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ABSTRACT

Recent work in image and video generation has been adopting the autoregressive
LLM architecture due to its generality and potentially easy integration into multi-
modal systems. The crux of applying autoregressive training in language generation
to visual generation is discretization—representing continuous data like images
and videos as discrete tokens. Common methods of discretizing images and videos
include modeling raw pixel values, which are prohibitively lengthy, or vector
quantization, which requires convoluted pre-hoc training. In this work, we propose
to directly model images and videos as compressed files saved on computers via
canonical codecs (e.g., JPEG, AVC/H.264). Using the default Llama architecture
without any vision-specific modifications, we pretrain JPEG-LM from scratch to
generate images (and AVC-LM to generate videos as a proof of concept), by directly
outputting compressed file bytes in JPEG and AVC formats. Evaluation of image
generation shows that this simple and straightforward approach is more effective
than pixel-based modeling and sophisticated vector quantization baselines (on
which our method yields a 31% reduction in FID). Our analysis shows that JPEG-
LM has an especial advantage over vector quantization models in generating long-
tail visual elements. Overall, we show that using canonical codec representations
can help lower the barriers between language generation and visual generation,
facilitating future research on multi-modal language/image/video LLMs.1

1 INTRODUCTION

With large language models (LLMs) the field of NLP has shifted to multi-task processing (e.g.,
machine translation, code generation, action planning) using a single LLM with little data needed
for adaptation (Ouyang et al., 2022). We envision that future research will continue shifting to
multi-modal multi-task processing, where text and visual data are mixed. However, current paradigms
of generating images and videos differ substantially from text generation, requiring specialized and
complicated training and representations (Van Den Oord et al., 2017; Rombach et al., 2022; Peebles
& Xie, 2023). In this work, we simplify the task of image and video generation by using the exact
autoregressive transformer architecture as in mainstream LLMs (Radford et al., 2019), over canonical
and universal codecs: JPEG for images (Wallace, 1991), and AVC/H.264 for videos (Wiegand et al.,
2003).

The key obstacle to training autoregressive models for image and video generation is discretization, as
continuous data like images and videos need to be represented as discrete tokens. Current generative
vision models that follow autoregressive language modeling objectives (Bengio et al., 2000) often
adopt vector quantization (VQ) to encode images or videos to some learned latent codes and then
apply language models (Van Den Oord et al., 2017; Ramesh et al., 2021; Yu et al., 2021; Yan et al.,
2021; Yu et al., 2023).2 However, VQ methods often demand sophisticated tokenizer training that
requires a careful hyperparameter selection for vision-specific modules (e.g., downsampling factor

1Our code and models will be available at anonymized.
2The other major line of generative vision models are diffusion models, a score-based, non-autoregressive

method (Song & Ermon, 2019; Ho et al., 2020; Rombach et al., 2022; Peebles & Xie, 2023). Since the diffusion
objectives are drastically different from the language modeling objective, it is challenging to integrate them
in a multi-modal setup (e.g., with regular language models). While not a main focus of this work, we include
comparisons with diffusion models in our later experiments as a secondary evaluation.
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in convolutions) and balancing across several losses (Van Den Oord et al., 2017; Esser et al., 2021).
VQ also involves a two-stage, non-end-to-end learning process (first the neural tokenizer, then the
latent code LM). This makes downstream adaptation of the models less flexible (e.g., tuning the
VQ tokenizer interferes with the learned latent code LM). Overall, the use of conventional LLM
architectures (end-to-end autoregressive sequence modeling) as generative vision models is not yet
straightforward.

The seminal work of ImageGPT (Chen et al., 2020) attempted to bridge this gap by using a regular
GPT architecture to model pixels sequentially. They have shown a small-scale success at a very low
resolution of 32x32 pixels. More realistic images at a size of 256x256 would require modeling a
prohibitive amount of tokens in each sequence (65K or 196K tokens depending on color modes), not
to mention videos. This hinders the method’s wider adoption by the field.

In this work, we tackle the problem of training LLM architectures for image and video generation
where the essential discretization neither adds significant complications to the pipeline like VQ meth-
ods, nor is computationally prohibitively expensive like ImageGPT. Specifically, we use canonical
file encodings/codecs—JPEG for images (Wallace, 1991), and AVC/H.264 for videos (Wiegand et al.,
2003)—as non-neural preprocessors that discretize data. We show that codec-based representations
greatly mitigate the sequence length limitation while being simple and effective. This design enables
us to train a vanilla transformer with the conventional language modeling objective for image and
video generation in a realistic setup.

We pretrain two 7B models with a Llama-2 architecture (Touvron et al., 2023), named JPEG-LM and
AVC-LM, that can generate 256x256 images and 256x144 videos with 15 frames, with an average
context length of 5K and 15K, respectively. In our main image modeling/generation evaluations,
we show that JPEG-LM surpasses strong VQ-based models in generation quality (an average of
31% FID reduction) and produces surprisingly realistic qualitative examples. Our results also show
AVC-LM can generate videos with realistic movements. Furthermore, we analyze in which aspects
JPEG-LM is particularly stronger than VQ models and discover that our non-neural, training-free
codec representations are more competent in capturing long-tail elements in images (e.g., human
faces/eyes and text characters in small sizes).

Overall, this work presents how conventional LLM architectures can be used as generalized models
towards visual generation. Our approach using canonical codecs does not incur vision-specific com-
plications in the pipeline or suffer from sequence length infeasibility seen in prior work. Compared
to the baselines, our models are much simpler to train and more effective. Following the previous
efforts in unifying detached language-based tasks, our method helps pave the way to a unification of
multiple modalities, facilitating the exploration of porting LLM techniques (e.g., alignment, scaling,
efficiency, security, etc.) to all modalities.

2 BACKGROUND

In this work, we explore autoregressive image generation as a straightforward extension of prominent
LLM setups (Radford et al., 2019).3 Conventional language modeling (Bengio et al., 2000) models
the likelihood of sequential data autoregressively. Specifically, given a sequence of discrete tokens
x1, x2, · · · , xN (or x1:N ), a language model models p(x1:N ) =

∏N
i=1 p(xi | x1:i−1), an objective

used in most mainstream LLMs. The key of applying language modeling to visual generation is
how to discretize continuous data x like images and videos to discrete tokens x1:N like in language.
Below we give an overview of two prominent approaches to the discretization of images.

2.1 PIXEL VALUES: IMAGEGPT

ImageGPT (Chen et al., 2020) is an image generation model based on a conventional LLM architecture
(GPT-2). The images are discretized as a sequence of pixel values (integers 0–255) from the upper-left
to the bottom-right pixel (raster scan). Since there are three channels of colors for each pixel, to
reduce the number of tokens in each pixel sequence, ImageGPT clusters pixel colors to 512 distinctive
clusters (i.e., for each pixel, three values from 0 to 255 are converted to one value from 0 to 511).

3As a proof of concept, we mainly explore autoregressive modeling in visual generation only (images and
videos, without text-conditioning), while future work may explore more diverse multi-modal setups.
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ImageGPT models the probability of pixel sequences autoregressively: p(pixel-value(x)i |
pixel-value(x)1:i−1). This is an expensive process, and ImageGPT only models and generates
32x32 images. Images with a more realistic resolution like 256x256 would require 65K tokens for
each image (or 196K tokens without color clustering), a prohibitive sequence length for LLMs.

2.2 LATENT CODES: VECTOR-QUANTIZATION MODELS

Vector-quantization (VQ) operates as a two-stage process, tokenizer training and language model
training (Esser et al., 2021; Ramesh et al., 2021). We take VQ-VAE as our example tokenizer
which discretizes continuous images (Van Den Oord et al., 2017). The tokenizer first learns an
encoder E to project an image x to spatial features E(x). Then for each feature e in E(x), it is
quantized to ẑ by looking up the nearest neighbor in a learned codebook Z: ẑ = quantize(E(x)) =
[argminzk∈Z∥e − zk∥22]e∈E(x). The index k of the nearest entry in codebook Z for each spatial
feature forms the sequence of VQ latent codes. A decoder G is then learned to reconstruct the original
image from the quantized representations. Overall, VQ-VAE learns an encoder E, decoder G, and
codebook Z , with three distinct losses: reconstruction loss, codebook loss, and commitment loss.
LVQ-VAE = ∥x − G(ẑ)∥1 + ∥sg[E(x)] − ẑ∥22 + β∥sg[ẑ] − E(x)∥22. An effective VQ tokenizer
needs a large amount of training data, proper hyperparameters for the vision-specific modules (e.g.,
downsampling factor in convolutional encoder E(·)), and a careful balance between the different
losses (e.g., in LVQ-VAE), which add significant complications to the pipeline.

A language model architecture can then be trained over the VQ latent codes (a sequence of index
k above) as a generative vision model: p(VQ-code(x)i | VQ-code(x)1:i−1). Notably, since the
training of language model comes after and depends on the VQ tokenizer, a post-hoc update to the
VQ tokenizer is challenging since it would lead to a non-trivial retraining or adaptation of the trained
language model. Indeed in §5.3 we find that the VQ tokenizer, though trained with a large amount of
data, still struggles with long-tail elements in the images and is hard to be optimized once and for all.

For simplicity and end-to-end adaptability, we propose to discretize continuous image and video data
via canonical codecs.

3 JPEG-LM AND AVC-LM

Figure 1: JPEG-LM and AVC-
LM are simple autoregressive trans-
formers that directly model and gen-
erate canonical file encodings.

Though images and videos are continuous data and naturally
have 2D or 3D data structures, they are stored as files on com-
puters efficiently via compression/codecs, which leads to a
discrete 1D representation. We aim to explore whether standard
LLM architectures can directly learn to model and generate
canonical vision file encodings, which can subsequently be
read/opened as generated images or videos. Generation in this
paradigm would greatly mitigate the sequence length infeasibil-
ity in ImageGPT while being simple and end-to-end trainable
compared to VQ methods. Moreover, canonical file encodings/-
codecs are often non-neural and training-free and are robust to
distributional shifts (§5.3). In this work, we choose the most
popular and established file encodings/codecs for images and
videos, JPEG (Wallace, 1991) and AVC/H.264 (Wiegand et al.,
2003), respectively.4

3.1 CANONICAL CODECS: JPEG AND AVC/H.264

Canonical non-neural codecs like JPEG and AVC have a high-
level intuition to compress signals that are less perceptible to
human eyes more aggressively. JPEG has three main steps to encode each image: discrete cosine
transform (DCT), quantization, and entropy coding. DCT converts each image patch to a weighted
combination of a preset of patches containing low- and high-frequency patterns. Quantization zeroes

4For images, PNG is also a common format. However, unlike the lossy JPEG, PNG is a lossless compression
method (similar to ZIP) and often results in less effective compression and much longer sequences than JPEG.
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out some high-frequency patterns from the weighted combination, since human eye is not good
at perceiving them. Entropy encoding such as Huffman coding is then used to reduce the total
numbers/bits representing the patches/images.5

AVC (H.264) operates on patches (macroblocks) of video frames. Each patch can be encoded using
blocks of pixels that are already encoded within the current frame (intra-frame prediction) or using
blocks of pixels encoded in other frames (inter-frame prediction with motion estimation). The
prediction is then subtracted from the current patch to form a residual. The residual then goes through
a process similar to JPEG, involving DCT, quantization, and bitstream encoding. The encoded content
is a crucial part to the subsequent container files like MP4.

Both codecs have been used widely for decades and substantially compress the data (and thus
sequence length) compared to raw pixel modeling (in our setup 40x in JPEG and 110x in AVC). Our
focus is to use these canonical codecs as off-the-shelf tools to convert images and videos to sequences
of discrete bytes efficiently.6 We wish to fit an LLM to implicitly learn the grammars and semantics
of the canonical codecs.

3.2 JPEG-LM AND AVC-LM

JPEG and AVC convert images and videos to bytes. Most of these bytes represent the image and
video content after entropy encoding. However, there are also metadata and special patch/macroblock
separators that are invariant across images or videos and use up multiple bytes. To address them
along with other unknown frequent byte combinations that are compressed suboptimally by entropy
encoding (e.g., by JPEG’s standard, fixed Huffman tables), we further extend the default byte
vocabulary (256 discrete values) slightly with byte-pair encoding (BPE), a standard preprocessing
scheme in LLMs, which merges bytes appearing together frequently to a new single token.7 Since
JPEG and AVC produce sequences of variable lengths based on the content of images and videos,
special beginning-of-sequence and end-of-sequence tokens are also added to the vocabulary. The
entries in the vocabularies are considered as our JPEG/AVC tokens.

Given an image x, we propose JPEG-LM to model p(JPEG-token(x)i | JPEG-token(x)1:i−1).
Given a video x, we propose AVC-LM to model p(AVC-token(x)i | AVC-token(x)1:i−1). We use
conventional LLM architectures (autoregressive transformers) without any vision-specific modifica-
tions (no convolutions, no 2D positional embeddings) to maximize the models’ generality.

4 EXPERIMENTAL SETUP

4.1 JPEG-LM

We pretrain a 7B Llama-2 model (Touvron et al., 2023) from scratch using 23M 256x256 images
subsampled from Schuhmann et al. (2022). JPEG encodes each image with a quality factor of 25
(qualitative illustration in §5.3).8 We first use 10K images to derive 320 BPE tokens as our vocabulary
entries.9 On average, each image in our training data leads to 5K tokens. For batching efficiency,
we concatenate all sequences in the dataset and chunk in sequences of length 12K. In total, we have
9.5M sequences and thus 114B JPEG tokens (for each epoch). The model is trained approximately
for two epochs with a maximum learning rate of 3e-4.

5A further intuitive and interactive description can be found at https://parametric.press/issue-01/
unraveling-the-jpeg/ (Shehata & Conlen, 2019).

6Both codecs operate at bits level at the core (due to entropy encoding), but modeling at bytes level is
effective according to our experiments.

7More precisely, for the metadata/headers in the byte sequence that are well-known to be redundant across
examples (e.g., JPEG quantization and Huffman tables), we remove them in the preprocessing and later add
them back to the generated bytes from the model. For more complicated codecs like AVC, we let BPE handle
such metadata.

8https://pillow.readthedocs.io/
9In our pilot study, we find the BPE process to be optional and the model would work similarly without it.

The 64 extended vocabulary entries apart from the 256 default byte values include special JPEG separators FFD0,
FFD1, . . . , FFD9, FFDA, and static file headers invariant across data, which slightly help reduce the sequence
length. The vocabulary size 320 is chosen since a multiple of 64 for the embedding dimension is desired for
optimal compute on GPUs.
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(a) Prompt (b) JPEG-LM (c) VQ (d) ImageGPT

Figure 2: Generated images by JPEG-LM and baselines with partial images as prompts. We show
three random samples from JPEG-LM and one from VQ transformer and ImageGPT (with super-
resolution). The original images for the prompts are independently sourced outside existing training
sets. We observe that JPEG-LM can generate realistic facial expressions, landscape, common objects,
texts in image forms, etc. Additionally, JPEG-LM shows an especial advantage over baselines on
meaningful details like human eyes (zoom in for the best view). Figure 6 and Figure 7 show further
examples of JPEG-LM and VQ transformer on unconditional generation.

4.2 AVC-LM

As a proof of concept that canonical video codecs can be used for video generation as well, similar to
JPEG-LM, a 7B Llama-2 model is pretrained from scratch as AVC-LM using 2M 256x144 videos
subsampled from Bain et al. (2021). Due to the scope of experiments, we only keep the first 5 seconds
of each video with 3 frame-per-second (thus 15 frames in total). The video is then processed with
AVC/H.264 codec with a constant quantization parameter 37.10 We use 10K videos to derive 1024
BPE tokens as the vocabulary entries. On average, each video in our training data has 15K tokens.
We perform data concatenation and chunk in context lengths of 32K for efficient batching. In total,
we have 1.3M sequences and thus 42B AVC tokens.

4.3 IMAGE GENERATION BASELINES

VQ transformer We use a pretrained VQ tokenizer from Tang et al. (2022), which used 200M
images (ITHQ-200M, closed source dataset) to train a VQ-VAE model.11 This VQ tokenizer processes
each image in the 23M image training set for our JPEG-LM (vocabulary size 4096, sequence length

10https://ffmpeg.org/
11In our pilot study, we found this f8 VQ tokenizer outperforming other open-source VQ tokenizers, even the

ones with longer context lengths (f4) like in Rombach et al. (2022). More discussion can be found in §A.
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1024). We then train a 7B Llama-2 transformer with the same configuration as in JPEG-LM. We use
this VQ model as a main comparison to our JPEG-LM throughout this work.

Table 1: Zero-shot, partial-image-conditioned, FID evalu-
ation on ImageNet-1K (lower is better). rprompt indicates
the ratio of the image passed to the model as prompt. Best
results among the autoregressive models are in bold fonts
(reference diffusion results are italicized if better).

rprompt =
0.25

rprompt =
0.5

rprompt =
0.75

Stable Diffusion (in-

paint)

266.71
(±1.67)

132.98
(±0.53)

58.17
(±0.10)

VQ Diffusion 252.42
(±0.20)

125.16
(±0.26)

57.49
(±0.25)

ImageGPT (super-

resolution)

289.48
(±0.61)

262.76
(±0.48)

258.11
(±0.69)

VQ Transformer 302.92
(±0.29)

172.73
(±0.21)

71.88
(±0.19)

JPEG-LM 272.12
(±1.24)

123.09
(±0.28)

34.21
(±0.21)

Table 2: Zero-shot, partial-image-conditioned, FID eval-
uation on FFHQ (lower is better). rprompt indicates the
ratio of the image passed to the model as prompt. Best
results are in bold fonts. The prompting ratios in FFHQ
were chosen differently such that they often lead to image
prompts above the human eyes, below the eyes, and below
the nose in pilot experiments.

rprompt =
0.375

rprompt =
0.4375

rprompt =
0.5

Stable Diffusion (in-

paint)

115.30
(±2.14)

107.02
(±1.83)

89.82
(±4.51)

VQ Diffusion 60.88
(±0.38)

45.63
(±0.17)

40.58
(±0.91)

ImageGPT (super-

resolution)

61.73
(±0.91)

57.80
(±0.73)

55.28
(±1.22)

VQ Transformer 53.25
(±0.54)

45.58
(±0.58)

41.15
(±0.35)

JPEG-LM 36.15
(±1.11)

31.22
(±0.33)

27.15
(±0.21)

Table 3: Unconditional FID comparison of JPEG-LM and
VQ transformer.

VQ Transformer 155.51
(±2.41)

JPEG-LM 121.35
(±0.51)

ImageGPT + super-resolution Im-
ageGPT uses GPT-2 XL as its underlying
architecture. The pretrained model in
(Chen et al., 2020) is trained over 14M
32x32 images from ImageNet. For a
comparable evaluation, we use a super-
resolution model (Rombach et al., 2022)
over ImageGPT’s output.12

Diffusion Though not a focus of this
work, we include two variants of dif-
fusion models in the baselines, Stable
Diffusion (inpainting optimized) (Rom-
bach et al., 2022) and VQ diffusion (Gu
et al., 2022; Tang et al., 2022). Both dif-
fusion models can take partial images
(through masking) and generate com-
pleted images, a setup we use across mod-
els in later evaluations. These baseline
diffusion models are smaller in model
size (~1B) but consume orders of mag-
nitude more training data (200M–5B).
They only serve as a secondary reference,
and our focus is on comparing autore-
gressive image generation models under
mainstream LLM paradigms.

5 RESULTS

In works of language modeling, a fun-
damental evaluation is to collect a set of
validation data, use the prefixes of data
as prompts to the pretrained language
model, and sample from the language
model for a completion (Holtzman et al.,
2020; Meister et al., 2023). The comple-
tions are then evaluated for their quality
against the gold validation data through
distance metrics like Mauve score (Pil-
lutla et al., 2021).

In this work, since we focus on vision-
modality-only models with LLM archi-
tectures, we retain partial images (and
later partial videos) as prompts to our
models and evaluate their completions.
Given a prompt ratio rprompt, the autore-
gressive image generation models condi-
tion on discretization(x)1:(rprompt×Ntokens)

for the generation.13 Throughout the eval-
12The pretrained model provides 4x super-resolution. In our pilot study, we find performing a 4x super-

resolution, followed by a 0.5x downsample, then another 4x super-resolution yields the best result for the
322-to-2562 conversion.

13More specifically, the fixed-length VQ transformer and ImageGPT condition on
discretization(x)1:(rprompt×Ntokens) and generate discretization(x)(rprompt×Ntokens):Ntokens . Variable-length

6
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uations, the comparison between JPEG-LM and VQ transformer would be the most direct, as they
share the same paradigm, model size, and training data (except that VQ transformer uses substantially
more data in the tokenizer training stage).

5.1 QUALITATIVE ANALYSIS

(a) Original (b) After VQ (c) After JPEG

Figure 3: Compression effect of VQ and JPEG
(zoom in for the best view). JPEG is significantly
better in detailed but highly perceptible elements
like small human faces and text characters. VQ
has a relative advantage in color and sharpness
preservation.

Figure 4: Correlation between per-class
(ImageNet-1K) FID difference and class fre-
quency. The class frequency is estimated through
querying Google image search. Each class has a
corresponding data point while an aggregation is
performed for visual clarity. The correlation is
positive and statistically significant (p=0.0002).
This indicates JPEG-LM has more advantage in
long-tail classes.14

In Figure 2, we show the generation samples from
JPEG-LM along with baseline models over inde-
pendently sourced data outside existing training
sets. We observe that by directly outputting JPEG
file bytes, JPEG-LM can generate surprisingly re-
alistic facial expressions (especially the eyes, com-
pared to the strong VQ transformer), landscape,
common objects, texts in image forms, etc. Fig-
ure 6 and Figure 7 show examples of JPEG-LM
and VQ transformer on unconditional generation.

5.2 QUANTITATIVE RESULTS

In Table 1, we show prompting JPEG-LM, VQ
transformer, and other baselines with different
levels of partial images in ImageNet-1K (Rus-
sakovsky et al., 2015). The FID evaluation (Heusel
et al., 2017) contains 5000 randomly sampled im-
ages from ImageNet-1K’s validation set. This is
zero-shot generation (w.r.t. models’ training sets)
and without class-conditioning. Experiments were
done three times with different seeds. JPEG-LM
consistently outperforms the VQ transformer in
all prompting ratios. It mostly surpasses diffusion
baselines with inpainting capabilities as well.

In Table 2, we show prompting the models with
partial images in FFHQ (Karras et al., 2019). This
is also a zero-shot setup without training to the
FFHQ distribution and is evaluated on 1000 ran-
domly sampled FFHQ images. JPEG-LM consis-
tently outperforms the VQ transformer and other
baselines.

In Table 3, we further validate our findings on
fully unconditional generation with JPEG-LM and
VQ transformer. Since they were trained on the
same training data, we can compare their FID of
unconditional generation w.r.t. our held-out, i.i.d.
evaluation set. We again observe that JPEG-LM
achieves a better FID.

These findings show JPEG-LM’s overall competence in image generation with a pure LLM architec-
ture modeling canonical file encodings.

JPEG-LM conditions on discretization(x)1:patch-position(rprompt×Npatches) and generates until a EOS token is pro-
duced. Throughout the work, sampling from autoregressive transformers is by default with top-p = {0.9, 1.0}
and top-k = {40, 80}.

14To further corroborate our findings, apart from using Google image search, we also estimate the class
frequency by matching class names/descriptions to the captions of our training images. The correlation is again
positive and statistically significant (slope=+106.7, p-value=0.006).
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5.3 WHY JPEG-LM? A CASE STUDY OVER LONG-TAIL ELEMENTS IN IMAGES

To further explore in which aspects our JPEG-LM excels compared to the baselines, especially the VQ
transformer, we first compare how data is processed/compressed before being trained in transformers
in JPEG-LM and VQ models.

JPEG vs. VQ compression JPEG-LM and VQ transformers can both be interpreted as first
performing compression and then autoregressive modeling. The VQ model, unlike the non-neural
JPEG compression, trained its VQ-VAE quantizer with a large amount of data (200M images in
our case). In Figure 3, we observe that both compression methods are relatively successful in
compressing and decompressing general scenes like nature/landscape backgrounds. However, we
find VQ suffers in small but highly perceptible elements in the images, like human faces or eyes. For
images that contain small text characters, we observe the image degradation in VQ also happens in a
non-predictable way, generating seemingly clear but uninterpretable text characters. On the other
hand, the image degradation due to the non-neural, training-free JPEG compression happens in a
predictable manner, arguably more preferrable, especially when images contain long-tail elements
with important meanings.

Table 4: Zero-shot, partial-image-conditioned, FID evalu-
ation on downscaled FFHQ (for both FID and ∆, lower
is better). An increased gap between JPEG-LM and the
VQ transformer shows JPEG-LM is more robust to small
but meaningful long-tail elements.

rprompt = 0.375 rprompt = 0.5

Stable Diffusion (IP) 136.28 (±2.48) 120.54 (±6.46)

∆downscaled−original +20.98 +30.72
VQ Diffusion 83.63 (±1.16) 47.90 (±1.12)

∆downscaled−original +22.75 +7.32
ImageGPT (SR) 46.67 (±0.62) 40.46 (±0.70)

∆downscaled−original −15.06 −14.82

VQ Transformer 56.33 (±0.86) 47.94 (±0.21)

∆downscaled−original +3.08 +6.79
JPEG-LM 35.80 (±0.17) 26.25 (±0.45)

∆downscaled−original −0.35 −0.90

Quantitative analyses on long-tail ele-
ments In Figure 4, we first show the
per-class FID in our ImageNet-1K gen-
eration experiments. For each class of
images, we calculate the difference be-
tween their FID with JPEG-LM genera-
tions and FID with the VQ transformer
generations. We also estimate the fre-
quency/coverage of each class of images
on the internet by querying Google im-
age search and logging the total number
of returned results. We observe a statisti-
cally significant correlation between the
per-class FID difference and the class fre-
quency. The more advantage we observe
in JPEG-LM over the VQ model, the less
frequent the corresponding class is. In
other words, JPEG-LM excels relatively
more in long-tail sub-distributions.

In Table 4, we further intervene on the
FFHQ images by downsizing them (to
0.5x, while padding the images with black background to keep the overall size), aiming to test
different models’ performance on smaller visual concepts (e.g., small human faces). Such concepts,
though small in size, can still be highly perceptible by humans and contain important meanings. We
thus want the models to be robust on them. We perform similar prompted image generations with
JPEG-LM, VQ transformer, and other baseline models.15 We find that JPEG-LM still consistently
outperforms the VQ transformer (and other baselines as well). Especially, JPEG-LM achieves slightly
better performance while VQ transformer becomes worse compared to the experiments with original
image size. These deltas in opposite directions highlights the robustness of JPEG-LM.

These findings show that JPEG-LM not only has a promising performance overall, but specially
strong with long-tail visual elements in the images.

5.4 PROOF-OF-CONCEPT VIDEO GENERATION

One advantage of using canonical file encodings in LLM paradigms for vision generation is simplicity.
From JPEG-LM that generates images, we naturally take one step further and train a video generation
model, AVC-LM, that models canonical video codecs (AVC/H.264) with autoregressive transformers.

15The FID is measured on the active proportion of the images, excluding the black paddings.
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(a) Prompt frames

(b) Generated frames

Figure 5: Generated video frames by AVC-LM on held-out test data. The first 10 frames are given to
the model as the prompt, and the last 5 frames are generated by the model.

As a proof of concept, we prompt AVC-LM with partial videos (i.e., frames) from a held-out set
from our training data and investigate the model completions. In Figure 5 (along with §C), we show
qualitative examples generated by AVC-LM. We observe that AVC-LM can capture the motion of
moving objects reasonably.

6 RELATED WORK

Current image and video generation models often adopt an autoregressive or diffusion approach. The
autoregressive approach can build upon pixel-based representations as explored in Van Den Oord
et al. (2016); Van den Oord et al. (2016); Chen et al. (2020). These methods suffer from prohibitively
long sequences and only operate on low-resolution images. The autoregressive approach can also
build upon vector quantization, which involves a sophisticated pre-hoc tokenizer training in addition
to the autoregressive model (Van Den Oord et al., 2017; Esser et al., 2021; Ramesh et al., 2021;
Yu et al., 2021; Yan et al., 2021; Yu et al., 2023; Mentzer et al., 2023; Lu et al., 2023; Liu et al.,
2024a). Diffusion models generate images or videos by an iterative denoising process, and they
have specialized objectives and architectures that are challenging to be incorporated to regular LLM
paradigms to form multi-modal systems (Song & Ermon, 2019; Ho et al., 2020; Rombach et al., 2022;
Ho et al., 2022; Gu et al., 2022; Tang et al., 2022; Gu et al., 2023; Peebles & Xie, 2023; Crowson
et al., 2024). For example, performing simple tasks outside visual generation like classification with
diffusion architectures is already not straightforward (Li et al., 2023). In this work, we propose to
model canonical codecs (JPEG and AVC/H.264) with conventional language model architectures for
visual generation. Horton et al. (2023) and Wu et al. (2024) are independent work that also process
file bytes data, but they both focus on visual understanding (instead of generation) and use specialized
modules to handle the byte sequences (whereas we use a general Llama-2 model). Perez et al. (2024)
concurrently discover that JPEG formats can be used with language models in file anomaly handling
and generation (on low-resolution images). As a universal codec, JPEG is a novel form of data
encoding for efficient image understanding (Park & Johnson, 2023). Kang et al. (2019) explore an
image generation model that performs generation and JPEG compression in one system with GANs.
JPEG artifacts can also be corrected by learning a restoration model (Kawar et al., 2022), which is
potentially helpful to the generations from our JPEG-LM for improving image quality. Compressive
codecs are also a rising topic in language. Jiang et al. (2023) use canonical compressors as feature
extractors for texts. Lester et al. (2024) train language models to generate compressed texts.

7 CONCLUSION

In this work, we propose JPEG-LM and AVC-LM that generate images and videos using mainstream
LLM architectures (autoregressive transformers) with canonical codec representations (JPEG for
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images, AVC/H.264 for videos). Our approach greatly mitigates the length infeasibility of pixel-based
sequence modeling while enabling simple, flexible, and end-to-end training compared to sophisticated
vector quantization methods. Our image generation evaluation shows JPEG-LM achieves better
results than the baselines, with an especial advantage in generating long-tail visual elements. Our
work contributes to a unifying paradigm of language generation and visual generation, facilitating
future research to port successful LLM techniques (e.g., alignment, efficiency, etc.) to all modalities.

One notable significance of this work is to show that vanilla autoregressive language modeling with
canonical codecs is indeed possible in visual generation. This is an approach almost void of prior
work, likely because there are many potential, assumed challenges with the method. For example,
both JPEG and AVC operate at bits level due to the entropy coding. The bytes in the files do not
have consistent meanings and would depend on their context and the implicit Huffman tables. For
generality, our models also do not use any vision-specific modules like convolutions or 2D positional
embeddings, potentially making the task more challenging. However, we observe that conventional,
vanilla language modeling surprisingly conquers these challenges without special designs as training
goes. Based on the findings of this work, future work may continue to investigate the scaling aspect
of this family of models (similar to mainstream LLMs), co-training/deployment with text-based
LLMs, or better architectures for canonical codecs without loss of generality for other modalities. An
extended discussion can be found in §A.

LIMITATIONS

Machine learning models that generate images, especially the models using natural language as
convenient controls or even deepfakes that are maliciously trained to swap faces, lead to risks of
generating unsafe and harmful content (Nguyen et al., 2022; Qu et al., 2023). Though we mitigate such
risks in our model by not including texts for conditioning and not processing multiple images/videos
for any types of synthesis, the use cases of the model still require extensive care. The purpose of
this work is purely scientific—to explore a fundamental algorithm for general visual generation. Our
approach helps lower the barriers of porting LLM techniques to visual generation, and we plan on
adopting advances in LLMs (e.g., alignment and watermarking) to further enhance safety in future
work (Ganguli et al., 2022; Kirchenbauer et al., 2023). In this work, we pretrain a 7B model. Even
with our moderate-scale data, we estimate a full training of JPEG-LM to take a month on 32 Nvidia
A100 GPUs. As our model shares the same architecture as regular LLMs, we plan on exploring
techniques in LLM efficiency to reduce compute footprint in future work.
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A CONTINUED DISCUSSION

Our work focuses on the challenging task of visual generation (e.g., outputting images) rather than
visual understanding (e.g., inputting images, outputting classes or texts). In the field of visual
understanding, the encoding of images has less restricted forms. For example, Bavishi et al. (2023)
and El-Nouby et al. (2024) linearly project image patches as inputs to the transformers, Liu et al.
(2024b) pass CLIP embeddings (Radford et al., 2021) to language models, etc. However, these image
encoding formulations are not applicable to image generation. Though not a focus in this work, future
work may extend our JPEG-LM and AVC-LM that share the same underlying architectures with
regular language models to image and video understanding scenarios.

Compared to raw pixel modeling that would represent a 256x256 image with 65K or 196K tokens
(depending on color modes), using canonical codecs like JPEG substantially reduces the sequence
length to 5K on average. In terms of sequence length, the VQ transformers are usually more
aggressive, representing each image with 1K tokens. It is notable that this an ideal hyperparameter
discovered in prior work that helps model global structures—increasing the number of tokens in VQ
(thus reducing the downsampling patch size) may lead to degenerated results rather than helping the
model learn with more capacity (Esser et al., 2021). Our work proposes to model canonical codecs
as a proof of concept, and future work may compare with more VQ setups or further improve the
context efficiency of JPEG-LM.
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Figure 6: Unconditional generation by JPEG-LM.

B MORE QUALITATIVE EXAMPLES FROM JPEG-LM

In Figure 8, we show more JPEG-LM completions on partial images from FFHQ (zero-shot). Figure 6
and Figure 7 show further examples of JPEG-LM and VQ transformer on unconditional generation.

C MORE QUALITATIVE EXAMPLES FROM AVC-LM

More generations from AVC-LM can be found in Figure 9, Figure 10, Figure 11, Figure 12, and
Figure 13. Similar to Figure 5, we observe realistic object movements (e.g., flag, clouds, clock, cars
on the street, and camera movement towards a building).

D DETAILED CONFIGURATIONS FOR THE CANONICAL CODECS

Our JPEG encoding uses the pillow package. We specifically encode each image
with: image.save(format=’JPEG’, quality=25, subsampling="4:2:0", streamtype=2,
restart_marker_blocks=1). More details about these arguments can be found at https://
pillow.readthedocs.io/en/stable/handbook/image-file-formats.html#jpeg-saving. Our
AVC/H.264 encoding uses the ffmpeg package. Specifically, the configurations/commands we
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Figure 7: Unconditional generation by VQ transformer.

Figure 8: Generated images by JPEG-LM with partial FFHQ images as prompts (zero-shot generation).
Similar to Figure 2, the generated facial expressions are modelled as JPEG bytes and mostly look
realistic.

used are: ffmpeg -vf "fps=3,scale=256:144:force_original_aspect_ratio=decrease,
pad=256:144:(ow-iw)/2:(oh-ih)/2" -t 5 -c:v libx264 -pix_fmt yuv420p -profile:v
baseline -qp 37 -bf 0 -an -sn -x264opts "slice-max-mbs=1" -trellis 0 -me_method
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(a) Prompt frames

(b) Generated frames

Figure 9: Generated video frames by AVC-LM on held-out test data. The first 10 frames are given to
the model as the prompt, and the last 5 frames are generated by the model.

(a) Prompt frames

(b) Generated frames

Figure 10: Generated video frames by AVC-LM on held-out test data. The first 10 frames are given
to the model as the prompt, and the last 5 frames are generated by the model.

dia -threads 1 -subq 0 -psy 0 -mixed-refs 0 -fast-pskip 0 -partitions none
-refs 3 -bsf:v h264_mp4toannexb. More details about these flags can be found at https:
//ffmpeg.org/ffmpeg.html.
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(a) Prompt frames

(b) Generated frames

Figure 11: Generated video frames by AVC-LM on held-out test data. The first 10 frames are given
to the model as the prompt, and the last 5 frames are generated by the model.

(a) Prompt frames

(b) Generated frames

Figure 12: Generated video frames by AVC-LM on held-out test data. The first 10 frames are given
to the model as the prompt, and the last 5 frames are generated by the model.

(a) Prompt frames

(b) Generated frames

Figure 13: Generated video frames by AVC-LM on held-out test data. The first 10 frames are given
to the model as the prompt, and the last 5 frames are generated by the model.
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