.364

Assumptions about the training noise. Our assumptions on noise are fairly natural and general.365

We recall them below. Informally, we require the training noise to (1) have finite second moments,366

(2) be uncorrelated across entries, (3) be isotropic, and (4) follow a natural limit theorem. On the367

other hand, the test noise only needs (1) finite second moments and (2) uncorrelated entries. Our368

assumptions include a broad class of noise distributions (see Proposition 1 of [29]). One of the369

many examples of noise distributions satisfying these is Gaussian noise, with each coordinate having370

variance 1/d. We recall our noise assumptions.371

Assumption 2 (Noise). Let the train and test noise matrices Atrn, Atst ∈ Rd×N be sampled from372

distributions Dtrn and Dtst such that Atrn satisfies points 1− 4 below and Atst satisfies points 1, 2.373

1. For all i, j, ED[Aij ] = 0, and ED[A
2
ij ] = η2/d. Here η = Θ(1) as N grows.374

2. For all {i1, j1} ≠ {i2, j2}, ED[Ai1j1Ai2j2 ] = ED[Ai1j1 ]ED[Ai2j2 ].375

3. D is a rotationally bi-invariant distribution3 and A ∼ D is full rank with probability one.376

4. Suppose Ad,N is a sequence of matrices such that with d/N = c+ o(1) as N grows, for c > 0.377

Let λd,N1 , . . . , λd,NN be the eigenvalues of (Ad,N )TAd,N . Let µd,N =
∑

i δλd,N
i

be the sum of378

dirac delta measures for the eigenvalues. Then we shall assume that µd,N converges weakly in379

probability to the Marchenko-Pastur measure with shape c as N grows (see Appendix C).380

3A distribution over matrices A ∈ Rm×n is rotationally bi-invariant if for all orthogonal U1 ∈ Rm×m and all
orthogonal U2 ∈ Rn×n, U1AU2 has the same distribution as A. Another way to phrase rotational bi-invariance
is if the SVD of A is given by A = UAΣAV

T
A , then UA and VA are uniformly random orthogonal matrices and

are independent of ΣA and each other.
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Comparison with assumptions in prior work. There are three papers in denoising to compare to,381

namely [29–31]. Our assumptions on noise are strictly more general than the first two. [31] has the382

same assumptions as ours, except that they do not require rotational invariance of noise. In contrast to383

our general closed form results, they analyse learning dynamics for denoising by choosing a specific384

orthogonal initialization for the coupled ODE that they derive.385

B Other Important Insights for Denoising386

Double Descent under Distribution Shift Notice that all our curves plotting test error against 1/c387

have a similar shape – they rise when c approaches 1 from either side, and there is a peak at c = 1.388

This matches our theoretical results and establishes that denoising test error curves exhibit double389

descent, even for arbitrary test data in V . To understand why this is happening, consider the denoising390

target, given by the MSE error below.391

EAtst
[∥Ytrn−W (Xtrn+Atrn)∥2F ] = ∥Ytrn−WXtrn∥2F+2Tr(Ytrn−WXtrn)

TAtrn)+∥WAtrn∥2F .

The noise is regularizing ∥W∥F through the variance term Tr(WTWAtrnA
T
trn). This is the implicit392

regularization of W due to noise. However, the strength of regularization due to the noise instance393

Atrn is not the same across different values of c. When c is close to 1, the distribution of the394

spectrum of AtrnA
T
trn (the Marchenko-Pastur distribution) has support very close to zero. On the395

other hand, for c far from 1, the non-zero eigenvalues of AtrnA
T
trn are all bounded away from zero.396

This establishes that the effect of regularization weakens most near c = 1,4 leading to a spike in the397

test error coming from the large norm of the learnt Wopt. This explanation is similar in spirit to the398

explanations for double descent in [26] and others, but crucially adapts to implicit regularization due399

to noise.400

Data Augmentation to Reduce Test Error. In contrast with [32], but similar to [29], optimally401

picking the noise parameter will not remove the peak in the test error (see Appendix C). Instead, we402

use data augmentation and increase N to try to move away from the peak, studying Theorem 1 to403

understand how this will affect test error. We take two approaches to data augmentation that individ-404

ually exploit the absence of the IID assumptions. Since the data does not have to be independent,405

we can take the same training data and add fresh noise to increase N . Alternatively, since the data406

does not have to be sampled from a specific distribution, we can combine two different datasets into a407

larger training dataset to increase N . When c < 1, applying data augmentation increases N , thus408

decreasing c further away from the peak at 1 and decreasing test error. When c > 1, applying data409

augmentation increases N , decreasing c towards the peak at 1 and increasing test error.5 Of course,410

the latter phenomenon could be mitigated by adding other regularizers or by further augmenting the411

data. Figures 2 and 3 empirically verify the validity of Theorem 1 for the training data obtained from412

data augmentation. We also see that increasing the number of in-distribution training data points413

reduces the out-of-distribution test error.414

Benign Overfitting through the Lens of Data Augmentation. Notice we don’t observe benign415

overfitting except in the limit of arbitrarily large or arbitrarily small c. We make sense of this416

phenomenon using the following argument. Recall that W ∗ is the minimum-norm optimizer for the417

expectation of the MSE error over noise. Taking the expectation over noise in the training target is418

in spirit like augmenting the data with “infinitely many" copies of itself, each with fresh noise. So,419

obtaining W ∗ is intuitively like training Wopt over a dataset with c replaced with a vanishingly small420

value while keeping Σ2
trn/N = Σ2

trnc/d constant. We can compute the effect of this change in c on421

the test error using Theorem 1, computationally justifying our overfitting phenomena. For intuition,422

we relate this change in c to the explanation behind double descent. The implicit regularization due423

to noise is much more unstable for c close to 1. This means that replacing c with a vanishingly small424

value while keeping the signal-to-noise ratio Σ2
trn/(η

2
trnN) constant will greatly reduce test error,425

if we start with c close to 1. On the other hand, the effect of this change in c on the regularization426

4The eigenvalues that are exactly zero do not contribute to weakening of the regularization. This is because
we are choosing the minimum-norm optimizer W ∗ for expected MSE error, and more zero eigenvalues increases
flexibility, creating a larger set of optimizers to minimize the norm over. This helps decrease the components
of W ∗ by spreading them into more dimensions. This is identical in spirit to arguments about variance in
overparametrized regimes in section 1.1 of [28].

5One technicaly also has to account for the effect of data augmentation on Σtrn, but Σ2
trnc can be thought of

as constant in this process.
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due to noise will be much smaller if we start with an arbitrarily small or arbitrarily large c. So the427

performance of W ∗ and Wopt is much closer in this case but not when we start with c close to 1. This428

intuitively explains our overfitting phenomena.
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Figure 2: Data augmentation exploiting non-independence. For different Ntrn the training data is
formed by repeating the same 1000 images from the CIFAR dataset.
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Figure 3: Data augmentation exploiting non-identicality of the distribution. The training data is
formed by mixing CIFAR train split with STL10 train split dataset.

C Additional Remarks and Definitions430
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Figure 4: Optimal ηtrn that minimizes the test error given in Theorem 1 versus c = d/Ntrn.

C.1 Extension to non-linear models.431

Many prior works [16, 33, 34] study non-linear models using what is known as the Gaussian432

Equivalence Principle. This is a fact that comes from the Pennington-Worah distribution [35–37]433

and states the following. Suppose X ∈ Rd×N with I.I.D. elements with mean 0 and variance 1 is434

our data matrix and W ∈ Rm×d is a weight matrix with I.I.D. entries with mean zero and variance435

1. Let f be any real analytic activation function and let Y =
1√
N
f

(
1√
d
WX

)
, then the limiting436

distribution (as N, d,m→ ∞, d/n→ ϕ, d/m→ ψ) of the eignevalues of Y Y T is the same as the437
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Figure 5: Test Error using Theorem 1 versus 1/c with optimal ηtrn.

limiting distribution of the eigenvalues of438

1

N

(√
κ2(f)

WX√
d

+
√
κ1(f)− κ2(f)Z

)(√
κ2(f)

WX√
d

+
√
κ1(f)− κ2(f)Z

)T

.

Here Z is a matrix with I.I.D standard normal entries. If we consider the case when k > d, we can439

imagine d being the rank of the data. Then is similar to our case, except that we consider the case440

when the rank is fixed, whereas here we need the rank to go to infinity proportionally to the number441

of data points.442

C.2 Marchenko-Pastur Distribution443

We recall the definition of the Marchenko-Pastur distribution with shape c, for completeness.444

Definition 2. Let c ∈ (0,∞) be a shape paramter. Then the Marchenko-Pastur distribution with445

shape c is the measure µc supported on [c−, c+], where c± = (1±
√
c)2 is such that446

µc =

{(
1− 1

c

)
δ0 + ν c > 1

ν c ≤ 1

where ν has density447

dν(x) =
1

2πxc

√
(c+ − x)(x− c−).

C.3 Amount of Training noise448

It was highlighted in [29] that optimally picking the training noise level does not mitigate the double-449

descent phenomena observed in the generalization error for a linear model. In this section, we support450

this claim using our result from Theorem 1. Figure 4 shows the double descent curve of ηtrn and451

figure 5 shows the generalization error when using the optimal amount of training noise. As in452

other works such as [29, 38], we see double descent in the regularization strength. As we can see,453

increasing r decreases α, which improves our bounds.454

D Additional Experimental Results455

D.1 Detailed Experiments when β = I456

To experimentally verify our test error predictions using real-life data with distribution shift, we train a457

linear function Wopt on CIFAR [39] and test on CIFAR, STL10 [40], and SVHN [41]. For computing458

test error, we simply compute Wopt and plot the empirical average of 1
Ntst

∥Xtst −Wopt(Xtst +459

Atst)∥2F over 200 trials. We run three main kinds of experiments. (a) First, to enforce the low-rank460

assumption to isolate the effect of distribution shift, we use principal component regression or PCR461

[25, 26]. In PCR, instead of working with the true (and approximately low-rank) training data462

matrices Xtst, we find the best low-rank approximation X̂trn of the training data by projecting it463

to an embedded subspace of the highest principal components. When testing, we project the test464

datasets to the same subspace to enforce the low-rank assumption before computing the empirical465

test error. (b) Second, to explicitly control the amount of deviation α from the low-rank subspace,466
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(d) r = 25; We find that α is approximately 66, 85 and 44 for (a)-(c) respectively.
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(h) r = 50; We find that α is approximately 54, 75 and 31 for (a)-(c) respectively.
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(l) r = 100; We find that α is approximately 44, 66 and 20 for (a)-(c) respectively.

0.5 1.0 1.5 2.0 2.5 3.0 3.5
1/c = N/d

100

Te
st

 E
rro

r

Theoretical
Empirical

(m) CIFAR Dataset

0.5 1.0 1.5 2.0 2.5 3.0 3.5
1/c = N/d

100

Te
st

 E
rro

r

Theoretical
Empirical

(n) STL10 Dataset

0.5 1.0 1.5 2.0 2.5 3.0 3.5
1/c = N/d

100

Te
st

 E
rro

r

Theoretical
Empirical

(o) SVHN Dataset

(p) r = 150; We find that α is approximately 37, 60 and 15 for (a)-(c) respectively.

Figure 6: Figure showing the test error vs 1/c when the test datasets retain their high dimensions.
The training data is projected onto its first r principal components. The markers denote the square
root of test error obtained from empirical experiments. The dashed black lines, which act as the
upper bounds for the empirical results, are given by

√
R(UL) + ασ1(Wopt + I) where R(UL) is

the theoretical generalization error (refer Theorem 3). The dashed black lines, which act as the lower
bounds, are given by

√
R(UL).

we perturb the low-rank testing data from setting (a) and test using X̃tst := X̂tst + Ktst, where467

Ktst is Gaussian noise with covariance designed to control α. (c) Third, we rely on the approximate468

low-rank nature of real-life data, and report the test error for the matrices Xtst themselves. Since d is469
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fixed, we vary c by varying N . Figure 7 shows that the theoretical curves and the empirical results470

align perfectly for experimental setup (a) and that we have tight bounds for experimental setup (b).471

Numerically, we find that the relative error between the generalization error estimate and the average472

empirical error in experimental setup (a) is under 1% on average. For setup (c), since real-life data is473

only approximately low rank, we see a non-negligible error. However, the predictions align well with474

the empirical results.475
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(a) In-subspace test error.

0.5 1.0 1.5 2.0 2.5 3.0 3.5
1/c = N/d

10 1

100

Te
st

 E
rro

r

r = 25
r = 50
r = 100
r = 150

0.5 1.0 1.5 2.0 2.5 3.0 3.5
1/c = N/d

10 1

100

Te
st

 E
rro

r

r = 25
r = 50
r = 100
r = 150

0.5 1.0 1.5 2.0 2.5 3.0 3.5
1/c = N/d

10 1

100

Te
st

 E
rro

r

r = 25
r = 50
r = 100
r = 150

(b) For the out-of-subspace curves, we add full-dimensional Gaussian noise such that α = 0.1. The upper and
lower bounds for the empirical markers are given by Theorem 3).
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(c) Test error estimated without projecting data, relying on the approximate low-rank structure of real-life data.

Figure 7: Figures showing the test error for β = I vs 1/c = N/d. In (a) and (b), training data from
the CIFAR dataset is projected onto its first r principal components for r = 25, 50, 100, 150. 2500
test data points from CIFAR (Green, Left col.), STL10 (Blue, Middle col.), and SVHN (Red, Right
col.) datasets are projected onto the same low-dimensional subspace. (a) is in-subspace test error
and (b) is out-of-subspace test error. In (c), we don’t project the test data and report the standard test
error, relying on the approximate low-rank structure in data instead of imposing it. For empirical data
points, shown by markers, we report the mean test error over at least 200 trials. Similar results are
obtained for single-variable regression with β ∈ Rd (see Appendix D.2)

D.2 Single-variable Regression476

We present analogues for figures in the main paper. See Figure 8.477

D.3 Out of subspace PCR for large α478

As mentioned in Section 3, we numerically verify Theorem 3 in two out-of-distribution setups namely479

small α and large α. The application of our result to the small α case was already presented in the480

main paper; see Figure 6. Here, we present the additional numerical results when the value of α is481

relatively large. We do not project the test datasets onto the low-dimensional subspace for this. The482
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(a) CIFAR Dataset
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(b) STL10 Dataset
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(c) SVHN Dataset

Figure 8: Figures showing the test error for Linear Regression vs 1/c = N/d. Training data from the
CIFAR dataset is projected onto its first r principal components for r = 25, 50, 100, 150. 2500 test
data points from CIFAR, STL10, and SVHN datasets are projected onto the same low-dimensional
subspace. For empirical data points, shown by markers, we report the mean test error over at least
200 trials.

training dataset from the CIFAR train split is projected onto its first r principal components where483

r = 25, 50, 100 and 150. Figure 6 shows the theoretical bounds on the generalization error from484

Theorem 3. Unfortunately, for the large α case, the proposed lower bound in Theorem 3 is negative.485

However, we conjecture that R(UL) is a lower bound instead. The results for the large α case, shown486

in Figure 6, suggest the same. However, these bounds do not tell us anything about the shape of the487

generalization error curve.488

E Additional Theoretical Results489

E.1 Test Error and Generalization Error490

Recall from the introduction that the work of [15] requires the simultaneous diagonalizability of the491

covariance matrices of training and test data. In a similar spirit, if we assume that the training and test492

data have the same left singular vectors, we recover the conjectured formula in [29] as an immediate493

consequence of Theorem 1.494

Corollary 3 (Conjecture of [29]). Let the SVD of Xtst be UtstΣtstV
T
tst. In Theorem 1, if we further495

assume that UTUtst = I , then we can replace L with Σtst in the expression for the test error.496

Additionally, we can use Theorem 1 to give an expression for generalization error when the test data497

points are drawn from a distribution, possibly dependently.498

Corollary 4 (Generalization Error). In the setting of Theorem 1, if we further assume that the data499

Xtst is generated possibly dependently from distributions supported in the span of U with mean Uµ500

and covariance ΣU = UΣUT , then we can remove the 1
Ntst

and replace L with (Σ + µµT )1/2 in501

the expression for test error to get the generalization error EXtst [R(Wopt, Xtst)].502

E.2 Out-of-Distribution Generalization503

Consider the following theorem bounding the difference in generalization error in terms of the change504

in the test set. Our main distribution shift result is a corollary of its proof.505

Theorem 2 (Test Set Shift Bound). Under the assumptions of Theorem 1, consider a linear regressor506

Wopt trained on training data Xtrn = UΣtrnV
T
trn with Σtrn such that σr(Xtrn) > M , and tested507

on test data Xtst,1 = UL1 and Xtst,2 = UL2 with noise Atst,1, Atst,2 with the same variance508

ηtst2/d. Then, the generalization errors R1 and R2 differ for c < 1 by509

|R2 −R1| ≤
σ1(β)

2

Ntst

η4trnr

(σr(Xtrn)2f(c) + η2trn)
2
∥L2L

T
2 − L1L

T
1 ∥F + o

(
1

N

)
where f(c) = c for c < 1 and f(c) = 1 for c ≥ 1. We add O(∥Σtrn∥2F /N2) to the bound when510

c > 1.511
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E.3 Out-of-Subspace Generalization512

Theorem 3 (Out-of-Subspace Shift Bound). If we have the same training data and solution Wopt513

assumptions as in Theorem 1. Then, for any Xtst for which there exists an L and an α > 0 such that514

∥Xtst − UL∥F ≤ α, and Atst that satisfies 1,2 from Assumption 2, we have that the generalization515

error R(Wopt, Xtst) satisfies516

|R(Wopt, Xtst)−R(Wopt, UL)| ≤ α2σ1(Wopt + I)2.

The following corollary follows immediately from Theorem 3 and Theorem 2.517

Corollary 5. If Xtst,1 and Xtst,2 are two different test datasets and Xtrn = UΣtrnV
T
trn is the518

training data such that there exists Li with αi = ∥Xtst,i − ULi∥F , then for Ri := R(Wopt, Xtst,i)519

|R2 −R1| ≤ (α2
1 + α2

2)σ1(Wopt + I)2

+
σ1(β)

2

Ntst

η4trnr

(σr(Xtrn)2f(c) + η2trn)
2
∥L2L

T
2 − L1L

T
1 ∥F + o

(
1

N

)
E.4 Overfitting Paradigms520

The following theorem and its proof are used to prove Corollary 2. The proofs are in Appendix F.5521

Theorem 4 (Test Error for W ∗). In the same setting as Theorem 1, we have that W ∗ =522

βT
U

(
I +

η2
trn

c Σ−2
trn

)−1

UT and523

R(W ∗, UL) =
η4trnN

2

d2

∥∥∥∥∥βT
U

(
Σ2

trn +
η2trnN

d
I

)−1

L

∥∥∥∥∥
2

F

+
η2tst
d
Tr

(
βUβ

T
U

(
I +

η2trnN

d
Σ−2

trn

)−2
)
.

E.5 Independent Identical Test data524
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Figure 9: Figure showing the generalization er-
ror vs 1/c obtained for IID test data for r =
25, 50, 100, 150. The theoretical solid line curve is
given by Corollary 6. We report the mean general-
ization error over at least 200 trials for empirical
data points, shown by markers.

Let us assume that the test data is identically525

and independently drawn from some distribution526

Dtst with mean zero and covariance Σ. Then527

the generalization error is given by the following528

corollary.529

Corollary 6 (IID Test Data). In the setting530

of Theorem 1, if we further assume that the531

columns of L are drawn IID from a distribu-532

tion with mean zero and Covariance Σ, then we533

can remove the 1
Ntst

and replace L with Σ1/2 in534

the expression for the generalization risk.535

Remark 1. Given any distribution on V , we can536

consider the diffeomorphism that changes the537

basis to U . Hence, making assumptions on the538

distribution of L versus the distribution of Xtst539

does not cost us any generality.540

Figure 9, shows that the theoretical error aligns541

perfectly with the empirical result. The model is542

trained on the CIFAR dataset and tested on data543

drawn from an anisotropic Gaussian. The case of IID training data is presented in Appendix E.6.544

E.6 Independent Isotropic Identical Training Data545

Next, we consider the case of I.I.D training data. Let U ∈ Rd×r be a matrix whose columns form an546

orthonormal basis for an r-dimensional space V . Suppose the data is of the form Uz for z ∈ Rr such547

that the coordinates of z are sampled independently, have mean 0, variance 1/r, and have bounded548

forth moments. Hence, in this case, we get the following theorem. Proof in Section F.7.549
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(b) STL10 Dataset
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(c) SVHN Dataset

Figure 10: Figure showing the test error vs 1/c for I.I.D. training data. The theoretical solid curves
are obtained from the formula in Theorem 5. We report the mean test error over at least 200 trials for
empirical data points, shown by markers.

Theorem 5 (I.I.D. Training Data With Isotropic Covariance). Let c = d/N and cr = r/N . Then if550

c < 1551

EXtrn [R] =
η4trn
Ntst

∥(Σ2
trnc+ η2trnI)

−1L∥2F

+ η2tst
r

d

1

1− c

(
T1(cr, η

2
trn/c) +

1

η2trn
T2(cr, η

2
trn/c)

)
+ o

(
1

N

)
and if c > 1552

EXtrn
[R] =

η4trn
Ntst

∥(Σ2
trn + η2trnI)

−1L∥2F + η2tst
r

d

c

c− 1
T3(cr, η

2
trn) +O

(
1

N

)
where T1(cr, z) = T3(cr, z)− zT2(cr, z), and553

T2(cr, z) =
1 + cr + zcr

2
√
(1− cr + crz)2 + 4c2rz

−1

2
, T3(cr, z) =

1

2
+
1 + zcr −

√
(1− cr + zcr)2 + 4c2rz

2cr
.

Figure 10 shows that the theoretical curves align perfectly with the empirical results where the554

training data is I.I.D. from a Gaussian with dimension 50. The test datasets from CIFAR, STL10, and555

SVHN datasets are also projected onto the low-dimensional subspace.556

I.I.D Test and Training Data We can combine the two cases where training and test data are557

I.I.D.. Specifically, for the case when Xtst has κI as the covariance and Xtrn is as in the previous558

instantiation Section. Then the generalization error is given by the following corollary.559

Corollary 7 (I.I.D. Train and Tests Data With Isotropic Covariance). Let c = d/N and cr = r/N .560

Then if c < 1561

EXtrn
[R] = η4trn · r · κ · T4(cr, η2trn/c)

+
r

d

1

1− c

(
T1(cr, η

2
trn/c) +

1

η2trn
T2(cr, η

2
trn/c)

)
+ o

(
1

N

)
and if c > 1562

EXtrn
[R] = η4trn · r · κ · T4(cr, η2trn) +

r

d

c

c− 1
T3(cr, η

2
trn) +O

(
1

N

)
where T1(cr, z) = T3(cr, z)− zT2(cr, z), and563

T2(cr, z) =
1 + cr + zcr

2
√
(1− cr + crz)2 + 4c2rz

−1

2
, T3(cr, z) =

1

2
+
1 + zcr −

√
(1− cr + zcr)2 + 4c2rz

2cr
,

564

T4(cr, z) =
zc2r + c2r + zcr − 2cr + 1

2z2cr
√
(1− cr + crz)2 + 4c2rz

− 1

2z2

(
1− 1

cr

)
.
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Figure 11: Figure showing the generalization error vs 1/c where training and test datasets are both
I.I.D. The theoretical solid curve is obtained from Corollary 8. The empirical generalization error,
shown by markers, is averaged over 50 trials.

Figure 11 shows that the theoretical error aligns perfectly with the empirical result.565

Similar to the denoising case, we have the following versions for single-variable regression.566

Theorem 6 (I.I.D. Training Data With Isotropic Covariance). Let c = d/N and cr = r/N . Let567

∥βopt∥ = 1. Then if c < 1568

EXtrn
[R] =

η4trn
Ntst

∥β̂T (Σ2
trnc+ η2trnI)

−1L∥2F

+ η2tst
r

d

1

1− c

(
T1(cr, η

2
trn/c) +

1

η2trn
T2(cr, η

2
trn/c)

)
+ o

(
1

N

)
and if c > 1569

EXtrn
[R] =

η4trn
Ntst

∥β̂T (Σ2
trn + η2trnI)

−1L∥2F + η2tst
r

d

c

c− 1
T3(cr, η

2
trn) +O

(
1

N

)
where T1(cr, z) = T3(cr, z)− zT2(cr, z), and570

T2(cr, z) =
1 + cr + zcr

2
√
(1− cr + crz)2 + 4c2rz

−1

2
, T3(cr, z) =

1

2
+
1 + zcr −

√
(1− cr + zcr)2 + 4c2rz

2cr
.

Corollary 8 (I.I.D. Train and Tests Data With Isotropic Covariance). Let c = d/N and cr = r/N .571

Let ∥βopt∥ = 1. Then if c < 1572

EXtrn [R] = η4trnrκT4(cr, η
2
trn/c)

+
r

d

1

1− c

(
T1(cr, η

2
trn/c) +

1

η2trn
T2(cr, η

2
trn/c)

)
+ o

(
1

N

)
and if c > 1573

EXtrn
[R] = η4trnrκT4(cr, η

2
trn) +

r

d

c

c− 1
T3(cr, η

2
trn) +O

(
1

N

)
where T1(cr, z) = T3(cr, z)− zT2(cr, z), and574

T2(cr, z) =
1 + cr + zcr

2
√
(1− cr + crz)2 + 4c2rz

−1

2
, T3(cr, z) =

1

2
+
1 + zcr −

√
(1− cr + zcr)2 + 4c2rz

2cr
,

575

T4(cr, z) =
zc2r + c2r + zcr − 2cr + 1

2z2cr
√
(1− cr + crz)2 + 4c2rz

− 1

2z2

(
1− 1

cr

)
.
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F Proofs576

In all proofs, WLOG we assume d/N = c since even though d/N = c+ o(1), the relative error we577

will accumulate from this assumption be o(1). For instance, this means that the absolute error from578

this assumption in Theorem 1 will be o(1/N), which can be absorbed into the o(1/N) estimation579

error in the theorem.580

F.1 Proof for Theorem 1, Test Error581

One useful piece of notation for the following proof is that of big O in probability.582

Definition 3. Let χk be a sequence of random variables. Then we say that χk is OP (ak) as k → ∞,583

if for all ϵ > 0, we have there exists an M and K such that for all k > K, we have that584

Pr

[∣∣∣∣χk

ak

∣∣∣∣ > M

]
< ϵ.

Definition 4. Let χk be a sequence of random variables. Then we say that χk is oP (ak) as k → ∞,585

if for all ϵ > 0, we have that586

lim
k→∞

Pr

[∣∣∣∣χk

ak

∣∣∣∣ ≥ ϵ

]
= 0.

Note that big-OP behaves a lot like big-O. Specifically, if αn = OP (an) and βn = OP (bn). Then587

αnβn = OP (anbn) and αn + βn = OP (an + bn). Further, it is easy to see that mean zero random588

variables are big-OP of the square root of the variance (using Chebyshev’s inequality).589

F.1.1 The Overparametrized Regime, d > N590

We derive test error bounds for β = I in our problem setting. We also denote Wopt by W in this591

subsection, for ease of notation.592

Theorem 7. For rank r data and d > N + r, with c = d
N the following is true.593

1. For the β = I case, we denote the minimum norm linear denoiser Wopt by just W in this
subsection. It is given by

W = UΣtrn(P
TP )−1ZTK−1

1 H − UΣtrnZ
−1HHTK−1

1 ZP †

2. The test error when Xtst = UL is given by594

EAtrn

[
1

Ntst
∥UΣtrn(P

TP )−1ZTK−1
1 Σ−1

trnL∥2F +
η2tst
d

∥W∥2F
]
,

where P = −(I − AtrnA
†
trn)UΣtrn, H = V T

trnA
†
trn, Z = I + V T

trnA
†
trnUΣtrn, K1 = HHT +595

Z(PTP )−1ZT .596

The sizes of the matrices:597

1. U is d× r with UTU = Ir×r.598

2. Σtrn is r × r, with rank r.599

3. Atrn is d×N with rank N .600

4. AtrnA
†
trn is d× d601

5. H is r × d, with rank r.602

6. Z is r × r, with rank r.603

7. K1 is r × r, with rank r.604

8. Atrn = ηtrnŨ Σ̃Ṽ T .605

9. Ũ is d× d unitary.606

10. Σ̃ is d×N .607
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Proof. Part 1 follows from Lemma 1. For part 2, note that the test error is given by R(W,Xtst) =608

EAtrn,Atst

[
1

Ntst
∥Xtst −W (Xtst +Atst)∥2F

]
, which is the same as the folllowing.609

R(W,Xtst) =
1

Ntst
EAtrn,Atst

[
∥Xtst −WXtst∥2F

]
+

2

Ntst
EAtrn,Atst

[Tr((Xtst −WXtst)Atst)

+
1

Ntst
EAtrn,Atst

[
∥WAtst∥2F

]
=

1

Ntst
EAtrn

[
∥Xtst −WXtst∥2F

]
+ 0 +

1

Ntst
EAtrn,Atst

[
Tr(WTWAtstA

T
tst)
]

=
1

Ntst
EAtrn

[
∥Xtst −WXtst∥2F

]
+ 0 +

1

Ntst
EAtrn

[
Tr(WTWEAtst

[
AtstA

T
tst

]
)
]

=
1

Ntst
EAtrn

[
∥Xtst −WXtst∥2F

]
+ 0 +

η2tstNtst

dNtst
EAtrn

[Tr(WTW )]

= EAtrn

[
1

Ntst
∥UΣtrn(P

TP )−1ZTK−1
1 Σ−1

trnL∥2F +
η2tst
d

∥W∥2F
]
.

610

We will henceforth drop the subscript Atrn in the expectation EAtrn .611

Lemma 1. Let P = −(I − AtrnA
†
trn)UΣtrn, H = V T

trnA
†
trn, Z = I + V T

trnA
†
trnUΣtrn, K1 =612

HHT + Z(PTP )−1ZT . If d > N and Atrn has full column rank, then613

W = UΣtrn(P
TP )−1ZTK−1

1 H − UΣtrnZ
−1HHTK−1

1 ZP †. (2)

Proof. Note that P has full column rank and Atrn has rank N . Thus, we can use corollary 2.2 from614

Wei [42] to obtain615

(Atrn+UΣtrnV
T
trn)

† = A†
trn+A

†
trnUΣtrnP

†−(A†
trnH

T+A†
trnUΣtrn(P

TP )−1ZT )K−1
1 (H+ZP †).

We are interested in simiplifying the expression for W = (UΣtrnV
T
trn)(Atrn + UΣtrnV

T
trn)

†.616

Multiplying this through, we obtain617

W = UΣtrnV
T
trnA

†
trn + UΣtrnV

T
trnA

†
trnUΣtrnP

†

− UΣtrnV
T
trn(A

†
trnH

T +A†
trnUΣtrn(P

TP )−1ZT )K−1
1 (H + ZP †).

Replacing V T
trnAtrn = H ,618

W = UΣtrnH + UΣtrnHUΣtrnP
† − UΣtrnV

T
trn(A

†
trnH

TK−1
1 H +A†

trnH
TK−1

1 ZP †

+A†
trnUΣtrn(P

TP )−1ZTK−1
1 H +A†

trnUΣtrn(P
TP )−1ZTK−1

1 ZP †).

Through further simplification, we obtain619

W = UΣtrnH + UΣtrnHUΣtrnP
† − UΣtrnHH

TK−1
1 H − UΣtrnHH

TK−1
1 ZP †

− UΣtrnHUΣtrn(P
TP )−1ZTK−1

1 H − UΣtrnHUΣtrn(P
TP )−1ZTK−1

1 ZP †.

Setting HUΣtrn = Z − I yields620

W = UΣtrnH + UΣtrnZP
† − UΣtrnP

† − UΣtrnHH
TK−1

1 H − UΣtrnHH
TK−1

1 ZP †

− UΣtrnZ(P
TP )−1ZTK−1

1 H + UΣtrn(P
TP )−1ZTK−1

1 H

− UΣtrnZ(P
TP )−1ZTK−1

1 ZP † + UΣtrn(P
TP )−1ZTK−1

1 ZP †.

Combining terms and replacing HHT + Z(PTP )−1ZT = K1, we prove621

W = −UΣtrnP
† + UΣtrn(P

TP )−1ZTK−1
1 H + UΣtrn(P

TP )−1ZTK−1
1 ZP †,

= UΣtrn(P
TP )−1ZTK−1

1 H − UΣtrnZ
−1(K1 − Z(PTP )−1ZT )K−1

1 ZP †,

= UΣtrn(P
TP )−1ZTK−1

1 H − UΣtrnZ
−1HHTK−1

1 ZP †.

622
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Lemma 2. For d > N + r, Xtst −WXtst = UΣtrn(P
TP )−1ZTK−1

1 Σ−1
trnL.623

Proof. Here, Xtst = UL and W is given by equation 2. Substituting this, we get624

Xtst −WXtst = UL− UΣtrn(P
TP )−1ZTK−1

1 HUL+ UΣtrnZ
−1HHTK−1

1 ZP †UL.

Note that P †U = −Σ−1
trn and HUΣtst = V T

trnA
†
trnUΣtrnΣ

−1
trnΣtst = (Z − I)Σ−1

trnΣtst which625

yields626

Xtst −WXtst = UL− UΣtrn(P
TP )−1ZTK−1

1 (Z − I)Σ−1
trnL− UΣtrnZ

−1HHTK−1
1 ZΣ−1

trnL,

= UΣtrnZ
−1(Z − Z(PTP )−1ZTK−1

1 (Z − I)−HHTK−1
1 Z)Σ−1

trnL,

= UΣtrnZ
−1(Z − (Z − I) +HHTK−1

1 (Z − I)−HHTK−1
1 Z)Σ−1

trnL,

= UΣtrnZ
−1(K1 −HHT )K−1

1 Σ−1
trnL,

= UΣtrn(P
TP )−1ZTK−1

1 Σ−1
trnL.

627

Lemma 3. For c > 1, we have that628

E[HHT ] =
c

η2trn(c− 1)
Ir + o(1)

and the variance of each entry is O(1/(η4trnN)). For c < 1, we have that629

E[HHT ] =
c2

η2trn(1− c)
Ir + o(1)

and the variance is O(1/(η4trnd)).630

Proof. Here we see that631

HHT = V T
trnA

†
trn(A

†
trn)

TVtrn = V T
trn(A

T
trnAtrn)

†Vtrn.

Thus, if Vtrn = [v1 · · · vr]. Then we see that HHT is an r × r matrix such that632

(HHT )ij = vTi (A
T
trnAtrn)

†vj .

Using ideas from [29], we see that if i ̸= j, then we see that the expectation is 0. On the other hand if633

i = j, then using Lemma 6 from [29], with p = N , q = d and A = 1
ηtrn

Atrn, we get that for c > 1634

E[vTi (AT
trnAtrn)

†vi] =
c

η2trn(c− 1)
+ o(1).

while for c < 1635

E[vTi (AT
trnAtrn)

†vi] =
c2

η2trn(1− c)
+ o(1).

For the variance, let Atrn = ηtrnŨ Σ̃Ṽ T , then we have that636

vTi (A
T
trnAtrn)

†vj =
1

η2trn
vTi Ṽ Σ̃2Ṽ T vj

=
1

η2trn
aT Σ̃2b

=

N∑
i=1

1

η2trn

1

σ̃2
i

aibi.
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Where a, b are orthogonal vectors (when i ̸= j). Then for computing the variance when c > 1,637

E
[(
vTi (A

T
trnAtrn)

†vj
)2]

= E

( 1

η2trn

N∑
i=1

1

σ̃2
i

aibi

)2


=
1

η4trn
E

 N∑
i=1

N∑
j=1

1

σ̃2
i σ̃

2
j

aibiajbj



=

(
c2

η4trn(c− 1)2
+ o(1)

)
E

( N∑
i=1

aibi

) N∑
j=1

ajbj


+

(
c3

η4trn(c− 1)3
− c2

η4trn(c− 1)2
+ o(1)

) N∑
i=1

E[a2i b2i ]

= 0 +

(
c2

η4trn(c− 1)3
+ o(1)

) N∑
i=1

1

N2
+ o

(
1

N

)
=

c2

η4trn(c− 1)3
1

N
+ o

(
1

N

)
.

Here even though a, b are not independent, because of the smaller variance in the entries, the error is638

absorbed in the o
(

1
N

)
term.639

When i = j, we use the same proof [29], to see that the variance is at most640

c2(2c− 1)

η4trn(c− 1)3
1

N
+ o

(
1

N

)
.

A very similar computation follows for the variance when c < 1.641

We prove a general result on inverses of matrices that whose expected norms are Ω(1).642

Lemma 4. If ∥E[XN ]∥ = Ω(1) as N grows and Var((XN )ij) = sN , then E[X−1
N ] = E[XN ]−1 +643

O(sN ). Additionally, if Var((XN − E[XN ])2ij) = O(tN ), then Var((X−1
N )ij) = O(sN + tN ).644

Proof. Let δXN = XN − E[Xn]. Notice that δXN = OP (sN ) and E[δXN ] = 0. Additionally, by645

the Taylor expansion (Y + δY )−1 = Y −1 + Y −1δY Y −1 +O(δY 2) we have that646

X−1
N = E[XN ]−1 + E[XN ]−1δXNE[XN ]−1 +O(δX2

N ).

In particular, since E[Xn]
−1 = O(1), we have647

O(E[X−1
N ] = E[XN ]−1 +O(Var((XN )ij)) = E[XN ]−1 +O(sN ).

Finally, note that Var((δX2
N )ij) = O(tN ) by assumption. So,648

Var((X−1
N )ij) = Var((E[XN ]−1δXNE[XN ]−1)ij) +O(Var((δX2

N )ij)) = O(sN + tN )

since E[XN ]−1 = O(1).649

Lemma 5. For c > 1, we claim that E[Σ−1
trnP

TPΣ−1
trn] =

(
1− 1

c

)
Ir, each entry has variance650

O
(
1
d

)
, and651

E[Σtrn(P
TP )−1Σtrn] =

c

c− 1
Ir +O

(
1

d

)
.

with element-wise variance O(1/d).652
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Proof. Recall that P = −(I −AtrnA
†
trn)UΣtrn Thus, we have that653

PTP = ΣT
trnU

T (I −AtrnA
†
trn)UΣtrn.

= ΣT
trnΣtrn − ΣT

trnU
TAtrnA

†
trnUΣtrn

= ΣT
trnΣtrn − ΣT

trnU
T Ũ Σ̃Σ̃†ŨTUΣtrn

= ΣT
trnΣtrn − ΣT

trnR

[
IN 0
0 0d−N

]
RTΣtrn.

Where R is a uniformly random r × d unitary matrix. Then by symmetry (of the sign of rows of R),654

we have that655

E[PTP ] = Σ2
trn − ΣT

trn

(
1

c
Ir

)
Σtrn =

(
1− 1

c

)
Σ2

trn.

So, we have that656

E
[
Σ−1

trnP
TPΣ−1

trn

]
= UT

(
I − E

[
AtrnA

†
trn

])
U =

(
1− 1

c

)
Ir.

Thus to compute the variance, we first compute the variance of (AtrnA
†
trn)ij . For this, we first note657

that658 [
1
c IN 0
0 0

]
= E

[
Ũ Σ̃Σ̃†ŨT

]
= E

[
AtrnA

†
trn

]
= E

[
AtrnA

†
trnAtrnA

†
trn

]
.

The first equality follows from the symmetry of the signs of the rows of Ũ . Then we can see that659

d∑
k

(AtrnA
†
trn)

2
ik =

{
1
c i ≤ N

0 i > N
.

From Lemma 14 in [29], we have that E[(AtrnA
†
trn)

2
ii] =

1
c2 + 2

cd + o(1). Then combining this with660

the computation above and using symmetry, we have that for i ̸= j and min(i, j) ≤ N661

E[(AtrnA
†
trn)

2
ij ] =

1

N − 1

(
1

c
− 1

c2
+

2

cd
+ o(1)

)
.

Now consider the other (full) SVD of Xtrn given by Ûd×dΣ̂d×N V̂
T
N×N . Note that the top left r × r662

block of Σ̂ is Σtrn, and we can choose Û so that the first r columns of Û give U . Note that since ÛT Ũ663

is still uniformly random, the symmetry argument above follows for ÛTAtrnA
†
trnÛ . Additionally,664

for i, j ≤ r, (ÛTAtrnA
†
trnÛ)ij = (UTAtrnA

†
trnU)ij Thus, we see that for i, j ≤ r665

E
[
(UTAtrnA

†
trnU)2ij

]
=

1

N − 1

(
1

c
− 1

c2
+

2

cd
+ o(1)

)
,

while for i = j, we get that it is O
(

1
N

)
by Lemma 14 of Sonthalia and Nadakuditi [29]. Thus, finally,666

we have that arranged as a matrix667

E
[
(Σ−1

trnP
TPΣ−1

trn)⊙ (Σ−1
trnP

TPΣ−1
trn)

]
= O

(
1

d

)
.

By an analogous symmetry argument, since (AtrnA
†
trn)

i = AtrnA
†
trn for any i, we can show that668

Var
(
(UTAtrnA

†
trnU)2ij

)
= O

(
1

d

)
.

We can in principle show a faster decay for this with a more involved argument, but this is enough for669

our purposes. We can now apply Lemma 4 with XN = I − (UTAtrnA
†
trnU) to see that670

E[Σtrn(P
TP )−1Σtrn] =

c

c− 1
Ir +O

(
1

d

)
and has element-wise variance O(1/d).671
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Lemma 6. We have that672

E[Z] = I and Var(Zij) = O

(
∥Σtrn∥2

η2trnd

)
.

Further, E[ZΣ−1
trn] = E[Σ−1

trnZ] = Σ−1
trn and each element has variance O

(
1
d

)
. Finally,673

E[Z−1] = I +O

(
∥Σtrn∥2

d

)
with Var((Z−1)ij) = O

(
∥Σtrn∥2

d
+

∥Σtrn∥4

d2

)
.

Proof. The element-wise variance and expectation of Z can be computed exactly as in the proof674

of Lemma 11 in Sonthalia and Nadakuditi [29]. Specifically, by considering the row uj of U and675

the row vi of V , treating Zij as β, and replacing θtrn by σj . The expressions for the element-wise676

expectation and variance of ZΣ−1
trn and Σ−1

trnZ immediately follow from those of Z and the fact that677

σi/σj = Θ(1) by Assumption 1.678

For Z−1, we continue the computation using Zij = 1 + Tij with679

Tij = σj

min(d,N)∑
k=1

1

λk
akbk

with a and b obtained using vj and ui respectively, and λk a singular value of Atrn. It is easy to680

check that681

Var(T 2
ij) = O

(
∥Σtrn∥4

N2

)
using a symmetry argument for ak and bk and the fact that E[1/λ4k] = O(1) by Lemma 5 of [29].682

Now we can use Lemma 4 to conclude that683

E[Z−1] = I +O

(
∥Σtrn∥2

d

)
with Var((Z−1)ij) = O

(
∥Σtrn∥2

d
+

∥Σtrn∥4

d2

)
.

684

Lemma 7. For c > 1, E[K1] =
1

η2
trn

c
c−1Ir +

c
c−1Σ

−2
trn + o(1) with element-wise variance O(1/d).685

Further,686

E[K−1
1 ] = η2trn

(
1− 1

c

)(
η2trnΣ

−2
trn + Ir

)−1
+ o(1)

with element-wise variance O(1/d).687

Proof. From Lemma 5, we have that688

E[Σtrn(P
TP )−1Σtrn] =

c

c− 1
Ir +O

(
1

d

)
.

Recall that689

K1 = HHT + Z(PTP )−1ZT = HHT + ZΣ−1
trn(Σtrn(P

TP )−1Σtrn)Σ
−1
trnZ

T .

Then recall from Lemma 3 that690

E[HHT ] =
1

η2trn

c

c− 1
Ir + o(1).

For the second term in the expression for K1, we want to use Lemmas 5 and 6, but they give691

expectations of each term separately. Note that692

|E[XY ]− E[X]E[Y ]| = |Cov(X,Y )| ≤
√

Var(X)Var(Y )

and also note the following fact, from [43].693

Cov(XY,WZ) = EXEWCov(Y, Z) + EY EZCov(X,W ) + EXEZCov(Y,W )+

EY EWCov(X,Z) + Cov(X,W )Cov(Y,Z) + Cov(Y,W )Cov(X,Z)
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We use the facts above along with Lemmas 5 and 6 to compute the expectation. Specifically, the694

second term in K1 is the product of three terms ZΣ−1
trn, (Σtrn(P

TP )−1Σtrn), and Σ−1
trnZ

T . Hence695

we need the first fact to replace the expectation of the product of two terms with the product of the696

expectation of the two terms. To use this again, we would need to bound the variance of the product.697

Hence we need the second fact. Doing this computation, we get that698

E[K1] =
1

η2trn

c

c− 1
Ir +

c

c− 1
Σ−2

trn +O

(
1

d

)
+ o(1)

For the element-wise variance, consider δK1 = K1 − E[K1]. We cover the i ̸= j case. The699

i = j case is analogous. From the proofs of Lemmas 3, 5, and 6, we have Zij = I + Tij and700

(Σtrn(P
TP )−1Σtrn)ij = UTAtrnA

†
trnU)ij . The expanding the product, we get that701

(δK1)ij =
(
vi(A

T
trnAtrn)

†vj
)
+O

(
(UTAtrnA

†
trnU)ij

)
+O

(
(UTAtrnA

†
trnU)2ij

)
+O(Tij)

+O

(
N∑

k=1

Tik(U
TAtrnA

†
trnU)kj

)
+O

(
N∑

k=1

Tik(U
TAtrnA

†
trnU)2kj

)
+O

(
N∑

k=1

TikTkj

)

+O

 d∑
k,l=1

Tik(U
TAtrnA

†
trnU)klTlj

+O

 d∑
k,l=1

Tik(U
TAtrnA

†
trnU)2klTlj


Then since702

Var(XY ) = Cov(X2, Y 2) + (Var(X) + (EX)2)(Var(Y ) + (EY )2)− (Cov(X,Y ) + EXEY )2

using this for terms five through nine, we get that703

Var ((δK1)ij) = O

(
1

d

)
.

For the inverse, we cover the i ̸= j case again. The i = j case is analogous. We can perform an704

analogous computation to the one in the proof of Lemma 3 to get that705

Var
(
(vi(A

T
trnAtrn)

†vj)
2
)
= O

(
1

N

)
,

using the fact that E
[

1
λ4

]
= O(1) for a random eigenvalue λk of Atrn. We also use the fact that706

(AtrnA
†
trn)

p = AtrnA
†
trn for any p and a symmetry argument analogous to the one in the proof of707

Lemma 5 to note that708

E
[
(UTAtrnA

†
trnU)pij

]
= O

(
1

d

)
p = 2, . . . , 8.

One can also check by the arguments in the proof of Lemma 6 that709

E
[
T 2p
ij

]
= O

(
σp
i σ

p
j

dp

)
= O(1).

These together with the facts about Var(XY ) and Cov(XY,ZW ) above establish after a tedious but710

straightforward computation that711

Var((δK1)
2
ij) = O

(
1

d

)
.

We can now use Lemma 4 to establish that712

E[K−1
1 ] = η2trn

(
1− 1

c

)(
η2trnΣ

−2
trn + Ir

)−1
+O

(
1

d

)
+ o(1)

= η2trn

(
1− 1

c

)(
η2trnΣ

−2
trn + Ir

)−1
+ o(1)

and713

Var((K−1
1 )ij) = O

(
1

d

)
.

714
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Lemma 8. When c > 1, we have for W =Wopt that715

E[∥W∥2F ] =
c

c− 1
Tr(Σ2

trn(Σ
2
trn + η2trnI)

−1) +O

(
∥Σtrn∥2

d

)
+ o(1).

Proof. We first use the estimates for the expectations from Lemmas 3, 5, 6, and 7 to get an estimate716

for the expectation of ∥W∥2F . We get this estimate by treating various matrices in the product as717

independent. We then bound the deviation of the true expectation from this estimate using the718

variance estimates above. We begin the calculation as719

∥W∥2F = Tr(WTW )

Using Lemma 1, we see that the trace has three terms. The first term is720

Tr
(
HT (K−1

1 )TZ((PTP )−1)TΣT
trnU

TUΣtrn(P
TP )−1ZTK−1

1 H
)
.

Here we have that U is d× r with orthonormal columns. Hence we get that UTU = I . Then since721

the trace is invariant under cyclic permutations, we get the following term722

Tr
(
(Σtrn(P

TP )−1Σtrn)(Σ
−1
trnZ

T )K−1
1 HHT (K−1

1 )T (ZΣ−1
trn)(Σtrn(P

TP )−1Σtrn)
T
)
.

Now we use our random matrix theory estimates for various terms in the product. From Lemma 6,723

we have that EAtrn
[ZΣ−1

trn] = Σ−1
trn. Thus, that first term’s expectation can be estimated by724

Tr
(
(Σtrn(P

TP )−1Σtrn)Σ
−1
trnK

−1
1 HHT (K−1

1 )TΣ−1
trn(Σtrn(P

TP )−1Σtrn)
T
)
.

Then using Lemma 3, we can further estimate this by725

1

η2trn

c

c− 1
Tr
(
(Σtrn(P

TP )−1Σtrn)Σ
−1
trnK

−1
1 (K−1

1 )TΣ−1
trn(Σtrn(P

TP )−1Σtrn)
T
)
+ o(1).

Here, the error contribution of the o(1) error from Lemma 3 is still o(1) since we will see that all the726

other estimates are O(1). Then we use Lemma 5, to replace Σtrn(P
TP )−1Σtrn to get727

1

η2trn

c

c− 1

(
1− 1

c

)−2

Tr
(
Σ−1

trnK
−1
1 (K−1

1 )T (ΣT
trn)

−1
)
+ o(1).

Finally, we use Lemma 7 to replace the last term and get728

1

η2trn

c

c− 1

(
c

c− 1

)2

Tr

(
Σ−2

trnη
4
trn

(
1− 1

c

)2 (
Ir + η2trnΣ

−2
trn

)−2

)
+ o(1).

This immediately simplifies to729

η2trn
c

c− 1
Tr
(
Σ2

trn(Σ
2
trn + η2trnIr)

−2
)
+ o(1). (3)

The second term in Tr(WTW ) is730

−2Tr
(
HT (K−1

1 )TZT ((PTP )−1)TΣT
trnU

TUΣtrnZ
−1HHTZP †) .

We can rearrange this using cyclic invariance to731

−2Tr
(
(K−1

1 )TZTΣ−1
trn(Σtrn(P

TP )−1Σtrn)
TΣtrnZ

−1HHTZP †HT
)
.

Let us focus on the P †HT term. Since PTP is invertible, we have that P has full column rank.732

Hence we have that733

P † = (PTP )−1PT .

Further, since P = −(I −AtrnA
†
trn)UΣtrn and H = V T

trnA
†
trn, we have that734

P †HT = (PTP )−1ΣT
trnU

T (I −AtrnA
†
trn)(A

†
trn)

TVtrn.

Finally, we notice that735

AtrnA
†
trn(A

†
trn)

T = (A†
trn)

T .
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Thus, we have that736

P †HT = (PTP )−1ΣT
trnU

T (I −AtrnA
†
trn)(A

†
trn)

TVtrn = 0. (4)

Finally, the last term in Tr(WTW ) is737

Tr
(
(P †)TZT (K−1

1 )THHT (Z−1)TΣT
trnU

TUΣtrnZ
−1HHTK−1

1 ZP †) .
We note that738

P †(P †)T = (PTP )† = (PTP )−1.

We use this observation along with cyclic invariance to get that the last term is the same as739

Tr
(
(K−1

1 )THHTΣ2
trnZ

−1HHTK−1
1 ZΣ−1

trn(Σtrn(P
TP )−1Σtrn)Σ

−1
trnZ

T
)
.

We again use Lemmas 3 and 6 to get that its expectation is estimated by740

1

η4trn

(
c

c− 1

)2

Tr
(
(K−1

1 )TΣ2
trnK

−1
1 Σ−1

trn(Σtrn(P
TP )−1Σtrn)Σ

−1
trn

)
+O

(
∥Σtrn∥2

d

)
+ o(1).

The contribution of the O
(

∥Σtrn∥2

d

)
error from Lemma 6 is still O

(
∥Σtrn∥2

d

)
since the estimate for741

the expectation is O(1). We now use Lemma 5, and 7 to see that the final term’s expectation can be742

estimated by743

1

η4trn

(
c

c− 1

)3

η4trn

(
c− 1

c

)−2

(Ir + ηtrnΣ
−2
trn)

−2 +O

(
∥Σtrn∥2

d

)
+ o(1)

=
c

c− 1
Tr(Σ4

trn(Σ
2
trn + η2trnIr)

−2) +O

(
∥Σtrn∥2

d

)
+ o(1). (5)

Finally, to bound the deviation from this estimate, note that for real valued random variables X,Y we744

have that |E[XY ] − E[X]E[Y ]| = |Cov(X,Y )| ≤
√
Var(X)Var(Y ) and for real valued random745

variables X,Y, Z,W , we have the following fact, from [43].746

Cov(XY,WZ) = EXEWCov(Y, Z) + EY EZCov(X,W ) + EXEZCov(Y,W )+

EY EWCov(X,Z) + Cov(X,W )Cov(Y,Z) + Cov(Y,W )Cov(X,Z)

We repeatedly apply these two to upper bound the deviation between the product of the expectations747

in the estimates above and the expectation of the product. It is then straightforward to see that since all748

variances are O(1/d) except for those of Z−1 and Z, which are both O(1) whenever Σtrn = O(
√
d),749

the estimation error is O(1/
√
d) = o(1).750

So, we can conclude that each of the estimates in equations 3, 4 and 5 have error o(1). Combining751

the terms together, we get from equations 3, 4 and 5 that752

∥W∥2F =
c

c− 1
Tr
(
Σ2

trn(Σ
2
trn + η2trnIr)(Σtrn + η2trnIr)

−2
)
+O

(
∥Σtrn∥2

d

)
+ o(1)

=
c

c− 1
Tr(Σ2

trn(Σ
2
trn + η2trnI)

−1) +O

(
∥Σtrn∥2

d

)
+ o(1).

753

Theorem 8. When d > N + r and β = I , then the test error R(W,Xtst) for W =Wopt is given by754

η4trn
Ntst

∥
(
Σ2

trn + η2trnI
)−1

L∥2F +
η2tst
d

c

c− 1
Tr(Σ2

trn(Σ
2
trn+η

2
trnI)

−1)+O

(
∥Σtrn∥2

d2

)
+o

(
1

d

)
.

Proof. Recall from theorem 7 that

R(W,Xtst) = E
[

1

Ntst
∥UΣtrn(P

TP )−1ZTK−1
1 Σ−1

trnL∥2F +
η2tst
d

∥W∥2F
]
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To compute the expectation of the first term, we observe that it is given by755

1

Ntst
Tr(UΣtrn(P

TP )−1ZTK−1
1 Σ−1

trnLL
TΣ−1

trnK
−1
1 Z(PTP )−1ΣtrnU

T ).

We apply cyclic invariance to get that it is the same as756

1

Ntst
Tr(Σ−1

trnK
−1
1 ZΣ−1

trn(Σtrn(P
TP )−1Σtrn)(Σtrn(P

TP )−1Σtrn)Σ
−1
trnZ

TK−1
1 Σ−1

trnLL
T ).

We finally use Lemmas 5, 6, and 7 to estimate it by757

1

Ntst
Tr

(
Σ−2

trn

(
c

c− 1

)2(
c− 1

c

)2(
Σ−2

trn +
1

η2trn
I

)−2

Σ−2
trnLL

T

)
+ o

(
1

d

)
=
η4trn
Ntst

Tr
(
(Σ2

trn + η2trnI)
−2LLT

)
+ o

(
1

d

)
=
η4trn
Ntst

∥
(
Σ2

trn + η2trnI
)−1

L∥2F + o

(
1

d

)
Since test and train data are decoupled, we can treat LLT /Ntst as a constant as N grows, noting that758

due the Σ−2
trn, the final estimate is o(1). So, repeating the deviation argument at the end of the proof759

of Lemma 8 above, we then have that the deviation from this estimate is o
(
1
d

)
.760

Combining this with Lemma 8, we get that761

η4trn
Ntst

∥
(
Σ2

trn + η2trnI
)−1

L∥2F +
η2tst
d

c

c− 1
Tr(Σ2

trn(Σ
2
trn + η2trnI)

−1)+O

(
∥Σ2

trn∥
d2

)
+ o

(
1

d

)
.

762

F.1.2 The Underparametrized Regime, d < N763

We derive test error bounds for β = I in our problem setting. We also denote Wopt by W in this764

subsection, for ease of notation.765

Theorem 9. For rank r data and d < N − r, with c = d
N , the following is true.766

1. For the β = I case, we denote the minimum norm linear denoiser Wopt by just W in this
subsection. It is given by

W = −UΣtrnH
−1
1 KTA†

trn + UΣtrnH
−1
1 ZT (QQT )−1H

2. The test error when Xtst = UL is given by767

EAtrn

[
1

Ntst
∥UΣtrnH

−1
1 ZT (QQT )−1Σ−1

trnL∥2F +
η2tst
d

∥W∥2F
]
,

where Q = V T (I − A†
trnAtrn), H = V T

trnA
†
trn, K = −A†

trnUΣtrn, Z = I + V T
trnA

†
trnUΣtrn,768

H1 = KTK + ZT (QQT )−1Z.769

The sizes of the matrices:770

1. U is d× r with UTU = Ir×r.771

2. Σtrn is r × r, with rank r.772

3. Atrn is d×N with rank d.773

4. A†
trnAtrn is N ×N774

5. H is r × d, with rank r.775

6. K is N × r, with rank r.776

7. Z is r × r, with rank r.777
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8. H1 is r × r, with rank r.778

9. Atrn = ηtrnŨ Σ̃Ṽ T .779

10. Ũ is d× d unitary.780

11. Σ̃ is d×N .781

Proof. Part 1 follows from Lemma 1. For part 2, note that the test error is given by R(W,Xtst) =782

EAtrn,Atst

[
1

Ntst
∥Xtst −W (Xtst +Atst)∥2F

]
, which is the same as the following.783

R(W,Xtst) =
1

Ntst
EAtrn,Atst

[
∥Xtst −WXtst∥2F

]
+

2

Ntst
EAtrn,Atst

[Tr((Xtst −WXtst)Atst)

+
1

Ntst
EAtrn,Atst

[
∥WAtst∥2F

]
=

1

Ntst
EAtrn

[
∥Xtst −WXtst∥2F

]
+ 0 +

1

Ntst
EAtrn,Atst

[
Tr(WTWAtstA

T
tst)
]

=
1

Ntst
EAtrn

[
∥Xtst −WXtst∥2F

]
+ 0 +

1

Ntst
EAtrn

[
Tr(WTWEAtst

[
AtstA

T
tst

]
)
]

=
1

Ntst
EAtrn

[
∥Xtst −WXtst∥2F

]
+ 0 +

η2tstNtst

dNtst
EAtrn

[Tr(WTW )]

= EAtrn

[
1

Ntst
∥UΣtrnH

−1
1 ZT (QQT )−1Σ−1

trnL∥2F +
η2tst
d

∥W∥2F
]

784

We will henceforth drop the subscript Atrn in the expectation EAtrn
.785

Lemma 9. When d < N − r, for Q = V T (I − A†
trnAtrn), K = −A†

trnΣtrnU , H1 = KTK +786

ZT (QQT )−1Z and other notation as in previous lemmas, we have that787

W = −UΣtrnH
−1
1 KTA†

trn + UΣtrnH
−1
1 ZT (QQT )−1H.

Proof. We know that W = X(X +Atrn)
†. By Corollary 2.3 of Wei [42], setting X = −CB with788

C = −UΣtrn and B = V T , we have that789

(X +Atrn)
† = A†

trn −Q†H − (K +Q†Z)H−1
1 (KTA†

trn − ZT (QQT )−1H).

So, using the facts that X = UΣtrnV
T , K = −A†

trnUΣtrn, we have that790

W = X(X +A†
trn)

= UΣtrnV
TA†

trn − UΣtrnQ
†H + UΣtrnV

TA†
trnUΣtrnH

−1
1 KTA†

trn

− UΣtrnV
TQ†ZH−1

1 KTA†
trn − UΣtrnV

TA†
trnUΣtrnH

−1
1 ZT (QQT )−1H

+ UΣtrnV
TQ†ZH−1

1 ZT (QQT )−1H.

Using the fact that H = V TA†
trn, we get that791

W = UΣtrnH − UΣtrnQ
†H + UΣtrnHUΣtrnH

−1
1 KTA†

trn − UΣtrnV
TQ†ZH−1

1 KTA†
trn

− UΣtrnHUΣtrnH
−1
1 ZT (QQT )−1ZZ−1H + UΣtrnV

TQ†ZH−1
1 ZT (QQT )−1ZZ−1H.

Using the fact that Z = I + V TA†
trnUΣtrn = I +HUΣtrn, we get that792

W = UΣtrnH − UΣtrnQ
†H + UΣtrn(Z − I)H−1

1 KTA†
trn − UΣtrnV

TQ†ZH−1
1 KTA†

trn

− UΣtrn(Z − I)H−1
1 ZT (QQT )−1ZZ−1H + UΣtrnV

TQ†ZH−1
1 ZT (QQT )−1ZZ−1H.
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Using the fact that H1 = KTK + ZT (QQT )−1Z, we get that793

W = UΣtrnH − UΣtrnQ
†H + UΣtrnZH

−1
1 KTA†

trn − UΣtrnH
−1
1 KTA†

trn

− UΣtrnV
TQ†ZH−1

1 KTA†
trn − UΣtrnZH

−1
1 (H1 −KTK)Z−1H

+ UΣtrnH
−1
1 ZT (QQT )−1H + UΣtrnV

TQ†ZH−1
1 (H1 −KTK)Z−1H

= UΣtrnH − UΣtrnQ
†H + UΣtrnZH

−1
1 KTA†

trn − UΣtrnH
−1
1 KTA†

trn

− UΣtrnV
TQ†ZH−1

1 KTA†
trn − UΣtrnH + UΣtrnZH

−1
1 KTKZ−1H

+ UΣtrnH
−1
1 ZT (QQT )−1H + UΣtrnV

TQ†H − UΣtrnV
TQ†ZH−1

1 KTKZ−1H.

Cancelling terms, we get that794

W = UΣtrnZH
−1
1 KTA†

trn − UΣtrnH
−1
1 KTA†

trn − UΣtrnV
TQ†ZH−1

1 KTA†
trn

+ UΣtrnZH
−1
1 KTKZ−1H + UΣtrnH

−1
1 ZT (QQT )−1H

− UΣtrnV
TQ†ZH−1

1 KTKZ−1H.

And we rearrange to get that795

W = −UΣtrnH
−1
1 KTA†

trn + UΣtrnH
−1
1 ZT (QQT )−1H + UΣtrn(I − V TQ†)ZH−1

1 KTA†
trn

+ UΣtrn(I − V TQ†)ZH−1
1 KTKZ−1H

= −UΣtrnH
−1
1 KTA†

trn + UΣtrnH
−1
1 ZT (QQT )−1H,

where the last equality is because Q = V T (I −A†
trnAtrn) has full rank, so Q† = QT (QQT )−1, so796

V TQ† = V T (I −A†
trnAtrn)V (V T (I −A†

trnAtrn)V )−1 = I .797

Lemma 10. For d < N − r, with notation as in Lemma 9 have that798

Xtst −WXtst = UΣtrnH
−1
1 ZT (QQT )−1Σ−1

trnL.

Proof. Note that799

Xtst −WXtst = UL− UΣtrnH
−1
1 KTA†

trnUL− UΣtrnH
−1
1 ZT (QQT )−1HUL.

Remember that K = −AtrnUΣ, so AtrnUΣtst = −KΣ−1
trnΣtst and HUΣtst =800

(HUΣ)Σ−1
trnΣtst = (Z − I)Σ−1

trnΣtst This gives us the following equality.801

Xtst −WXtst = UL− UΣtrnH
−1
1 KTKΣ−1

trnL− UΣtrnH
−1
1 ZT (QQT )−1ZΣ−1

trnL

+ UΣtrnH
−1
1 ZT (QQT )−1Σ−1

trnL

= U(I − ΣtrnH
−1
1 (KTK + ZT (QQT )−1Z)Σ−1

trn +ΣtrnH
−1
1 ZT (QQT )−1Σ−1

trn)L.

Using the fact that H1 = KTK + ZT (QQT )−1Z, we get that802

Xtst −WXtst = UL− UΣtrnH
−1
1 H1Σ

−1
trnL+ UΣtrnH

−1
1 ZT (QQT )−1Σ−1

trnL

= UΣtrnH
−1
1 ZT (QQT )−1Σ−1

trnL.

803

Lemma 11. For c < 1, we have that804

E[Σ−1
trnK

TKΣ−1
trn] =

1

η2trn

c

1− c
+ o(1)

and the variance of the ijth entry is O
(

1
N

)
.805

Proof. Note that KTK = ΣtrnU
T (AtrnA

T
trn)

†UΣtrn. So, (KTK)ij = σiu
T
i (AtrnA

T
trn)

†ujσj .806

Using ideas from Sonthalia and Nadakuditi [29], we see that if i ̸= j, then the expectation is 0. On807
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the other hand if i = j, then using Lemma 6 from [29], with p = N , q = d, A = 1
ηtrn

AT
trn, we get808

that809

E[(Σ−1
trnK

TKΣ−1
trn)ii] =

1

η2trn

c

1− c
+ o(1).

The result on the expectation follows immediately from this.810

For the variance, pick arbitrary i ̸= j and fix them. Consider a = Ũ∗ui and b = Ũ∗uj . They are811

uniformly random orthogonal unit vectors, not necessarily independent. Now note that812

(Σ−1
trn(K

TK)Σ−1
trn)ij = σiu

T
i (AtrnA

T
trn)

†ujσj

= uTi (Ũ Σ̃Σ̃∗Ũ∗)†uj

= uTi Ũ(Σ̃Σ̃∗)†Ũ∗uj

= aT (Σ̃Σ̃∗)†b

=

d∑
k=1

1

σ̃2
k

akbk.

So, we get that813

E[((Σ−1
trn(K

TK)Σ−1
trn)ij)

2] = E

( d∑
k=1

1

σ̃2
k

akbk

)2


= E

[
d∑

k=1

d∑
l=1

1

σ̃2
kσ̃

2
l

akbkalbl

]

=

(
c2

(1− c)2
+ o(1)

)
E

( d∑
k=1

akbk

)2


+

(
c2

(1− c)3
− c2

(1− c)2
+ o(1)

)
E

[
d∑

k=1

a2kb
2
k

]

=

(
c2

(1− c)3
− c2

(1− c)2
+ o(1)

)
E

[
d∑

k=1

a2kb
2
k

]

=

(
c3

(1− c)3
+ o(1)

)
E

[
d∑

k=1

a2kb
2
k

]

=
c3

(1− c)3

d∑
k=1

E[a2k]E[b2k] + o

(
1

d

)
,

where the last line holds due to the following reasoning, even though a and b are not independent.814

We then use the fact that815

E[a2kb2k]− E[a2k]E[b2k] ≤
√

Var(a2k)Var(b
2
k)

and Lemma 13 of [29], to get that816

Var

(
d∑

k=1

a2k

)
= O

(
1

d

)
.

So, by symmetry of coordinates,817

Var(a2k) = O

(
1

d2

)
.

The same holds for bk, giving us that818 ∣∣E[a2kb2k]− E[a2k]E[b2k]
∣∣ ≤ O

(
1

d2

)
.
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This gives us that819

Var
(
(Σ−1

trn(K
TK)Σ−1

trn)
2
ij

)
=

c3

d(1− c)3
+ o

(
1

d

)
i ̸= j.

For i = j, we use Sonthalia and Nadakuditi [29] to see that the variance is O
(
1
d

)
= O

(
1
N

)
since820

d = cN .821

Lemma 12. For c < 1, we have that822

E[Σ−1
trnK

TA†
trn(A

†
trn)

TKΣ−1
trn] =

1

η2trn

c2

(1− c)3
+ o(1)

and the variance of the ijth entry is O
(

1
N

)
.823

Proof. Let M := Σ−1
trnK

TA†
trn(A

†
trn)

TKΣ−1
trn and note that824

Σ−1
trnK

TA†
trn(A

†
trn)

TKΣ−1
trn = ΣtrnU

T (AtrnA
T
trn)

†(AtrnA
T
trn)

†UΣtrn.

So,825

Mij = σiu
T
i (AtrnA

T
trn)

†(AtrnA
T
trn)

†ujσj .

Using ideas from [29], we see that if i ̸= j, then the expectation is 0. On the other hand if i = j, then826

using Lemma 6 from [29], with p = N , q = d, we get that827

E[Mii] =
σ2
i

η2trn

c2

(1− c)3
+ o(1).

For the variance, pick arbitrary i ̸= j and fix them. Consider a = Ũ∗ui and b = Ũ∗uj . They are828

uniformly random orthogonal unit vectors, not necessarily independent. Now note that829

Mij = uTi (AtrnA
T
trn)

†(AtrnA
T
trn)

†uj

= uTi (Ũ Σ̃Σ̃∗Σ̃Σ̃∗Ũ∗)†uj

= uTi Ũ(Σ̃Σ̃∗Σ̃Σ̃∗)†Ũ∗uj

= aT (Σ̃Σ̃∗Σ̃Σ̃∗)†b

=

d∑
k=1

1

σ̃4
k

akbk.

So, we get that830

E[M2
ij ] = E

( d∑
k=1

1

σ̃4
k

akbk

)2


= E

[
d∑

k=1

d∑
l=1

1

σ4
kσ

4
l

akbkalbl

]

=

(
c4(c2 + 22/6c+ 1)

(1− c)7
+ o(1)

)
E

( d∑
k=1

akbk

)2
+ (χ(c) + o(1))E

[
d∑

k=1

a2kb
2
k

]

= (χ(c) + o(1))E

[
d∑

k=1

a2kb
2
k

]

= (χ(c) + o(1))E

[
d∑
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a2kb
2
k

]

= χ(c)

d∑
k=1

E[a2k]E[b2k] + o

(
1

d

)
,
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where the last line holds due to the argument in the proof of Lemma 11. Here χ(c) is some function831

of c. This gives us that Var[Mij ] =
1
dχ(c) + o

(
1
d

)
for i ̸= j. For i = j, we use Sonthalia and832

Nadakuditi [29] to see that the variance is O
(
1
d

)
.833

Lemma 13. For c < 1, we have that E[QQT ] = (1− c)Ir and the variance of each entry is O
(
1
d

)
.834

Further,835

E[(QQT )−1] =
1

1− c
Ir +O

(
1

d

)
.

and each element has variance O(1/d)836

Proof. Recall that Q = V T (I −AtrnA
†
trn). We thus have that837

PTP = V T (I −A†
trnAtrn)V.

= V TV − V TA†
trnAtrnV

= Ir − V T Ṽ Σ̃†Σ̃Ṽ TV

= Ir −R

[
Id 0
0 0N−d

]
RT .

Where R is a uniformly random r ×N unitary matrix. Then by symmetry (of the sign of rows of R),838

we have that839

E[QQT ] = Ir − cIr = (1− c) Ir.

Next notice that840

E[QQT ] = V T (I − E[A†
trnAtrn])V,

thus to compute the variance, we first compute the variance of (A†
trnAtrn)ij . For this, we first note841

that842 [
cId 0
0 0

]
= E[A†

trnAtrn] = E[A†
trnAtrnA

†
trnAtrn].

Since A†
trnAtrn is symmetric, we can see that843

d∑
k

((A†
trnAtrn)ik)

2 =

{
c i ≤ d

0 i > d
.

From Lemma 15 in [29], we have that E[((A†
trnAtrn)ii)

2] = c2 + 2c
N + o(1). Then combining this844

with the computation above and using symmetry, we have that for i ̸= j and min(i, j) ≤ d845

E[(A†
trnAtrn)

2
ij ] =

1

d− 1

(
1

c
− 1

c2
+

3

cd
+ o(1)

)
.

Now consider the other (full) SVD of Xtrn given by Ûd×dΣ̂d×N V̂
T
N×N . Note that the top left846

r × r block of Σ̂ is Σtrn, and the first r rows of V̂ give V . Note that since V̂ T Ṽ is still uni-847

formly random, the variance argument above follows for V̂ TA†
trnAtrnV̂ . Additionally, for i, j ≤ r,848

(V̂ TA†
trnAtrnV̂ )ij = (V TA†

trnAtrnV )ij Thus, we see that for i, j ≤ r,849

E[((V TA†
trnAtrnV )ij)

2] =
1

d− 1

(
c− c2 +

2

cd
+ o(1)

)
.

Thus, finally, we have that arranged as a matrix850

E[QQT ⊙QQT ] = O

(
1

d

)
.

By an analogous symmetry argument, we can show that851

Var
(
(V TA†

trnAtrnV )2ij

)
= O

(
1

d

)
.
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In principle, one can get a faster decay bound with a more sophisticated argument, but this is sufficient852

for our purposes. Now, by Lemma 4, we get that853

E[(QQT )−1] =
1

1− c
Ir +O

(
1

d

)
.

and each element has variance O(1/d).854

855

Lemma 14. For c < 1,856

E
[
Σ−1

trnH1Σ
−1
trn

]
=

1

1− c
Σ−2

trn +
1

η2trn

c

1− c
Ir + o(1)

and the variance of each element is O
(
1
d

)
. Additionally857

E
[
ΣtrnH

−1
1 Σtrn

]
= (1− c)η2trn(η

2
trnΣ

−2
trn + cIr)

−1 + o(1),

and the variance of each term is O
(
1
d

)
858

Proof. Recall that

H1 = KTK + ZT (QQT )−1Z = KTK + ZTΣ−1
trn(Σtrn(P

TP )−1Σtrn)Σ
−1
trnZ.

Using Lemmas 6, 11 and 13 along with an argument analogous to the one in Lemma 7, we get that

E[Σ−1
trnH1Σ

−1
trn] =

1

1− c
Σ−2

trn +
1

η2trn

c

1− c
Ir +O

(
1

d

)
+ o(1)

and the variance of each element is O
(
1
d

)
.859

For the inverse, we define δH1 := H1 −E[H1] and by an argument analogous to the one in the proof860

of Lemma 7, we get that861

E
[
ΣtrnH

−1
1 Σtrn

]
= (1− c)η2trn(η

2
trnΣ

−2
trn + cIr)

−1 + o(1)

and the variance of each term is O
(
1
d

)
.862

Lemma 15. When c < 1, we have for W =Wopt that863

E[∥W∥2F ] =
c2

1− c
Tr

(
Σ2

trn

(
Σ2

trn +
1

η2trn
Ir

)
(Σ2

trnc+ η2trnIr)
−2

)
+ o(1).

Proof. Again, like in Lemma 8, we first use the estimates for the expectations from the lemmas864

above to get an estimate for the expectation of ∥W∥2F , and then bound the deviation from it using the865

variance estimates in this section. We see that the first term in Tr(WTW ) is866

Tr((A†
trn)

TK(H−1
1 )TΣ2

trnH
−1
1 KTA†

trn) = Tr(KTA†
trn(A

†
trn)

TK(H−1
1 )TΣ2

trnH
−1
1 ).

Then using Lemma 12 along with cyclic invariance of traces, we see that this is estimated by867

1

η2trn

c2

(1− c)3
Tr(Σtrn(H

−1
1 )TΣ2

trnH
−1
1 Σtrn) + o(1).

Then using Lemma 14, we get that this is estimated by868

η2trn
c2

(1− c)3
(1− c)2(cIr + η2trnΣ

−2
trn)

−2 + o(1)

= η2trn
c2

1− c
Tr
(
Σ4

trn(Σ
2
trnc+ η2trnIr)

−2
)
+ o(1).

The second term is869

Tr(((QQT )−1)TZ(H−1
1 )TΣ2

trnH
−1
1 ZT (QQT )−1HHT ).
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We can rewrite this as870

Tr(((QQT )−1)TZΣ−1
trn(Σtrn(H

−1
1 )TΣtrn)(ΣtrnH

−1
1 Σtrn)Σ

−1
trnZ

T (QQT )−1HHT ).

Using Lemmas 3 and 6, we can estimate its expectation by871

1

η2trn

c2

1− c
Tr
(
((QQT )−1)TΣ−1

trn(Σtrn(H
−1
1 )TΣtrn)(ΣtrnH

−1
1 Σtrn)Σ

−1
trn(QQ

T )−1
)
+ o(1).

Then using Lemma 13 and the fact that HT
1 = H1, we get that this be further estimated by872

1

η2trn

c2

(1− c)3
Tr(Σ−1

trn(Σtrn(H
−1
1 )Σtrn)

2Σ−1
trn) + o(1).

Then using Lemma 14, we can simplify this estimate to873

1

η2trn

c2

(1− c)3
(1− c)2η4trn(cIr + η2trnΣ

−2
trn)

−2 + o(1)

= η2trn
c2

1− c
Tr
(
Σ2

trn(Σ
2
trnc+ η2trnIr)

−2
)
+ o(1).

The cross term in Tr(WTW ) is874

−2Tr((A†
trn)

TK(H−1
1 )TΣ2

trnH
−1
1 ZT (QQT )−1H).

Here the term (after cyclically permuting) that we should focus on is875

Tr(H(A†
trn)

TK) = −Tr(V T
trnA

†
trn(A

†
trn)

TA†
trnΣtrnU).

Here since Atrn = ηtrnŨ Σ̃Ṽ T and Ũ , Ṽ are independent of each other, we see that using ideas876

from Lemma 8 in [29] and extending them to rank r as before, the expectation of this term is 0 with877

O(1/d) variance. Thus, the whole cross-term has an expectation equal to 0.878

Again, to bound the deviation from this estimate, note that for real valued random variables X,Y879

we have that |E[XY ]− E[X]E[Y ]| = |Cov(X,Y )| ≤
√

Var(X)Var(Y ). For real valued random880

variables X,Y, Z,W , we have the following fact, from [43].881

Cov(XY,WZ) = EXEWCov(Y,Z) + EY EZCov(X,W ) + EXEZCov(Y,W )+

EY EWCov(X,Z) + Cov(X,W )Cov(Y, Z) + Cov(Y,W )Cov(X,Z).

We repeatedly apply these two to upper bound the deviation between the product of the expectations882

in the estimates above and the expectation of the product. It is then straightforward to see that since883

all variances are O(1/d), the estimation error is O(1/d) = o(1).884

Finally, combining the terms, we get that885

E[∥W∥2F ] =
c2

1− c
Tr

(
Σ2

trn

(
Σ2

trn +
1

η2trn
Ir

)
(Σ2

trnc+ η2trnIr)
−2

)
+ o(1).

886

Theorem 10. When d < N − r and β = I , then the test error R(W,Xtst) for W =Wopt is given887

by888

η4trn
Ntst

∥
(
Σ2

trnc+ η2trnI
)−1

L∥2F

+
η2tst
d

c2

1− c
Tr

(
Σ2

trn

(
Σ2

trn +
1

η2trn
Ir

)
(Σ2

trnc+ η2trnIr)
−2

)
+ o

(
1

d

)
.

Proof. Note from theorem 9 that R(W,Xtst) = 1
Ntst

∥UΣtrnH
−1
1 ZT (QQT )−1Σ−1

trnL∥2F +889

η2
tst

d ∥W∥2F .890
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To compute the first term, we observe that it is given by891

1

Ntst
Tr(UΣtrnH

−1
1 ZT (QQT )−1Σ−1

trnLL
TΣ−1

trn(QQ
T )−1ZH−1

1 ΣtrnU
T ).

This can be rewritten using cyclic invariance as892

1

Ntst
Tr(UTUΣtrnH

−1
1 ZTΣ−1

trnΣtrn(QQ
T )−1Σ−1

trnLL
TΣ−1

trn(QQ
T )−1ΣtrnΣ

−1
trnZH

−1
1 Σtrn).

We apply Lemmas 13, 14 and 6 to get that its expectation can be estimated by893

1

Ntst
Tr

((
(c− 1)η2trn(η

2
trnI + cΣ2

trn)
−1
)2( 1

1− c

)2

LLT

)
+ o(1/d)

=
η4trn
Ntst

Tr
((

Σ2
trnc+ η2trnI

)−2
LLT

)
+ o(1/d)

=
η4trn
Ntst

∥
(
Σ2

trnc+ η2trnI
)−1

L∥2F + o(1/d).

We get o
(
1
d

)
due to the Σ−2

trn term. Again, we can argue as in the proof of Lemma 15 to bound the894

deviation of the true expectation from this estimate by o(1/d), noting that since train and test data895

assumptions are decoupled, LLT /Ntst can be treated as constant as N grows.896

Combining this with Lemma 8, we get that897

η4trn
Ntst

∥
(
Σ2

trnc+ η2trnI
)−1

L∥2F

+
η2tst
d

c2

1− c
Tr

(
Σ2

trn

(
Σ2

trn +
1

η2trn
Ir

)
(Σ2

trnc+ η2trnIr)
−2

)
+ o

(
1

d

)
.

898

Theorem 1 (In-Subspace Test Error). Let r < |d − N |. Let the SVD of Xtrn be UΣtrnV
T
trn, let899

L := UTXtst, βU := UTβ, and c := d/N . Under our setup and Assumptions 1 and 2, the test error900

(Equation 1) is given by the following. If c < 1 (under-parameterized regime)901

R(Wopt, UL) =
η4trn
Ntst

∥∥βT
U (Σ

2
trnc+ η2trnI)

−1L
∥∥2
F

+
η2tst
d

c2

1− c
Tr

(
βUβ

T
UΣ

2
trn

(
Σ2

trn +
1

η2trn
I

)(
Σ2

trnc+ η2trnI
)−2
)
+ o

(
1

N

)
If c > 1 (over-parameterized regime)902

R(Wopt, UL) =
η4trn
Ntst

∥∥βT
U (Σ

2
trn + η2trnI)

−1L
∥∥2
F

+
η2tst
d

c

c− 1
Tr(βUβ

T
U (I + η2trnΣ

−2
trn)

−1) +O

(
∥Σtrn∥2

N2

)
+ o

(
1

N

)
Proof. The version for β = I follows immediately from Theorem 8 and Theorem 10.903

We now demonstrate how the the general version is a straightforward repetition of the proofs of the
two theorems. First denote by Zopt the minimum norm solution to the denoising problem (where
β = I). Then Zopt = Xtrn(Xtrn +Atrn)

† and note that

Wopt = Ytrn(Xtrn +Atrn)
† = βTXtrn(Xtrn +Atrn)

† = βTZopt

We present the adaptation of Lemma 8, the other lemmas can be adapted accordingly.904

We first use the estimates for the expectations from the lemmas to get an estimate for ∥Wopt∥2F =905

∥βTZopt∥2F , and then bound the deviation from it using the variance estimates above. We begin the906

calculation as907

∥βTZopt∥2F = Tr(ZT
optββ

TZopt)
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Using Lemma 1, we see that the trace has three terms. The first term is908

Tr(HT (K−1
1 )TZ((PTP )−1)TΣT

trnU
TββTUΣtrn(P

TP )−1ZTK−1
1 H)

Using βT
U = βT

optU Then since the trace is invariant under cyclic permutations, we get the following909

term910

Tr(βT
UΣtrn(P

TP )−1ZTK−1
1 HHT (K−1

1 )TZ((PTP )−1)TΣT
trnβU )

The rest of the proof for this term is the same as Lemma 8.911

The second term in Tr(WTββTW ) is912

−2Tr(HT (K−1
1 )TZT ((PTP )−1)TΣT

trnβUβ
T
UΣtrnZ

−1HHTZP †)

Then the rest of the proof for this term is identical to the one in the proof of Lemma 8.913

Finally, the last term in Tr(WTββTW ) is914

Tr((P †)TZT (K−1
1 )THHT (Z−1)TΣT

trnβUβ
T
UΣtrnZ

−1HHTK−1
1 P †)

The rest of the proof is the same again, after using the cyclic invariance of the trace.915

916

F.2 Proof of Corollary 1, The Distribution Shift Bound917

We first prove Theorem 2, bounding the difference in generalization error in terms of the change in918

the test set. Recall the theorem below.919

Theorem 2 (Test Set Shift Bound). Under the assumptions of Theorem 1, consider a linear regressor920

Wopt trained on training data Xtrn = UΣtrnV
T
trn with Σtrn such that σr(Xtrn) > M , and tested921

on test data Xtst,1 = UL1 and Xtst,2 = UL2 with noise Atst,1, Atst,2 with the same variance922

ηtst2/d. Then, the generalization errors R1 and R2 differ for c < 1 by923

|R2 −R1| ≤
σ1(β)

2

Ntst

η4trnr

(σr(Xtrn)2f(c) + η2trn)
2
∥L2L

T
2 − L1L

T
1 ∥F + o

(
1

N

)
where f(c) = c for c < 1 and f(c) = 1 for c ≥ 1. We add O(∥Σtrn∥2F /N2) to the bound when924

c > 1.925

Proof. We will first show this for c < 1. Let Ri := R(Wopt, Xtst,i). Remember that the test error is926

given by927

Ri =
η4trn
Ntst

∥∥βT
U (Σ

2
trnc+ η2trnI)

−1Li

∥∥2
F

+ η2tstη
2
trn

1

d

c2

1− c
Tr

(
βUβ

T
UΣ

2
trn

(
Σ2

trn +
1

η2trn
I

)(
Σ2

trnc+ η2trnI
)−2
)
+ o

(
1

N

)
Note that the second term above has no dependence on Xtst,i, so the difference is given by928

R2 −R1 =
η4trn
Ntst

(∥∥βT
U (Σ

2
trnc+ η2trnI)

−1L2

∥∥2
F
−
∥∥βT

U (Σ
2
trnc+ η2trnI)

−1L1

∥∥2
F

)
+ o

(
1

N

)
=
η4trn
Ntst

Tr
(
(Σ2

trnc+ η2trnI)
−1βUβ

T
U (Σ

2
trnc+ η2trnI)

−1(L2L
T
2 − L1L

T
1 )
)
+ o

(
1

N

)
(i)

≤ η4trn
Ntst

∥(Σ2
trnc+ η2trnI)

−1βUβ
T
U (Σ

2
trnc+ η2trnI)

−1∥F ∥(L2L
T
2 − L1L

T
1 )∥F + o

(
1

N

)
=
η4trn
Ntst

∥βUβT
U (Σ

2
trnc+ η2trnI)

−2∥F ∥(L2L
T
2 − L1L

T
1 )∥F + o

(
1

N

)
(ii)

≤ η4trn
Ntst

∥βUβT
U∥2∥(Σ2

trnc+ η2trnI)
−2∥F ∥(L2L

T
2 − L1L

T
1 )∥F + o

(
1

N

)
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where (i) above is by the Cauchy-Schwarz inequality for the Frobenius norm and (ii) above holds929

since ∥AB∥F ≤ ∥A∥2∥B∥F . So, for Σtrn with lower bounded diagonal entries σi > M , we have930

that931

|R2 −R1| ≤
η4trnr

Ntst(σr(Xtrn)2c+ η2trn)
2
∥βUβT

U∥2∥(L2L
T
2 − L1L

T
1 )∥F + o

(
1

N

)
=

η4trnr

Ntst(σr(Xtrn)2c+ η2trn)
2
∥UTββTU∥2∥(L2L

T
2 − L1L

T
1 )∥F + o

(
1

N

)
=

η4trnr

Ntst(σr(Xtrn)2c+ η2trn)
2
∥ββT ∥2∥(L2L

T
2 − L1L

T
1 )∥F + o

(
1

N

)
=
σ1(β)

2

Ntst

η4trnr

(σr(Xtrn)2c+ η2trn)
2
∥L2L

T
2 − L1L

T
1 ∥F + o

(
1

N

)

Similarly, for c > 1, we have that

|R2 −R1| ≤
σ1(β)

2

Ntst

η4trnr

(σr(Xtrn)2 + η2trn)
2
∥L2L

T
2 − L1L

T
1 ∥F +O

(
∥Σtrn∥2F
N2

)
+ o

(
1

N

)
932

We now prove our corollary below.933

Corollary 1 (Distribution Shift Bound). Let Wopt be tested on test data Xtst,1 = UL1 and Xtst,2 =
UL2 generated possibly dependently from distributions supported in the span of U with mean Uµi

and covariance ΣU,i = UΣiU
T respectively. Let f(c) = c for c < 1 and f(c) = 1. Then, the

difference in generalization errors Gi := EXtst,i [R(Wopt, Xtst,i)] is bounded for c < 1 by

|G2 − G1| ≤
σ1(β)

2η4trnr

(σr(Xtrn)2f(c) + η2trn)
2
∥Σ2 − Σ1 + µ2µ

T
2 − µ1µ

T
1 ∥F + o

(
1

N

)
.

We add O(∥Σtrn∥2F /N2) to the bound when c ≥ 1.934

Proof. Let L̄i := Li − [µi µi . . . µi] be the centered version of the test data matrix. In that case,
EXtst,i [L̄i] = EXtst,i [U

T X̄tst,i] = 0 and

EXtst,i [L̄iL̄
T
i ] = EXtst,i [U

T X̄tst,iX̄
T
tst,iU ] = NtstΣi

Now note the following elementary computation.935

EXtst,i
[LiL

T
i ] = EXtst,i

[(L̄i + [µi µi . . . µi])(L̄i + [µi µi . . . µi])
T ]

= EXtst,i [L̄iL̄
T
i ] + 0 + 0 +Ntstµiµ

T
i

= NtstΣtrn +Ntstµiµ
T
i

We can now follow the initial part of the proof of Theorem 2 to get the following for c < 1.936

G2 − G1 =
η4trn
Ntst

Tr
(
βUβ

T
U (Σ

2
trnc+ η2trnI)

−2(EXtst,2[L2L
T
2 ]− EXtst,1[L1L

T
1 ])
)
+ o

(
1

N

)
= η4trnTr

(
βUβ

T
U (Σ

2
trnc+ η2trnI)

−2(Σ2 − Σ1 + µ2µ
T
2 − µ1µ

T
1 )
)
+ o

(
1

N

)
Now, we can follow the rest of the proof of Theorem 2 to complete the proof.937
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F.3 Proofs for Theorem 3, Out-of-Subspace Generalization938

Theorem 3 (Out-of-Subspace Shift Bound). If we have the same training data and solution Wopt939

assumptions as in Theorem 1. Then, for any Xtst for which there exists an L and an α > 0 such that940

∥Xtst − UL∥F ≤ α, and Atst that satisfies 1,2 from Assumption 2, we have that the generalization941

error R(Wopt, Xtst) satisfies942

|R(Wopt, Xtst)−R(Wopt, UL)| ≤ α2σ1(Wopt + I)2.

Proof. Here we see that943

∥(I −W )Xtst − (I −W )UL∥2F = ∥(I −W )(Xtst − UL)∥2F
≤ σ1(W − I)2∥Xtst − UL∥2F
= α2σ1(W − I)2

The inequality is due to Cauchy-Schwarz inequality. Then using the reverse triangle inequality, we944

have that945 ∣∣∣∥(I −W )Xtst∥2F − ∥(I −W )UL∥2F
∣∣∣ ≤ α2σ1(W + I)2.

946

F.4 Proofs for Corollary 4, Generalization Error947

Corollary 4 (Generalization Error). In the setting of Theorem 1, if we further assume that the data948

Xtst is generated possibly dependently from distributions supported in the span of U with mean Uµ949

and covariance ΣU = UΣUT , then we can remove the 1
Ntst

and replace L with (Σ + µµT )1/2 in950

the expression for test error to get the generalization error EXtst [R(Wopt, Xtst)].951

Proof. We begin by noting that the variance term is independent of Xtst. Hence we only need to
focus on the bias term. Let L̄ := L− [µ µ . . . µ] be the centered version of the test data matrix. In
that case, EXtst,i

[L̄] = EXtst,i
[UT X̄tst,i] = 0 and

EXtst,i [L̄L̄
T ] = EXtst,i [U

T X̄tst,iX̄
T
tst,iU ] = NtstΣ

Now note the following elementary computation.952

EXtst,i [LL
T ] = EXtst,i [(L̄+ [µ µ . . . µ])(L̄+ [µ µ . . . µ])T ]

= EXtst,i
[L̄L̄T ] + 0 + 0 +Ntstµµ

T

= NtstΣtrn +Ntstµµ
T

Consider the following sequence on computations about the bias term.953

EXtst

[
η4trn
Ntst

∥∥βT
U (Σ

2
trnc+ η2trnI)

−1L
∥∥2
F

]
=
η4trn
Ntst

Tr
(
βT
U (Σ

2
trnc+ η2trnI)

−1EXtst
[LLT ](Σ2

trnc+ η2trnI)
−1βU

)
=
η4trn
Ntst

Tr
(
βT
U (Σ

2
trnc+ η2trnI)

−1(Σ + µµT )(Σ2
trnc+ η2trnI)

−1βU
)

=
η4trn
Ntst

∥∥∥βT
U (Σ

2
trnc+ η2trnI)

−1(Σ + µµT )1/2
∥∥∥2
F

This establishes our claim.954

F.5 Proof for Theorem 4, Test Error for W ∗955

Theorem 4 (Test Error for W ∗). In the same setting as Theorem 1, we have that W ∗ =956

βT
U

(
I +

η2
trn

c Σ−2
trn

)−1

UT and957

R(W ∗, UL) =
η4trnN

2

d2

∥∥∥∥∥βT
U

(
Σ2

trn +
η2trnN

d
I

)−1

L

∥∥∥∥∥
2

F

+
η2tst
d
Tr

(
βUβ

T
U

(
I +

η2trnN

d
Σ−2

trn

)−2
)
.
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Proof. To prove the first part of the theorem, we first note that958

EAtrn

[
∥Ytrn −W (Xtrn +Atrn)∥2F

]
= ∥Ytrn −WXtrn∥2F +

η2trnN

d
∥W∥2F .

Solving this is equivalent to solving959

∥ [Ytrn 0]−W [Xtrn µI] ∥2F .

where µ2 =
η2
trnN
d . We know from classical linear algebra that the solution to the above is960

W ∗ =
[
βTXtrn 0

]
[Xtrn µI]

†
.

Using Lemmas 5 and 6 from [44], we have that if Xtrn = UΣtrnV
T
trn where U is d by d, Σtrn is d961

by d and Vtrn is N × d, then962

[Xtrn µI] = U



√
σ1(Xtrn)2 + µ2 0 · · · 0

0
. . . 0

...
√
σr(Xtrn)2 + µ2

...
0 µ 0

0
. . . 0

0 0 µ


︸ ︷︷ ︸

Σ̂

[
VtrnΣtrnΣ̂

−1

µU Σ̂−1

]T
.

Thus, we have that963

W ∗ =
[
βTUΣtrnV

T
trn 0

] [VtrnΣtrnΣ̂
−1

µU Σ̂−1

]


1√
σ1(Xtrn)2+µ2

0 · · · 0

0
. . . 0

... 1√
σr(Xtrn)2+µ2

...

0 1
µ 0

0
. . . 0

0 0 1
µ


UT .

Simplifying, we get964

W ∗ = βT
UΣ

2
trnΣ̂

−2UT

= βT
U



σ1(Xtrn)
2

σ1(Xtrn)2+µ2 0 · · · 0

0
. . . 0

... σr(Xtrn)
2

σr(Xtrn)2+µ2

...
0 0 0

0
. . . 0

0 0 0


UT

= βT
UΣ

2
trn(Σ

2
trn + µ2I)−1UT

= βT
UΣ

2
trn

(
Σ2

trn +
η2trnN

d
I

)−1

UT

= βT
U

(
I +

η2trnN

d
Σ−2

trn

)−1

UT

Hence we have finished proving the first part.965

For the second part, we note that similar to before, we need to calculate966

1

Ntst
EAtst

[
∥Ytst −W ∗(Xtst +Atst)∥2F

]
=

1

Ntst
∥Ytst −W ∗Xtst∥2F +

η2tst
d

∥W ∗∥2F .
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For the first term recall that Xtst = UL and Ytst = βTXtst. Hence we have that967

1

Ntst
∥Ytst −W ∗Xtst∥2F =

1

Ntst

∥∥∥∥∥βT
U

(
I −

(
I +

η2trnN

d
Σ−2

trn

)−1
)
L

∥∥∥∥∥
2

F

=
1

Ntst

η4trnN
2

d2

∥∥∥∥∥βT
U

(
Σ2

trn +
η2trnN

d

)−1

L

∥∥∥∥∥
2

F

For the second term, we have that968

η2tst
d

∥W ∗∥2F =
η2tst
d

Tr

(
βT
U

(
I +

η2trnN

d
Σ−2

trn

)−2

βU

)

=
η2tst
d

Tr

(
βUβ

T
U

(
I +

η2trnN

d
Σ−2

trn

)−2
)

969

F.6 Proof for Corollary 2, Relative Excess Error970

Corollary 2 (Relative Excess Error). Let ∥Σtrn∥2F = Ω(N1/2+ϵ). As d,N → ∞ with d/N → c, the971

relative excess error tends to c
1−c in the underparametrized regime. In the overparametrized regime,972

when ∥Σtrn∥2F = o(N), it tends to 1
c−1 and to 1

c−1 +k for some constant k when ∥Σtrn∥2F = Θ(N).973

Proof. Recall from Theorem 4 that the test error for W ∗ is given by

R(W ∗, UL) =
η4trnN

2

d2

∥∥∥∥∥βT
U

(
Σ2

trn +
η2trnN

d
I

)−1

L

∥∥∥∥∥
2

+
η2tst
d
Tr

(
βUβ

T
U

(
I +

η2trnN

d
Σ−2

trn

)−2
)

We prove this for c > 1, the proof for c < 1 is analogous and in fact simpler. Notice that when974

|Σtrn∥2F = Ω(N1/2+ϵ), in both R(Wopt, Xtst) and R(W ∗, Xtst), the bias terms are O(1/d1+2ϵ)975

while the variance terms are Θ(1/d). In particular, as d,N → ∞, with d/N → c, the limit of the976

excess risk is given by only considering the variance terms and the estimation errors.977
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lim
d,N→∞,d/N→c

R(Wopt, Xtst)−R(W ∗, Xtst)

R(W ∗, Xtst)

= lim
d,N→∞,d/N→c

η2
tst

d Tr

(
βUβ

T
U

(
I +

η2
trnN
d Σ−2

trn

)−2
)
− η2

tst

d
c

c−1 Tr(βUβ
T
U (I + η2trnΣ

−2
trn)

−1)

η2
tst

d Tr

(
βUβT

U

(
I +

η2
trnN
d Σ−2

trn

)−2
)

+ lim
d,N→∞,d/N→c

O
(

∥Σtrn∥2
F

N2

)
+ o

(
1
N

)
η2
tst

d Tr

(
βUβT

U

(
I +

η2
trnN
d Σ−2

trn

)−2
)

= lim
d,N→∞,d/N→c

Tr

(
βUβ

T
U

(
I +

η2
trn

c Σ−2
trn

)−2
)
− c

c−1 Tr(βUβ
T
U (I + η2trnΣ

−2
trn)

−1)

Tr

(
βUβT

U

(
I +

η2
trn

c Σ−2
trn

)−2
)

+ lim
d,N→∞,d/N→c

O
(

c∥Σtrn∥2
F

N

)
+ o (c)

η2tstTr

(
βUβT

U

(
I +

η2
trn

c Σ−2
trn

)−2
)

= lim
d,N→∞,d/N→c

Tr
(
βUβ

T
U

)
− c

c−1 Tr(βUβ
T
U )

Tr
(
βUβT

U

) + lim
d,N→∞,d/N→c

O
(

c∥Σtrn∥2
F

N

)
+ o(1)

η2tstTr
(
βUβT

U

)
= 1− c

c− 1
+ lim

d,N→∞,d/N→c
O

(
∥Σtrn∥2F

N

)
=

{
1

c−1 ; ∥Σtrn∥2F = o(N)
1

c−1 + k ; ∥Σtrn∥2F = Θ(N)

for some unknown problem-dependent constant k. This establishes the claim for c > 1, and the proof978

for when c < 1 is analogous and in fact simpler.979

980

F.7 Proofs for Theorem 5, IID Training Data With Isotropic Covariance981

Theorem 5 (I.I.D. Training Data With Isotropic Covariance). Let c = d/N and cr = r/N . Then if982

c < 1983

EXtrn
[R] =

η4trn
Ntst

∥(Σ2
trnc+ η2trnI)

−1L∥2F

+ η2tst
r

d

1

1− c

(
T1(cr, η

2
trn/c) +

1

η2trn
T2(cr, η

2
trn/c)

)
+ o

(
1

N

)
and if c > 1984

EXtrn
[R] =

η4trn
Ntst

∥(Σ2
trn + η2trnI)

−1L∥2F + η2tst
r

d

c

c− 1
T3(cr, η

2
trn) +O

(
1

N

)
where T1(cr, z) = T3(cr, z)− zT2(cr, z), and985

T2(cr, z) =
1 + cr + zcr

2
√
(1− cr + crz)2 + 4c2rz

−1

2
, T3(cr, z) =

1

2
+
1 + zcr −

√
(1− cr + zcr)2 + 4c2rz

2cr
.

Proof. Then if Xtrn is the data matrix, the singular values squared for Xtrn are the eigenvalues of986

XT
trnXtrn = ZTUTUZ = ZTZ
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Then ZTZ is a N × N matrix, and due to the normalization of the variance of the entries, this is987

a Wishart Matrix. Further, we know that the eigenvalue distribution can be approximated by the988

Marchenko Pastur distribution with shape parameter r/N [45–50].989

Then we have that for the c < 1 case, we have the variance is990

1

d

c

1− c

r∑
i=1

1

c2

(
σ4
i

(σ2
i + σ2

trn/c)
2
+

1

σ2
trn

σ2
i

(σ2
i + σ2

trn)
2

)
Then we simplify this as the following.991

r

d

1

c(1− c)

(
E
[

σ4
i

(σ2
i + σ2

trn/c)
2

]
+

1

σ2
trn

E
[

σ2
i

(σ2
i + σ2

trn)
2

])
If λ is an eigenvalue of the training data gram matrix, then the variance term of the generalization992

error has terms of the following form.993

λ2

(λ+ 1/c)2
,

λ

(λ+ 1/c)2
,

λ

λ+ 1

The value of these for the Marchenko Pastur distribution can be found in [44].994

E
[

λ

λ+ η2trn

]
=

1

2
+

1 + η2trncr −
√
(1− cr + η2trncr)

2 + 4c2rη
2
trn

2cr995

E
[

λ

(λ+ η2trn)
2

]
=

1 + cr + η2trncr

2
√
(1− cr + crη2trn)

2 + 4c2rη
2
trn

− 1

2
+ o(1)

996

E
[

λ2

(λ+ η2trn)
2

]
= E

[
λ

λ+ η2trn

]
− η2trn

(
E
[

λ

(λ+ η2trn)
2

])
cr = r/N997

The proofs for the rest of the terms are similar.998

F.8 Proofs for Corollary 7, IID Training and Test Data With Isotropic Covariance999

Corollary 7 (I.I.D. Train and Tests Data With Isotropic Covariance). Let c = d/N and cr = r/N .1000

Then if c < 11001

EXtrn [R] = η4trn · r · κ · T4(cr, η2trn/c)

+
r

d

1

1− c

(
T1(cr, η

2
trn/c) +

1

η2trn
T2(cr, η

2
trn/c)

)
+ o

(
1

N

)
and if c > 11002

EXtrn [R] = η4trn · r · κ · T4(cr, η2trn) +
r

d

c

c− 1
T3(cr, η

2
trn) +O

(
1

N

)
where T1(cr, z) = T3(cr, z)− zT2(cr, z), and1003

T2(cr, z) =
1 + cr + zcr

2
√
(1− cr + crz)2 + 4c2rz

−1

2
, T3(cr, z) =

1

2
+
1 + zcr −

√
(1− cr + zcr)2 + 4c2rz

2cr
,

1004
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zc2r + c2r + zcr − 2cr + 1

2z2cr
√
(1− cr + crz)2 + 4c2rz

− 1

2z2

(
1− 1

cr

)
.

Proof. For the bias, we get1005

η4trn
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1

c2
E
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1

(σ2
i + η2trn/c)

2

]
∥L∥2F

The value of these for the Marchenko Pastur distribution can be found in [44].1006
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√
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G Numerical Details1008

In this section, we include the computational details required to reproduce the data and figures in the1009

paper. The code for the experiments can be found in the following anonymized repository [Link].1010

G.1 Data1011

For our transfer learning results, we use real datasets namely CIFAR [39], STL10 [40] and SVHN1012

[41]. We will mostly be working with the training and test split of CIFAR, training split of STL101013

and training split of SVHN. We will also use the test split of STL10 for our data augmentation results,1014

refer figure 3 and section G.5, to avoid overlaps between training and test data.1015

To verify the application of our results to I.I.D. data, we generate datasets from certain distributions,1016

the details of which are presented in the upcoming sections.1017

The test data is normalized so that each coordinate has mean zero and a standard deviation of 5. This1018

is done before we do any other pre-processing.1019

G.2 Compute Time1020

For figures 7, 8, 9 and 6, we use the same training data from CIFAR train split. Thus, we combine1021

our code implementation for these figures. This saves up compute time for mean empirical error1022

since inversion of the matrix Xtrn +Atrn, for obtaining Wopt, occurs once for each empirical run1023

for all 4 figures. The code was implemented using Google Colab with A100 Nvidia GPU which took1024

approximately 1 hour for the 200 trials for each value of r. Since the results are computed for 4 values1025

of r, the entire experiment was completed within approximately 4 hours.1026

Figures 2 and 3 took approximately 4 hours each using A100 Nvidia GPU on Google Colab. Figures1027

4 and 5 were computed together in approximately 40 minutes. Figure 10 took approximately 1 hour1028

to compute. Figure 11 only took around 10 minutes due to less number of N values and only 501029

trials. All the above was implemented using A100 GPU on Colab. Figure 7c took approximately 4.51030

hours using T4 Nvidia GPU on Google Colab.1031

G.3 Principal Component Regression1032

We use four datasets for the set of results obtained through principal component regression namely,1033

CIFAR train split, CIFAR test split, STL10 dataset and SVHN dataset.1034

G.3.1 In-Subspace1035

For figure 7a, the test data lies in the same low-dimensional subspace as the training dataset. The1036

experimental setting is as follows.1037

• Training data, of order d×N , is sampled from flattened CIFAR train split such that d = 3072 and1038

N ranges between 1050 and 10500 with an increment of 550 for the results.1039

• We project our training data over the first r principal components where r refers to the rank and1040

varies as 25, 50, 100 and 150.1041

• Test datasets, of order d×Ntst, are sampled from CIFAR test split, STL10 train split and SVHN1042

train split where d = 3072 and Ntst = 2500.1043

• We also project these test datasets onto the low-dimensional subspace using the projection matrices.1044

• For denoising, we generate Gaussian noise matrix Atrn with norm
√
N for the training data and1045

Atst with norm
√
Ntst for the test datasets.1046

The theoretical error is calculated using the formula in Theorem 1 and the empirical error is the mean1047

squared error.1048

G.3.2 Out-of-Subspace1049

Next, we test our formulas for test datasets which lie outside the training distribution space.1050
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Small α We detail the numerical setup required to generate figure 7b.1051

• Training data, of order d×N , is sampled from flattened CIFAR train split such that d = 3072 and1052

N ranges between 1050 and 10500 with an increment of 550 for the results.1053

• We project our training data over the first r principal components where r refers to the rank and1054

varies as 25, 50, 100 and 150.1055

• Test datasets, of order d×Ntst, are sampled from CIFAR test split, STL10 train split and SVHN1056

train split where d = 3072 and Ntst = 2500.1057

• We project these test datasets onto the low-dimensional subspace using the projection matrices.1058

• We add a small amount of full-dimensional Gaussian noise to the projected datasets to generate1059

out-of-subspace datasets with small α. Here, we consider the case where α = 0.1.1060

• For denoising, we generate Gaussian noise matrix Atrn with norm
√
N for the training data and1061

Atst with norm
√
Ntst for the test datasets.1062

The empirical error shown in figure 7b is the square root of the mean squared error. The theoretical1063

bounds on the error are calculated using Theorem 3.1064

Large α. For figure 6, the experimental setup is as follows.1065

• Training data, of order d×N , is sampled from flattened CIFAR train split such that d = 3072 and1066

N ranges between 1050 and 10500 with an increment of 550 for the results.1067

• We project our training data over the first r principal components where r refers to the rank and1068

varies as 25, 50, 100 and 150.1069

• Test datasets, of order d×Ntst, are sampled from CIFAR test split, STL10 train split and SVHN1070

train split where d = 3072 and Ntst = 2500.1071

• We do not project these test datasets onto the low-dimensional subspace. We retain their high1072

dimensions. The values of α for different values of r are provided in figure 6.1073

• For denoising, we generate Gaussian noise matrix Atrn with norm
√
N for the training data and1074

Atst with norm
√
Ntst for the test datasets.1075

G.4 Linear Regression1076

To consider the linear regression case for figure 8,1077

• Training data, of order d×N , is sampled from flattened CIFAR train split such that d = 3072 and1078

N ranges between 1050 and 10500 with an increment of 550 for the results.1079

• We project our training data over the first r principal components where r refers to the rank and1080

varies as 25, 50, 100 and 150.1081

• Gaussian noise matrix with norm
√
N is added to the training data.1082

• We generate normally-distributed βopt of order d × 1 with norm 1. The learned estimator is1083

computed as βT = βT
optW where W is the minimum norm solution to the least squares denoising1084

problem. For theoretical error, we compute β̂T = βoptU .1085

• Test datasets, of order d×Ntst, are sampled from CIFAR test split, STL10 train split and SVHN1086

train split where d = 3072 and Ntst = 2500.1087

• We also project these test datasets onto the low-dimensional subspace using the projection matrices.1088

• Gaussian noise matrix with norm
√
Ntst is added to the test datasets.1089

• Finally, the test datasets, Xtst, are replaced with βTXtst to compute the error for the linear1090

regression problem.1091

G.5 Data Augmentation1092

To emphasize the application of our results to non-I.I.D. data, we consider two cases of data augmen-1093

tation to our training data.1094
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G.5.1 Without Independence1095

The experimental setting to obtain the empirical generalization error is as follows.1096

• We sample 1000 images from the CIFAR train split as the first batch of our training data. For1097

experimental results1098

• We augment the above batch with the same batch to vary N between 1000 and 6000 with an1099

increment of 1000. We project the dataset onto its first r principal components where r =1100

25, 50, 100 and 150.1101

• We add gaussian noise with norm
√
N to the training data as before. Note that the noise on1102

augmented batches would be independent of the noise in the original batch. This is the only1103

assumption required for our result.1104

• Test datasets, of order d×Ntst, sampled from CIFAR test split, STL10 train split and SVHN train1105

split where d = 3072 and Ntst = 2500 are also projected onto the low-dimensional subspace.1106

We calculate the theoretical generalization error for more values of c to obtain smoother curves. Note1107

that the left singular vectors i.e., the columns of matrix U , do not change when we augment our1108

training batches. We utilize this to speed-up our computation for theoretical curves.1109

• We sample 1000 images from the CIFAR train split as the first batch of our training data.1110

• We obtain the projection matrix P = UUT and the matrix L = UTXtst from the SVD of the first1111

batch itself.1112

• The generalization error is computed from the formula in Theorem 1 for values of N between 10001113

and 6000 with an increment of 50.1114

• We scale the singular values by a factor of N/1000 to account for the augmenting.1115

G.5.2 Without Identicality1116

To generate figure 3,1117

• We use training data, of order d×N , such that d = 3072 and N ranges between 1050 and 105001118

with an increment of 550 for the results.1119

• We use N/2 images from the CIFAR training split and N/2 images from the STL10 training split1120

concatenated together for our training data.1121

• We project our training data over the first r principal components where r refers to the rank and1122

varies as 25, 50, 100 and 150.1123

• Test datasets, of order d×Ntst, are sampled from CIFAR test split, STL10 test split and SVHN1124

train split where d = 3072 and Ntst = 2500. This is done to avoid any overlaps between training1125

and test data.1126

• We also project these test datasets onto the low-dimensional subspace using the projection matrices.1127

• For denoising, we generate Gaussian noise matrix Atrn with norm
√
N for the training data and1128

Atst with norm
√
Ntst for the test datasets.1129

G.6 I.I.D. Data1130

We also perform experiments to verify our results in cases where training and test datasets are I.I.D.1131

The numerical details for those experiments are presented in this section.1132

G.6.1 I.I.D. Test Data1133

To generate figure 9,1134

• Training data, of order d×N , is sampled from flattened CIFAR train split such that d = 3072 and1135

N ranges between 1050 and 10500 with an increment of 550 for the results.1136

• We project our training data over the first r principal components where r refers to the rank and1137

varies as 25, 50, 100 and 150.1138
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• We generate L from Gaussian distribution of norm
√
Ntst where Ntst = 2500.1139

• We obtain our I.I.D. test data of order d×Ntst as Xtst = UL where U contains the left singular1140

vectors of the projected training data.1141

• For denoising, we generate Gaussian noise matrix Atrn with norm
√
N for the training data and1142

Atst with norm
√
Ntst for the test datasets.1143

G.6.2 I.I.D. Train Data1144

To generate figure 10,1145

• We generate the left singular matrix U from the SVD of a Gaussian matrix of order d× r where1146

M = 3072 and r = 50.1147

• We generate the training matrix Xtrn = UZ where Z is of order r ×N such that each column is1148

normally distributed with mean 0 and variance 1/r.1149

• Here, N varies from 1050 to 10500 with an increment of 550.1150

• Test datasets, of order d×Ntst, are sampled from CIFAR test split, STL10 train split and SVHN1151

train split where d = 3072 and Ntst = 2500.1152

• We also project these test datasets onto the r-dimensional subspace using projection matrices.1153

• For denoising, we generate Gaussian noise matrix Atrn with norm
√
N for the training data and1154

Atst with norm
√
Ntst for the test datasets.1155

G.6.3 I.I.D Train and Test Data1156

To generate figure 11,1157

• We generate the left singular matrix U from the SVD of a Gaussian matrix of order d× r where1158

M = 3072 and r = 50.1159

• We generate the training matrix Xtrn = UZ where Z is of order r ×N such that each column is1160

normally distributed with mean 0 and variance 1/r.1161

• Here, N varies from 500 to 6010 with an increment of 550 for the empirical markers and with an1162

increment of 55 for theoretical values on the solid curve.1163

• We generate L from Gaussian distribution of norm
√
Ntst where Ntst = 5000.1164

• We obtain our I.I.D. test data of order d×Ntst as Xtst = UL where U contains the left singular1165

vectors of the projected training data.1166

• For denoising, we generate Gaussian noise matrix Atrn with norm
√
N for the training data and1167

Atst with norm
√
Ntst for the test datasets.1168

G.7 Full Dimensional Denoising1169

To generate figure 7c,1170

• Training data, of order d×N , is sampled from flattened CIFAR train split such that d = 3072 and1171

N ranges between 1050 and 10500 with an increment of 550 for the results.1172

• We project our training data over the first r principal components where r is the minimum of d and1173

N . This implies that the data is full dimensional.1174

• Test datasets, of order d×Ntst, are sampled from CIFAR test split, STL10 train split and SVHN1175

train split where d = 3072 and Ntst = 2500.1176

• We also project these test datasets onto the low-dimensional subspace using the projection matrices.1177

• For denoising, we generate Gaussian noise matrix Atrn with norm
√
N for the training data and1178

Atst with norm
√
Ntst for the test datasets.1179
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G.8 Optimal ηtrn1180

To generate figures 4 and 5,1181

• Training data, of order d×N , is sampled from flattened CIFAR train split such that d = 3072 and1182

N ranges between 500 and 5500 as {500, 750, 1000, 1250, 1500, 1750, 2000, 2250, 2500, 2600,1183

2700, 2800, 2900, 3000, 3020, 3130, 3200, 3300, 3400, 3500, 3750, 4000, 4250, 4500, 4750, 5000,1184

5250, 5500}.1185

• We project our training data over the first r principal components where r = 50.1186

• Test datasets, of order d×Ntst, are the training dataset with new noise and sampled from CIFAR1187

test split, STL10 train split and SVHN train split where d = 3072 and Ntst = N .1188

• We compute generalization error for 2000 ηtrn values ranging from 1/3.5 to 100 for each N from1189

our formula in Theorem 1.1190

• We report the optimal ηtrn found to minimise the generalization error in figure 4 and the optimal1191

generalization error in figure 5.1192
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