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Abstract
Decoder-only models generate tokens autore-
gressively by caching key/value vectors, but as
the cache grows, inference becomes memory-
bounded. To address this challenge, we intro-
duce CLOVER (Cross-Layer Orthogonal Vectors)
pruning, a novel approach that treats pairs of com-
ponents of the attention mechanism as low-rank
decompositions. CLOVER applies Singular Value
Decomposition (SVD) to the Q-K and V-O pairs
within each attention head. The resulting singular
values, in turn, guide pruning and further serve
as trainable parameters for efficient fine-tuning,
ultimately enabling the model to recover its per-
formance to the level before pruning.After prun-
ing and fine-tuning, these values are reintegrated
into the model without increasing its parameter
count. Visualizations across various models show
that CLOVER effectively removes linear redun-
dancies within attention heads, greatly improving
pruning efficiency. For example, pruning 70% of
the Q-K head dimension in GPT-2 XL results in
a perplexity comparable to that of pruning just
8% using vanilla pruning. The combination of
CLOVER and TransMLA achieves a speedup of
up to 11.1× over LLaMA-2-7B. Our code is avail-
able at: https://github.com/GraphPKU/CLOVER

1. Introduction
In recent years, Large Language Models (LLMs) have
rapidly evolved into essential tools for productivity (OpenAI,
2024; Anthropic, 2024; Team et al., 2024a). Open-source
models (AI@Meta, 2024; Mistral, 2024; Qwen, 2024; Liu
et al., 2024b; Team et al., 2024b; Abdin et al., 2024) have
also narrowed the performance gap with closed-source mod-
els. The success of LLMs is largely attributed to Next Token
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Figure 1. (a) We treat the Query-Key and Value-Output layers
within a single attention head as a unified structure. (b) Apply
SVD to obtain two sets of singular vectors for initializing the Q-K
and V-O layers, along with singular values that guide pruning or
enable efficient full-rank fine-tuning. (c) This cross-layer orthogo-
nalization strategy allows for higher pruning rates. (d) The pruned
model maintains strong performance after fine-tuning.

Prediction (Radford et al., 2018; Brown et al., 2020), where
tokens are predicted sequentially, with attention computed
between each token and all preceding ones. To avoid redun-
dant computations, key-value features are cached. However,
as model size grows, the overhead of caching becomes sub-
stantial, leading to memory and communication bottlenecks.
For instance, in the case of a 65B parameter model (Tou-
vron et al., 2023) with 8-bit key-value quantization, storing
512K tokens requires over 86GB of GPU memory, which
surpasses the capacity of a single 80GB GPU (Sun et al.,
2024).
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To enable efficient training and inference, we introduce
CLOVER (Cross-Layer Orthogonal Vectors) pruning, a
novel method that orthogonalizes the Query, Key, Value,
and Output vectors without generating additional transfor-
mation matrices. As shown in Figure 1a, we treat the Q-K
and V -O pairs in each attention head as a low-rank decom-
position of WQK and WV O. By crossing these layers and
performing SVD on WQK and WV O, the Query, Key, Value,
and Output vectors become orthogonal within each atten-
tion head. Figure 1b illustrates how the resulting singular
values can guide pruning or serve as trainable parameters
for efficient fine-tuning. After pruning or fine-tuning, these
values can be reintegrated into the model without increas-
ing its parameter count. Notably, previous methods, such
as SVFT (Lingam et al., 2024), obtain orthogonal vectors
by directly performing orthogonal decomposition on each
projection matrix, which can lead to the introduction of a
large number of additional parameters during fine-tuning. In
contrast, CLOVER jointly decomposes Q-K and V -O pair-
sas transformation matrices for each other. CLOVER only
generates a small set of singular values to guide pruning
and fine-tuning, which can be merged back into the model
without increasing inference costs.

By orthogonalizing the vectors, we eliminate linear re-
dundancy. Attention heads contain numerous non-zero
norm vectors. Directly pruning these vectors would degrade
performance, but orthogonalizing them allows us to rep-
resent the entire attention head’s space using a small set
of orthonormal basis. The remaining vectors are nearly
zero, making them safe to prune. As shown in Figure 1c,
pruning 70% of the total budget in the query-key pair using
CLOVER—where the pruning ratio can vary across differ-
ent attention layers—yields a perplexity comparable to that
of vanilla pruning, which removes only 8% of the vectors.
We summarize the contribution of our paper as follows:

• We treat the Q-K and V-O pairs in each attention head
as low-rank approximations of WQK and WV O. By
performing SVD, we orthogonalize the attention head
without adding extra transformation matrices.

• This orthogonalization not only reduces linear redun-
dancy, but also is compatible with any other pruning
method, thereby allowing for higher pruning ratios.
Pruning 46.42% of the vectors in Whisper’s attention
head—OpenAI’s speech-to-text model(Radford et al.,
2023)—preserves performance, without the need for
additional training.

• CLOVER enables parameter-efficient fine-tuning, sur-
passing SOTA methods such as LoRA, DoRA, HiRA,
and PiSSA on eight commonsense reasoning tasks
across LLaMA-2-7B, and LLaMA-3-8B. Additional
analyses further highlight its advantages.

2. Related Work
LLM Compression To alleviate the memory pressure of
KV caches in long-context models, researchers have ex-
plored several complementary directions: dynamic token
pruning keeps only the past tokens whose attention scores
materially influence future predictions, discarding the rest
at inference time (Fu et al., 2024; Jo & Shin, 2024; Li et al.,
2024b); rank compression of keys and values factorizes or
groups the K/V tensors so that a lower-rank set of basis
vectors plus coefficients can replicate the original attention,
cutting the cache size almost linearly with the reduced rank
(Shazeer, 2019; Ainslie et al., 2023; Liu et al., 2024a; Yu
et al., 2024); head- or dimension-level pruning statistically
identifies and removes low-impact attention heads or sub-
dimensions, slimming each token’s stored representation
(Ashkboos et al., 2024; Xia et al., 2023; Sun et al., 2023);
cross-layer KV sharing reuses one KV table across multiple
transformer layers, turning layer-wise memory growth into
a constant factor (Sun et al., 2024; Brandon et al., 2024; Liu
et al., 2024c; Zuhri et al., 2024); and quantization encodes
KV weights and activations in INT4–INT8 (or fewer bits),
shrinking the cache size without altering the computational
graph (Frantar et al., 2022; Dettmers et al., 2022; Xiao et al.,
2023; Liu et al., 2024e; Hooper et al., 2024). Although
these compression methods can reduce the model size and
may ultimately achieve inference speedup, dropping ac-
tive dimensions inevitably hurts accuracy (Ma et al., 2023);
fortunately, parameter-efficient fine-tuning (PEFT) meth-
ods—e.g., LoRA or adapters inserted after pruning—restore
most of the lost quality with just 0.1–1 % extra trainable
parameters (Guo et al., 2023).

Parameter Efficient Fine-Tuning. Low Rank Adaption
(LoRA) is widely used due to its simplicity and effective-
ness, with recent works enhancing it further (Zhang et al.,
2023; Zi et al., 2023; Liu et al., 2024d; Zhao et al., 2024;
Jiang et al., 2024). PiSSA (Meng et al., 2024) improves
convergence speed by initializing adapters with principal
singular values and vectors, also reducing quantization error
(Wang et al., 2024a;b; Li et al., 2024a). However, PiSSA is
limited by its use of a fixed set of orthogonal bases. SVFT
(Lingam et al., 2024) directly applies Singular Value Decom-
position (SVD) to the original matrix, but this increases the
number of parameters, raising computational overhead and
reducing efficiency. The CLOVER method addresses these
issues by treating the Query-Key pairs in each attention
head as low-rank matrices. Using orthogonal decomposi-
tion, CLOVER eliminates the need for additional transfor-
mation matrices. Instead, it leverages a small set of singular
values to linearly combine orthogonal vectors, making the
approach more parameter-efficient. After fine-tuning, the
adapter can be smoothly reintegrated into the original matrix
structure.

2



CLOVER: Cross-Layer Orthogonal Vectors Pruning

3. CLOVER: Cross-Layer Orthogonal Vectors
Below is a step-by-step breakdown of the CLOVER method,
illustrating how it performs orthogonalization of the Query,
Key, Value, and Output layers in Multi-Head Attention,
how orthogonal initialization helps improve pruning rates,
and how the singular value matrices obtained from orthogo-
nal decomposition can be used for efficient parameter fine-
tuning.

We begin by using the computation of the Q-K pair as a
representative example, which is then generalized to the
V -O pair.

Multi-Head Self-Attention In a multi-head self-attention
mechanism with H heads, each head h ∈ {1, . . . ,H} com-
putes an attention score as:

attn(Qh,Kh) = softmax
(

QhK
⊤
h√

d

)
,

where d is the dimension of each head, Qh,Kh ∈ Rn×d are
the query and key representations for head h.

Specifically, the queries and keys for head h are obtained by
multiplying the input matrix X ∈ Rn×D(n is the sequence
length, D is the hidden dimension) with the correspond-
ing “slice” of projection matrices WQ,WK ∈ RD×H×d,
respectively:

Qh = XW
[:,h,:]
Q , Kh = XW

[:,h,:]
K .

Cross-Layer Merging Substituting the expressions for
Qh and Kh into the product QhK

⊤
h , we have:

QhK
⊤
h = XW

[:,h,:]
Q

(
W

[:,h,:]
K

)⊤
X⊤.

Notice that the original weights W
[:,h,:]
Q and W

[:,h,:]
K are

each in RD×d. When multiplied together, the resulting ma-

trix Wh
QK = W

[:,h,:]
Q

(
W

[:,h,:]
K

)⊤
has dimensions D ×D.

Since d ≪ D, directly using Wh
QK in computations—or

storing it as trainable parameters—would be highly ineffi-
cient, limiting the applicability of such parameter merging.

Cross-Layer Orthogonal Decomposition To mitigate the
large size of Wh

QK , we factorize it via SVD:

Wh
QK = Uh

QK Sh
QK V h

QK ,

where Uh
QK and V h

QK are D×D orthogonal matrices, Sh
QK

is a D ×D diagonal matrix of singular values.

Since W [:,h,:]
Q and W

[:,h,:]
K each have dimensions RD×d, the

rank of Wh
QK is at most d. Thus, the number of nonzero

singular values in Sh
QK are at most d. We can truncate the

SVD to retain only the top-r singular values without any
loss of information:

Wh
QK = Uh

QK [:, : r] Sh
QK [: r, : r] V h

QK [: r, :],

where r ≤ d.

The process can be easily applied to WV and WO, as de-
tailed in Appendix D.4.

CLOVER for Pruning After performing SVD, we can
rewrite the weight matrix Wh

QK as follows:

Wh
QK = Uh

QK [:, : r]Sh
QK [: r, : r]︸ ︷︷ ︸

W̃h
Q

(
V h
QK [:, : r]︸ ︷︷ ︸

W̃h
K

)⊤
.

Instead of storing the full matrices Wh
Q and Wh

K ∈ RD×d,

we store the smaller factors W̃h
Q and W̃h

K ∈ RD×r, which
are significantly smaller than the original matrix since
r ≤ d ≪ D. This leads to a reduction in both memory
usage and computational cost. Additionally, we can further
prune small nonzero singular values (and their correspond-
ing singular vectors) that fall below a chosen threshold,
further reducing the parameter count and computational
overhead.

CLOVER for Fine-Tuning CLOVER can be used not
only for pruning, but also for parameter-efficient fine-tuning.
We freeze the matrices Uh

QK [:, : r] and V h
QK [:, : r], and only

fine-tune the singular values Sh
QK [: r, : r].

In contrast to SVFT, which factorizes the original weight
matrices WQ,WK ,WV ,WO ∈ RD×H×d individually,
CLOVER factorizes the merged weights Wh

QK and Wh
OV

within each attention head. As a result, the tunable matrix
SQK has a size bounded by RH×d×d (considering all heads).
In comparison, SVFT requires factorizing large matrices
each into three components (U, S, V ∈ RD×D), leading to
a significant increase in parameter count and computational
overhead, even with sparse updates for the singular values
S.

For example, consider the LLaMA 2-7B model with H =
32 attention heads and a head dimension of d = 128. By
factorizing each head separately, the largest size for SQK

is O(32× 128× 128), which is significantly smaller than
factorizing a R4096×4096 matrix. This makes CLOVER’s
parameter efficiency comparable to that of a LoRA config-
uration with rank 32, as shown in Appendix B, but with
additional potential for pruning.
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Table 1. Comparison of CLOVER with SliceGPT and TransMLA on pruning DeepSeek-V2-Lite and LLaMA-2-7B separately, and
evaluation of their fine-tuned performance across six benchmarks.

Model Hidden Size Head Dim Avg. MMLU ARC PIQA HS OBQA WG

DeepSeek V2 Lite – – 61.54 43.29 60.39 79.92 74.51 45.40 65.75

- SliceGPT
-6.25% – 57.30 38.40 55.95 77.20 68.67 41.20 62.35
-12.50% – 53.51 35.24 51.97 74.27 62.08 37.80 59.67

- CLOVER
– -25% 59.84 41.16 57.56 79.27 72.61 44.60 63.85
– -50% 57.25 38.96 55.27 78.02 69.63 41.40 60.22

Model KV Cache Head Dim Avg. MMLU ARC PIQA HS OBQA WG

LLaMA-2-7B – – 59.85 41.43 59.24 78.40 73.29 41.80 64.96

- TransMLA
-68.75% – 59.82 40.87 59.18 77.91 71.82 45.20 63.93
-87.50% – 59.36 40.77 58.84 78.18 71.28 43.60 63.46
-92.97% – 58.68 40.82 59.72 76.55 69.97 43.60 61.40

- CLOVER
-68.75% -50% 59.40 40.91 58.97 78.35 71.32 43.40 63.46
-87.50% -50% 59.28 40.46 59.12 77.48 70.62 44.60 63.38
-92.97% -50% 59.13 40.69 60.03 77.09 69.65 45.20 62.12

Table 2. Comparison of latency metrics for different method.
Model Prefilling (ms) Generation (ms/token)
DeepSeek 195.12 40.11
SliceGPT 191.91 40.32
CLOVER 177.02 31.00

4. Experiments
In Section 4.1, we compare CLOVER with SliceGPT (Ashk-
boos et al., 2024) and TransMLA (Meng et al., 2025), which
respectively prune DeepSeek-v2-Lite (DeepSeek-AI, 2024)
and LLaMA-2-7B (AI@Meta, 2023). In Section 4.2, we vi-
sualize how CLOVER removes linear redundancy between
vectors, facilitating more efficient pruning. In Section 4.3,
we evaluate the acceleration performance of CLOVER. In
Section 4.4, we demonstrate CLOVER’s ability to perform
significant pruning In Section 4.5, we apply CLOVER to
orthogonalize the attention heads of the GPT-2-XL model
(Radford et al., 2019), to explore the role of CLOVER in
both pruning and fine-tuning. In Section 4.6, we conduct
fine-tuning experiments on eight commonsense tasks, com-
paring CLOVER with SOTA PEFT methods.

4.1. Comparing CLOVER with Other Methods

Currently, pruning efforts for DeepSeek models are lim-
ited. The few existing approaches mainly focus on reduc-
ing the number of experts in the MoE module (Gu et al.,
2025). However, by orthogonalizing the attention heads
in DeepSeek, we observe that significant redundancy also
exists within MLA (Figure 2a). Removing this redundancy
can substantially reduce the computational overhead during
training, pre-filling, and the computation of query represen-

tations in the absorb phase. To compare the effectiveness
of CLOVER with other pruning methods, we adapted the
SliceGPT (Ashkboos et al., 2024) codebase to support the
DeepSeek model architecture. And we applied CLOVER
to orthogonally initialize the attention heads and pruned
the attention head dimensions based on the magnitude of
singular values.

Additionally, we compared pruning for LLaMA-2-7B with
TransMLA (Meng et al., 2025), which converts models us-
ing Multi-Head Attention (MHA) or Grouped Query Atten-
tion (GQA) into MLA-based models, effectively compress-
ing the KV cache. TransMLA can be further combined with
CLOVER to prune the dimensionality of attention heads
more efficiently. We pruned the K NoPE and V head di-
mensions in the LLaMA-2-7B model released in their paper,
to evaluate CLOVER’s effectiveness. For fine-tuning, we
followed the TransMLA procedure on a mixed pretraining
dataset, as shown in Table 6.

All models were evaluated on six benchmarks: MMLU
(Hendrycks et al., 2021), ARC (easy and challenge) (Clark
et al., 2018a), PIQA (Bisk et al., 2020a), HellaSwag (HS)
(Zellers et al., 2019a), and Winogrande (WG) (Sakaguchi
et al., 2021a). These evaluations serve to validate the effec-
tiveness of different pruning strategies.

As shown in Table 1, CLOVER achieves performance com-
parable to SliceGPT while pruning 50% of the head dimen-
sion, compared to SliceGPT’s 6.25% pruning. However,
as demonstrated in Table 2, CLOVER delivers a 1.25×
speedup, whereas SliceGPT provides no acceleration. Fur-
thermore, building on TransMLA, an additional 50% prun-
ing of the head dimension still allows the model to recover
its performance with only a small amount of retraining.

4



CLOVER: Cross-Layer Orthogonal Vectors Pruning

0 50 1000.0

0.5

1.0

1.5

2.0

W
Q

W
K

(10, 0.93)

Vanilla
CLOVER

0 50 100
Sorted Dimensions

0.0

0.2

0.4

0.6

W
V

W
T O

(72, 0.13)

Vanilla
CLOVER

(a) DeepSeek-V2-Lite
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(e) CLIP-ViT-BigG

Figure 2. CLOVER (orange) uses fewer orthogonal basis vectors than Vanilla Pruning (blue) to span the attention head space. The first
row shows the importance of Q-K dimensions, and the second row shows V-O dimensions. After the red dot, CLOVER’s importance is
lower, and pruning these vectors results in less performance loss.

4.2. CLOVER Removal Redundant Vectors

CLOVER achieves a higher pruning ratio due to the sig-
nificant linear redundancy present in the model. By repre-
senting the entire attention head with only a small number
of orthogonal vectors, CLOVER effectively removes this
redundancy. To illustrate the advantages of CLOVER in
eliminating linear redundancy, we apply it to a variety range
of models, including the large language model DeepSeek-
V2-Lite (DeepSeek-AI, 2024), the multimodal automatic
speech recognition and speech translation model Whisper-
Large-v3 (Radford et al., 2023), the multimodal instruction-
tuned image reasoning generative models LLaMA-3.2-11B-
Vision (AI@Meta, 2024), the image encoder CLIP-ViT-
bigG (Cherti et al., 2022), and the image generation model
Stable Diffusion XL (Podell et al., 2023). We compute the
L2 norm for each dimension (equal to singular values) in
both the Q-K pair and the V-O pair, sorting the values in
descending order within each attention head for better visu-
alization. For comparison, we also perform Vanilla Pruning,
which does not utilize CLOVER initialization but instead
sorts directly based on the L2 norm.

Figure 2 showcases the first attention head from the first
layer of each model. In the first column of the figure, depict-
ing the Q-K norm, we observe that in the original model,
the importance of each dimension is relatively balanced
(e.g. Figure 2c). This balanced distribution is a result of
the linear redundancy, where different directions are inter-
twined, making it challenging to prune individual directions
without negatively affecting the model’s performance. How-
ever, after applying CLOVER’s orthogonal decomposition,
only a small number of orthogonal bases on the left side
exhibit significantly large norms. These vectors span al-
most the entire attention head’s space, and the remaining

vectors have norms that approach zero, indicating that they
are already represented by the dominant singular vectors
and can be pruned without loss of performance. Beyond
the red intersection point, CLOVER’s remaining vectors
exhibit consistently lower importance than those in Vanilla
Pruning, meaning pruning these vectors results in less per-
formance degradation. This demonstrates why CLOVER
enables a higher pruning ratio. A similar trend is observed
for the V-O pair, although the model’s inherent sparsity is
less pronounced than in the Q-K pair, making the effect
less noticeable. Still, in most models, pruning half of the
vectors has a smaller impact on performance compared to
Vanilla Pruning. Notably, in CLIP-ViT-bigG (Figure 2e),
a proportion of the vectors already have a norm of zero,
allowing for safe pruning.

Beyond the red intersection point, CLOVER’s remaining
vectors exhibit consistently lower importance than those
in Vanilla Pruning, meaning pruning these vectors results
in less performance degradation. This demonstrates why
CLOVER enables a higher pruning ratio. A similar trend
is observed for the V-O pair, although the model’s inherent
sparsity is less pronounced than in the Q-K pair, making the
effect less noticeable. Still, in most models, pruning half of
the vectors has a smaller impact on performance compared
to Vanilla Pruning. Notably, in CLIP-ViT-bigG (Figure 2e),
a proportion of the vectors already have a norm of zero,
allowing for safe pruning.

Beyond the red intersection point, CLOVER’s remaining
vectors exhibit consistently lower importance than those
in Vanilla Pruning, meaning pruning these vectors results
in less performance degradation. This demonstrates why
CLOVER enables a higher pruning ratio. A similar trend is
observed for the V-O pair
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Figure 3. Inference speedups with CLOVER comparing to the original LLaMA2 7B model on three platform. Low-rank Q and Full-rank
Q indicate whether the query projections were also compressed. Context length represents the total sequence length.

4.3. Inference Speedup with CLOVER

In Figure 3, we benchmark the inference performance of
CLOVER—featuring a 92.97% reduction in the KV cache
and a 50% reduction in the Q nope, K nope, and V head di-
mensions—using the vLLM framework across three GPUs
with varying compute capabilities and memory sizes: 165.2
TFLOPS with 24GB memory, 312 TFLOPS with 40GB
memory, and 320 TFLOPS with 64GB memory. The fig-
ure illustrates the inference speedup of the pruned model
relative to the original LLaMA-2-7B. “Low-rank Q” and
“Full-rank Q” indicate whether the query projections were
also compressed. The context length refers to the total
sequence length, which includes both the prompt and gener-
ated tokens (with equal lengths for each).

Our experiments demonstrate that CLOVER’s inference
speedup increases with longer context lengths. As long
sequences typically lead to both compute and memory bot-
tlenecks, compressing the KV cache and attention head
dimensions helps alleviate these issues, thereby enabling
higher speedups. Notably, for an 8K context window on
the first hardware platform, the CLOVER-pruned model
achieves an impressive 11.1× inference acceleration.

4.4. CLOVER for Training-Free Pruning

As demonstrated by the prominent low-rank properties
in Figure 2c, we applied pruning to the Whisper-large-
v3 model (Radford et al., 2023). We use the offi-
cial Whisper-large-v3 example (LibriSpeech Long dataset
(Gandhi et al., 2023)1) to intuitively highlight the effective-
ness of CLOVER pruning. For reference, the waveform of
this input is shown in Figure 4, and the corresponding target
translation script is provided in Appendix C.

After applying CLOVER to orthogonalize the vec-
tors, we pruned vectors with magnitudes close to zero
(∥WQ∥∥WK∥ ≤ 5× 10−3 and ∥WV ∥∥W⊤

O ∥ ≤ 6× 10−3).
This pruning achieved ratios of 56.01% and 36.82% for the
parameters in Q-K Pair and V -O Pair, respectively. Re-

1https://huggingface.co/openai/whisper-large-v3

markably, the model’s output remains nearly unchanged,
with only one error, which has been highlighted in the text
using strikethrough and red for clarity:
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Figure 4. An audio waveform from the librispeech dataset.

Mr. Quilter is the apostle of the middle classes, and we are
glad to welcome his gospel. Nor is Mr. Quilter’s manner
less interesting than his matter. He tells us that at this festive
season of the year, with Christmas and roast beef looming
before us, similes drawn from eating and its results occur
most readily to the mind. He has grave doubts whether Sir
Frederick Layton’s work is really Greek after all, and can
discover in it but little of rocky Ithaca. Linnell’s pictures
are a sort of Up Guards and Adam paintings, and Mason’s
exquisite idles are as national as a jingo poem. Mr. Birkett
Foster’s landscapes smile at one much in the same way that
Mr. Carker used to flash his teeth. And, and Mr. John
Collier gives his sitter a cheerful slap on the back before he
says, like a shampooer in a Turkish bath, next man.

In contrast, vanilla pruning—which forgoes orthogonal ini-
tialization and prunes head vectors solely based on their
norm—results in the model completely failing to generate
valid outputs at the same pruning ratio.

... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...

This example validates our earlier claim that straightfor-
ward pruning of non-zero dimensions can lead to accumu-
lated loss. In contrast, CLOVER effectively eliminates lin-
ear redundancy, enabling a significantly higher pruning ra-
tio. When the linear redundancy is sufficiently pronounced,
CLOVER can even achieve a high pruning ratio without the
need for fine-tuning to recover performance.
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Table 3. Pruning the attention layers of GPT-2-XL using CLOVER and vanilla pruning at various sparsity levels. We report perplexity on
WikiText-2 (lower is better) and evaluate fine-tuning performance on OpenWebText under different token budgets. The base model’s
perplexity is 14.78. CLOVERFT and Vanilla fine-tune the pruned attention layers, while CLOVERPEFT fine-tunes the singular value
matrices obtained from the decomposition of the QK and VO projections.

Pruning Ratio w/o Training Perplexity(↓) 66M Tokens Perplexity (↓) 131M Tokens Perplexity (↓)
Vanilla CLOVER Vanilla CLOVERFT CLOVERPEFT Vanilla CLOVERFT CLOVERPEFT

12.5% 33.76 15.89 16.04 15.45 15.67 16.38 15.77 15.42
25.0% 78.36 17.45 16.93 15.70 15.89 17.07 16.05 15.75
37.5% 159.4 20.95 18.17 16.17 16.60 18.14 16.48 16.41
50.0% 338.9 35.12 20.45 17.22 17.63 19.02 17.13 17.71
62.5% 538.5 85.25 24.65 19.32 20.64 21.44 18.40 20.39
75.0% 708.8 187.4 36.04 24.65 29.28 27.22 20.99 28.44

4.5. Pruning and Fine-Tuning with CLOVER

Model pruning often necessitates fine-tuning to recover from
performance degradation. CLOVER supports both pruning
and fine-tuning within a unified framework. In this section,
we evaluate CLOVER’s effectiveness in both aspects. We
initialize GPT-2-XL with CLOVER and prune the model by
removing vectors corresponding to the singular values with
the smallest magnitudes.

To achieve better performance, Figure 1c allows each layer
to adopt a different pruning rate. In this case, a fixed propor-
tion of parameters is pruned across the entire model based on
the global ranking of singular values (for CLOVER) or L2-
norms (for Vanilla pruning). Remarkably, pruning 70% of
the parameters using CLOVER yields performance compa-
rable to pruning only 8% with Vanilla pruning, highlighting
the effectiveness of CLOVER’s orthogonal initialization in
facilitating structured pruning.

However, using a uniform pruning rate across all lay-
ers—where the same percentage of the smallest singular
vectors is pruned per layer—is beneficial for consistent train-
ing and inference speed. Therefore, unless otherwise noted,
we apply uniform pruning across layers. After fine-tuning,
the singular values S are merged into their corresponding U
and V matrices. For comparison, we also apply Vanilla prun-
ing, which lacks CLOVER’s orthogonalization and instead
uses an L2-norm-based criterion.

Following pruning, we evaluate model perplexity on the
WikiText-2 dataset (Merity et al., 2016). We then fine-tune
the pruned models on the OpenWebText dataset (Gokaslan
& Cohen, 2019), using the nanoGPT framework2. To mini-
mize disruption to the pretrained model, only the pruned at-
tention layers are fine-tuned, while the MLP, embedding lay-
ers, and LM head remain fixed. This setup is referred to as
CLOVERFT and Vanilla, respectively. In the CLOVERPEFT

configuration, the singular values S are not immediately

2https://github.com/karpathy/nanoGPT

merged into the U and V matrices. Instead, they are re-
tained for parameter-efficient fine-tuning, where only these
singular values are updated, and merging is deferred until
post-training. PEFT typically converges more slowly than
full-parameter finetuning. To accelerate convergence, we
increase the learning rate from 6× 10−4 to 6× 10−3 and re-
move weight decay, while keeping all other hyperparameters
consistent with those used in Vanilla and CLOVERFT.

As shown in Table 3, CLOVER induces significantly less
performance degradation than Vanilla pruning by concen-
trating functionality into fewer orthogonal bases. For in-
stance, pruning 50% of the parameters without fine-tuning
increases CLOVERFT’s perplexity by only 1.38×, com-
pared to 21.9× for Vanilla. After fine-tuning, CLOVERFT

substantially outperforms Vanilla; for example, CLOVER
with a 75% pruning rate achieves comparable performance
to Vanilla pruning at only 62.5%. Owing to its reduced
model disruption, CLOVERFT also requires fewer training
tokens to restore performance (e.g., perplexity with 66M
tokens closely matches that with 131M), whereas Vanilla
pruning demands more data, increasing both computational
cost and the risk of degradation on out-of-domain tasks.

Moreover, CLOVERPEFT, which fine-tunes only the singu-
lar values from the SVD decomposition and the attention
layer biases, enables performance recovery with minimal
resource consumption and parameter updates. At lower
pruning rates, CLOVERPEFT even surpasses full attention-
layer training (CLOVERFT). However, at higher pruning
rates, performance declines significantly due to the limited
number of remaining tunable parameters (e.g., only 0.15%
of the original attention-layer parameters are updated).

These results empirically validate the benefits discussed
earlier: CLOVER’s orthogonal initialization of attention
heads enables the representation of the entire attention space
using a compact set of orthogonal bases, which is highly
advantageous for pruning. Furthermore, the singular value
matrix can be seamlessly merged back into the attention
head.
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Table 4. Accuracy comparison of LLaMA2-7B, and LLaMA3-8B with various PEFT methods on eight commonsense reasoning datasets.
Results of LoRA and DoRA are taken from (Liu et al., 2024d). Results of HiRA are taken from (Huang et al., 2025).

Model Method Params BoolQ PIQA SIQA Hella
Swag

Wino
Grande ARC-e ARC-c OBQA Avg.

LLaMA2-7B

LoRA 0.83% 69.8 79.9 79.5 83.6 82.6 79.8 64.7 81.0 77.6
DoRA 0.84% 71.8 83.7 76.0 89.1 82.6 83.7 68.2 82.4 79.7
HiRA 0.83% 71.2 83.4 79.5 88.1 84.0 86.7 73.8 84.6 81.4
PiSSA 0.83% 75.0 87.0 81.6 95.0 86.5 88.5 75.9 86.4 84.5

CLOVER 0.83% 75.0 86.4 82.0 95.1 87.5 89.6 76.6 89.4 85.2

LLaMA3-8B

LoRA 0.70% 70.8 85.2 79.9 91.7 84.3 84.2 71.2 79.0 80.8
DoRA 0.71% 74.6 89.3 79.9 95.5 85.6 90.5 80.4 85.8 85.2
HiRA 0.70% 75.4 89.7 81.2 95.4 87.7 93.3 82.9 88.3 86.7
PiSSA 0.70% 77.2 90.0 82.9 96.6 88.4 93.6 82.4 87.4 87.3

CLOVER 0.47% 76.4 89.3 82.1 96.9 89.9 93.6 84.5 90.6 87.9

Table 5. Comparison of training costs between LoRA and
CLOVER on LLaMA-2-7B. We trained on a common-
sense dataset for 3 epochs with model max length = 1024,
per device train batch size = 2, gradient accumulation steps =
2, num gpus = 4, executed on 4 × 312 TFLOPS–80G GPUs.

Method Params Max Memory Runtime

LoRA 0.83% 110.84 GB 2:42:37
CLOVER 0.83% 104.75 GB 2:22:47

4.6. Comparison with PEFT Methods

In this section, we conduct an ablation study to com-
pare the fine-tuning capability of CLOVER against several
parameter-efficient fine-tuning (PEFT) methods, including
LoRA (Hu et al., 2021), DoRA (Liu et al., 2024d), HiRA
(Huang et al., 2025), and PiSSA (Meng et al., 2024). We ex-
clude SVFT (Lingam et al., 2024) from this comparison due
to its significant computational overhead. The evaluation
spans eight sub-tasks, as detailed in Table 7. All models are
fine-tuned on the Commonsense-148k dataset and evaluated
on the respective test sets of each sub-task.

For CLOVER, we apply orthogonal decomposition to the
Value-Output projection and fine-tune the resulting singular
value matrix. Due to the non-linear RoPE (Su et al., 2024)
operation between the query and key, we instead decompose
the Key layer and fine-tune its transition matrix. Likewise,
in the mlp.up proj layer, we treat every 64 consecutive
dimensions as a head, apply orthogonal decomposition, and
update the corresponding transition matrix.

The number of trainable parameters in LLaMA-2-7B
matches those used in LoRA, DoRA, HiRA, and PiSSA,
all employing rank-32 updates. For LLaMA-3-8B, we re-
duce the number of trainable parameters to two-thirds of the
amount used in the other models.

The comparison of memory consumption and runtime in
Table 5 demonstrate that CLOVER consumes less GPU
memory and exhibits shorter training runtime compared to
LoRA. We attribute this to CLOVER being applied between
two layers, whereas LoRA operates in parallel with the main
branch. This enables sequential computation, eliminating
the need to retain the input features of the main branch.

LoRA and DoRA results are taken from the DoRA paper,
while HiRA results are sourced directly from its original
publication. Since PiSSA has not conducted experiments
on commonsense reasoning datasets, we include its perfor-
mance by reproducing the experiments ourselves. For a
fair comparison, we adopt the hyperparameters from DoRA
and adjust the learning rates accordingly. As shown in Ta-
ble 8, CLOVER achieves the best performance with a learn-
ing rate of 1e−4, which we apply consistently across both
LLaMA-2-7B and LLaMA-3-8B. PiSSA performs best with
a learning rate of 2e−5, as reported in its original paper; all
other hyperparameters remain unchanged. Due to the stable
training behavior observed in both PiSSA and CLOVER,
we omit the validation procedure used in DoRA—where the
best-performing model is selected every 80 iterations based
on the validation set. Instead, we train for the full 3 epochs
and use the final model checkpoint for testing.

Table 4 demonstrates that CLOVER consistently outper-
forms all other methods across all models and tasks. Specif-
ically, on LLaMA-2-7B, CLOVER surpasses LoRA, DoRA,
HiRA, and PiSSA by 7.6%, 5.5%, 3.8%, and 0.7%. Even on
LLaMA-3-8B, with fewer trainable parameters, CLOVER
outperforms by 7.1%, 2.7%, 1.2%, and 0.6%. CLOVER
leads in most sub-tasks and ranks second in a few.

These experiments demonstrate that CLOVER possesses
strong fine-tuning capabilities, making it effective for recov-
ering performance degradation caused by pruning. Addi-
tional analysis is provided in Appendix D.

8



CLOVER: Cross-Layer Orthogonal Vectors Pruning

5. Conclusion and Limitations
In this paper, we introduce Cross-Layer Orthogonal Vectors
(CLOVER), a method that orthogonalizes vectors within
attention heads without requiring additional transformation
matrices. This orthogonalization process condenses effec-
tive parameters into fewer vectors, improving the pruning
ratio. By fine-tuning the singular values obtained through
orthogonalization, CLOVER learns linear combinations of
orthogonal bases, enabling full-rank updates. When applied
to prune 50% of the attention head parameters in GPT-2XL,
CLOVER results in a perplexity that is just one-tenth of
that achieved by standard pruning methods. For Whisper-
Large-v3, CLOVER removes 46.42% of the parameters
without fine-tuning, while preserving model performance.
Furthermore, when used for fine-tuning, CLOVER outper-
forms state-of-the-art methods such as LoRA, DoRA, HiRA,
and PiSSA, achieving superior results with equal or fewer
trainable parameters. We also demonstrate how CLOVER
removes linear redundancy to facilitate pruning and discuss
the necessity of fine-tuning across all orthogonal bases. Vi-
sual comparisons of models fine-tuned with different meth-
ods further illustrate its effectiveness.

Despite its advantages, CLOVER has some limitations.
When nonlinear operations are present between Q-K or V-O
pairs (such as with the widely-used RoPE (Su et al., 2024)),
cross-layer orthogonalization is not feasible. In these cases,
we instead perform head-wise orthogonalization within
the Key layer during fine-tuning. Fortunately, CLOVER
Fine-Tuning can apply intra-layer attention head orthogo-
nalization, while CLOVER Pruning remains applicable to
many popular models, including DeepSeek (DeepSeek-AI,
2024; Liu et al., 2024b)(which uses Decoupled RoPE), ViT
and SDXL (which use absolute positional encoding), and
BLOOM (Workshop et al., 2022) (which employs Alibi rel-
ative positional encoding (Press et al., 2021)). Additionally,
as a newly proposed method, our current evaluation fo-
cuses primarily on basic pruning tasks and does not include
comparisons with other state-of-the-art pruning techniques.
However, because CLOVER does not alter the model struc-
ture and only updates the initialization method, it can be
combined with existing pruning methods to further enhance
their effectiveness.

As a novel technique, CLOVER holds considerable promise
for future applications. For instance, it could be combined
with quantization methods to eliminate outliers, guide prun-
ing and fine-tuning based on data feature directions, or even
inspire new model architectures.
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A. Dataset and Hyper-Parameters for Table 1
Following the experimental setups of TransMLA (Meng et al., 2025), we fine-tune our models using the prtraining corpus
from SmolLM (Ben Allal et al., 2024). The dataset comprises FineWeb-Edu-Dedup (Lozhkov et al., 2024a), Cosmopedia-
v2 — a synthetic dataset generated by Mixtral (Wu et al., 2024), Python-Edu from StarCoder (Lozhkov et al., 2024b),
Open-Web-Math (Paster et al., 2023), and data from StackOverflow (Stack Overflow, 2025).

Table 6. Composition of the training dataset.

Dataset Sampling Weight

fineweb-edu-dedup 0.70
cosmopedia-v2 0.15
python-edu 0.06
open-web-math 0.08
stackoverflow 0.01

To ensure a fair comparison, we replicate the dataset mixing ratios used in the TransMLA setup, as shown in Table 6, to
maintain experimental consistency. DeepSeek-V2-Lite is trained on 1B tokens for both SliceGPT and CLOVER using
SliceGPT’s hyperparameters. For LLaMA-2-7B, we apply CLOVER on top of the checkpoint released by TransMLA,
which pruned 93% of the KV cache and was trained on 6B tokens. Additionally, we further train the model with 1.5B tokens
for various pruning ratios using TransMLA’s hyperparameters.

B. Dataset and Hyper-Parameters for Table 4
The commonsense reasoning tasks consist of 8 subtasks, each with predefined training and testing sets, as described by
LLM-Adapters (Hu et al., 2023). The following table lists the details of each sub-dataset.

Table 7. Details of datasets for commonsense reasoning tasks.
Dataset Train Test About

BoolQ (Clark et al., 2019) 9,427 3,270 Naturally occurring yes/no questions from unconstrained settings.
PIQA (Bisk et al., 2020b) 16,113 1,838 Questions with two solutions requiring physical commonsense.
SIQA (Sap et al., 2019) 33,410 1,954 Reasoning about actions and social implications.
HellaSwag (Zellers et al., 2019b) 39,905 10,042 Commonsense NLI questions with context and endings.
WinoGrande (Sakaguchi et al., 2021b) 40,398 1,267 Fill-in-the-blank task with binary options.
ARC-e (Clark et al., 2018b) 2,251 2,376 Grade-school multiple-choice science questions in Easy sets.
ARC-c (Clark et al., 2018b) 1,119 1,172 Grade-school multiple-choice science questions in Challenge sets.
OBQA (Mihaylov et al., 2018) 4,957 500 Questions requiring multi-step reasoning and commonsense knowledge.

For WinoGrande, the original dataset includes multiple partitions: [xs, s, m, l, xl, debiased]. While LLM-Adapters simply
concatenated all these partitions, note that the “xl” partition actually includes all others, leading to extensive data duplication.
After removing duplicates, the training data is reduced from 63.2K to 40.4K instances.

Additionally, in the LLM-Adapters paper, the training set sizes of ARC Challenge and ARC Easy were reversed by mistake;
here, we correct that error.

The results for LoRA and DoRA presented in Table 4 are directly taken from the original DoRA paper, where the
hyperparameters are carefully tuned. Similarly, the results for HiRA are cited from its original publication. In contrast,
we introduce new experimental results for PiSSA and CLOVER, both of which are optimized with the best learning rates
(Table 8) and aligned hyperparameters. Specifically, PiSSA achieves optimal performance at a learning rate of 2e-5, while
CLOVER performs best at 1e-4, as shown in the table below:

Table 9 presents a comparison of hyperparameters for different fine-tuning methods on commonsense tasks. The target
model remains the same for LoRA, DoRA, HiRA, and PiSSA. However, DoRA introduces an additional magnitude module,
leading to a slightly higher parameter count. In a single layer of LoRA, the trainable parameters are as follows:

14



CLOVER: Cross-Layer Orthogonal Vectors Pruning

Method Learning Rate Acc

1e-4 80.1
5e-5 82.9

PiSSA 3e-5 84.1
2e-5 84.5
1e-5 83.6

5e-4 79.0
2e-4 83.9

CLOVER 1e-4 85.2
5e-5 84.3
2e-5 82.8

Table 8. Learning rate searching.

In LoRA, the trainable parameters are:

Q = 4096× 32 + 4096× 32

K = 4096× 32 + 4096× 32

V = 4096× 32 + 4096× 32

Up = 4096× 32 + 11008× 32

Down = 4096× 32 + 11008× 32

The total sum is 1,753,088.

In CLOVER, the trainable parameters are:

QK = 32× 128× 128

V O = 32× 128× 128

UD = 172× 64× 64

The total sum is also 1,753,088.

Since CLOVER inserts trainable parameters across layers, we use the Q-K pair notation to represent its target model. When
CLOVER updates parameters within an attention head, the number of trainable parameters matches exactly that of LoRA at
rank 32. To adjust the number of learnable parameters, CLOVER can either span multiple heads or split a single head into
multiple blocks. Both PiSSA and CLOVER exhibit stable training performance. Therefore, instead of validating every 80
steps, we omit frequent validation, improving training efficiency.

Table 9. Detailed Training Hyperparameters. Q-K,V-O, U-D means CLOVER update pair of orthogonal vectors.

Method Target Evaluation
steps LR Scheduler Batch

size
Warmup

Steps Epochs

LoRA Q,K,V,U,D 80 3e-4 Linear 16 100 3
DoRA Q,K,V,U,D 80 2e-4 Linear 16 100 3
HiRA Q,K,V,U,D 80 1e-4/2e-4 Linear 32 100 3
PiSSA Q,K,V,U,D – 2e-5 Linear 16 100 3

CLOVER Q-K,V-O, U-D – 1e-4 Linear 16 100 3

C. LibriSpeech Long dataset target transcript
Below is the reference text of the LibriSpeech Long dataset for comparison.
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Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel. Nor is Mr. Quilter’s manner less
interesting than his matter. He tells us that at this festive season of the year, with Christmas and roast beef looming before
us, similes drawn from eating and its results occur most readily to the mind. He has grave doubts whether Sir Frederick
Layton’s work is really Greek after all, and can discover in it but little of rocky Ithaca. Linnell’s pictures are a sort of Up
Guards and Adam paintings, and Mason’s exquisite idles are as national as a jingo poem. Mr. Birkett Foster’s landscapes
smile at one much in the same way that Mr. Carker used to flash his teeth, and Mr. John Collier gives his sitter a cheerful
slap on the back before he says, like a shampooer in a Turkish bath, next man.

In fact, with Vanilla Pruning ratios of just 22.31% and 6.69% for WQ-WK and WV -WO, respectively, the model’s output is
already significantly degraded.

Mr. Colter is the personal of the classes, and we are glad to welcome his gospel. Nor is Mr. Colter’s manner less interesting
than his manner. He tells us that at this festive season of the year, with Christmas and roast beef looming before us, similarly
he is drawn from eating and its results occur most readily to the mind. He is very dull, so very frequently, and is very Greek
after all, and can discover in it but little of Rocky Ithaca. The Nell’s pictures are sort of up-guard to Adam’s paintings, and
Mason’s exquisite idylls are as national as a jingle poem. Mr. Burke and Foster’s landscapes smile at one much in the same
way as Mr. Parker, Mr. Flash is tits. And Mr. John Collier gives his sitter a cheerful slap on the back before he says like a
shampoo and a Turkish bath, Next man.

D. Further Analysis of CLOVER’s Fine-Tuning Capability
D.1. Necessity of Full-Direction Fine-Tuning

Besides pruning with a large ratio, CLOVER is capable of learning linear combinations of all orthogonal vectors within
each attention head. This capability allows CLOVER to resemble full-parameter fine-tuning more closely. To highlight the
advantages of updating all orthogonal bases, we randomly sampled 16 instances from the Commonsense dataset, fed them
into the model, and performed SVD to the model. We then recorded the projection magnitudes of input features along all
orthogonal directions. Figure 5 visualizes the results for the middle layer, revealing the following insights:
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Figure 5. Proportion of data projections across different components in random directions (LoRA) versus orthogonal directions (PiSSA),
as well as all orthogonal directions (CLOVER).

1) Without accounting for the scaling effect of singular values, the projection magnitude along the principal singular vector
consistently exceeds that in other directions. This observation supports PiSSA’s approach, which updates based on the
principal singular values and vectors, leading to improved training performance. In contrast, LoRA projects in random
directions, resulting in uniform projection magnitudes across all directions.

2) The singular values in the original model reflect the importance of each direction in the pretraining task. The model
amplifies the components along directions with larger singular values and suppresses those along smaller singular values.
Therefore, it is crucial to consider the scaling effect of singular values. As shown in Figure 5c, the projection magnitude
along the principal singular vector direction increases to 18%.

3) While more data projections align with the principal singular vector at higher ranks, 82% of the feature components are
still projected onto other directions. In extreme cases, if a task is entirely orthogonal to the vectors used by PiSSA, training
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on such a task may result in zero gradients, thereby limiting its learning capacity. Under the same rank constraint, 94% of
the feature components in LoRA are projected outside the LoRA adapter, making it more susceptible to the zero-gradient
problem.

Since CLOVER updates across all orthogonal directions, as shown in Figure 5d it effectively mitigates this issue. Conse-
quently, CLOVER outperforms both LoRA and PiSSA in multi-task learning, even when using the same or fewer learnable
parameters (Section 4.6).

D.2. Visualizing Rank Updates

To demonstrate CLOVER achieves full-rank updates, we multiply the updated singular values with their corresponding
singular vectors and perform SVD on the base model (SQK applied to the Key layer, SV O to the Value layer, and SUD to
the Up layer). We take LoRA, and Full Fine-tuning for comparing. Figure 6 shows the singular value of the middle layer in
LLaMA-2-7B, revealing that CLOVER and Full Fine-tuning achieve full-rank updates, while LoRA is constrained by its
low-rank design.
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Figure 6. ∆W is low rank in LoRA, while full rank for Full-Fine-Tuning and CLOVER.

D.3. CLOVER Avoids Intrusive Dimensions

Recent research (Shuttleworth et al., 2024) has highlighted an issue with LoRA, referred to as the “intrusive dimensions”
phenomenon. As illustrated in Figure 7b, LoRA introduces new random directions into the model, which possess large
magnitudes and thus precede all the original singular vectors. The study suggests that these “intrusive dimensions” can
degrade the model’s performance, exacerbating catastrophic forgetting during continual learning with LoRA. In contrast,
CLOVER addresses this issue by fixing all orthogonal bases and updating only the vector combinations. As a result, the
changes introduced by CLOVER fine-tuning closely resemble those generated by full parameter fine-tuning, as shown in
Figure 7a and Figure 7c.

D.4. Cross Layer Orthogonal Vectors in Value and Output layers

In the main text, we only presented the orthogonalization process for the Q-K pair. Here, we provide the method for
orthogonalizing the V-O pair. Additionally, for up-down layers, the output dimension of the Up layer can be reshaped into
block number × block size, followed by performing orthogonal decomposition within each block.

Y = attn(Qh,Kh)VWO, V = XWV ∈ Rb×h×n×d (1)

= attn(Qh,Kh)XWV WO, WV WO = WV O = USV ∈ Rh×D×D (2)

= attn(Qh,Kh)XUSV, S[:,rvo:,rvo:] = SV O ∈ Rh×rvo×rvo = 0, rvo ≤ d. (3)

= attn(Qh,Kh)XUV OSV OVV O, UV O ∈ RD×h×rvo , VV O ∈ Rh×rvo×D. (4)
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Figure 7. Intruder dimensions phenomenal in LoRA, which does not exist in Full Fine-Tuning and CLOVER.

Through this series of transformations, WV and WO can be equivalently replaced by orthogonal vectors UV O and VV O,
along with the diagonal matrix SV O. Since rvo ≤ d, the singular zero values and their corresponding singular vectors can
be safely pruned. After guided pruning, SV O can be merged into UV O and VV O, resulting in no additional computational
overhead.

E. Visualizing more attention heads
In Section 4.2, we only presented the first attention head in the first layer. Here, we provide a broader view by showcasing
more attention heads. Figure 8 illustrates the L2 norm of all Q-K heads in the first, middle, and last layers of Whisper-Large-
v3. Figure 9 shows the L2 norm of all Q-K heads in the first, middle, and last layers of ViT-bigG.

From these figures, we can observe that CLOVER consistently represents the entire attention head with fewer orthogonal
bases across all layers and all attention heads. This property forms the foundation of CLOVER’s effectiveness in enhancing
pruning.
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Figure 8. The L2-norm for the 0-th, 15-th, and 31-st attention layers in the Whisper-large-v3 encoder. The blue line represents the results
after redundancy removal using the CLOVER method, while the orange line depicts the L2-norm directly computed for each dimension.
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Figure 9. The L2-norm for the 0-th, 15-th, and 31-st attention layers in the ViT-bigG. The blue line represents the results after redundancy
removal using the CLOVER method, while the orange line depicts the L2-norm directly computed for each dimension.
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