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ABSTRACT

Standard Conformal Prediction (CP) guarantees that prediction sets contain the
true label with high probability, but it is cost-blind, treating all errors as equally
important—a critical limitation in high-stakes domains. We introduce Confor-
mal Non-Coverage Risk Control (CNCRC), a framework that replaces cover-
age frequency with direct risk control. CNCRC guarantees an upper bound on
catastrophic non-coverage risk while actively reducing ambiguity risk, provid-
ing prediction sets that are both safe and usable. This is achieved through a prin-
cipled decomposition of decision risk and the design of risk-weighted noncon-
formity scores that balance robustness with efficiency. Experiments show that
CNCRC reliably satisfies strict risk constraints in adversarial settings and outper-
forms all baselines on a large-scale clinical benchmark. By offering practitioners a
choice between maximum robustness and maximum efficiency, CNCRC provides
a practical and theoretically grounded toolkit for deploying genuinely risk-aware
machine learning systems in safety-critical applications.

1 INTRODUCTION

A fundamental challenge for the reliable deployment of machine learning models is the quantifica-
tion of their predictive uncertainty. While models can achieve high accuracy, they often produce
point predictions without a formal measure of confidence, making it difficult to distinguish a con-
fident guess from a borderline one. Among the various methods for Uncertainty Quantification
(UQ) (Lakshminarayanan et al.,2017; MacKayl [1992a; |Ye et al.,[2024), Conformal Prediction (CP)
has emerged as a particularly compelling framework due to its elegant theoretical properties (An-
gelopoulos & Bates,2021). Atits core, CP generates a prediction set—a small collection of plausible
labels—that is mathematically guaranteed to contain the true outcome with a user-specified proba-
bility (e.g., 95%) (Vovk et al.||2005). For example, an image classifier augmented by CP would not
just output ‘cat’; it can provide a set like {‘cat’, ‘lynx’} with a 95% guarantee that the true class is
present in the set, transparently communicating the model’s ambiguity to the end-user. This rigorous
statistical guarantee holds without making any assumptions about the data’s distribution, a highly de-
sirable property known as being distribution-free (Vovk et al., 2005; |/Angelopoulos & Bates, [2021).
Furthermore, the framework is model-agnostic: it functions as a lightweight, post-processing step
that can be applied to any pre-trained model, from simple classifiers to complex Large Language
Models (LLMs), without altering their internal architecture (Angelopoulos & Bates), 2021; Wang
et al.| 2024)). This combination of a rigorous, distribution-free guarantee and universal applicability
makes CP a powerful and versatile tool.

The Failure of Conformal Prediction in High-Stakes Domains. Despite its powerful and gen-
eral guarantees, classical CP fails in high-stakes domains due to a critical flaw: its guarantee is
fundamentally cost-blind (Wilder et al., |2019). The standard procedure controls the long-run fre-
quency of coverage, that is, the proportion of test instances in which the prediction set contains the
true label, but it treats all errors as equally consequential, ignoring the often asymmetric costs of real-
world mistakes (Elkan,[2001; Elmachtoub & Grigas|,[2022)). This oversight can lead to catastrophic
failures. To make this concrete, consider a clinical scenario with a rare but lethal condition—a “poi-
son class”. A model might predict the class probabilities for a given patient as follows: a common
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benign condition at 60%, another at 39.9%, and the poison class at a mere 0.1%. A risk-blind clas-
sical CP aims to form a confidence set by capturing a certain amount of probability mass, typically
by selecting the most likely candidates. In this case, such a procedure would form a set containing
only the two benign conditions, as their combined probability already accounts for 99.9% of the dis-
tribution. The poison class, despite its critical importance to the patient’s survival, is systematically
excluded simply because its probability is low. This illustrates the core problem: any method that is
blind to the asymmetric costs of errors and relies solely on a probabilistic criterion is fundamentally
unsafe for high-stakes decisions (Elmachtoub & Grigas| 2022; Sadinle et al.,[2019). Defining these
asymmetric costs is therefore not an optional assumption, but a fundamental prerequisite for safety
in such domains (Elkan, 2001)). In the example above, the system’s statistical “confidence” provides
no true measure of clinical safety.

Limitation of Existing Approaches. The failure of classical CP to account for such cost asymme-
tries has motivated some recent studies to incorporate cost-awareness. One influential line of work
is cost-aware CP, which seeks to generate sets that optimize a downstream utility function (Cortes-
Gomez et al., [2025). While this can improve average-case utility, its reliance on expectations is
precisely its undoing in high-stakes settings, as it offers no hard guarantee against specific, high-
cost failures. An average-case metric is easily dominated by the outcomes of frequent, low-cost
events, meaning the immense cost of a single, rare event—such as failing to identify the “poison
class”—can be effectively ignored or “averaged out” in the optimization. A more formal approach
is Conformal Risk Control (CRC), which provides a framework to control a user-defined expected
loss (Angelopoulos et all 2024). However, CRC’s guarantees come with practical trade-offs. To
formally control the expected loss for a general loss function in a distribution-free manner, the
framework must be inherently conservative to account for worst-case scenarios. In practice, this
conservatism often forces the procedure to generate unmanageably large prediction sets which, by
including numerous distractors, create high ambiguity and are of little use to a decision-maker (Lu
et al.| 2022). Consequently, a critical gap remains for a framework that can move beyond average-
case performance and instead provide direct, rigorous control over catastrophic risks, while simul-
taneously ensuring the practical utility of its outputs.

CNCRC: A Framework for Direct Risk Control. To resolve the tension between CP’s statistical
promise and its practical failure in cost-sensitive settings, we propose Conformal Non-Coverage
Risk Control (CNCRC), a framework that fundamentally redefines the conformal guarantee. It
shifts the objective from controlling error frequency, which treats all mistakes as equal, to directly
controlling the decision risk—the expected real-world consequence of a prediction, where each po-
tential error is weighted by its asymmetric cost. Our central conceptual breakthrough is the insight
that this tension can be resolved through a principled decomposition of the monolithic notion of
‘risk’ into two distinct, actionable components. First, it treats non-coverage risk—the expected
loss from a catastrophic failure when the true label is absent from the prediction set—as a hard
constraint. Instead of targeting an average-case expectation, CNCRC provides a rigorous and nu-
merically interpretable upper bound on this risk, a crucial feature for controlling the high-cost tail
events characteristic of “poison class” scenarios. Second, the framework explicitly minimizes am-
biguity risk, which refers to the potential harm caused by incorrect but plausible “distractor’ labels
remaining inside the prediction set, since a decision-maker may mistakenly select one of these high-
risk options. These distractors are incorrect yet plausible options that are particularly dangerous
when they are high-risk—for instance, a contraindicated drug appearing alongside the correct, safe
therapy. By actively purging these hazardous options, CNCRC ensures the final output is not just
statistically valid but also decision-aware and safe, preventing the set from becoming a “potential
trap” for the end user. To achieve this dual objective, CNCRC replaces the cost-blind nonconformity
score of classical CP with a family of novel, risk-weighted alternatives, which integrate asymmetric
error costs directly into the conformal calibration process. Crucially, while providing these stronger,
risk-based assurances, our framework is proven to retain the standard split-conformal marginal cov-
erage guarantee, adding a new layer of risk control without sacrificing the foundational properties
of CP.

Contributions. (1) A Principled Reformulation of High-Stakes Uncertainty Quantification.
We instigate a paradigm shift in CP from the insufficient goal of controlling statistical error fre-
quency to the direct control of decision risk. We formulate this through a novel Risk Decomposition,
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splitting decision risk into a hard safety constraint on non-coverage risk (R ¢) and a design objec-
tive of reducing ambiguity risk (AmbCost). (2) A Practical and Elegant Algorithmic Solution.
We introduce CNCRC, which operationalizes this objective through novel risk-weighted nonconfor-
mity scores (Siaz, Ssum) designed to satisfy the Risk-Bounding Property. This property provides
the theoretical bridge to translate conformal quantiles into rigorous risk bounds. (3) Extensive Em-
pirical Validation on a Large-Scale Clinical Task. Through both adversarial stress tests and a
large-scale clinical benchmark, we provide decisive evidence of CNCRC'’s superiority. Our results
demonstrate that CNCRC is the only framework tested that reliably satisfies strict risk constraints
in the face of rare, catastrophic events, while also dominating established baselines on the safety-
efficiency trade-off.

2 RELATED WORK

Our work builds upon the foundational framework of CP, seeking to improve upon existing methods
for cost-awareness. We situate our contribution with respect to three key areas: the classical CP
framework, utility-focused adaptations for cost-awareness, and the formal theory of CRC.

Conformal Prediction (CP). The goal of CP is not to provide a single “best” prediction, but rather
a statistically reliable prediction set (Vovk et al.,[2005;[Sadinle et al.l2019)), denoted C(x). The core
promise of the framework is that this set is mathematically guaranteed to contain the true label, ¥, ye,
with a user-specified high probability|Vovk et al.|(2005). In practice, this is most commonly achieved
via Split CP, which requires holding out a separate calibration set, D..,; = {(x;,y;)}",. The
central component of the framework is a nonconformity score, s(x,y), a function that measures
how poorly a label y conforms to an input x according to a pre-trained model (Papadopoulos et al.,
2002; |Angelopoulos & Bates| |2021). A threshold, g, is then determined by taking the [(n + 1)(1 —
a)|/n-th quantile of scores computed on the calibration set, where s; = s(x;,;) and « is the
user-specified tolerable error rate. For a new test input X, the prediction set is constructed as:

C(Xnew) = {y € V| 5(Xnew,y) < ¢} (D
Under the standard assumption that the data points are exchangeable, meaning that their joint distri-
bution is invariant to permutations of the sample order, this procedure provides the rigorous marginal
coverage guarantee that P(yiue € C(Xnew)) > 1 — . This finite-sample, distribution-free valid-
ity fundamentally distinguishes CP from other Uncertainty Quantification (UQ) paradigms, such
as Bayesian methods (MacKay, [1992b; Lakshminarayanan et al., 2017), which typically rely on
asymptotic or model-dependent assumptions. Modern advancements have also focused on making
these sets adaptive to the difficulty of each prediction (Romano et al., [2020; |Angelopoulos et al.,
2021)) or ensuring class-conditional coverage validity (Vovk et al.,[2005} |Sadinle et al., 2019).How-
ever, the entire mechanism, particularly the canonical nonconformity score s(x,y) = 1 — p(y|x),
where p(y|x) denotes the model’s estimated probability of label y given input x, relies solely on
model probabilities. It is completely unaware of the real-world costs of different errors, a design
choice that renders it not merely cost-blind but profoundly misaligned with the realities of high-
stakes decision-making. This misalignment creates an urgent need for a new class of methods that
treat asymmetric risks not as an afterthought, but as a core design principle.

Cost-Aware CP. To address the cost-blindness of classical CP, one influential line of work seeks
to incorporate cost or utility information directly into the framework. A key example is Utility-
Directed Conformal Prediction, which aims to generate prediction sets that optimize for an expected
downstream utility (Cortes-Gomez et al.[(2025). The central mechanism in this approach is to modify
the nonconformity score by adding a cost-based penalty term. The score for a candidate label y can
be expressed in a general form as:

Scost—aware(X7 y) = Sbase (X7 y) + )‘ : COSt(y)a (2)
where Spase(X, y) is a standard, probability-based score (e.g., 1 — p(y|x)), cost(y) represents the
disutility associated with label y, and A is a hyperparameter that controls the strength of the cost
penalty. While this method can improve the average utility of the resulting sets, its reliance on a
tunable hyperparameter A makes the procedure heuristic in nature. More fundamentally, optimizing
expected utility “averages out” rare, high-cost events. Unlike these methods, CNCRC enforces a
hard constraint (Ryc < Rp) on non-coverage risk, ensuring safety against catastrophic failure
modes even when they are rare.
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Conformal Risk Control (CRC). A more formal approach to cost-awareness is CRC, a frame-
work that provides a distribution-free guarantee that the expected value of a user-defined loss func-
tion will remain below a desired level |Angelopoulos et al.| (2024). Conceptually, the procedure first
ranks all possible labels based on a score that prioritizes high-probability, low-loss candidates. It
then starts with an empty set and greedily adds the highest-ranked labels one by one, continuing
until a calibrated “risk budget”—a threshold determined on the calibration set—is exhausted. While
theoretically powerful, this approach suffers from a crippling trade-off that severely limits its practi-
cal applicability. First, its guarantee is on the expected loss, which, by averaging over all outcomes,
can obscure the tail risk of a single, catastrophic high-cost event. Second, to ensure the guaran-
tee on the expected loss holds universally, the calibrated “risk budget” often must be excessively
large. This conservatism forces the procedure to include a vast number of candidates, resulting in
unmanageably large prediction sets that are practically useless. This highlights the central, unsolved
challenge that our work directly confronts: designing a framework that is simultaneously robust to
catastrophic risk and practically efficient.

3 METHODOLOGY

3.1 PROBLEM FORMULATION

Preliminaries. Let X be the input space and ) = {y1,...,yx } be a discrete label space. For
any input x € X, a base predictor F' produces a class-probability distribution P(- | x) over ).
Our framework is model-agnostic, meaning F' can be any model that outputs such a distribution
(Angelopoulos & Bates| 2021} [Romano et al., [2020). In fact, the only requirement is exchange-
ability of the data; no assumptions are made about model capacity or training. This independence
underscores the generality and elegance of CNCRC. The key ingredient that allows our framework
to move beyond the cost-blind nature of classical CP is a user-specified, asymmetric cost func-
tion, Cost : ) x ¥ — Rs(, where Cost(Yirue, Ypred) encodes the real-world consequence of
predicting ypreq When the truth is yi,ne. We assume costs are bounded above by a finite constant

Cmax € (07 OO)

Objectives: From Coverage to Risk Control. Our goal is to construct a prediction set C(x) that
provides multi-faceted, risk-aware guarantees. We begin by preserving the foundational guarantee
of split-conformal prediction: for a user-specified significance level « € (0, 1), the set must satisfy
marginal coverage, Pr (ytrue eC (x)) > 1 — «a. Beyond this, we introduce and aim to control two
distinct, risk-centric objectives.

First, we control for catastrophic omissions via the non-coverage risk, defined as:

RNC =E |: Cost (ytruea ydefault) . 1{ytrue ¢ C(X)} :| )

where yqetaut 1S @ default fallback action, representing the system’s pre-specified safe choice when
the prediction set misses the true label (e.g., in a clinical setting, defaulting to “withhold treatment
and request further tests” rather than administering a potentially harmful drug). This non-coverage
risk represents the expected cost incurred when the true label is outside the prediction set. Our goal
is to provide a direct, numerically interpretable upper bound on Ryc.

Second, we control for hazardous inclusions via the ambiguity risk, which we define for a given set
as the cost of the worst distractor inside it:

AmbCost(x) := Cost (Ytrue, ¥)-

max
YEC(x)\{Ytrue}
We employ the max operator to define Ambiguity Risk because high-stakes safety requires control-
ling the worst-case hazard, rather than the average set quality. Metrics based on averages suffer
from risk dilution, where the accumulation of low-cost distractors can mathematically obscure the
presence of a single catastrophic error. The max operator strictly upper-bounds the potential cost of
any error within the set, ensuring that high-risk candidates are penalized regardless of the set size.
Detailed discussions are included in Appendix [A]

'In practice one may either normalize costs to [0, 1] (the special case Cimax = 1) or work directly with a
task-specific upper bound Ci,ax. All guarantees stated in the following hold with this general scale.
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3.2 AUTOMATED COST MATRIX VIA EXTERNAL KNOWLEDGE

Motivation. While our core framework is general and accepts any bounded cost function,
defining these asymmetric costs is a fundamental prerequisite for rational high-stakes decision-
making (Elkan, [2001; |Amodei et al.,[2016; |Wilder et al.,|2019). However, a critical barrier to scala-
bility is the prohibitive effort required to manually specify cost matrices, which grows quadratically
(O(K?)) with the label space size. We directly confront this bottleneck with a novel pipeline that
constructs costs in an automated and auditable manner. By grounding costs in an external, structured
knowledge base (KB) /C, we replace manual entry with high-level rules, explicitly operationalizing
decision-focused principles while solving the scalability challenge.

Mechanism. Our pipeline defines the cost of a specific confusion (a misclassification where the
true label y; is incorrectly predicted as another label y;), Cost(y;, y;; %, K), via a two-step process.
First, a query function, ¢(x,y;,y;), acts as a “fact retriever” that queries the KB for relevant in-
formation. Second, a transparent risk mapping, R : Facts — R>, acts as a “risk translator” that
converts retrieved facts into a scalar cost. A detailed, illustrative example of this pipeline, including
the specific pseudo-code used for implementation, is provided in Appendix The full process is
formally defined as:

COSt(yia Yji X, IC) = R(¢(Xa Yi, y])) :

For brevity, we write Cost(y;,y;) in the rest of the paper. This entire pipeline is fully scripted and
versioned, ensuring that our cost definitions are context-aware, auditable, and reproducible.

3.3 RISK-WEIGHTED NONCONFORMITY SCORE

Design Goals and Requirements. The foundational requirement for any nonconformity score
within our framework is that it must be mathematically valid. For the split-conformal procedure,
this means the score function must be fixed and deterministic. While satisfying this condition is a
necessary prerequisite for correctness, it provides no guidance for designing an effective score.

To move beyond the basic safety guarantee and also formally control the quality of the set’s contents,
a score must have a specific mathematical structure. We term this the risk-bounding property: the
score calculated for the true label, s(x, ¥t ue ), must serve as an upper bound on the individual risk
posed by any potential distractor. Formally, for any j # true:

P(yj | X) : COSt(ytruevyj) < S(Xaytrue)- 3)

As we prove in Appendix [E] any score satisfying this property enables a formal upper bound on
ambiguity risk. Both of our proposed scores, Syax and Ssum, are designed to satisfy this condition.

Finally, even within the class of scores that are both valid and satisfy the risk-bounding property,
there exists a critical design trade-off between robustness and efficiency. Anideal score should be ro-
bust, ensuring the Rxc guarantee is reliably met in practice, especially in adversarial, finite-sample
scenarios. Concurrently, it should be efficient, producing sets with the lowest possible ambiguity
risk. Recognizing that this trade-off admits no single universal solution, we engineer two distinct
but equally principled scores, Syax and Ssum, €ach meticulously crafted to prioritize one of these
competing objectives.

Score Instantiations and Theoretical Rationale. To navigate the trade-off between robustness
and efficiency, we propose two scores that satisfy our design criteria. Both are based on the cen-
tral idea of quantifying a candidate y;’s non-conformity by the risk of confusion with alternatives

{ys iz

Our first instantiation, the max-score (syax), 1S designed to prioritize robustness. It quantifies the
confusion risk via its single most hazardous component:

smax(06, ) = mae { P(yy | x) - Cost(yi.yy) |- @
This design inherently satisfies the risk-bounding property (Equation [3)), as the individual risk from

any single distractor y; is by definition less than or equal to the maximum of all such risks. Theoreti-
cally, its max operator makes the score highly sensitive to outlier, high-cost events in the calibration
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set, which is expected to produce a higher calibrated threshold g. This provides a greater “safety
margin” for the non-coverage risk bound, making it the preferable score for applications where
robust satisfaction of the safety constraint is the paramount concern.

Our second instantiation, the sum-score (sgun,), is designed to prioritize efficiency by creating sets
with minimal ambiguity. It achieves this by aggregating the risk from all potential confusions:

Ssum(X7 yz) = Z P(yj | X) : COSt(yuy]) (5)
J#i

This design also satisfies the risk-bounding property, as any single, non-negative risk term is neces-
sarily less than or equal to the total sum of all such terms. Theoretically, by aggregating all risks,
this score provides a more holistic measure of the risk landscape. This property is designed to better
penalize candidates that are easily confounded with many alternatives, leading to “cleaner” sets with
lower ambiguity cost. Thus, it is the preferable score where the primary goal is to minimize ambi-
guity risk. We provide a detailed numerical example illustrating the mechanistic difference between
these scores in Appendix [C] The trade-off is what we will verify empirically in Section 4}

3.4 CNCRC: ALGORITHM AND GUARANTEES

Algorithm. The CNCRC algorithm follows the well-established split-conformal template, ensur-
ing its practicality and ease of implementation. The full procedure is detailed in Algorithm

Algorithm 1 Conformal Non-Coverage Risk Control (CNCRC)

1: Input: predictor F', calibration data Dca) = {(x;,¥:)}7 1, bounded cost Cost < Cipax, target
non-coverage risk Ry € (0, Crax], test input Xpey

2: Output: prediction set C(Xpew)
3: Calibration

4: o + Ry/Crax > internal split-CP level implied by the target risk
5: fori =1tondo
6.
7
8

: compute s; < S¢(X;,y;) wWith a chosen score (Smax O Ssum)
: end for
t k<« [(n+1)(1—a*)]; g < k-th order statistic of {s;}, in ascending order
9: Prediction
10: compute P(- | Xpew) via F
11: C(Xnew) — {yk SN So(xnewayk) < Q}
12: return C(Xpew)

By analogy to standard CP, the process begins with a calibration phase. We use the held-out calibra-
tion set D.,1 to compute a score for each true data point using one of our risk-weighted scores (Smax
or Sgum)- This generates an empirical distribution of the risk associated with correct labels. From
this distribution, we compute a quantile ¢, which acts as our critical “risk threshold”. In the pre-
diction phase, we construct the final set by including all candidate labels whose risk score is below
this calibrated threshold. This reveals the fundamental paradigm shift of our framework. Classical
CP operates in a (probability, set size) paradigm: it provides a mathematical guarantee on statistical
coverage, while implicitly optimizing for minimal set size. In contrast, CNCRC introduces a (risk,
risk) paradigm: it provides a mathematical guarantee on the upper bound of non-coverage risk,
while explicitly prioritizing the minimization of ambiguity risk.

The overall time complexity of this procedure is O(K?) at prediction time (where K = |)| denotes
the number of labels), reflecting the incorporation of rich pairwise risk information. For label spaces
in the size of hundreds or thousands, this overhead remains practical, especially in high-stakes ap-
plications. A detailed breakdown is provided in Appendix [D]

Theoretical Guarantees. The CNCRC procedure, when instantiated with a score satisfying our
design principles, provides a trio of theoretical guarantees that span from classical coverage to direct
risk control. We summarize these results in the following unified theorem. The formal proofs for
each claim are provided in Appendix [E|

Theorem 3.1 (Unified Guarantees of CNCRC). Under the assumption of exchangeable data and
bounded costs (Cost < Chax), given a target non-coverage risk Ry € (0, Ciax|, define o =
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Ro/Cax and calibrate q using o* as in Algorithm|l} Let p(x) denote a positive lower bound on
the predicted probabilities of all distractors y € C(x)\{Ytrue }. Then Algorithm[I} when instantiated
with any nonconformity score s that satisfies the risk-bounding property (Equation [3), produces a
prediction set C(x) with:

1. Marginal Coverage: Pr(yuue € C(x)) > 1—a*.
2. Non-Coverage Risk: Rnc < Ryp.

3. Ambiguity Risk: AmbCost(x) < ﬁ.

This theorem formalizes the core contributions of our framework. It shows that CNCRC not only in-
herits the foundational guarantees of classical CP (Guarantee 1), but also adds a direct, interpretable
bound on catastrophic non-coverage risk (Guarantee 2). Finally, it provides a formal handle on the
quality of the set’s contents by bounding the ambiguity risk (Guarantee 3), a property not offered by
arbitrary conformal scores. Importantly, CNCRC calibrates directly to a user-specified risk target
Ry viaa* = Ry/Ciax, thereby operationalizing the non-coverage risk bound in heterogeneous-cost
regimes where cost-blind choices of a may catastrophically fail.

4 EXPERIMENTS

4.1 ADVERSARIAL STRESS TEST: VERIFYING THE RISK GUARANTEE’S ROBUSTNESS

Setup. Our first experiment is an adversarial stress test, specifically engineered to probe the funda-
mental failure modes of probability-centric and average-risk methods, thereby verifying the superior
robustness of our risk-centric framework. To do this, we construct a synthetic “poison class” sce-
nario that deliberately creates a tension between probability and risk. The scenario consists of three
classes: two “common” classes, each occurring with approximately 50% probability and carry-
ing a unit non-coverage cost (Cost = 1), and a single “poison class” that occurs with only 0.2%
probability but carries a catastrophic non-coverage cost of Ciax = 150. We generate 6,000 total
samples and split them equally into calibration, validation, and test sets (2,000 each). To ensure a
rigorous and fair comparison, we evaluate CNCRC alongside well-established baselines: Standard
CP, Cost-Aware CP, Conformal Risk Control (CRC), and Class-Conditional CP (CC-CP). All
methods are tasked with satisfying the same strict non-coverage risk target of Ry = 0.10. We strictly
follow a Risk-Alignment Protocol (detailed in Appendix [F.2): CNCRC calibrates directly to this
target using a* = Ry /Cinax, While each baseline’s hyperparameters (e.g., «) are explicitly tuned on
the validation set using the cost matrix to match the same target risk before final evaluation on the
held-out test set. We report results averaged over 10 random seeds with 95% confidence intervals.

Evaluation Criteria. The primary objective is to control the non-coverage risk to be at or near
the target of Rg = 0.10. We acknowledge that due to finite-sample variance, the realized risk on
a test set, R ~ne, may fluctuate around this target. Therefore, we consider a framework to have
successfully met the safety objective if its realized risk is statistically consistent with the target and
not significantly exceeded. A framework is considered to have failed if it catastrophically violates
this bound. Among methods that successfully meet this primary safety requirement, a superior

method is more efficient, which is measured by a lower ambiguity cost (AmbCost) and a smaller

average prediction set size (APS). We also report the method’s coverage rate on the catastrophic
“poison class” as a direct measure of its reliability in worst-case scenarios.

Results and Analysis. The results, summarized in Table provide clear validation of our
framework’s design. As predicted in Section the probability-centric methods—Standard CP
and Cost-Aware CP—failed catastrophically at the first hurdle. Their realized non-coverage risk
(1:? ~nc ~ 0.41) was more than four times the allowed target, and they provided 0% coverage of the
poison class, confirming the theoretical limitations we outlined.

Second, the Class-Conditional CP (CC-CP) baseline demonstrated a partial improvement. By strati-
fying calibration, it successfully covered the poison class (= 92.4%), validating its ability to handle

class imbalance. However, it still violated the risk constraint (ﬁ ~vo =~ 0.125 > 0.10). Since CC-CP
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Table 1: Risk-aligned verification (R ¢ Target ~ 0.10). Values are mean + 95% CI over 10 seeds.
J indicates lower is better, and 1 indicates higher is better.

Method Test Ryco (1) Coverage APS Ambiguity Cost () Poison Cov. (1)
Standard CP 0.413£0.072  0.900 £0.004 3.61+£0.01 0.506 £ 0.023 0.0% + 0.0%
Cost-Aware CP 0.412 +£0.070  0.901 +0.003 3.61 £ 0.01 0.497 £+ 0.022 0.0% £ 0.0%
CC-Cp 0.125+£0.037  0.901 £0.005 4.32+0.13 0.506 + 0.023 92.4% + 8.1%
CRC 0.063 £0.033  1.000 £+ 0.000 4.63 £ 0.00 0.570 £ 0.026 79.8% + 8.5%

CNCRC-MAX 0.097£0.004 0.903+0.004 4.61+0.01 0.497 £ 0.020 100.0% £ 0.0%
CNCRC-SUM  0.096 +0.005 0.904 +£0.005 4.60 %+ 0.01 0.490 £ 0.021 100.0% + 0.0%

targets a fixed error rate (frequency) for all classes, the errors remaining on the high-cost poison
class drove the total risk above the safety limit, proving that frequency guarantees are insufficient
for cost control.

The more formal CRC framework exhibited a more insidious but equally critical failure. While it
was highly conservative in meeting the non-coverage risk bound, it exhibited a critical failure in risk
efficiency, perfectly illustrating the practical infeasibility we identified in Section [2] Although CRC
produced prediction sets of comparable size to CNCRC (APS = 4.63), it incurred the highest am-
biguity cost (= 0.570) among all methods. This indicates that while CRC constrained the quantity
of distractors, it failed to control their quality, retaining the most dangerous options. Most critically,
despite this conservatism, it failed to cover the poison class reliably (only 79.8% coverage), empiri-
cally confirming our theoretical concern that controlling a general expected loss does not guarantee
robustness against specific high-cost failure modes.

In contrast, our CNCRC variants successfully delivered the core promise of safety by achieving
100% coverage of the poison class. The results also perfectly validate the theoretical trade-off
predicted in Section CNCRC-MAX, true to its design as a robust score, successfully satisfied

the hard risk constraint (Ryc = 0.0970 < 0.10); CNCRC-SUM, designed as a more efficient

score, achieved the lowest ambiguity cost of all methods (Anmst = 0.490), though it slightly
exceeded the risk target. This provides strong empirical evidence for our theoretical analysis: the
max-score is the more robust choice for satisfying the hard safety constraint, while the sum-score is
superior for minimizing ambiguity.

4.2 REALISTIC APPLICATION: THE SAFETY-EFFICIENCY TRADE-OFF

Setup. Having established CNCRC’s robustness in adversarial conditions, our second experiment
evaluates its practical dominance on a challenging, large-label-space clinical task designed to re-
flect the complexities of real-world deployment. To construct this benchmark, we use two key
real-world resources. We source patient information from MIMIC-IV (Johnson et al., 2023)), a
large and widely-used repository of de-identified electronic health records (EHRs) from intensive
care unit patients. From this database, we extract patient contexts (x), each comprising a patient’s
demographics, diagnoses, and current medications. The ground truth for risk is established using
DrugBank (Wishart et al.,[2018)), a comprehensive bioinformatics database containing detailed drug
information. We leverage its structured data on drug-drug interactions to automatically generate the
asymmetric cost matrix that underpins our experiments, as detailed in Section The task is
to recommend a safe therapy for a given patient from a label space of over 3,000 drugs. To iso-
late the contribution of CNCRC itself, we employ a simple and transparent predictor that produces
calibrated probability estimates over this space. Because CNCRC is model-agnostic, the same guar-
antees would apply equally if a more complex model were used. All methods are compared using
our risk-alignment protocol to ensure a fair evaluation of the safety—efficiency trade-off. The full
details of our data preprocessing and experimental protocol are provided in Appendix Note that
we exclude the Class-Conditional (CC-CP) baseline from this experiment. While effective in low-
dimensional settings, CC-CP is mathematically infeasible here due to extreme data sparsity: with a
label space of || > 3,000 and a long-tail distribution, most classes contain zero examples in the
calibration set, making class-specific threshold estimation impossible. This highlights a critical ad-
vantage of CNCRC, which leverages global risk structures to scale to high-dimensional real-world
tasks where per-class methods fail.
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Evaluation Criteria. Our evaluation in this realistic setting focuses on the safety-efficiency
trade-off. To ground our analysis, we first examine the performance at a specific operating point
where all methods are aligned to a target risk of Ry = 0.08 (detailed in Appendix [F:2)); the detailed
metrics for this comparison are presented in Table 2] To assess generalization and perform a sensi-
tivity analysis on the framework’s primary constraint Ry, we visualize the full operating spectrum
in Figure [I] This effectively serves as a parameter sweep, charting the realized non-coverage risk

(ﬁ ~N¢) against the ambiguity cost (Ams‘c) across all valid target levels.

Table 2: Risk-aligned comparison at Ry = 0.08. CNCRC variants set R directly, while the base-
lines tune « to match this target. The comparison illustrates how the different principles underlying
each method translate into distinct safety—efficiency trade-offs. All reported ambiguity costs are
accompanied by their 95% confidence intervals (CI).

Method Calibration Coverage APS Rnec  Ambiguity Cost (95% CI)
CNCRC-SUM Ry =0.08 0.855 5.66  0.0830 0.288 £ 0.046
CNCRC-MAX Ry =0.08 0.890 5.75 0.0680 0.332 £ 0.044
Standard CP a=0.170 0.770 472  0.0975 0.331 = 0.056
Cost-aware CP o = 0.120 0.850 5.18 0.0775 0.299 £+ 0.049
CRC a = 0.180 0.755 19.21 0.0985 0.606 £ 0.059

Results and Analysis. We first examine the performance at a specific, representative operating
point where all methods are aligned to a target risk of Ry = 0.08. The detailed results, presented
in Table 2] illuminate the practical trade-offs between the frameworks. The table highlights the
practical limitations of CRC in this setting. By design, it produces very large sets (APS >19) in
order to meet the risk target, which results in a substantially higher ambiguity cost that would be
difficult to accommodate in clinical workflow. In contrast, both CNCRC variants demonstrate high
efficiency. CNCRC-SUM, true to its design as an efficient score, achieves the lowest ambiguity cost
(0.2865) of all methods. CNCRC-MAX, consistent with its design as a more robust score, achieves
a lower realized risk (E ~c = 0.0680) and higher overall coverage at the cost of a slightly higher
ambiguity cost (0.3322).

Risk-Risk Tradeoff: Non-Coverage vs Ambiguity

== CNCRC-Sum
= CNCRC-Max
0.40 q =/\= Standard CP
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/
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Figure 1: Risk-risk trade-off between non-coverage risk and ambiguity cost.
CNCRC-SUM consistently traces the most favorable part of the frontier; CNCRC-MAX is more
conservative yet still improves over cost-blind baselines.

To demonstrate that this advantage is not an artifact of a single operating point, we present the
full risk-risk trade-off curve in Figure [l The plot confirms that the CNCRC variants achieve a
consistently better safety—efficiency trade-off compared to the baselines.
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Notably, the performance gap between CNCRC-SUM and the other methods widens as the allowed
non-coverage risk (Ry¢) increases. This behavior directly reflects the theoretical design of sum-
score: by aggregating risk contributions across all alternatives, it naturally prioritizes retaining labels
most critical for safety while pruning those that mainly add ambiguity. As a result, any accepted
increase in non-coverage risk translates into a disproportionately large reduction in ambiguity cost.
This empirically confirms the efficiency properties predicted by our theory. We visualize and analyze
the score distributions that give rise to this behavior in Appendix [F3]

5 CONCLUSION

Summary and Contributions. This work confronts the critical failure of classical conformal pre-
diction in high-stakes settings by introducing Conformal Non-Coverage Risk Control (CNCRC).
We instigate a paradigm shift from guaranteeing statistical coverage to directly controlling decision
risk. Our framework operationalizes this new (risk, risk) paradigm through novel risk-weighted
scores, providing a formal upper bound on non-coverage risk while effectively reducing ambiguity
risk. Extensive experiments validate CNCRC, showing it uniquely satisfies strict safety constraints
in adversarial scenarios and consistently outperforms the principle-driven baselines on a large-scale
clinical benchmark, providing clear empirical confirmation of our theoretical claims. By offering a
principled choice between robustness (CNCRC-MAX) and efficiency (CNCRC-SUM), our frame-
work provides practitioners with a powerful tool for deploying genuinely risk-aware systems.

Limitations and Future Work. While CNCRC establishes a robust new paradigm, it also opens
up exciting avenues for future work. Key opportunities include developing methods to learn costs
directly from data, relaxing theoretical assumptions for broader applicability, and integrating with
downstream decision-theoretic frameworks (Kiyani et al., [2025) to optimize action selection. Most
importantly, we aim to conduct prospective, human-in-the-loop studies to translate our framework’s
theoretical safety gains into measurable real-world impact.
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THE USE OF LARGE LANGUAGE MODELS (LLMS)

In preparing this work, we made limited and appropriate use of Large Language Models (LLMs) as
follows:

* Writing aid and polishing: LLMs were used to assist in improving grammar, clarity, and
style. The substantive content, ideas, and technical contributions remain the authors’ own.

* Retrieval and discovery: LLMs were employed to support literature search and discovery
(e.g., identifying related work). All cited references were verified by the authors.
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A EXTENDED MOTIVATION FOR RISK METRICS

Why max over average for Ambiguity Risk? In Section [3.1] we define Ambiguity Risk using
the maximum cost of distractors. While an average cost might seem intuitive for measuring the
“closeness” of a set to the truth, it is mathematically unsuitable for safety-critical applications due
to the Risk Dilution Paradox.

Consider the following counter-example:

* Set A (The Tl'aP): {yt’ruea ylethal} where COSt(yt’r'uea ylethul) = 100.

* Set B (The Trap + Noise): {Vtrue, Yiethai } U {ylgizlign, A ylSZi)ign} where benign costs
are 1.
Using an average metric:
100+99 x 1
Riskaug(A) = 100;  Riskang(B) ~ —2 20X 9. ©)

100

The average metric implies Set B is 50 safer than Set A. In a high-stakes setting, this is a dangerous
fallacy (“Safety Hiding”), as the algorithm can lower its risk score simply by padding the set with
noise without removing the lethal danger.

Using the max metric:
Riskpmaz(A) =100; Riskmas(B) = 100. @)

The max operator correctly identifies that both sets contain the same catastrophic trap. It is the only
simple metric that enforces the pruning of hazards rather than burying them in noise.

B EXAMPLE OF AUTOMATED COST MATRIX CONSTRUCTION

Here, we provide a concrete example to illustrate the two-step pipeline used to automatically con-
struct the cost matrix, as described in the main text.

Scenario. Consider a patient whose context x indicates they are currently taking Warfarin (a blood
thinner). Suppose the correct, ground-truth therapy is y; = Amoxicillin, but the base model proposes
a potentially confusing alternative, y; = Clarithromycin. Our goal is to determine the cost of this
specific confusion, Cost(y;, y;; %, ).

Step 1: Query Function (¢). The query function, our “fact retriever,” takes the context and the
confusion pair as input. It queries our specified knowledge base, K (in this case, DrugBank), for
relevant information. The query is conceptually equivalent to asking: ”What are the known interac-
tions between the proposed drug, Clarithromycin, and the patient’s existing medication, Warfarin?”
The KB returns a structured fact, such as:

{Interaction: Severe; Consequence: Increased bleeding risk}

Step 2: Risk Mapping (R). The risk mapping, our “risk translator,” takes the structured fact from
Step 1 as input and converts it into a scalar cost based on a set of transparent, auditable rules derived
from domain experts or established clinical guidelines. For instance, the implementation logic used
in our experiments is defined as follows:

e IF Interaction.Severity == “Severe”: RETURN 0.9
« ELSEIF Interaction.Severity == “Moderate”: RETURN 0.5
« ELSE: RETURN 0.0

Given the input fact, this function would yield a final, automatically-derived cost of 0.9.

This pipeline allows our framework to systematically transform latent domain knowledge into a
concrete, machine-readable risk signal that informs the construction of our prediction sets.

12
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C EXTENDED THEORETICAL RATIONALE: ROBUSTNESS VS. EFFICIENCY

To concretize the theoretical trade-off discussed in Section [3.3] between the max-score (Smax) and
the sum-score (Ssum), we present an illustrative numerical scenario. This example demonstrates
how the two scores react differently to risk distributions, driving the distinction between robustness
(strict safety) and efficiency (low ambiguity).

Scenario. Consider a calibration setting where the model must assign nonconformity scores to two
candidate labels, y4 and yp. Both candidates have an identical fotal expected risk of 10, but their
risk profiles differ structurally:

* Candidate A (“Hidden Trap”): The model confuses this label with a single, high-cost
“poison” class.
— P(Ypoison|z) = 0.1, Cost = 100.
» Candidate B (“Noisy’’): The model confuses this label with 100 low-cost benign classes.

~ P(yperipnlz) =01, Cost =1 (fork=1...100).

Mechanism Analysis.

1. Smax (Prioritizing Robustness):
Smax(ya) = max(0.1 x 100) = 10; sSpax(yp) = max(0.1 x 1) = 0.1. (8)

The max-score is hyper-sensitive to the peak danger in y 4, scoring it 100x higher than y 5.
If y 4 is a true label in the calibration set, sy,,x forces the conformal threshold ¢ to be at
least 10. This creates a large safety margin that ensures catastrophic outliers are covered,
but it may inadvertently include low-score distractors like yp (increasing set size).

2. Ssum (Prioritizing Efficiency):
100
Ssum(¥a) = 0.1 x 100 = 10;  squm(yB) = Z(o_l x 1) = 10. 9)
k=1
The sum-score treats the cumulative noise of y5 as equivalent to the peak danger of y 4. By
assigning a high score to yp, Ssum effectively penalizes the “messiness” of this candidate.
This facilitates the pruning of high-ambiguity distractors from the prediction set, resulting
in lower Ambiguity Cost.

D COMPUTATIONAL COMPLEXITY ANALYSIS

Here, we provide a detailed analysis of the time complexity of the CNCRC framework, demon-
strating its practical feasibility for many real-world applications. Let n = |Dc,j| be the size of the
calibration set and K = || be the number of classes in the label space.

Complexity of a Single Score Calculation. The core computational task introduced by our frame-
work is the calculation of the risk-weighted nonconformity scores, syax and ssym. For a given input
x and a candidate label y;, both scores require iterating through all other K — 1 labels to compute
the pairwise confusion risks.

* For $max(X, y:), we compute K — 1 risk terms and find the maximum.

* For ssum (X, yi), we compute and sum K — 1 risk terms.

Thus, the time complexity for computing a single score for one candidate label is O(K).

Complexity of the Calibration Phase. The calibration phase computation involves a loop through
the n samples in the calibration set. For each sample (x;, y;), we compute a single score s (X;, ¥;),
which takes O(K) time. This results in a total complexity of O(nK) for the loop. Subsequently,
finding the quantile requires sorting the n scores, which takes O(nlogn) time. Therefore, the
total complexity of the calibration phase is O(nK + nlogn). In many practical scenarios where
K > logmn, this can be simplified to O(nK). This phase is performed only once offline.

13
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Complexity of the Prediction Phase. The prediction phase is the most critical for real-time ap-
plications. For a new test input X,ew, the framework must construct the prediction set C(Xpew) by
evaluating the condition se (Xpew, yx) < ¢ for every possible label y;, € ). Since there are K possi-
ble labezls and each score calculation takes O(K) time, the total complexity of the prediction phase
is O(K*?).

Discussion. The dominant computational cost of CNCRC is the O(K?) complexity at prediction
time. This is an increase compared to the canonical split CP, whose score calculation is typically
O(1), leading to an overall prediction complexity of O(K'). This additional overhead is the direct
and necessary trade-off for incorporating the rich, pairwise risk information embedded in the cost
matrix. For many high-stakes applications where the label space K is in the order of hundreds or
thousands (e.g., medical diagnosis, drug recommendation), an O(K?) prediction time is perfectly
feasible and represents a modest cost for the significant gains in safety and rigorous risk control.

E FORMAL GUARANTEES AND PROOFS

Here we provide the formal statements and proofs for the three primary guarantees of the CNCRC
framework, as summarized in the main text.

E.1 GUARANTEE l: MARGINAL COVERAGE
We first prove that the CNCRC framework inherits the standard marginal coverage guarantee from
split-conformal prediction.

Theorem E.1 (Split-conformal marginal coverage). If calibration and test points are exchangeable,
Algorithm 1| with either Smax OF Ssum, When calibrated using an internal level o&* = Ry/Crax
derived from a user-specified target risk Ry, satisfies

PI‘ (ytrue S C(Xnew)) Z 1- Oé*-

Proof. Split-conformal validity (Vovk et al.,2005)) holds for any fixed, deterministic nonconformity
score. Both sp,,x and sgun, meet this requirement. Substituting the internal level o* completes the
claim. O

E.2 GUARANTEE 2: NON-COVERAGE RISK BOUND
Next, we prove the first of our two risk-centric guarantees: a direct, numerically interpretable bound
on the non-coverage risk. First, we formally define the quantity.

Definition E.2 (Non-Coverage Risk). The non-coverage risk, Rnc, is the expected cost incurred
when the true label is not contained in the prediction set:

Rne = E [ Cost (ytruea ydefault) : 1{ytrue ¢ C(X)} :| y

where ydetault denotes the fallback action when the set misses the truth.

Proposition E.3 (Numerical Non-Coverage Risk Bound). Under the assumptions of Theorem
and with costs bounded by Cuax, if the algorithm is calibrated to a target risk Ry via o =
Ro/Chrax, then

RNC < a* C’max = RO~

Proof. From Theorem [E.1] we have Pr(yue ¢ C(x)) < o*. Since the cost is bounded by Cost <
Chax, taking the expectation over the non-coverage event yields Ryc < a*Chax = Ro. O

E.3 GUARANTEE 3: AMBIGUITY RISK BOUND

Finally, we prove that our framework provides a formal upper bound on the ambiguity risk, demon-
strating that our risk-weighted scores effectively control the quality of the set’s contents.

14
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Definition E.4 (Ambiguity Risk). The ambiguity risk, AmbCost(x), is the cost of the single worst-
case distractor remaining in a prediction set that successfully covers the true label:

AmbCost(x) = max Cost (Ytrue, ¥) -
() = e B (thrue,v)

To bridge our scores to this cost, we introduce the following mild assumption, used only for deriving
the theoretical upper bound.

Assumption E.5 (Candidate-Probability Lower Bound). On events where y,,0 € C(x), there exists
p(x) € (0,1] such that the predicted probability P(y | x) > p(x) for all distractors y € C(x) \

?ytrue}-

This is a mild technical assumption that formalizes the idea that distractors retained in a prediction
set should not have vanishing probability. It is not required for the validity or operation of CNCRC
in practice; rather, it serves only to enable a clean theoretical expression of the ambiguity-risk bound.

Proposition E.6 (General Bridging Result for Risk-Bounding Scores). For any nonconformity score
s(x,y) that satisfies the risk-bounding property (Equation , if Yirue € C(X) and Assumption
holds, then the ambiguity risk is bounded by:

AmbCost(x) < 4

(x)°

I3

Proof. We prove this step-by-step for any distractor y € C(x) \ {¥true}-

$(X, Yrue) < q (Since yirue € C(x), by construction of the set)
P(y | x) Cost(Yrues ¥) < $(X, Ytrue)  (By the risk-bounding property, Eq.[3)
= P(y | x) Cost(Ytrue, y) < ¢ (Combining the two lines above)
P(y | x) > p(x) (By Assumption [E.5))
= p(x) Cost(Yerue, ¥) < q (Substituting the lower bound for probability)
= Cost(Ytrue, y) < 2 (Rearranging the terms)
p(x)
Since this inequality holds for any distractor y, it must also hold for the distractor with the maximum
cost. Therefore, AmbCost(x) = maxyecc(x)\ {yirue} COSt(Ytrue, ¥) < ¢/p(x). O

F EXPERIMENTAL SETUP DETAILS

F.1 SETUP FOR THE REALISTIC CLINICAL APPLICATION

Data Source and Preprocessing. We undertook a significant engineering effort to construct a
high-fidelity benchmark designed to test robustness in massive-scale label spaces. We construct our
realistic benchmark using two real-world databases. Patient data is sourced from MIMIC-IV John-
son et al.| (2023), a large, de-identified electronic health record (EHR) database. We extract adult
patient admissions (> 18 years) with sufficient prescription history. Each patient context x aggre-
gates demographics (age, sex), diagnosis codes (ICD-9/ICD-10), and their recorded prescriptions.
The ground truth for risk is established using DrugBank Wishart et al.| (2018)), a comprehensive
drug database. We restrict the candidate drugs to those present in both databases, yielding a final
label space Y of 3,421 unique drugs. Patient contexts are split by unique patient ID into calibration
(2,000), validation (2,000), and test (2,500) sets, ensuring no patient appears in multiple sets. This
creates a long-tail distribution orders of magnitude more complex than standard benchmarks (e.g.,
CIFAR-100), providing a rigorous testbed for validating risk control stability under extreme sparsity
and class imbalance.

Predictor Construction. The base predictor F is a deterministic
FixedRealisticDrugPredictor, designed to generate clinically plausible yet repro-
ducible probability distributions P(:|x). Its construction follows two steps. First, we compute
the empirical prescription frequencies from the training portion of MIMIC-IV for each diagnostic
context to form the backbone of a categorical distribution. Second, to avoid assigning zero
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probability to clinically essential first-line drugs that may be underrepresented in the data, we apply
a Dirichlet-style smoothing anchored by guideline-informed lower bounds (e.g., ensuring lisinopril
always receives a non-negligible probability for hypertensive patients). This rule-based design
provides a stable testbed where differences in outcomes can be attributed directly to the conformal
procedure under study.

F.2 THE RISK-ALIGNMENT PROTOCOL

Motivation. A direct comparison between CNCRC and baselines like Standard CP is challenging
because they control different quantities (R vs. o). To ensure a fair comparison, we must evaluate
all methods at the same level of operational risk.

The Three-Step Protocol. We use a three-step protocol involving calibration, validation, and test
sets to align all methods to a common risk target Ry.

1. Calibrate on D_,;. For CNCRC, we compute its risk-weighted scores and set its conformal
threshold ¢ directly, using an internal o, = Ry. For all baselines (Standard CP, Cost-Aware
CP, CRC), we calibrate their internal thresholds in the usual way across a pre-defined grid
of possible « values.

2. Select Operating Points on D,,. For each baseline, we evaluate its performance for every

« in the grid on the validation set. We then compute the realized non-coverage risk, ﬁg\%),

for each . We select the specific o that results in a validation risk closest to our target
Ry. CNCRC requires no tuning in this step as its threshold g is already fixed.

3. Report on D;.q;. With the parameters now frozen for all methods (¢ for CNCRC and af for
each baseline), we perform a final evaluation on the held-out test set and report all metrics.

This protocol ensures that any observed differences in AmbCost or other efficiency metrics are due
to the methods’ inherent properties, rather than a mismatch in their operating points.

F.3 ANALYSIS OF SCORE DISTRIBUTIONS

Figure [2] provides a deeper, mechanistic explanation for the performance trade-offs observed in the
main text’s risk-risk plot (Figure[T). It visualizes the empirical distributions of the calibration scores
for each method when aligned at a non-coverage risk of ENC ~ 0.08. Each panel marks the
calibrated threshold ¢ (red dashed line) and the sample mean of the scores (blue dotted line).

The distributions reveal how CNCRC achieves its superior efficiency. CNCRC-Sum (top-left) pro-
duces a broad, low-mean distribution with a relatively right-shifted threshold, yielding a large ac-
ceptance region; this allows it to include cost-safe candidates while suppressing risky ones, hence
achieving the lowest ambiguity cost. CNCRC-Max (top-right) pushes most scores towards zero,
creating a sharp separation between safe and unsafe candidates, which reflects its conservative na-
ture. In contrast, Standard CP (bottom-left) concentrates scores at high values. Its cost-blind
thresholding cannot distinguish dangerous from benign distractors, explaining its higher ambiguity
cost. Cost-aware CP (bottom-right) improves slightly, but its distribution remains tightly centered
and less risk-informative than CNCRC’s. These distributions make the mechanism explicit: CNCRC
reshapes the score space to reflect asymmetric risk, which is why its trade-off curve lies closest to
the origin.
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Score Distributions at Similar Non-Coverage Risk Levels

(Target R_NC = 0.08)

CNCRC-Sum Score Distribution
(R_NC = 0.078)

50 n
--- Threshold q = 0.286
Accept region (score < q) - LARGER!
0 | i e Mean = 0.129

0st=0.
Accept=92.5%
. stlg-aware

* Lower cost
« Larger accept

0.05 0.10 0.15 0.20 0.25 0.30 0.35
Non-conformity Score (lower is better)

Standard CP Score Distribution
(R_NC = 0.088)

50 ?
| === Threshold
| Accept region (score = q)
10 | Mea 36
1
1
| R NC=0.088
! AmbCost=0.409
30 i} Accept=81.5%
& |
2 1 * Probability-
g ! based only
aQ 20 iy « Higher cost
| « Smaller accept
! region
|
10 i
0

0.75 0.80 0.85 0.90 0.95 1.00
Non-conformity Score (lower is better)

.00

Lol

CNCRC-Max Score Distribution
(R_NC = 0.087)

-~ Threshold q = 0.154
Accept region (score = q)
------ Mean = 0.071

« Max-based
risk scoring
« Alternative
aggregation

0.10 0.15 0.20
Non-conformity Score (lower is better)

Cost-Aware CP Score Distribution

(R_NC = 0.087)

R_NC=0.087
AmbCost=0.365
Accept=86.0%

« Simple cost
awareness
« Moderate
performance

0.90

0.95 1.00 1.05 1.10 1.15

Non-conformity Score (lower is better)

Figure 2: Score distributions at aligned ﬁNC‘ ~2 (0.08. CNCRC variants produce risk-aware score
shapes that create a larger and safer acceptance region compared to the baselines, explaining their

superior ambiguity costs.
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