Under review as a conference paper at ICLR 2022

NEURAL BOOTSTRAPPING ATTENTION FOR NEURAL
PROCESSES

Anonymous authors
Paper under double-blind review

ABSTRACT

Neural Processes learn to fit a broad class of stochastic processes with neural net-
works. Modeling functional uncertainty is an important aspect of learning stochastic
processes. Recently, Bootstrapping Neural Processes (B(A)NP) propose a bootstrap
method to capture the functional uncertainty which can replace the latent variable in
(Attentive) Neural Processes ((A)NP), thus overcoming the limitations of Gaussian
assumption on the latent variable. However, B(A)NP conduct bootstrapping in a
non-parallelizable and memory-inefficient way and fail to capture diverse patterns
in the stochastic processes. Furthermore, we found that ANP and BANP both tend
to overfit in some cases. To resolve these problems, we propose an efficient and
easy-to-implement approach, Neural Bootstrapping Attentive Neural Processes
(NeuBANP). NeuBANP learns to generate the bootstrap distribution of random func-
tions by injecting multiple random weights into the encoder and the loss function.
We evaluate our models in benchmark experiments including Bayesian optimization
and contextual multi-armed bandit. NeuBANP achieves the best performance in the
sequential decision-making tasks among NP methods, and this empirically shows
that our method greatly improves the quality of functional uncertainty modeling.

1 INTRODUCTION

Neural Processes (NP) (Garnelo et al., 2018b) define distributions over functions given a set of
observations, and are trained via a meta-learning framework so that it can adapt to new functions
rapidly. NP learns to model a wide range of stochastic processes and can estimate the uncertainty over
the predictions with less computational effort, compared to Gaussian Processes (GP) (Rasmussen,
2003). However, NP frequently suffers from a fundamental drawback of underfitting. As a remedy
of the underfitting issue, Attentive Neural Processes (ANP) (Kim et al., 2018) applies the attention
modules to the encoder network. Despite this modification, a single Gaussian latent variable of (A)NP
has a limitation in inducing functional uncertainty (Louizos et al., 2019), a global uncertainty that
decides the distribution over the space of trajectories or functions.

Appropriate modeling of functional uncertainty in stochastic processes improves the predictive
performance and diversity in function realizations (Le et al., 2018), thus provides a principled way
to guide agents to find optimal candidates in sequential decision-making problems. In these tasks, a
model needs to approximate a function and estimate uncertainty correctly to optimize a black-box
function whose analytic information is not given. Although GP is widely used for these tasks, these
are the promising area for the application of NP because GP is computationally expensive, and it can
be hard to choose an appropriate prior. Recently, Bootstrapping Neural Processes (B(A)NP) (Lee
et al., 2020) modify (A)NP to induce more robust uncertainty estimation by employing the residual
bootstrapping. However, B(A)NP underperforms in capturing a functional uncertainty because the
residual bootstrapping works in a homoscedastic way, removing the connection between the feature
and the label in its bootstrapped samples. The bootstrap strategy used in B(A)NP demands a higher
computational burden compared to (A)NP since it requires multiple computations of the encoder
network and additional heuristics, including the adaptation layer and the lower bound on the variance'.
Furthermore, ANP and BANP tend to overfit for a simple regression task rather than learning the
underlying heteroscedasticity. We observed that this problem is a by-product of the attention modules

"We colored the revised or added sentences in blue only for the rebuttal. This color will not appear in the
final version of the manuscript.

Under review as a conference paper at ICLR 2022

used in both models (see Figure 1 and 5). This finding suggests that effective regularization of
attention modules is required to prevent overfitting. Additionally, as explained in Section 4, ANP and
BANP often tend to estimate homogeneous uncertainty regardless of whether the observation is given.

ANP BANP NeuBANP

\
.
2 2 2 .
0 . 4 0 0 ° o * ¢« %
"\.ﬁr] K
2 . 2 . 2 0] .

-20 -15 -1.0 =05 0.0 0.5 1.0 15 2.0 -20 -15 -10 -05 0.0 0.5 1.0 15 2.0 -20 -15 -1.0 -05 0.0 0.5 1.0 15 2.0

Fig. 1. Each plot shows predictions given by ANP, BANP, and the proposed method in a linear regression.
The ground-truth function is a simple linear function with heterogeneous variance: y = = + Be¢(x) where

e(x) ~ N(0,0%(x)) and o(x) = v/22 + 10-5. See Appendix B.1 for more details.

To resolve the problems of previous NPs, we introduce a novel bootstrapping method for neural
processes, Neural Bootstrapping Attentive Neural Processes (NeuBANP). Motivated from the recent
work on efficient bootstrapping of the neural network, Neural Bootstrapper (NeuBoots) (Shin et al.,
2021), we introduce bootstrapping of the attention in a computationally efficient way by simple
modification of the input of attention modules and the loss function, instead of memory-inefficient
resampling and contrived heuristics employed in BANP. The simplicity and computational efficiency
of NeuBANP directly come from NeuBoots, but it does not guarantee the performance in modeling the
functional uncertainty since NeuBANP operates on the meta-learning framework. Thus, we modify the
method for training the model to learn the randomness present in the underlying function, allowing the
model to estimate random functions generated by any stochastic process. This modification is simple
but gives a strong consistency between the bootstrapped samples and the representations from the
attention modules, unlike the residual bootstrapping used in BANP. Besides, our bootstrapping method,
which implements the concatenation and multiplication of random bootstrap weights, operates as
a regularizer on the attention networks, thus preventing overfitted predictions observed in previous
attention-based NP methods. NeuBANP is trained to generate a valid predictive distribution by utilizing
the uncertainty inherent in observations by bootstrapping instead of the uncertainty that depends
on the prior assumption on the latent variable as in (A)NP. This leads to the success in capturing
heteroscedasticity of the data and modeling functional uncertainty in stochastic processes. As a result,
NeuBANP achieves the best performance in sequential decision-making problems such as Bayesian
optimization and contextual multi-armed bandit. The experimental results demonstrate that our model
provides promising capabilities as an efficient neural approximation of stochastic processes.

Contributions We propose NeuBANP, an easy-to-implement and computationally efficient method
for bootstrapping ANP. The proposed method has a novelty in learning a generator for bootstrapping
stochastic processes under a meta-learning framework. NeuBANP resolves overfitting problem of
attention modules and shows robust performance on heteroscedastic models without heuristics like
the extra adaptation layer in BANP. NeuBANP estimates functional uncertainty better than BANP and
achieves the best performance in stochastic optimization problems, including multi-dimensional
Bayesian optimization and contextual multi-armed bandit, compared to previous NP methods.

2 PRELIMINARIES

2.1 META-LEARNING FRAMEWORK OF NEURAL PROCESSES

Consider data D = (X,Y) = {(z,v:) 11 C X x Y, the pairs of inputs z; € X and outputs y; € .
Let P be a probability distribution over functions f € F; y; = f(x;) + €; where €,~N(0,0?),
hence P determines the distribution of D. For disjoint index sets C and T satisfying C U T = [n],
define context D¢ = (X, Ye) = {(xc, ye) }eec and target Dy = (X7, Y7) = {(t, y¢) bteTs SO
that D = D¢ U Dy. The task is to learn the neural processes py that fits the stochastic processes

Under review as a conference paper at ICLR 2022

f ~ P given D¢ when C ~ P, is a randomly chosen subset of [n], as follows:
0, = argmin E;_p [Echn { “log pe(Y]X, DC)H . (1)
0

This meta-learning framework allows py to learn diverse patterns in J via a prior distribution P;
hence NP can predict target points conditioned on contexts adaptively in the inference phase.

2.2 (BOOTSTRAPPING) ATTENTIVE NEURAL PROCESSES

ANP ANP is a variant of NP equipped with attention modules in the encoder part. See Appendix
A for the detailed definition of attention operations. Let the context D¢ is given, and the model
aims to infer y for a given feature = € X. The encoder network of ANP maps (z, D¢) into a pair of
representation vectors r = (z, h) as follows:

{sc}eec = SelfAtn(Dc), sc = mean({s}cec), 2z~ N(z|u(sc),02(sc)) 2)
{h¢}eec = SelfAttn(De), h = CrossAttn(z, X¢, {hc}eec) 3)

Here, 1, and o, are single linear layers that map s¢ to mean and standard deviation of the latent
variable z, respectively. In ANP, z and h refer to latent path and deterministic path, respectively. The
deterministic path models the overall skeleton of the encoder network, while the latent path models the
functional uncertainty using a stochastic global latent variable (Garnelo et al., 2018b; Kim et al., 2018).
Then the decoder network takes the representations r and target data « as inputs to predict u(x,r)
and o(z,r), the parameters of the conditional predictive distribution p(y|z, D¢) = N (y|u, o?).

BANP The global latent variable in ANP potentially limits the flexibility in expressing functional
uncertainty. BANP proposes a method that utilizes paired bootstrapping and residual bootstrapping
to model stochasticity in a data-driven way. First, they resample pairs of (z, y.) with replacement
to construct ﬁg’) = (Xéb), f/c(b)). Here b =1, ..., B implies the number of bootstrap samples. The
resampled context is encoded into the representation vector (%) = (i(b), ﬁ(b)) by replacing D¢
in (2) and (3) by @éb). Then BANP conducts the residual bootstrapping to construct bootstrapped
contexts again ﬁéb) =(~C(b), ?C(b)). By using D¢ and @éb) in (2) and (3) separately, BANP gets the
representations of contexts (r, #(*)). Finally, BANP uses an adaptation layer to merge (r,#()) and
obtain (), ¢(®) through the decoder network (see Figure 2).

B
. 1 .
pyle, v, 7)) = N(ylp®, (0*)?), plyle. De) = 5 > plyle,r, 7). €
b=1

Due to the residual bootstrapping, BANP conducts the encoder computation three times and the
decoder computation twice for a single forward propagation. These additional calculations cause the
computational bottleneck in the training and inference (see Appendix B.6).

2.3 NEURAL BOOTSTRAPPER

Repetitions of training restrain the practical use of bootstrap procedures in deep neural networks due
to their high computational burden. To alleviate this, Shin et al. (2021) proposes Neural Bootstrapper
(NeuBoots). NeuBoots circumvents multiple training of networks by learning a bootstrap generator.

Random Weight Bootstrapping Let > . ¢(f(.),y.) be the loss function of interest for a
neural network f. In standard bootstrap procedures, a bootstrapped neural network can be obtained
by minimizing the loss function weighted by a random bootstrap weight w¢ := {w, : ¢ € C}:

L(Wc,f, DC) = chg(f(xc)vyc)' %)
ceC

According to the choice of the distribution on w¢, various bootstrap procedures can be represented
under the form of (5); e.g., the paired bootstrap by w¢e ~ Multinomial(n; 1/n,...,1/n) and the
Random Weight Bootstrapping (RWB) (Prastgaard & Wellner, 1993; Newton & Raftery, 1994)
by we ~ |C| x Dirichlet(1,...,1). NeuBoots utilizes RWB to avoid the data discard problem
which can occur in the standard bootstrapping. We then compute bootstrapped neural networks

{f(b) :b=1,..., B} via minimization of (5) for sampled wél), e 7w((:B).

Under review as a conference paper at ICLR 2022

Learning To Generate Bootstrap Distribution The main idea of NeuBoots is to construct a single
generative network that models the bootstrapped neural networks with varying bootstrap weights in
(5). This formulation modifies the backbone network in a form of f(x, w¢) that inputs both feature x
and bootstrap weight w¢. Shin et al. (2021) show that the minimizer of the following loss generates
valid bootstrap evaluations that match the results of the standard bootstrap procedure:

‘C(fv DC) = JEWCN\C|><Diri(:hlet(1,...,1) [L(WCv f('aWC)7DC))] ’

We call this weighted bootstrapping loss. Once this generator is trained via a single optimization
procedure, we can efficiently generate bootstrapped predictions by plugging random bootstrap weights

in the trained generator; i.e., for a feature of interest «, the trained generator inputs {w((;b) 1B | and

produces bootstrapped predictions §(*) = f (, w(cb)) forb=1,...,B.

3 NEURAL BOOTSTRAPPING ATTENTIVE NEURAL PROCESSES

We propose a novel class of NP, called Neural Bootstrapping Attentive Neural Processes (NSUuBANP).
Aligned with the previous formulation of NP families, we can define our model py as:

po(Y|X,De) = /pW(Y|X, h,z)q(z|Dc)dz:/pr(yi\xi,h,z)q(zﬂ?c)dz (6)
i=1

n
~ pr(yi|a:i,h,z) where z ~ ¢(z|D¢). @)
i=1
Here p,, is the decoder and g denotes the posterior distribution. Since the above integral is intractable,

we approximate the predictive distribution by sampling z from the bootstrap distribution ¢(-|D¢), in-
stead of Gaussian distribution as in (A)NP. Precisely, we train a generative encoder network g, which

outputs bootstrapped representation pairs (h,z) = {(h® z®)}2 = g¢,(X,De, {Wéb)}bB:I).
Through the meta-learning framework (1), our model learns to generate bootstrapped predictions
for an arbitrarily given function f ~ P. Thus, our approach can be regarded as a learn-to-bootstrap
method for stochastic processes. Compared to the fixed bootstrap method used in BANP, our learnable
bootstrap method can find the best strategy to appropriately generate the random functions regarding
the given context and the general property of the underlying data generating process. This will lead
to the better modeling of functional uncertainty of the target stochastic processes. Also, note that
NeuBANP can obtain a number of bootstrapped predictions by simply plugging different bootstrap
weights into g4, while BANP needs repetitive data resampling from scratch. Figure 2 shows the
difference between the forward computation paths of BANP and NeuBANP in detail.

3.1 NEURAL BOOTSTRAPPING CONTEXTS WITH ATTENTION MODULES

To train a generative network, which outputs the bootstrapped representations, we modify the encoder
in ANP to take both (z, D¢) and bootstrap weight w¢ as inputs. We introduce the posterior and
the prediction paths in the encoder, analogous to NP’s latent and deterministic paths. NeuBANP is
designed to leverage RWB, which is theoretically proven as a valid bootstrap method. In detail, the
posterior and prediction path in NeuBANP take the random bootstrap weight as an auxiliary input.
This input provides enough randomness into the network so that our model can successfully capture
the functional uncertainty.

Posterior path We tag each context (z.,y.) € D¢ with a bootstrap weight wgb) to construct

bootstrapped contexts D((Zb) = {(z¢, Ye, wgb))}cec. Then the posterior path receives Déb) as input

and outputs a latent variable z(*). In detail, we apply self-attention to Déb)

representation Z(Cb) by the bootstrap weight Wéb) before mean aggregation. This path connects the con-

texts with weighted bootstrapping loss during the training and allows the bootstrap weights to model
bootstrapped posterior distribution g by controlling the magnitude of each context representation.

and multiply the resultant

Prediction path The prediction path outputs a target-specific representation h(®) that is relevant

for the prediction. We apply self-attention to contexts D¢ and multiply the bootstrap weight wéb)

Under review as a conference paper at ICLR 2022

Encoder

MLP

ke
2 self i Decoder]|
Y, %
i i
Ye

pairwise
(a) BANP

HT
Decoder|—

Adaptation
Layer

bootstrap

Encoder

Cross
Attention
Elementwise product
h‘llue
A Prediction path
. e | pelintion (BP0 (X7} Decoder— (1 oo

copy

iy mean
|C| x Dirichlet(L, .. ., 1) @ o@

(b) NeuBANP

query

Bootstrapping

Fig. 2. A single forward computation of (a) BANP and (b) NeuBANP. Note that the inference for each target point
requires B times of this forward computation.

element-wisely to compute another bootstrapped representation. Cross-attention module uses X and
this bootstrapped representation as key-value pairs to which the target query x attends. Consequently,
reflecting the bootstrap weights shared with the posterior path, the prediction path models interactions
between the given context and the target input.

We summarize the above posterior and prediction paths as follows:

P = {20} .cc = SelfAtn(DY)), 2 = mean(z © w))
he = {he}ecc = SelfAtn(De), h®) = CrossAtin(z, X¢,he © w) o)

where ® denotes element-wise multiplication. We concatenate random bootstrap weights to context
data, unlike NeuBoots, which only utilizes random weight multiplication in the final layer. Concatena-
tion of weights and the contexts in the posterior path yields two effects. First, concatenating random
information in given contexts provides sufficient randomness to the model, allowing it to cover a
wide range of function samples in a space where a true function is likely to exist. Second, we made
this modification to maximize the use of random weights and provide bootstrapping information
to the model without resampling the data, enabling better uncertainty estimation. Additionally, by
multiplying the random weights to the representations from both paths, as in (8) and (9), the repre-
sentations are consistent with the weights and maximize bootstrapping effect. We think that these
multiplications also provide the effect of regularization, which mitigates the overfitting tendency
which ANP and BANP show in a simple regression experiment (see Figure 1).

Decoder and Bootsrapped Prediction The decoder takes (z(*), h(?)) from the encoder and target
x € X as inputs to generate a prediction §(*) = MLP(z, z(®), h(b)). We can generate bootstrap sam-

ples 5, 5@ ... 5(B) by plugging wé), @ wéB) into the encoder g4 (z, Dc, -), respectively.
We estimate the predlctlve mean and standard deviation using bootstrap samples:
1< 1 &
—— ;(0) — A(0) —)2
u—B;y , o= 3_1;@” 1) (10)

In the previous NP methods, the decoder directly outputs the parameters of the predictive distribution,
but the decoder of NeuBANP outputs the stochastic predictions {¢(*)} B . This design of output is
a distinction of our model from other NP methods and allows the nonparametric estimation. Due
to this structure, existing NPs set the lower bound of standard deviation for robust performance.

Under review as a conference paper at ICLR 2022

We found that the performance was susceptible to the lower bound value. However, NeuBANP
naturally obtains parameters of predictive distribution using bootstrap predictions and shows better
performance without such heuristics. It also has the advantage of calculating higher-order statistics
without changing the structure.

3.2 TRAINING

Weighted Bootstrapping Loss We train NeuBANP with weighted loss similar to that of NeuBoots
as demonstrated in Section 2.3. Only context data has the corresponding bootstrap weight in our
setting, but the model still has to fit target data. Thus we designed loss function as a sum of weighted
context 1oss Leonext and non-weighted target 10ss Liyrger as follows:

Liota = Z|C|§;(—wgb)log/v(yc|ﬂm) ITIZ< IOgNyt“J'tvat)) (11)

teT

Lecontext Liarget

where pi., o, jit, and oy are computed by (10) for context (z.,y.) € Dc¢ and target (x4, y;) € Dr.
Averaging weighted context loss with multiple bootstrap weights improves the robustness of a
model by showing various bootstrap samples during training. We trained the model with negative
log-likelihood (NLL). One can replace the NLL with a different loss function, such as cross-entropy
according to the target tasks.

4 EXPERIMENTS

We conducted experiments to compare NeuBANP with the previous NP methods for regression
and sequential decision-making problems. For regression tasks, we conducted one-dimensional
(1D) regression experiments on random functions generated from GP prior and image completion
tasks as two-dimensional (2D) regression (see Appendix B.5 for image completion). For sequential
decision-making problems, we evaluated each method in Bayesian optimization (BO) and Contextual
Multi-Armed Bandit (CMAB).

4.1 NONPARAMETRIC REGRESSION AND UNCERTAINTY ESTIMATION

Settings We followed the settings in Lee et al. (2020). To obtain meta-training datasets, we sampled
batches of random functions from GP prior with RBF kernel, and context and target points were
chosen randomly from each function. In addition, kernel parameters of GP were randomly sampled so
that the models could learn about various functions. NeuBANP was trained with 10 bootstrap samples,
and we confirmed that it is robust to the number of samples. Please refer to Appendix B.2 for details.

Results The numerical results are summarized in Table 2. ANP and BANP tend to estimate homo-
geneous uncertainties for all target points in a situation where context points are sufficiently given
(see Figure 3), because they place the heuristic lower bound on the variance. In the case of BANP,
homoscedasticity occurs even when the number of context is small. Another problem only occurs in
BANP, which is that it does not properly estimate functional uncertainty. Since the uncertainty about
the shape of the true function is high in the region where the context point is not given, models should
generate a wide range of function samples. However, we can see that BANP generates almost the same
functions, not like those of the other methods, so we argue that BANP is not an appropriate method
for modeling functional uncertainty. NeuBANP resolves these problems efficiently and achieves the
best performance except for target prediction in the Periodic kernel.

4.2 BAYESIAN OPTIMIZATION

Since NP can approximate a class of arbitrary functions, it can replace GP, the commonly used
surrogate model of BO. It is crucial to approximate the objective function from the given observations
using the surrogate model, but evaluating the acquisition function and determining the subsequent
samples are vital for efficient exploration. We evaluated the proposed method on various black-box
functions, which may be unobserved in the meta-training step (see Algorithm 1).

Under review as a conference paper at ICLR 2022

ANP BANP NeuBANP

0.50 0.50 050

0.25 025 025 WA

0.00 iR M P 0.00 0| o0 A Y
-0.25 V i) -0.25 \\/M‘/ -0.25 \/ﬁ—\‘/" /
-0.50 -0.50 -0.50

-2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2

0.50 0.50 050

0.25 RN 0.25 N\ 0.25 \ //r\\..

00079 = ~ f‘ 0.00 \ ~— lﬂJ 0.00 —\' ""““
~0.25 \. /c’ e s -025 . KR Y | -0.25 /.'r\.k’
-0.50 7 -0.50 < -0.50

-2 -1 [1 2 -2 -1 0 1 2 -2 -1 0 1 2

Fig. 3. Comparison of ANP, BANP, and NeuBANP in 1D regression given 4 context points (top) and 20 context
points (bottom). Orange lines represent the ground-truth function. Blue lines are predictive mean given by each
model and shaded region denotes the standard deviation (amount of uncertainty). To visualize the quality of
functional uncertainty, we overlapped multiple shaded areas obtained with 30 sampled outputs for each input.

Settings For 1D, we followed the same setting in Lee et al. (2020). We set objective functions gen-
erated from GP with RBF, Matérn 5/2, and Periodic kernels and applied the models trained in Section
4.1. Furthermore, we demonstrated the BO performance of NeuBANP for multi-dimensional settings
(2D and 3D). We set objective functions as various benchmark functions used in the optimization
literature (Kim, 2020; Kim & Choi, 2017). See Appendix B.3 for details. A simple regret measured
the performance of each model, and the mean performance over 100 experiments is reported for
reliable evaluations.

2D Ackley 2D Dropwave 2D Michalewicz Time complexity

Simple regret
z
2
&
3
2
B

10 20 30 40 50

10 20 30 40 50 o 10 20 30 40 50 0 10 20 30 40 50

3D Ackley 3D Cosine 3D Rastrigin Time complexity

Simple regret

10 20 0 0 50 10 20 0 B 50 3 10 20 30 B 50 3 10 20 30 a0 50
Iterations Iterations Iterations Number of evaluated points

Fig. 4. Left: Multi-dimensional Bayesian optimization results on various benchmark functions with UCB as an
acquisition function. Bold lines represent the mean performance over 100 experiments. We indicate 20% of the
standard deviation. Right most: Time complexity of each model as the number of observations increases.

Results NeuBANP outperformed the other methods in BO experiments (see Figure 4 and 8). Table
3 and 4 shows numerical results. For multi-dimensional BO, NeuBANP achieved the best results for
every function except the Hartmann-3D when using Upper Confidence Bound (UCB) as an acquisition
function. For the Hartmann-3D, the performance of NeuBANP is statistically comparable to the best
method (ANP) when considering the standard deviation. For Goldsteinprice and Rastrigin functions,
GP records poor performance due to its numerical errors during the optimization procedure (see
Appendix B.3). The rightmost plots of Figure 4 show the time complexity according to the number
of observation points. NeuBANP has the fastest decreasing rate of regrets in terms of iterations
in both cases. We also conducted BO experiments using Expected Improvement (EI) to test the
performance of NeuBANP to be independent of the selection of acquisition functions (Figure 9).
Figure 10 demonstrates the better exploration strategy of NeuBANP compared to BANP. The second

Under review as a conference paper at ICLR 2022

Regret Method | 8=0.5 §=0.7 =09 5§ =0.95 6 =0.99

Uniform 100.00 008 100.00 009 100.00 £025 100.00 £037 100.00 +0.78
Neural Linear 0.95 +0.02 1.60 +0.03 4.65 o138 9.56 + 036 49.63 +241

MAML 2.95 +o12 3.11 +o.16 4.84 +022 7.01 £o033 22.93 +157

Cumulative NP 1.60 +0.06 1.75 +0.05 3.31 +o0.10 5.71 +0.24 22.13 +1.23
ANP 2.17 189 3.59 3803 5.63 +848 11.68 +897 2475 £7.08

BANP 2.04 +1.52 2.34 +1.23 4.30 +0.77 6.76 +1.03 21.18 + 1.69

NEeuBANP 0.85 +022 1.02 +o27 1.85 +o056 3.04 +o0s8 9.76 +193

Uniform 100.00 +045 100.00 +£078 100.00 + 118 100.00 +221 100.00 + 421
Neural Linear 0.33 +004 0.79+ 007 2.17 o014 4.08 +0.20 35.89 +2098

MAML 2.49 +o0.12 3.00 + 035 475 + o048 7.10 +0.77 22.89 + 141

Simple NP 1.04 + 006 1.26 + o021 2.90 + 035 5.45 + o047 2145 13
ANP 0.99 + 168 1.50 221 3.64 +471 6.32 +733 21.65 +1.72

BANP 1.22 + 183 2.37 £3.04 3.27 +533 7.73 + 1216 20.63 +£3421

NeuBANP 0.86 +0.06 1.04 +0.08 1.88 +o0.14 3.09 +023 9.96 +0.70

Table 1. Results of the wheel bandit problem according to the value of . Mean and standard deviation for
cumulative regret and simple regret over 50 runs are reported. Regrets are normalized to that of the uniform
policy.

and fourth columns show the explored points by BANP and NeuBANP, respectively. In most cases,
NeuBANP converged to the optimum faster than BANP. The third and fifth column shows the contour
plots of acquisition functions of each method. Note that NeuBANP accurately infers the potential
area of the optimum compared to BANP. As explained above, NeuBANP can estimate heterogeneous
uncertainty, and thus it is able to handle well for the exploration-exploitation trade-off, which is
essential in sequential decision-making problems.

4.3 CONTEXTUAL MULTI-ARMED BANDIT

We conducted a CMAB experiment, the wheel bandit problem, as in Garnelo et al. (2018b) to show
that NeuBANP works efficiently as well as BO based on its performance of uncertainty estimation.

Settings We followed the same environment in Garnelo et al. (2018b), but used UCB policy. For
more details, please refer to Appendix B.4. The parameter § determines the environment of the
wheel bandit problem. As ¢ increases, high-reward observation becomes sparse, which makes the
problem more difficult. We set the baselines of CMAB experiment to MAML (Finn et al., 2017), Neural
Linear (Riquelme et al., 2018) and NP. We measured cumulative regrets and simple regrets for 2,000
iterations to demonstrate the performance of each model.

Results NeuBANP performed well for various & values (see Table 1). Note that NeuBANP showed
better performance in challenging environments with sparse high rewards. NeuBANP showed the
ability to learn various reward distributions based on appropriate functional uncertainty modeling.
The result demonstrates that NeuBANP can utilize a small number of context information and make
accurate estimations. NeuBANP also has stable results as its small variance shows. On the other hand,
ANP has extremely high variance in the performance because it overfits to certain prediction and
failed to adapt to the various bandit environments.

5 RELATED WORK

Neural Processes CNP (Garnelo et al., 2018a) uses a pair of encoder and decoder networks to
produce a predictive posterior distribution over functions. NP (Garnelo et al., 2018b) introduces a
global latent variable to embed functional uncertainty in the deterministic architecture of CNP and
predicts various outputs given the same context data. ANP (Kim et al., 2018) then enhances predictive
accuracy by replacing MLP modules in NP with the attention modules. BNP (Lee et al., 2020) proposes
the bootstrap method to model uncertainty in stochastic processes without the assumption of a single
latent variable on which previous methods rely. In addition to these works, there are many attempts
to use NPs in various tasks. Singh et al. (2019) tackles sequential stochastic processes, where the

Under review as a conference paper at ICLR 2022

dynamics of the given system changes as the time being. Leveraging time-variant context points,
Singh et al. (2019) models the underlying temporal 3D structures. Gordon et al. (2020) extends NP
families to contain translation equivariant functions, providing theoretical formulation to represent
translation-invariant functional representations. Louizos et al. (2019) do not assume explicit global
latent variables, instead supported by dependency graph among local latent variables, to encode
inductive bias for given data easier than NPs that use global latent variables.

Bootstrapping Neural Networks Bootstrap method (Efron, 1987) is a reliable approach to esti-
mate predictive uncertainty (Lakshminarayanan et al., 2017; Osband et al., 2016). However, it is
computationally inefficient to go through the feed-forward computation as much as the number of
bootstraps; hence, it discourages the practical application of bootstrap in neural networks. There have
been several works to circumvent this issue by approximating bootstrapped distribution. Amortized
bootstrap (Nalisnick & Smyth, 2017) approximates bootstrap distribution over model parameters
by using amortized inference and implicit models. Generative Bootstrap Sampler (Shin et al., 2020)
proposes a computational bootstrap procedure that constructs a generator function of bootstrap evalu-
ations for classical statistical models. Neural Bootstrapper (Shin et al., 2021) suggests a simple recipe
for generating bootstrapped predictive distributions of MLPs and convolutional neural networks.

Meta-Learning based Stochastic Optimization NPs are trained with a meta-learning framework
to solve various tasks related to the data generation process through a single optimization. Santoro
et al. (2016); Chen et al. (2017) follow the same training procedure of NP. However, Santoro et al.
(2016) proposes an memory-augmented network for robust meta-learning, while Chen et al. (2017)
proposes the method to produce an algorithm for black-box optimization using recurrent networks.
Sharaf & Daumé III (2019) presents a meta-learning algorithm for learning a good exploration policy
in the contextual bandit. Ravi & Beatson (2019) also solves contextual bandits based on the Bayesian
framework by inferring a posterior on weights of neural networks. Galashov et al. (2019) introduces
a unified framework for applying NP to a wide range of sequential decision-making problems.

6 CONCLUSION

We have proposed NeuBANP, a novel bootstrap method for a family of NP to model functional
uncertainty appropriately. Instead of the standard bootstrap, NeuBANP learns to construct a generator
function that produces valid bootstrapped distribution without resampling which can be considered as
a learn-to-bootstrap method. NeuBANP successfully worked in a meta-learning framework, providing
diverse trajectories of underlying data-generating processes, consistent to any given context. In
addition, NeuBANP estimates the local uncertainty accurately, resolving overfitted prediction and
variance overestimation problems observed in both ANP and BANP. We replace the additional layer
and repetitive computations in BANP with the simple attachment of bootstrap weights to the model,
which leads to lower computations and smaller memory. NeuBANP shows superior performance to
previous NP methods in regression and stochastic optimization tasks, including multi-dimensional
setting, which has been the desired application of NP. However, due to the numerical instability of GP,
there is a limit in sampling high-dimensional stochastic processes for the meta-learning framework.
We suggest that this is a primary task for scalable applications of NP in stochastic optimization, as a
challenging research direction.

7 REPRODUCIBILITY

For reproducibility of experimental results, we provide a link to anonymous github that contains
our source code in Appendix B. The source code includes the implementation of our model, data
generation, and experiments. Additionally, the data generation steps are thoroughly explained in
Appendix B.

REFERENCES

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization, 2016.

Under review as a conference paper at ICLR 2022

Maximilian Balandat, Brian Karrer, Daniel R. Jiang, Samuel Daulton, Benjamin Letham, Andrew Gor-
don Wilson, and Eytan Bakshy. Botorch: A framework for efficient Monte-Carlo bayesian opti-
mization. In Advances in Neural Information Processing Systems, 2020.

Yutian Chen, Matthew W. Hoffman, Sergio Gémez Colmenarejo, Misha Denil, Timothy P. Lillicrap,
Matt Botvinick, and Nando de Freitas. Learning to learn without gradient descent by gradient
descent. In International Conference on Machine Learning, pp. 748-756. PMLR, 2017.

Gregory Cohen, Saeed Afshar, Jonathan Tapson, and André van Schaik. Emnist: Extending MNIST
to handwritten letters. In International Joint Conference on Neural Networks, pp. 2921-2926.
IEEE, 2017.

Bradley Efron. Better bootstrap confidence intervals. Journal of the American statistical Association,
82(397):171-185, 1987.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
deep networks. In International Conference on Machine Learning, pp. 1126-1135. PMLR, 2017.

Alexandre Galashov, Jonathan Schwarz, Hyunjik Kim, Marta Garnelo, David Saxton, Pushmeet
Kohli, S.M. Ali Eslami, and Yee Whye Teh. Meta-learning surrogate models for sequential decision
making. arXiv preprint arXiv:1903.11907, 2019.

Jacob Gardner, Geoff Pleiss, Kilian Q. Weinberger, David Bindel, and Andrew Gordon Wilson.
Gpytorch: Blackbox matrix-matrix gaussian process inference with gpu acceleration. In Advances
in Neural Information Processing Systems, volume 31, pp. 7576-7586, 2018.

Marta Garnelo, Dan Rosenbaum, Christopher Maddison, Tiago Ramalho, David Saxton, Murray
Shanahan, Yee Whye Teh, Danilo Rezende, and S.M. Ali Eslami. Conditional neural processes. In
International Conference on Machine Learning, pp. 1704-1713. PMLR, 2018a.

Marta Garnelo, Jonathan Schwarz, Dan Rosenbaum, Fabio Viola, Danilo J Rezende, SM Eslami, and
Yee Whye Teh. Neural processes. arXiv preprint arXiv:1807.01622, 2018b.

Jonathan Gordon, Wessel P. Bruinsma, Andrew Y. K. Foong, James Requeima, Yann Dubois, and
Richard E. Turner. Convolutional conditional neural processes, 2020.

Hyunjik Kim, Andriy Mnih, Jonathan Schwarz, Marta Garnelo, Ali Eslami, Dan Rosenbaum, Oriol
Vinyals, and Yee Whye Teh. Attentive neural processes. In International Conference on Learning
Representations, 2018.

Jungtaek Kim. Benchmark functions for bayesian optimization. https://github.com/
jungtaekkim/bayeso-benchmarks, 2020.

Jungtaek Kim and Seungjin Choi. BayesO: A Bayesian optimization framework in Python. https:
//bayeso.org, 2017.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations (Poster), 2015.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive
uncertainty estimation using deep ensembles. In Advances in Neural Information Processing
Systems, 2017.

Tuan Anh Le, Hyunjik Kim, Marta Garnelo, Dan Rosenbaum, Jonathan Schwarz, and Yee Whye Teh.
Empirical evaluation of neural process objectives. In Advances in Neural Information Processing
Systems Workshop on Bayesian Deep Learning, 2018.

Juho Lee, Yoonho Lee, Jungtaek Kim, Eunho Yang, Sung Ju Hwang, and Yee Whye Teh. Bootstrap-
ping neural processes. In Advances in Neural Information Processing Systems, 2020.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild. In
International Conference on Computer Vision, pp. 3730-3738, 2015.

Christos Louizos, Xiahan Shi, Klamer Schutte, and Max Welling. The functional neural process.
arXiv preprint arXiv:1906.08324, 2019.

10

https://github.com/jungtaekkim/bayeso-benchmarks
https://github.com/jungtaekkim/bayeso-benchmarks
https://bayeso.org
https://bayeso.org

Under review as a conference paper at ICLR 2022

Eric Nalisnick and Padhraic Smyth. The amortized bootstrap. In International Conference on
Machine Learning 2017 Workshop on Implicit Models, 2017.

Michael A. Newton and Adrian E. Raftery. Approximate Bayesian inference with the weighted
likelihood bootstrap. Journal of the Royal Statistical Society: Series B (Methodological), 56(1):
3-26, 1994.

Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep exploration via
bootstrapped DQN. arXiv preprint arXiv:1602.04621, 2016.

Jens Prastgaard and Jon A Wellner. Exchangeably weighted bootstraps of the general empirical
process. The Annals of Probability, pp. 2053-2086, 1993.

Carl Edward Rasmussen. Gaussian processes in machine learning. In Summer School on Machine
Learning, pp. 63-71. Springer, 2003.

Sachin Ravi and Alex Beatson. Amortized bayesian meta-learning. In International Conference on
Learning Representations, 2019.

Carlos Riquelme, George Tucker, and Jasper Snoek. Deep bayesian bandits showdown: An empirical
comparison of bayesian deep networks for thompson sampling. In International Conference on
Learning Representations, 2018.

Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, and Timothy Lillicrap. Meta-
learning with memory-augmented neural networks. In International Conference on Machine
Learning, pp. 1842-1850. PMLR, 2016.

Amr Sharaf and Hal Daumé III. Meta-learning for contextual bandit exploration. arXiv preprint
arXiv:1901.08159, 2019.

Minsuk Shin, Lu Wang, and Jun S Liu. Scalable uncertainty quantification via generativebootstrap
sampler. arXiv preprint arXiv:2006.00767, 2020.

Minsuk Shin, Hyungjoo Cho, Hyun-seok Min, and Sungbin Lim. Neural bootstrapper. In Advances
in Neural Information Processing Systems, 2021.

Gautam Singh, Jaesik Yoon, Youngsung Son, and Sungjin Ahn. Sequential neural processes. In
Advances in Neural Information Processing Systems, volume 32, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information
Processing Systems, 2017.

A MODEL

A.1 BASIC OPERATION

Muti-Layer Perceptron MLP(d;, d},, d,, n;) denotes the multi-layer perceptron consisting of 7
linear transformations and ReLU activations between them. Let parameters d;, dj,, d, the dimension
of input, hidden and output feature, repectively. We used same dj, for every hidden layers. Lin(p, q)
denotes the linear transformation of input with feature dimension p into output with feature dimension
q.

MLP(di, dh,do, nl)(X) = Lil’l(dh, do) o (RCLU o Lin(dh, dh))nl_2 oReLU o Lin(di, dh)(X)
(12)

Dot Product Attention DotProdAttn (Vaswani et al., 2017) denotes the attention operation with
attention score based on cosine similarity. Dot product of query (Q) and key (K) tensors calculates
the similarity of each vectors in query tensor relative to each vectors in key tensor. Attention score is
calculated through softmax operation of normalized similiarity. Let dj, the feature dimension of key
and query tensors, and d,, that of value tensors.

DotProdAttn(Q, K, V) = softmax (QT K /\/dy)V (13)

11

Under review as a conference paper at ICLR 2022

Multi-Head Attention MHA denotes multi-head attention with dot product attention. The input is
pre-processed with MLP and the output of attention is post-processed with layer normalization. For
simplicity, we omit parameters of each MLP layers. split(X, n) denotes splitting of tensor X with
respect to feature axis into a tuple of n tensors (X/)?_; which have same dimension in feature axis.
[X1, X2, ..., X,,] denotes the concatenation of tensors X7, Xs, ..., X, with respect to feature axis.
LayerNorm denotes the layer normalization introduced in Ba et al. (2016). Let npeqq the number of
heads in multi-head attention.

(Q7)i2i** = split(MLPgx(Q), nheaa) (14)
(K7)i2i** = split(MLP g (K), nheaa) (15)
(V)itsad = split(MLP, (V), head) (16)
MHA(Q, K, V) = LayerNorm([(DotProdAttn(Q}, K/, V")) *5e4]) (17)

Self-Attention We used self-attention to calculate efficient representations of context Dy =
(Xe, Ye). We define self-attention based on multi-head attention as follows:

Dy = [Xe,Ye] = ([xe, Ye))eee, SelfAttn(De) := MHA(D,, D;, D;) (18)

Cross-Attention We used cross-attention to calculate representation of context specific to target
feature x in interest, when original representations (h.).cc is given. We define cross-attention based
on multi-head attention as follows:

CrossAttn(z, Xe, (he)eec) := MHA(z, X¢, [(he)cec])- (19)

A.2 ARCHITECTURE

For fair comparison, we used the same architecture of all models as in Lee et al. (2020). For NeuBANP,
we increased the input dimension of SelfAttn in the posterior path by one to take bootstrap weight as
additional input. Please refer to Lee et al. (2020) for detailed model architecture of ANP and BANP.

A.3 NON-ATTENTIVE CASE

As an ablation study, we consider the non-attentive case of NeuBANP, called Neural Bootstrapping
Neural Processes (NeuBNP). Like the architecture of NeuBANP is based on ANP, the architecture of
this model is based on NP, the non-attentive counterpart of ANP. With Déb) = {(Zc, Ye, wﬁb) }eec as
defined in 3, we applied the similar strategy of using random weights in the encoder as follows, and
trained with the same loss function:

2 = {2} ecc = MLP(DY, 2 = mean(z{) © wl) (20)
hy = {h{"}ccc = MLP(DY”, h(") = mean(hy” © w() 1)
(22)

To make the non-attentive counterpart of NeuBANP, we use random weights in both paths, re-
sulting in two latent variables (") h("), They induce randomness into the decoder output §(*) =
MLP(z, z(®) h(b)), and the predictive distribution is construct by (10). The results in Table 2 and
Table 3 shows that this model performs worse than NeuBANP, but outperforms BNP and NP, showing
the quality of functional uncertainty the model learns with the bootstrap.

B EXPERIMENTS

Implementation2 of NPs other than NeuBANP was borrowed from the source code of Lee et al. (2020)3.
Regression and Bayesian optimization experiment was done in single GeForce RTX 2080 Ti GPU
with the memory of 11,019 MiB. Multi-dimensional regression including image completion was
done in Tesla V100 GPU with the memory of 32,480 MiB.

https://anonymous.4dopen.science/r/neubanp_initial
https://github.com/juho-1lee/bnp, MIT License.

12

https://anonymous.4open.science/r/neubanp_initial
https://github.com/juho-lee/bnp

Under review as a conference paper at ICLR 2022

NP BNP

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 15 2.0 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 15 2.0

Fig. 5. Each plot shows predictions given by NP, BNP in a linear regression. The ground-truth function is
a simple linear function with heterogeneous variance: y = z + fe(x) where e(z) ~ N(0,02(x)) and
o(xz) = va2 + 10~5. We used the official code provided by Lee et al. (2020). Unlike the case of ANP and
BANP, considering that overfitting does not occur in NP and BNP, we can notice that attention modules are the
leading cause of overfitting.

B.1 SIMPLE LINEAR REGRESSION

We experimented using a linear function rather than a function sampled from the GP to analyze
how well the NP models work in a simple regression task. Additionally, we need to examine how
well the NP models predict uncertainty in the presence of heterogeneous noise in the data, and
we add €(z) ~ N(0,0%(z)),0(x) = V&2 + 1075 to the linear function. We multiplied the noise
by coefficient 3 to follow the meta-learning framework, and the 3 value was uniformly randomly
sampled from [0.1, 1.0] during training. In this task, NP, BNP, and NeuBANP were able to estimate
the underlying true linear function and the uncertainty of heterogeneous noise. On the other hand, in
case of ANP and BANP, overfitting occurred and failed to predict the true function and its uncertainty
(see Figures 1 and 5). As explained in the main text, we can see that the overfitting phenomenon
occurs because of the attention mechanism that has appeared to solve the underfitting issue of the NP.
NeuBANP has the advantage of the attention mechanism and achieved better performance through
regularization using random weights. For (A)NP and B(A)NP, we used the official code provided by
Lee et al. (2020). The remaining training settings are the same as the 1D regression in Appendix B.2,
and we changed only the training iteration to 10, 000.

B.2 1D REGRESSION

Training For all models, training dataset consists of randomly sampled context and target from
functions following GP with RBF kernel k(z,y) = s? - exp(—||z — y||?/(2(?)). Parameters of
kernel are randomly sampled with s ~ Uniform(0.1,1.0) and [~ Uniform(0.1, 0.6). Feature values
(zi)iccuT is chosen uniformly at random in [—2, 2]. The size of context and target are randomly
sampled with |C| ~ Uniform(3,47) and |7| ~ Uniform(3,50 — |C|). We trained all models for
100,000 iterations and used Adam optimizer (Kingma & Ba, 2015). For stable learning, we used the
cosine annealing scheduler with initial learning rate 5 x 10~

Results Table 2 shows log-likelihood of NPs for various evaluation dataset sampled from GP
with RBF, Matérn 5/2, Periodic kernel. As in generation of training dataset, parameters of Matérn
5/2 kernel k(z,y) = s2(1 + V5||lz — y||?/(31?)) exp(—V/5||z — y||/1) and Periodic kernel
k(z,y) = s exp(—2sin®(x||z — y||>/p)/I?) was randomly sampled with s ~ Uniform(0.1, 1.0),
I ~ Uniform(0.1,0.6) and p ~ Uniform(0.1,0.5). For RBF and Matérn 5/2 dataset, NeuBANP
showed state-of-the-art performance both in fitting context and predicting target. We added figures
showing the predictions of ANP, BANP, and NeuBANP for the Matérn 5/2 and Periodic kernel (see
Figure 6 and 7). In the case of the Matérn kernel, the two problems described in the main text
occurred identically for ANP and BANP (see Section 4.1). However, in the case of Periodic, we can
see that all models failed to approximate the true function correctly. This result came out because we
experimented with testing the models’ generalization performance when trained with the RBF kernel.
And the quantitative results in Table 2 show that the prediction performance of the attention-based

13

Under review as a conference paper at ICLR 2022

Method RBF Matérn 5/2 Periodic
context target context target context target

CNP 1.17 +008 0.87 £036 1.06 011 0.65 039 -0.31 +041 -2.05 117
NP 1.11 £000 0.78 £147 099 £011 0.56 o050 -0.28 £037 -1.73 £1.09
ANP 1.38 000 1.08 £041 138 +000 0.94 +o047 0.21 +076 -6.82 + 2383
BNP 1.20 £007 092 +034 1.09 £000 0.72 +035 -0.18 +037 -1.16 + 056
BANP 1.38 000 1.12+033 138 +000 0.99 +o038 0.28 +0.69 -5.69 +237
NeuBNP 1.54 020 1.01 o055 1.22+022 053 +o0s59 -0.34 +045 -2.34 +£1095
NeuBANP | 3.17 +o028 1.38 to60 3.09 o290 1.13 o064 1.56 o073 -11.49 +38.08

Table 2. Log-Likelihood of Nps for 48,000 different evaluations of context and target.

model on the target data is poor. Among them, NeuBANP has the worst performance, and we think the
reason is the lower bound on the predicted variance set by ANP and BANP. Quantitative results show
similar predictions for all models, but ANP and BANP achieve numerically more robust performance
by setting a lower bound on the variance. We find some cases with the jumps in the function values
which do not seem like a smooth function (See Figure 3, 6, and 7). This phenomena occurs in every
attentive models including ANP, BANP, and NeuBANP. It looks like a distorted prediction on particular
region, however, since our model predicts high variance in such region, this does not raise a problem
in predicting the global trend, as we can see in high average log likelihood in 1d regression.

ANP BANP NeuBANP
04 04 0.4
0.2 ¥ Al 0.2 j'.\ 0.2 /"\/
0.0 il { 0.0 P v 00 = 7 2
-02 P \.w it -0.2 e \./,f -02 \'W\"}"
-04 -04 -0.4

-2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2

0.4 ok 0.4 0.4 S
0.2 o 0.2 ','\\ 0.2

[[
0.0 0.0

s ‘V’. ‘r"\\../' _0:2 f \.//.’r‘\../‘ s ‘*V,(, A»../’

-0.4 -0.4 -0.4

-2 -1 [1 2 = = 0 1 2 -2 -1 0 1 2

Fig. 6. Comparison of ANP, BANP, and NeuBANP in 1D regression. Matérn 5/2 kernel case.

ANP BANP NeuBANP
1.0 1.0 1.0

05 /& 05 /L 05

‘ —
0.0 i it lmm = Swizs 007 | ,..,;,'..;.é"\-v-‘---'- rm——— 0.0 ‘ ¢ ,‘P/
-05 *& -05 1“’ -05 b “F
2 1 0

-1.0 -1.0 -1.0

-2 -1 0 1 2 -2 -1 0 1 2 - - 1 2

0.5 R I . 0.5 . A 0.5 o \
o u"‘!‘wu"uwwﬂ""‘w’ o 4“!,1’WWW AW o f’\,m\ﬂbw"’m‘""

-1.0 -1.0 -1.0

Fig. 7. Comparison of ANP, BANP, and NeuBANP in 1D regression. Periodic kernel case.

B.3 BAYESIAN OPTIMIZATION

One-dimensional case Table 3 shows the performance of GP and various NPs for 1D Bayesian
optimization task. RBF, Matérn 5/2, and Periodic kernels are used to generate evaluation dataset.

14

Under review as a conference paper at ICLR 2022

Algorithm 1: Neural Process based Bayesian Optimization.

Input :Target function f*; Acquisition function {/; Observed data Dy = {(x¢, f*(z0))};
Maximum evaluation step 7.
1 Meta-train a neural process pg on f ~ P(F).
2 fort=1,...,T do
3 Find 2; by optimizing acquisition function: z; = argmin U (pe (y|x, Di—1))
reX

4 Evaluate f*(x;) and update the observed data: D; <— D;_1 U {(x¢, f*(x¢))}

RBF Matérn 5/2 Periodic

— GP
— e
— NP

—— ANP
~—— BNP
—— BANP
= NeuBANP

025 025

Simple regret

W 0 50 100 3 2
Iterations

W 5 W 5
Iterations Iterations

Fig. 8. 1D Bayesian optimization results. Bold lines show the mean of simple regrets over 100 experiments. We
also report 10% of the standard deviation.

2D Ackley 2D Dropwave 2D Michalewicz Time complexity
s
08 16 w0l — ©°
—— ANP
07
s 14 — BNP
— BANP
= 06 12
12 01 — NeuBANP
2 0s o C)
=3 08)
] y 2
£, os F
[03
0.4 20
: 02 02
3 01 00 0
3 10 E) 30 @ E) 3 10 E) 30 W E) 3 10 E) E) W E) o 10 2 30 @ E)
3D Ackley 3D Cosine 3D Rastrigin Time complexity
3
[. o 120
5
s " 100
T 125 80
9 W o)
o? 100 2w
g— s 075 30 = .
g 0.50
20
1 025 2
3 000 10 0
3 10 2) @ E) 3 10 B) o E) 3 10 2 B o 0 o 10) E) 0 E)
Iterations Iterations Iterations Number of evaluated points

Fig. 9. Left: Multi-dimensional Bayesian optimization results on various benchmark functions with EI as an
acquisition function. Bold lines represent the mean performance over 100 experiments. We indicate 20% of the
standard deviation. Right most: Time complexity of each model as the number of observations increases.

Multi-dimensional case In multi-dimensional BO experiments, we used GPyTorch * (Gardner
et al., 2018) for scalable GP regression, and BoTorch > (Balandat et al., 2020) for overall BO process
(e.g., optimization of acquisition functions). GP was set to the default setting of BoTorch. In detail,
GP model was parameterized with Matérn 5/2 kernel with ARD and constant mean function, and
prior distribution for hyperparameters was set as Gamma(3, 6) for length scale [and Gamma(2, 0.15)
for output scale s. For three-dimensional BO experiment in Figure 4, the overall time complexity of
ANP and BANP is almost the same. This result is seemingly in contrast with the fact that ANP takes a
shorter time for prediction than BANP. However, since the BO algorithm contains the optimization of
the acquisition function, the qualities of acquisition functions obtained by the model predictions may
affect the overall time complexity. We conjecture that BANP gives an acquisition function easier to
optimize than that of ANP so that the overall time complexities of both models are similar. Additionally,
we did not report the results of GP for the two functions. Specifically, we omitted the Goldstein-Price

*nttps://github.com/cornellius—gp/gpytorch, MIT License.
Shttps://github.com/pytorch/botorch, MIT License.

15

https://github.com/cornellius-gp/gpytorch
https://github.com/pytorch/botorch

Under review as a conference paper at ICLR 2022

BANP - UCB NeuBANP

¥y optimum N a2 20 e Optimum
] o Evaluated points ;o 5 1) @ Evaluated points

NeuBANP - UCB

Fig. 10. First column: 2D objective functions Second & Fourth columns: Contour plots of functions and the
evaluated points during Bayesian optimization. Third & Fifth columns: UCB value at the last iteration.

Method | RBF Matérn 5/2 Periodic

GP (RBF) | 0.016 +0.052 0.048 +0.206 0.104 + 0242
CNP 0.072 +o0.188 0.081 +0.198 0.096 +o0.166
NP 0.154 + 0273 0.187 + 0303 0.083 +o0.121
ANP 0.209 + 0364 0.223 +0.328 0.107 £o0.142
BNP 0.109 + o214 0.105 +o0.188 0.071 +0.091
BANP 0.114 o216 0.136 +0.256 0.077 £ o0.11
NeuBNP 0.069 +o0.169 0.125 + 0238 0.058 +0.069
NeuBANP | 0.006 +o011 0.011 +0055 0.028 +0.035

Table 3. 1D Bayesian optimization results. Mean and standard deviations of simple regrets over 100 runs are
reported.

since the simple regret value of GP was too large (the performance was poor) compared to other
models and omitted the Rastrigin since the 46 errors occurred out of 100 experiments. An error may
occur when ill-conditioned data is given during the kernel training process of the GP, and the data
recommended by the UCB during the exploration (or exploitation) process seems to correspond to
this condition. If we report the performance ignoring the numerical error, the simple regret for the
Goldstein-Price was 52049.13, and the simple regret for the Rastrigin was 18.48. For the Rastrigin
function, GP with UCB is numerically unstable, but like EI, it achieved the best performance.

B.4 CONTEXTUAL MULTI-ARMED BANDIT

Setting We followed wheel bandit setting introduced in Riquelme et al. (2018). At every step
t (< T), a two-dimensional point (z, ;) inside the unit circle Rynse = {(2,y) € R? : 22+ 3> < 1}
is given as a context ¢;. The algorithm chooses an action a; € {1, 2, 3,4, 5}. The stochastic reward
ry = r(ag, ¢;) is sampled from the reward distribution. Let Ry, Ry, R3, R4, R5 C Ryni+ the disjoint

16

Under review as a conference paper at ICLR 2022

Dim Target | GP ANP BNP BANP NeuBANP
Ackley 2.84 + 182 0.19 + 053 1.82 +1.03 0.50 + 1.03 0.08 +027
D Dropwave 0.36 +0.17 0.22 +0.15 0.32 + 018 0.28 +0.17 0.15 +o.10
Goldsteinprice - 475.52 £469.15 2098.22 + 150088 80.67 £ 6585 30.33 +25.42
Michalewicz | 0.67 +o0.4s 0.61 +0.40 1.00 + 046 0.69 +038 0.45 +o0.42
Ackley 339 + 125 5.36 +097 329 +1.11 430 + 115 0.34 + o026
3D Cosine 0.04 + o024 0.10 +o0.10 1.12 + 057 0.25 + 043 0.005 +0.003
Hartmann 042 +077 0.33 + 050 1.94 + o036 0.93 +0.98 0.39 +039
Rastrigin - 54.94 +19.84 48.55 + 1434 38.36 +820 23.06 +19.77

Table 4. Multi-dimensional Bayesian optimization results. Mean and standard deviations of simple regrets over
100 runs are reported.

sets (regions) of unit circle as follows:

Ry ={(z,y): 2* +y* < 8} (23)
Ry = {(z,y): 6 <2®*+9* < 1,2 >0,y >0} 24)
Ry ={(z,y):6 <2’ +9*> <1,z <0,y > 0} (25)
Ry={(z,y):6 <2’ 4+9* <1,z <0,y <0} (26)
Rs ={(z,y): 6 <2’ 49> <1,z >0,y <0} (27)

where the constant § determines the size of R; relative to other regions. Each action results in rewards
following different distribution according to the region to which the given context belongs, where N
denotes the normal distribution.

r(1,¢) ~ N (1.2,0.01%) (28)

2 .
r(a,) ~ {./\/(50,0.01), ifce R,

N(1,0012), otherwise "0 € {2345} (29)

Note that action {1} always produces a moderate reward, but the other actions {2, 3,4,5} sometimes
produce a very high reward when the context is sampled from the corresponding high-reward region.
Thus, learning different reward distributions for actions {2,3,4,5} by apprehension of context
information is critical to bandit performance. As § increases, the high-reward regions for each actions
become smaller. Then the model should learn from rare observation of such high reward, which
means the problem becomes more difficult.

Training and Evaluation When pre-training NeuBANP, as in Garnelo et al. (2018b), 8 training
batches of 512 contexts and 50 targets were generated from the environment with hyperparameter
randomly sampled; § ~ Uniform(0, 1). We consider two-dimensional context point ¢; as feature
x; € R? and five rewards for actions (r(1,¢;),7(2,¢;),7(3,¢;),7(4,¢:),7(5,¢;)) as label y; € R,
At evaluation, only rewards for chosen actions are observed by the model. Thus, we replace other
unobserved rewards with dumny values randomly sampled from A (0, 1), following the usual strategy.

B.5 IMAGE COMPLETION

Settings We compared the baseline NPs and NeuBANP on image completion tasks. Following Lee
et al. (2020), we trained all models on EMNIST (Cohen et al., 2017) and CelebA (Liu et al., 2015)
which was resized to 32 x 32. For EMNIST, we used only 10 classes for training and reported
the evaluation results for both seen classes and unseen classes separately. NeuBANP was trained
with 10 samples, and the other baselines were trained with 4 samples. For evaluation, we used
50 samples for all methods. Similar to 1D regression experiment, we randomly select the pixels
of a given image as context/target, and the number of context/target were drawn randomly from
Uniform distribution. However, in this case, we increased the maximum number of given points;
i.e., |C| ~ Uniform(3,197), |7| ~ Uniform(3,200 — |C|). « values were rescaled to [—1, 1] and
the corresponding y values were rescaled to [—0.5, 0.5]. We trained all models for 200 epochs and
set a initial learning rate of 5 x 10~* using the Adam optimizer (Kingma & Ba, 2015) with cosine
annealing scheduler for learning rate decay.

17

Under review as a conference paper at ICLR 2022

oOriginal Context ANP ANP o BANP 4 BANP 0 NeuBANP 4 NeuBANP o

W - P
L H | i
oy = g 'y
. #} Figh o))
1, ! ~iF
s SE Seen classes (0-9) Unseen classes (10-46)
r ;.i‘ - r k 3‘, r T ' {‘/ Method context target context target
b 4 & CNP 0.926 +0007 0.751 £o00s 0.766 0009 0.498 L0012
. . v a NP 0.948 +0006 0.806 0005 0.808 £000s 0.600 +0.009
- y ANP 1.383 x0000 0.993 o005 1.383 o000 0.894 + 0004
H{_ _3! \ Fy BNP 1.004 +000s 0.880 +000s 0.883 0010 0.722 + 0006

e BANP 1.383 0000 1.010 0006 1.382 +0000 0.942 + 0005
NeuBANP 1.475 toss 1.337 x024 1333 10516 1.119 +o3s8

Fig. 11. Qualitative result of EMNIST image comple- Table 5. Quantitative result of EMNIST image comple-
tion. tion. Mean and standard deviationd of likelihoood over
5 experiments.

original Context ANP 4 ANP o BANP 4 BANP ¢ NeuBANP 4 NeuBANP o ‘

context target

£t
n i J | CNP 2.975 o013 2.199 + 0.003

] 2 NP 3.066 + o011 2.492 + o014
_ Y ; ANP 4.150 + o0.000 2.731 +0.006

| . vy BNP 3.269 +0.008 2.788 +0.005
;' BANP 4.149 o0 3.129 +oo0s

NeuBANP | 13.946 +tos0 2.870 +o021

Fig. 12. Qualitative result of CelebA image comple- Table 6. Quantitative result of CelebA results. Mean and
tion. standard deviationd of likelihoood over 5 experiments.

Results Figure 11 and 12 show the mean prediction and uncertainty estimation of ANP, BANP,
and NeuBANP for test images in unseen classes. For both datasets, though our model shows noisy
mean prediction due to the random weights, we can demonstrate the advantage of NeuBANP in
uncertainty estimation. NeuBANP estimated the uncertainty correctly in the area where the color of
the pixel changes and thus possesses significant uncertainty. This leads to the overall improvement in
quantitative performance (see Table 5 and 6).

B.6 TiME COMPLEXITY

Settings We measured the time complexity empirically according to the number of context points,
target points, and bootstrap samples. We fixed the number of targets to 25 and adjusted the number
of contexts to 10, 20, 30, 40, and 50 to see how inference time varies with the number of contexts.
Conversely, to see the inference time according to the number of targets, we fixed the number
of context points to 25. We fixed the number of bootstrap samples to 50 as in the 1D regression
experiment. When conducting experiments with the number of bootstrap samples, the number of
context and target points was fixed at 20 and 25. All experiments were conducted with a batch
containing 100 tasks.

Results BANP places a remarkably high computational cost in that the approach of bootstrapping the
attention module is inefficient, as demonstrated in Figure 13. The inference time becomes noticeably
longer as the number of context points increases. NeuBANP, on the other hand, learns to bootstrap
efficiently; therefore, its time complexity is comparable to that of BNP, which does not use the
attention module.

Method Number of contexts Number of targets Number of bootstrap samples
etho 10 20 30 40 50 10 20 30 40 50 10 50 100
BNP 1797 1977 2222 2546 2886 | 1.830 1.882 1.965 2.057 2.156 | 1.532 1.639 1.950

BANP 3512 4405 5345 6.509 7.793 | 4439 4.626 4.834 4926 5.117 | 3.189 3.699 4.775
NeuBANP | 1.632 1.813 2217 2757 3369 | 1.768 1941 2063 2212 2357 | 1.606 1.705 2.149

Table 7. Inference time measurement. Mean of inference time over 5 runs are reported.

18

Under review as a conference paper at ICLR 2022

8 —— NeuBANP 5.0 4
7] — Bane // 451
—— BNP 4.5 4
4.0 4
61 4.0 1
3.5
51 3.5 1
3.0 1
41 3.0 1
2.5
3 254
2.0
2 2.0 / /_’/
10 20 30 40 50 10 20 30 40 50 10 50 100

Number of contexts

Fig. 13. Inference time measurement.

Number of targets

19

Number of bootstrap samples

	Introduction
	Preliminaries
	Meta-Learning Framework of Neural Processes
	(Bootstrapping) Attentive Neural Processes
	Neural Bootstrapper

	Neural Bootstrapping Attentive Neural Processes
	Neural Bootstrapping Contexts with Attention Modules
	Training

	Experiments
	Nonparametric Regression and Uncertainty Estimation
	Bayesian Optimization
	Contextual Multi-Armed Bandit

	Related Work
	Conclusion
	Reproducibility
	Model
	Basic Operation
	Architecture
	Non-attentive Case

	Experiments
	Simple Linear Regression
	1d Regression
	Bayesian Optimization
	Contextual Multi-Armed Bandit
	Image Completion
	Time Complexity

