

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 CONFORMAL NON-COVERAGE RISK CONTROL (CN-CRC): RISK-CENTRIC GUARANTEES FOR PREDICTIVE SAFETY IN HIGH-STAKES SETTINGS

Anonymous authors

Paper under double-blind review

ABSTRACT

Standard Conformal Prediction (CP) guarantees that prediction sets contain the true label with high probability, but it is *cost-blind*, treating all errors as equally important—a critical limitation in high-stakes domains. We introduce **Conformal Non-Coverage Risk Control (CNCRC)**, a framework that replaces coverage frequency with direct risk control. CNCRC guarantees an upper bound on catastrophic **non-coverage risk** while actively reducing **ambiguity risk**, providing prediction sets that are both safe and usable. This is achieved through a principled decomposition of decision risk and the design of risk-weighted nonconformity scores that balance robustness with efficiency. Experiments show that CNCRC reliably satisfies strict risk constraints in adversarial settings and outperforms all baselines on a large-scale clinical benchmark. By offering practitioners a choice between maximum robustness and maximum efficiency, CNCRC provides a practical and theoretically grounded toolkit for deploying genuinely risk-aware machine learning systems in safety-critical applications.

1 INTRODUCTION

A fundamental challenge for the reliable deployment of machine learning models is the quantification of their predictive uncertainty. While models can achieve high accuracy, they often produce point predictions without a formal measure of confidence, making it difficult to distinguish a confident guess from a borderline one. Among the various methods for Uncertainty Quantification (UQ) (Lakshminarayanan et al., 2017; MacKay, 1992a; Ye et al., 2024), Conformal Prediction (CP) has emerged as a particularly compelling framework due to its elegant theoretical properties (Angelopoulos & Bates, 2021). At its core, CP generates a *prediction set*—a small collection of plausible labels—that is mathematically guaranteed to contain the true outcome with a user-specified probability (e.g., 95%) (Vovk et al., 2005). For example, an image classifier augmented by CP would not just output ‘cat’; it can provide a set like {‘cat’, ‘lynx’} with a 95% guarantee that the true class is present in the set, transparently communicating the model’s ambiguity to the end-user. This rigorous statistical guarantee holds without making any assumptions about the data’s distribution, a highly desirable property known as being distribution-free (Vovk et al., 2005; Angelopoulos & Bates, 2021). Furthermore, the framework is **model-agnostic**: it functions as a lightweight, post-processing step that can be applied to any pre-trained model, from simple classifiers to complex Large Language Models (LLMs), without altering their internal architecture (Angelopoulos & Bates, 2021; Wang et al., 2024). This combination of a rigorous, distribution-free guarantee and universal applicability makes CP a powerful and versatile tool.

The Failure of Conformal Prediction in High-Stakes Domains. Despite its powerful and general guarantees, classical CP fails in high-stakes domains due to a critical flaw: its guarantee is fundamentally *cost-blind* (Wilder et al., 2019). The standard procedure controls the long-run frequency of coverage, that is, the proportion of test instances in which the prediction set contains the true label, but it treats all errors as equally consequential, ignoring the often asymmetric costs of real-world mistakes (Elkan, 2001; Elmachtoub & Grigas, 2022). This oversight can lead to catastrophic failures. To make this concrete, consider a clinical scenario with a rare but lethal condition—a “poison class”. A model might predict the class probabilities for a given patient as follows: a common

benign condition at 60%, another at 39.9%, and the poison class at a mere 0.1%. A risk-blind classical CP aims to form a confidence set by capturing a certain amount of probability mass, typically by selecting the most likely candidates. In this case, such a procedure would form a set containing only the two benign conditions, as their combined probability already accounts for 99.9% of the distribution. The poison class, despite its critical importance to the patient’s survival, is systematically excluded simply because its probability is low. This illustrates the core problem: any method that is blind to the asymmetric costs of errors and relies solely on a probabilistic criterion is fundamentally unsafe for high-stakes decisions (Elmachtoub & Grigas, 2022; Sadinle et al., 2019). Defining these asymmetric costs is therefore not an optional assumption, but a fundamental prerequisite for safety in such domains (Elkan, 2001). In the example above, the system’s statistical “confidence” provides no true measure of clinical safety.

Limitation of Existing Approaches. The failure of classical CP to account for such cost asymmetries has motivated some recent studies to incorporate cost-awareness. One influential line of work is cost-aware CP, which seeks to generate sets that optimize a downstream utility function (Cortes-Gomez et al., 2025). While this can improve average-case utility, its reliance on expectations is precisely its undoing in high-stakes settings, as it offers no hard guarantee against specific, high-cost failures. An average-case metric is easily dominated by the outcomes of frequent, low-cost events, meaning the immense cost of a single, rare event—such as failing to identify the “poison class”—can be effectively ignored or “averaged out” in the optimization. A more formal approach is Conformal Risk Control (CRC), which provides a framework to control a user-defined expected loss (Angelopoulos et al., 2024). However, CRC’s guarantees come with practical trade-offs. To formally control the expected loss for a general loss function in a distribution-free manner, the framework must be inherently conservative to account for worst-case scenarios. In practice, this conservatism often forces the procedure to generate unmanageably large prediction sets which, by including numerous distractors, create high ambiguity and are of little use to a decision-maker (Lu et al., 2022). Consequently, a critical gap remains for a framework that can move beyond average-case performance and instead provide direct, rigorous control over catastrophic risks, while simultaneously ensuring the practical utility of its outputs.

CNCRC: A Framework for Direct Risk Control. To resolve the tension between CP’s statistical promise and its practical failure in cost-sensitive settings, we propose **Conformal Non-Coverage Risk Control (CNCRC)**, a framework that fundamentally redefines the conformal guarantee. It shifts the objective from controlling error *frequency*, which treats all mistakes as equal, to directly controlling the decision *risk*—the expected real-world consequence of a prediction, where each potential error is weighted by its asymmetric cost. Our central conceptual breakthrough is the insight that this tension can be resolved through a principled decomposition of the monolithic notion of ‘risk’ into two distinct, actionable components. First, it treats **non-coverage risk**—the expected loss from a catastrophic failure when the true label is absent from the prediction set—as a hard constraint. Instead of targeting an average-case expectation, CNCRC provides a rigorous and numerically interpretable upper bound on this risk, a crucial feature for controlling the high-cost tail events characteristic of “poison class” scenarios. Second, the framework explicitly minimizes **ambiguity risk**, which refers to the potential harm caused by incorrect but plausible “distractor” labels remaining inside the prediction set, since a decision-maker may mistakenly select one of these high-risk options. These distractors are incorrect yet plausible options that are particularly dangerous when they are high-risk—for instance, a contraindicated drug appearing alongside the correct, safe therapy. By actively purging these hazardous options, CNCRC ensures the final output is not just statistically valid but also decision-aware and safe, preventing the set from becoming a “potential trap” for the end user. To achieve this dual objective, CNCRC replaces the cost-blind nonconformity score of classical CP with a family of novel, risk-weighted alternatives, which integrate asymmetric error costs directly into the conformal calibration process. Crucially, while providing these stronger, risk-based assurances, our framework is proven to retain the standard split-conformal marginal coverage guarantee, adding a new layer of risk control without sacrificing the foundational properties of CP.

Contributions. (1) **A Principled Reformulation of High-Stakes Uncertainty Quantification.** We instigate a paradigm shift in CP from the insufficient goal of controlling statistical *error frequency* to the direct control of *decision risk*. We formulate this through a novel *Risk Decomposition*,

108 splitting decision risk into a hard safety constraint on non-coverage risk (R_{NC}) and a design objective
 109 of reducing ambiguity risk ($AmbCost$). (2) **A Practical and Elegant Algorithmic Solution.**
 110 We introduce CNCRC, which operationalizes this objective through novel risk-weighted nonconfor-
 111 mity scores (s_{max}, s_{sum}) designed to satisfy the *Risk-Bounding Property*. This property provides
 112 the theoretical bridge to translate conformal quantiles into rigorous risk bounds. (3) **Extensive Em-
 113 pirical Validation on a Large-Scale Clinical Task.** Through both adversarial stress tests and a
 114 large-scale clinical benchmark, we provide decisive evidence of CNCRC’s superiority. Our results
 115 demonstrate that CNCRC is the only framework tested that reliably satisfies strict risk constraints
 116 in the face of rare, catastrophic events, while also dominating established baselines on the safety-
 117 efficiency trade-off.

2 RELATED WORK

121 Our work builds upon the foundational framework of CP, seeking to improve upon existing methods
 122 for cost-awareness. We situate our contribution with respect to three key areas: the classical CP
 123 framework, utility-focused adaptations for cost-awareness, and the formal theory of CRC.

124 **Conformal Prediction (CP).** The goal of CP is not to provide a single “best” prediction, but rather
 125 a statistically reliable *prediction set* (Vovk et al., 2005; Sadinle et al., 2019), denoted $\mathcal{C}(\mathbf{x})$. The core
 126 promise of the framework is that this set is mathematically guaranteed to contain the true label, y_{true} ,
 127 with a user-specified high probability Vovk et al. (2005). In practice, this is most commonly achieved
 128 via Split CP, which requires holding out a separate **calibration set**, $\mathcal{D}_{cal} = \{(\mathbf{x}_i, y_i)\}_{i=1}^n$. The
 129 central component of the framework is a **nonconformity score**, $s(\mathbf{x}, y)$, a function that measures
 130 how poorly a label y conforms to an input \mathbf{x} according to a pre-trained model (Papadopoulos et al.,
 131 2002; Angelopoulos & Bates, 2021). A threshold, q , is then determined by taking the $\lceil (n+1)(1-\alpha) \rceil / n$ -th
 132 quantile of scores computed on the calibration set, where $s_i = s(\mathbf{x}_i, y_i)$ and α is the
 133 user-specified tolerable error rate. For a new test input \mathbf{x}_{new} , the prediction set is constructed as:

$$\mathcal{C}(\mathbf{x}_{new}) = \{y \in \mathcal{Y} \mid s(\mathbf{x}_{new}, y) \leq q\}. \quad (1)$$

134 Under the standard assumption that the data points are exchangeable, meaning that their joint distri-
 135 bution is invariant to permutations of the sample order, this procedure provides the rigorous marginal
 136 coverage guarantee that $P(y_{true} \in \mathcal{C}(\mathbf{x}_{new})) \geq 1 - \alpha$. This finite-sample, distribution-free valid-
 137 ity fundamentally distinguishes CP from other Uncertainty Quantification (UQ) paradigms, such
 138 as Bayesian methods (MacKay, 1992b; Lakshminarayanan et al., 2017), which typically rely on
 139 asymptotic or model-dependent assumptions. Modern advancements have also focused on making
 140 these sets adaptive to the difficulty of each prediction (Romano et al., 2020; Angelopoulos et al.,
 141 2021) or ensuring class-conditional coverage validity (Vovk et al., 2005; Sadinle et al., 2019). How-
 142 ever, the entire mechanism, particularly the canonical nonconformity score $s(\mathbf{x}, y) = 1 - \hat{p}(y|\mathbf{x})$,
 143 where $\hat{p}(y|\mathbf{x})$ denotes the model’s estimated probability of label y given input \mathbf{x} , relies solely on
 144 model probabilities. It is completely unaware of the real-world costs of different errors, a design
 145 choice that renders it not merely cost-blind but profoundly misaligned with the realities of high-
 146 stakes decision-making. This misalignment creates an urgent need for a new class of methods that
 147 treat asymmetric risks not as an afterthought, but as a core design principle.

148 **Cost-Aware CP.** To address the cost-blindness of classical CP, one influential line of work seeks
 149 to incorporate cost or utility information directly into the framework. A key example is Utility-
 150 Directed Conformal Prediction, which aims to generate prediction sets that optimize for an expected
 151 downstream utility Cortes-Gomez et al. (2025). The central mechanism in this approach is to modify
 152 the nonconformity score by adding a cost-based penalty term. The score for a candidate label y can
 153 be expressed in a general form as:

$$s_{cost-aware}(\mathbf{x}, y) = s_{base}(\mathbf{x}, y) + \lambda \cdot cost(y), \quad (2)$$

154 where $s_{base}(\mathbf{x}, y)$ is a standard, probability-based score (e.g., $1 - \hat{p}(y|\mathbf{x})$), $cost(y)$ represents the
 155 disutility associated with label y , and λ is a hyperparameter that controls the strength of the cost
 156 penalty. While this method can improve the average utility of the resulting sets, its reliance on a
 157 tunable hyperparameter λ makes the procedure heuristic in nature. More fundamentally, optimizing
 158 expected utility “averages out” rare, high-cost events. Unlike these methods, CNCRC enforces a
 159 hard constraint ($R_{NC} \leq R_0$) on non-coverage risk, ensuring safety against catastrophic failure
 160 modes even when they are rare.

162 **Conformal Risk Control (CRC).** A more formal approach to cost-awareness is CRC, a frame-
 163 work that provides a distribution-free guarantee that the *expected value* of a user-defined loss func-
 164 tion will remain below a desired level Angelopoulos et al. (2024). Conceptually, the procedure first
 165 ranks all possible labels based on a score that prioritizes high-probability, low-loss candidates. It
 166 then starts with an empty set and greedily adds the highest-ranked labels one by one, continuing
 167 until a calibrated “risk budget”—a threshold determined on the calibration set—is exhausted. While
 168 theoretically powerful, this approach suffers from a crippling trade-off that severely limits its practi-
 169 cal applicability. First, its guarantee is on the *expected* loss, which, by averaging over all outcomes,
 170 can obscure the *tail risk* of a single, catastrophic high-cost event. Second, to ensure the guaran-
 171 tee on the expected loss holds universally, the calibrated “risk budget” often must be excessively
 172 large. This conservatism forces the procedure to include a vast number of candidates, resulting in
 173 unmanageably large prediction sets that are practically useless. This highlights the central, unsolved
 174 challenge that our work directly confronts: designing a framework that is simultaneously robust to
 175 catastrophic risk and practically efficient.

3 METHODOLOGY

3.1 PROBLEM FORMULATION

180 **Preliminaries.** Let \mathcal{X} be the input space and $\mathcal{Y} = \{y_1, \dots, y_K\}$ be a discrete label space. For
 181 any input $\mathbf{x} \in \mathcal{X}$, a base predictor F produces a class-probability distribution $P(\cdot \mid \mathbf{x})$ over \mathcal{Y} .
 182 Our framework is model-agnostic, meaning F can be any model that outputs such a distribution
 183 (Angelopoulos & Bates, 2021; Romano et al., 2020). In fact, the only requirement is exchange-
 184 ability of the data; no assumptions are made about model capacity or training. This independence
 185 underscores the generality and elegance of CNCRC. The key ingredient that allows our framework
 186 to move beyond the cost-blind nature of classical CP is a user-specified, asymmetric **cost func-
 187 tion**, $\text{Cost} : \mathcal{Y} \times \mathcal{Y} \rightarrow \mathbb{R}_{\geq 0}$, where $\text{Cost}(y_{\text{true}}, y_{\text{pred}})$ encodes the real-world consequence of
 188 predicting y_{pred} when the truth is y_{true} . We assume costs are bounded above by a finite constant
 189 $C_{\max} \in (0, \infty)$.¹

190 **Objectives: From Coverage to Risk Control.** Our goal is to construct a prediction set $\mathcal{C}(\mathbf{x})$ that
 191 provides multi-faceted, risk-aware guarantees. We begin by preserving the foundational guarantee
 192 of split-conformal prediction: for a user-specified significance level $\alpha \in (0, 1)$, the set must satisfy
 193 marginal coverage, $\Pr(y_{\text{true}} \in \mathcal{C}(\mathbf{x})) \geq 1 - \alpha$. Beyond this, we introduce and aim to control two
 194 distinct, risk-centric objectives.

195 First, we control for catastrophic omissions via the **non-coverage risk**, defined as:

$$R_{\text{NC}} := \mathbb{E} \left[\text{Cost}(y_{\text{true}}, y_{\text{default}}) \cdot \mathbf{1}\{y_{\text{true}} \notin \mathcal{C}(\mathbf{x})\} \right],$$

196 where y_{default} is a default fallback action, representing the system’s pre-specified safe choice when
 197 the prediction set misses the true label (e.g., in a clinical setting, defaulting to “withhold treatment
 198 and request further tests” rather than administering a potentially harmful drug). This non-coverage
 199 risk represents the expected cost incurred when the true label is outside the prediction set. Our goal
 200 is to provide a direct, numerically interpretable upper bound on R_{NC} .

201 Second, we control for hazardous inclusions via the **ambiguity risk**, which we define for a given set
 202 as the cost of the worst distractor inside it:

$$\text{AmbCost}(\mathbf{x}) := \max_{y \in \mathcal{C}(\mathbf{x}) \setminus \{y_{\text{true}}\}} \text{Cost}(y_{\text{true}}, y).$$

203 We employ the max operator to define Ambiguity Risk because high-stakes safety requires control-
 204 ling the *worst-case hazard*, rather than the average set quality. Metrics based on averages suffer
 205 from *risk dilution*, where the accumulation of low-cost distractors can mathematically obscure the
 206 presence of a single catastrophic error. The max operator strictly upper-bounds the potential cost of
 207 any error within the set, ensuring that high-risk candidates are penalized regardless of the set size.
 208 Detailed discussions are included in Appendix A.

209 ¹In practice one may either normalize costs to $[0, 1]$ (the special case $C_{\max} = 1$) or work directly with a
 210 task-specific upper bound C_{\max} . All guarantees stated in the following hold with this general scale.

216
217

3.2 AUTOMATED COST MATRIX VIA EXTERNAL KNOWLEDGE

218
219
220
221
222
223
224
225

Motivation. While our core framework is general and accepts any bounded cost function, defining these asymmetric costs is a fundamental prerequisite for rational high-stakes decision-making (Elkan, 2001; Amodei et al., 2016; Wilder et al., 2019). However, a critical barrier to scalability is the prohibitive effort required to manually specify cost matrices, which grows quadratically ($O(K^2)$) with the label space size. We directly confront this bottleneck with a novel pipeline that constructs costs in an automated and auditable manner. By grounding costs in an external, structured knowledge base (KB) \mathcal{K} , we replace manual entry with high-level rules, explicitly operationalizing decision-focused principles while solving the scalability challenge.

226
227
228
229
230
231
232

Mechanism. Our pipeline defines the cost of a specific confusion (a misclassification where the true label y_i is incorrectly predicted as another label y_j), $\text{Cost}(y_i, y_j; \mathbf{x}, \mathcal{K})$, via a two-step process. First, a **query function**, $\phi(\mathbf{x}, y_i, y_j)$, acts as a “fact retriever” that queries the KB for relevant information. Second, a transparent **risk mapping**, $\mathcal{R} : \text{Facts} \rightarrow \mathbb{R}_{\geq 0}$, acts as a “risk translator” that converts retrieved facts into a scalar cost. A detailed, illustrative example of this pipeline, including the specific pseudo-code used for implementation, is provided in Appendix B. The full process is formally defined as:

$$\text{Cost}(y_i, y_j; \mathbf{x}, \mathcal{K}) := \mathcal{R}(\phi(\mathbf{x}, y_i, y_j)).$$

233
234
235
236

For brevity, we write $\text{Cost}(y_i, y_j)$ in the rest of the paper. This entire pipeline is fully scripted and versioned, ensuring that our cost definitions are context-aware, auditable, and reproducible.

237
238

3.3 RISK-WEIGHTED NONCONFORMITY SCORE

239
240
241
242

Design Goals and Requirements. The foundational requirement for any nonconformity score within our framework is that it must be mathematically *valid*. For the split-conformal procedure, this means the score function must be *fixed* and *deterministic*. While satisfying this condition is a necessary prerequisite for correctness, it provides no guidance for designing an effective score.

243
244
245
246

To move beyond the basic safety guarantee and also formally control the quality of the set’s contents, a score must have a specific mathematical structure. We term this the **risk-bounding property**: the score calculated for the true label, $s(\mathbf{x}, y_{\text{true}})$, must serve as an upper bound on the individual risk posed by any potential distractor. Formally, for any $j \neq \text{true}$:

$$P(y_j | \mathbf{x}) \cdot \text{Cost}(y_{\text{true}}, y_j) \leq s(\mathbf{x}, y_{\text{true}}). \quad (3)$$

247
248

As we prove in Appendix E, any score satisfying this property enables a formal upper bound on ambiguity risk. Both of our proposed scores, s_{max} and s_{sum} , are designed to satisfy this condition.

249
250
251
252
253
254
255
256
257

Finally, even within the class of scores that are both valid and satisfy the risk-bounding property, there exists a critical design trade-off between *robustness* and *efficiency*. An ideal score should be *robust*, ensuring the R_{NC} guarantee is reliably met in practice, especially in adversarial, finite-sample scenarios. Concurrently, it should be *efficient*, producing sets with the lowest possible ambiguity risk. Recognizing that this trade-off admits no single universal solution, we engineer two distinct but equally principled scores, s_{max} and s_{sum} , each meticulously crafted to prioritize one of these competing objectives.

258

259
260
261
262

Score Instantiations and Theoretical Rationale. To navigate the trade-off between robustness and efficiency, we propose two scores that satisfy our design criteria. Both are based on the central idea of quantifying a candidate y_i ’s non-conformity by the risk of confusion with alternatives $\{y_j\}_{j \neq i}$.

263
264
265
266
267

Our first instantiation, the **max-score** (s_{max}), is designed to prioritize *robustness*. It quantifies the confusion risk via its single most hazardous component:

$$s_{\text{max}}(\mathbf{x}, y_i) := \max_{j \neq i} \left\{ P(y_j | \mathbf{x}) \cdot \text{Cost}(y_i, y_j) \right\}. \quad (4)$$

268
269

This design inherently satisfies the risk-bounding property (Equation 3), as the individual risk from any single distractor y_j is by definition less than or equal to the maximum of all such risks. Theoretically, its max operator makes the score highly sensitive to outlier, high-cost events in the calibration

270 set, which is expected to produce a higher calibrated threshold q . This provides a greater “safety
271 margin” for the non-coverage risk bound, making it the preferable score for applications where
272 robust satisfaction of the safety constraint is the paramount concern.

273 Our second instantiation, the **sum-score** (s_{sum}), is designed to prioritize *efficiency* by creating sets
274 with minimal ambiguity. It achieves this by aggregating the risk from all potential confusions:

$$276 \quad s_{\text{sum}}(\mathbf{x}, y_i) := \sum_{j \neq i} P(y_j | \mathbf{x}) \cdot \text{Cost}(y_i, y_j). \quad (5)$$

278 This design also satisfies the risk-bounding property, as any single, non-negative risk term is neces-
279 sarily less than or equal to the total sum of all such terms. Theoretically, by aggregating all risks,
280 this score provides a more holistic measure of the risk landscape. This property is designed to better
281 penalize candidates that are easily confounded with many alternatives, leading to “cleaner” sets with
282 lower ambiguity cost. Thus, it is the preferable score where the primary goal is to minimize ambi-
283 guity risk. We provide a detailed numerical example illustrating the mechanistic difference between
284 these scores in Appendix C. The trade-off is what we will verify empirically in Section 4.

285 3.4 CNCRC: ALGORITHM AND GUARANTEES

287 **Algorithm.** The CNCRC algorithm follows the well-established split-conformal template, ensur-
288 ing its practicality and ease of implementation. The full procedure is detailed in Algorithm 1.

290 **Algorithm 1** Conformal Non-Coverage Risk Control (CNCRC)

```

291 1: Input: predictor  $F$ , calibration data  $\mathcal{D}_{\text{cal}} = \{(\mathbf{x}_i, y_i)\}_{i=1}^n$ , bounded cost  $\text{Cost} \leq C_{\text{max}}$ , target
292    non-coverage risk  $R_0 \in (0, C_{\text{max}}]$ , test input  $\mathbf{x}_{\text{new}}$ 
293 2: Output: prediction set  $\mathcal{C}(\mathbf{x}_{\text{new}})$ 
294 3: Calibration
295 4:  $\alpha^* \leftarrow R_0/C_{\text{max}}$                                  $\triangleright$  internal split-CP level implied by the target risk
296 5: for  $i = 1$  to  $n$  do
297    6: compute  $s_i \leftarrow s_{\bullet}(\mathbf{x}_i, y_i)$  with a chosen score ( $s_{\text{max}}$  or  $s_{\text{sum}}$ )
298 7: end for
299 8:  $k \leftarrow \lceil (n+1)(1-\alpha^*) \rceil$ ;  $q \leftarrow k$ -th order statistic of  $\{s_i\}_{i=1}^n$  in ascending order
300 9: Prediction
301 10: compute  $P(\cdot | \mathbf{x}_{\text{new}})$  via  $F$ 
302 11:  $\mathcal{C}(\mathbf{x}_{\text{new}}) \leftarrow \{y_k \in \mathcal{Y} : s_{\bullet}(\mathbf{x}_{\text{new}}, y_k) \leq q\}$ 
303 12: return  $\mathcal{C}(\mathbf{x}_{\text{new}})$ 

```

304 By analogy to standard CP, the process begins with a **calibration phase**. We use the held-out calibra-
305 tion set \mathcal{D}_{cal} to compute a score for each true data point using one of our risk-weighted scores (s_{max}
306 or s_{sum}). This generates an empirical distribution of the risk associated with correct labels. From
307 this distribution, we compute a quantile q , which acts as our critical “risk threshold”. In the **pre-**
308 **diction phase**, we construct the final set by including all candidate labels whose risk score is below
309 this calibrated threshold. This reveals the fundamental paradigm shift of our framework. Classical
310 CP operates in a (probability, set size) paradigm: it provides a mathematical guarantee on statistical
311 **coverage**, while implicitly optimizing for minimal **set size**. In contrast, CNCRC introduces a (risk,
312 risk) paradigm: it provides a mathematical guarantee on the upper bound of **non-coverage risk**,
313 while explicitly prioritizing the minimization of **ambiguity risk**.

314 The overall time complexity of this procedure is $O(K^2)$ at prediction time (where $K = |\mathcal{Y}|$ denotes
315 the number of labels), reflecting the incorporation of rich pairwise risk information. For label spaces
316 in the size of hundreds or thousands, this overhead remains practical, especially in high-stakes ap-
317 plications. A detailed breakdown is provided in Appendix D.

318 **Theoretical Guarantees.** The CNCRC procedure, when instantiated with a score satisfying our
319 design principles, provides a trio of theoretical guarantees that span from classical coverage to direct
320 risk control. We summarize these results in the following unified theorem. The formal proofs for
321 each claim are provided in Appendix E.

323 **Theorem 3.1** (Unified Guarantees of CNCRC). *Under the assumption of exchangeable data and
324 bounded costs ($\text{Cost} \leq C_{\text{max}}$), given a target non-coverage risk $R_0 \in (0, C_{\text{max}}]$, define $\alpha^* :=$*

324 R_0/C_{\max} and calibrate q using α^* as in Algorithm 1. Let $\underline{p}(\mathbf{x})$ denote a positive lower bound on
 325 the predicted probabilities of all distractors $y \in \mathcal{C}(\mathbf{x}) \setminus \{y_{\text{true}}\}$. Then Algorithm 1, when instantiated
 326 with any nonconformity score s that satisfies the risk-bounding property (Equation 3), produces a
 327 prediction set $\mathcal{C}(\mathbf{x})$ with:

328

- 329 1. **Marginal Coverage:** $\Pr(y_{\text{true}} \in \mathcal{C}(\mathbf{x})) \geq 1 - \alpha^*$.
- 330 2. **Non-Coverage Risk:** $R_{\text{NC}} \leq R_0$.
- 331 3. **Ambiguity Risk:** $\text{AmbCost}(\mathbf{x}) \leq \frac{q}{\underline{p}(\mathbf{x})}$.

332
 333
 334 This theorem formalizes the core contributions of our framework. It shows that CNCRC not only in-
 335 herits the foundational guarantees of classical CP (Guarantee 1), but also adds a direct, interpretable
 336 bound on catastrophic non-coverage risk (Guarantee 2). Finally, it provides a formal handle on the
 337 quality of the set’s contents by bounding the ambiguity risk (Guarantee 3), a property not offered by
 338 arbitrary conformal scores. Importantly, CNCRC *calibrates directly to a user-specified risk target*
 339 R_0 via $\alpha^* = R_0/C_{\max}$, thereby *operationalizing* the non-coverage risk bound in heterogeneous-cost
 340 regimes where cost-blind choices of α may catastrophically fail.

341

342 4 EXPERIMENTS

343

344 4.1 ADVERSARIAL STRESS TEST: VERIFYING THE RISK GUARANTEE’S ROBUSTNESS

345
 346 **Setup.** Our first experiment is an adversarial stress test, specifically engineered to probe the funda-
 347 mental failure modes of probability-centric and average-risk methods, thereby verifying the superior
 348 robustness of our risk-centric framework. To do this, we construct a synthetic “poison class” sce-
 349 nario that deliberately creates a tension between probability and risk. The scenario consists of three
 350 classes: two “common” classes, each occurring with approximately 50% probability and carry-
 351 ing a unit non-coverage cost (Cost = 1), and a single “poison class” that occurs with only 0.2%
 352 probability but carries a catastrophic non-coverage cost of $C_{\max} = 150$. We generate 6,000 total
 353 samples and split them equally into calibration, validation, and test sets (2,000 each). To ensure a
 354 rigorous and fair comparison, we evaluate CNCRC alongside well-established baselines: **Standard**
 355 **CP**, **Cost-Aware CP**, **Conformal Risk Control (CRC)**, and **Class-Conditional CP (CC-CP)**. All
 356 methods are tasked with satisfying the same strict non-coverage risk target of $R_0 = 0.10$. We strictly
 357 follow a **Risk-Alignment Protocol** (detailed in Appendix F.2): CNCRC calibrates directly to this
 358 target using $\alpha^* = R_0/C_{\max}$, while each baseline’s hyperparameters (e.g., α) are explicitly tuned on
 359 the validation set using the cost matrix to match the same target risk before final evaluation on the
 held-out test set. We report results averaged over 10 random seeds with 95% confidence intervals.

360
 361 **Evaluation Criteria.** The primary objective is to control the non-coverage risk to be at or near
 362 the target of $R_0 = 0.10$. We acknowledge that due to finite-sample variance, the realized risk on
 363 a test set, \widehat{R}_{NC} , may fluctuate around this target. Therefore, we consider a framework to have
 364 successfully met the safety objective if its realized risk is statistically consistent with the target and
 365 not significantly exceeded. A framework is considered to have failed if it catastrophically violates
 366 this bound. Among methods that successfully meet this primary safety requirement, a superior
 367 method is more efficient, which is measured by a lower **ambiguity cost** ($\widehat{\text{AmbCost}}$) and a smaller
 368 **average prediction set size (APS)**. We also report the method’s coverage rate on the catastrophic
 369 “poison class” as a direct measure of its reliability in worst-case scenarios.

370
 371 **Results and Analysis.** The results, summarized in Table 1, provide clear validation of our
 372 framework’s design. As predicted in Section 2, the probability-centric methods—Standard CP
 373 and Cost-Aware CP—failed catastrophically at the first hurdle. Their realized non-coverage risk
 374 ($\widehat{R}_{\text{NC}} \approx 0.41$) was more than four times the allowed target, and they provided 0% coverage of the
 375 poison class, confirming the theoretical limitations we outlined.

376 Second, the Class-Conditional CP (CC-CP) baseline demonstrated a partial improvement. By strati-
 377 fying calibration, it successfully covered the poison class ($\approx 92.4\%$), validating its ability to handle
 378 class imbalance. However, it still violated the risk constraint ($\widehat{R}_{\text{NC}} \approx 0.125 > 0.10$). Since CC-CP

378

379
380
Table 1: Risk-aligned verification (R_{NC} Target ≈ 0.10). Values are mean \pm 95% CI over 10 seeds.
 \downarrow indicates lower is better, and \uparrow indicates higher is better.

Method	Test R_{NC} (\downarrow)	Coverage	APS	Ambiguity Cost (\downarrow)	Poison Cov. (\uparrow)
Standard CP	0.413 ± 0.072	0.900 ± 0.004	3.61 ± 0.01	0.506 ± 0.023	$0.0\% \pm 0.0\%$
Cost-Aware CP	0.412 ± 0.070	0.901 ± 0.003	3.61 ± 0.01	0.497 ± 0.022	$0.0\% \pm 0.0\%$
CC-CP	0.125 ± 0.037	0.901 ± 0.005	4.32 ± 0.13	0.506 ± 0.023	$92.4\% \pm 8.1\%$
CRC	0.063 ± 0.033	1.000 ± 0.000	4.63 ± 0.00	0.570 ± 0.026	$79.8\% \pm 8.5\%$
CNCRC-MAX	0.097 ± 0.004	0.903 ± 0.004	4.61 ± 0.01	0.497 ± 0.020	$100.0\% \pm 0.0\%$
CNCRC-SUM	0.096 ± 0.005	0.904 ± 0.005	4.60 ± 0.01	0.490 ± 0.021	$100.0\% \pm 0.0\%$

388

389

390
391
392
targets a fixed error rate (frequency) for all classes, the errors remaining on the high-cost poison
393
394
395
396
397
398
399
400
class drove the total risk above the safety limit, proving that frequency guarantees are insufficient
401
402
403
404
405
406
407
408
409
for cost control.410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
The more formal CRC framework exhibited a more insidious but equally critical failure. While it
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
990
991
992
993
994
995
996
997
998
999
1000410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932<br

Evaluation Criteria. Our evaluation in this realistic setting focuses on the **safety-efficiency trade-off**. To ground our analysis, we first examine the performance at a specific operating point where all methods are aligned to a target risk of $R_0 = 0.08$ (detailed in Appendix F.2); the detailed metrics for this comparison are presented in Table 2. To assess generalization and perform a *sensitivity analysis* on the framework’s primary constraint R_0 , we visualize the full operating spectrum in Figure 1. This effectively serves as a parameter sweep, charting the realized non-coverage risk (\hat{R}_{NC}) against the ambiguity cost ($\widehat{\text{AmbCost}}$) across all valid target levels.

Table 2: Risk-aligned comparison at $R_0 = 0.08$. CNCRC variants set R_0 directly, while the baselines tune α to match this target. The comparison illustrates how the different principles underlying each method translate into distinct safety–efficiency trade-offs. All reported ambiguity costs are accompanied by their 95% confidence intervals (CI).

Method	Calibration	Coverage	APS	R_{NC}	Ambiguity Cost (95% CI)
CNCRC-SUM	$R_0 = 0.08$	0.855	5.66	0.0830	0.288 ± 0.046
CNCRC-MAX	$R_0 = 0.08$	0.890	5.75	0.0680	0.332 ± 0.044
Standard CP	$\alpha = 0.170$	0.770	4.72	0.0975	0.331 ± 0.056
Cost-aware CP	$\alpha = 0.120$	0.850	5.18	0.0775	0.299 ± 0.049
CRC	$\alpha = 0.180$	0.755	19.21	0.0985	0.606 ± 0.059

Results and Analysis. We first examine the performance at a specific, representative operating point where all methods are aligned to a target risk of $R_0 = 0.08$. The detailed results, presented in Table 2, illuminate the practical trade-offs between the frameworks. The table highlights the practical limitations of CRC in this setting. By design, it produces very large sets ($APS > 19$) in order to meet the risk target, which results in a substantially higher ambiguity cost that would be difficult to accommodate in clinical workflow. In contrast, both CNCRC variants demonstrate high efficiency. **CNCRC-SUM**, true to its design as an *efficient* score, achieves the lowest ambiguity cost (0.2865) of all methods. **CNCRC-MAX**, consistent with its design as a more *robust* score, achieves a lower realized risk ($\hat{R}_{NC} = 0.0680$) and higher overall coverage at the cost of a slightly higher ambiguity cost (0.3322).

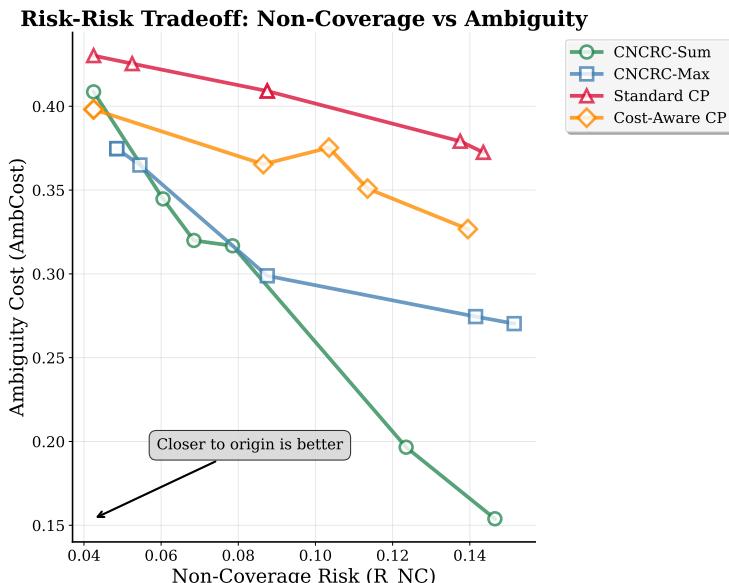


Figure 1: Risk–risk trade-off between non-coverage risk and ambiguity cost.

CNCRC-SUM consistently traces the most favorable part of the frontier; CNCRC-MAX is more conservative yet still improves over cost-blind baselines.

To demonstrate that this advantage is not an artifact of a single operating point, we present the full risk-risk trade-off curve in Figure 1. The plot confirms that the CNCRC variants achieve a consistently better safety–efficiency trade-off compared to the baselines.

486 Notably, the performance gap between CNCRC-SUM and the other methods widens as the allowed
 487 non-coverage risk (\hat{R}_{NC}) increases. This behavior directly reflects the theoretical design of sum-
 488 score: by aggregating risk contributions across all alternatives, it naturally prioritizes retaining labels
 489 most critical for safety while pruning those that mainly add ambiguity. As a result, any accepted
 490 increase in non-coverage risk translates into a disproportionately large reduction in ambiguity cost.
 491 This empirically confirms the efficiency properties predicted by our theory. We visualize and analyze
 492 the score distributions that give rise to this behavior in Appendix F.3.

494 5 CONCLUSION

496 **Summary and Contributions.** This work confronts the critical failure of classical conformal pre-
 497 diction in high-stakes settings by introducing Conformal Non-Coverage Risk Control (CNCRC).
 498 We instigate a paradigm shift from guaranteeing statistical coverage to directly controlling decision
 499 risk. Our framework operationalizes this new (risk, risk) paradigm through novel risk-weighted
 500 scores, providing a formal upper bound on non-coverage risk while effectively reducing ambiguity
 501 risk. Extensive experiments validate CNCRC, showing it uniquely satisfies strict safety constraints
 502 in adversarial scenarios and consistently outperforms the principle-driven baselines on a large-scale
 503 clinical benchmark, providing clear empirical confirmation of our theoretical claims. By offering a
 504 principled choice between robustness (CNCRC-MAX) and efficiency (CNCRC-SUM), our frame-
 505 work provides practitioners with a powerful tool for deploying genuinely risk-aware systems.

506 **Limitations and Future Work.** While CNCRC establishes a robust new paradigm, it also opens
 507 up exciting avenues for future work. Key opportunities include developing methods to learn costs
 508 directly from data, relaxing theoretical assumptions for broader applicability, and integrating with
 509 downstream decision-theoretic frameworks (Kiyani et al., 2025) to optimize action selection. Most
 510 importantly, we aim to conduct prospective, human-in-the-loop studies to translate our framework’s
 511 theoretical safety gains into measurable real-world impact.

513 REFERENCES

515 Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan Mané. Concrete problems in ai safety. *arXiv preprint arXiv:1606.06565*, 2016.

517 Anastasios N Angelopoulos and Stephen Bates. A gentle introduction to conformal prediction and
 518 distribution-free uncertainty quantification. *arXiv preprint arXiv:2107.07511*, 2021.

520 Anastasios N Angelopoulos, Stephen Bates, Jitendra Malik, and Michael I Jordan. Uncertainty
 521 sets for image classifiers using conformal prediction. In *International Conference on Learning
 522 Representations*, 2021.

523 Anastasios N. Angelopoulos, Stephen Bates, Adam Fisch, Lihua Lei, and Tal Schuster. Conformal
 524 risk control. In *Proceedings of the International Conference on Learning Representations*, 2024.

526 Santiago Cortes-Gomez, Carlos Patiño, Yewon Byun, Zhiwei Steven Wu, Eric Horvitz, and
 527 Bryan Wilder. UTILITY-DIRECTED CONFORMAL PREDICTION: A DECISION-AWARE
 528 FRAMEWORK FOR ACTIONABLE UNCERTAINTY QUANTIFICATION. *arXiv preprint
 529 arXiv:2410.01767*, 2025.

530 Charles Elkan. The foundations of cost-sensitive learning. In *Proceedings of the Seventeenth Inter-
 531 national Joint Conference on Artificial Intelligence*, volume 1, pp. 973–978, 2001.

532 Adam N Elmachtoub and Paul Grigas. Smart “predict, then optimize”. *Management Science*, 68(1):
 533 9–26, 2022.

535 Alistair EW Johnson, Lucas Bulgarelli, Tom J Pollard, Steven Horng, Leo Anthony Celi, and
 536 Roger G Mark. Mimic-iv, a freely accessible electronic health record dataset. *Scientific Data*,
 537 10(1):1–7, 2023.

538 Shayan Kiyani, George J Pappas, Aaron Roth, and Hamed Hassani. Decision theoretic foundations
 539 for conformal prediction: Optimal uncertainty quantification for risk-averse agents. In *Proceed-
 ings of the 42nd International Conference on Machine Learning*, pp. 30943–30965, 2025.

540 Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predic-
 541 tive uncertainty estimation using deep ensembles. In *Advances in neural information processing*
 542 *systems*, 2017.

543 Charles Lu, Andréanne Lemay, Ken Chang, Katharina Höbel, and Jayashree Kalpathy-Cramer. Fair
 544 conformal predictors for applications in medical imaging. In *Proceedings of the AAAI Conference*
 545 *on Artificial Intelligence*, volume 36, pp. 12008–12016, 2022.

546 David JC MacKay. A practical bayesian framework for backpropagation networks. *Neural computa-*
 547 *tion*, 4(3):448–472, 1992a.

548 David JC MacKay. A practical bayesian framework for backpropagation networks. *Neural computa-*
 549 *tion*, 4(3):448–472, 1992b.

550 Harris Papadopoulos, Alex Gammerman, and Volodya Vovk. Inductive confidence machines for
 551 regression. In *European Conference on Machine Learning*, pp. 345–356. Springer, 2002.

552 Yaniv Romano, Matteo Sesia, and Emmanuel J Candès. Classification with valid and adaptive
 553 coverage. In *Advances in Neural Information Processing Systems*, 2020.

554 Mauricio Sadinle, Jing Lei, and Larry Wasserman. Least ambiguous set-valued classifiers with
 555 bounded error levels. *Journal of the American Statistical Association*, 114(525):223–234, 2019.

556 Vladimir Vovk, Alexander Gammerman, and Glenn Shafer. *Algorithmic Learning in a Random*
 557 *World*. Springer, 2005.

558 Zhiyuan Wang, Harris Papadopoulos, and Iryna Gurevych. Conu: Conformal uncertainty in large
 559 language models with correctness coverage guarantees. *arXiv preprint arXiv:2407.00499*, 2024.

560 Bryan Wilder, Bistra Dilkina, and Milind Tambe. Melding the data-decisions pipeline: Decision-
 561 focused learning for combinatorial optimization. In *Proceedings of the AAAI Conference on*
 562 *Artificial Intelligence*, volume 33, pp. 1658–1665, 2019.

563 David S Wishart, Yannick D Feunang, An C Guo, Elvis J Lo, Ana Marcu, Jason R Grant, Tanvir
 564 Sajed, Daniel Johnson, Carin Li, Zinat Sayeeda, et al. Drugbank 5.0: a major update to the
 565 drugbank database for 2018. *Nucleic Acids Research*, 46(D1):D1074–D1082, 2018.

566 Fanghua Ye, Mingming Yang, Jianhui Pang, Longyue Wang, Derek F. Wong, Emine Yilmaz, Shum-
 567 ing Shi, and Zhaopeng Tu. Benchmarking llms via uncertainty quantification. In *Advances in*
 568 *Neural Information Processing Systems*, volume 37, 2024. Datasets and Benchmarks Track,
 569 arXiv:2401.12794.

570

571 THE USE OF LARGE LANGUAGE MODELS (LLMs)

572 In preparing this work, we made limited and appropriate use of Large Language Models (LLMs) as
 573 follows:

- 574 • **Writing aid and polishing:** LLMs were used to assist in improving grammar, clarity, and
 575 style. The substantive content, ideas, and technical contributions remain the authors' own.
- 576 • **Retrieval and discovery:** LLMs were employed to support literature search and discovery
 577 (e.g., identifying related work). All cited references were verified by the authors.

594 A EXTENDED MOTIVATION FOR RISK METRICS
595596 **Why max over average for Ambiguity Risk?** In Section 3.1, we define Ambiguity Risk using
597 the maximum cost of distractors. While an average cost might seem intuitive for measuring the
598 “closeness” of a set to the truth, it is mathematically unsuitable for safety-critical applications due
599 to the *Risk Dilution Paradox*.600 Consider the following counter-example:
601602

- 603 • **Set A (The Trap):** $\{y_{true}, y_{lethal}\}$ where $Cost(y_{true}, y_{lethal}) = 100$.
- 604 • **Set B (The Trap + Noise):** $\{y_{true}, y_{lethal}\} \cup \{y_{benign}^{(1)}, \dots, y_{benign}^{(99)}\}$ where benign costs
605 are 1.

606 Using an **average** metric:
607

608
$$Risk_{avg}(A) = 100; \quad Risk_{avg}(B) \approx \frac{100 + 99 \times 1}{100} \approx 2. \quad (6)$$

609

610 The average metric implies Set B is $50\times$ safer than Set A. In a high-stakes setting, this is a dangerous
611 fallacy (“Safety Hiding”), as the algorithm can lower its risk score simply by padding the set with
612 noise without removing the lethal danger.613 Using the **max** metric:
614

615
$$Risk_{max}(A) = 100; \quad Risk_{max}(B) = 100. \quad (7)$$

616

617 The max operator correctly identifies that both sets contain the same catastrophic trap. It is the only
618 simple metric that enforces the pruning of hazards rather than burying them in noise.619 B EXAMPLE OF AUTOMATED COST MATRIX CONSTRUCTION
620621 Here, we provide a concrete example to illustrate the two-step pipeline used to automatically con-
622 struct the cost matrix, as described in the main text.623 **Scenario.** Consider a patient whose context \mathbf{x} indicates they are currently taking *Warfarin* (a blood
624 thinner). Suppose the correct, ground-truth therapy is $y_i = \text{Amoxicillin}$, but the base model proposes
625 a potentially confusing alternative, $y_j = \text{Clarithromycin}$. Our goal is to determine the cost of this
626 specific confusion, $Cost(y_i, y_j; \mathbf{x}, \mathcal{K})$.
627628 **Step 1: Query Function (ϕ).** The query function, our “fact retriever,” takes the context and the
629 confusion pair as input. It queries our specified knowledge base, \mathcal{K} (in this case, DrugBank), for
630 relevant information. The query is conceptually equivalent to asking: “*What are the known interac-*
631 *tions between the proposed drug, Clarithromycin, and the patient’s existing medication, Warfarin?*”
632 The KB returns a structured fact, such as:
633634 {Interaction: Severe; Consequence: Increased bleeding risk}
635636 **Step 2: Risk Mapping (\mathcal{R}).** The risk mapping, our “risk translator,” takes the structured fact from
637 Step 1 as input and converts it into a scalar cost based on a set of transparent, auditable rules derived
638 from domain experts or established clinical guidelines. For instance, the implementation logic used
639 in our experiments is defined as follows:
640641

- 642 • **IF** Interaction.Severity == “Severe”: **RETURN** 0.9
- 643 • **ELSE IF** Interaction.Severity == “Moderate”: **RETURN** 0.5
- 644 • **ELSE:** **RETURN** 0.0

645 Given the input fact, this function would yield a final, automatically-derived cost of 0.9.
646647 This pipeline allows our framework to systematically transform latent domain knowledge into a
648 concrete, machine-readable risk signal that informs the construction of our prediction sets.

648 C EXTENDED THEORETICAL RATIONALE: ROBUSTNESS VS. EFFICIENCY
649650 To concretize the theoretical trade-off discussed in Section 3.3 between the max-score (s_{\max}) and
651 the sum-score (s_{\sum}), we present an illustrative numerical scenario. This example demonstrates
652 how the two scores react differently to risk distributions, driving the distinction between *robustness*
653 (strict safety) and *efficiency* (low ambiguity).654 **Scenario.** Consider a calibration setting where the model must assign nonconformity scores to two
655 candidate labels, y_A and y_B . Both candidates have an identical *total expected risk* of 10, but their
656 risk profiles differ structurally:
657658

- 659 • **Candidate A (“Hidden Trap”):** The model confuses this label with a single, high-cost
“poison” class.
660 – $P(y_{\text{poison}}|x) = 0.1$, Cost = 100.
- 661 • **Candidate B (“Noisy”):** The model confuses this label with 100 low-cost benign classes.
662 – $P(y_{\text{benign}}^{(k)}|x) = 0.1$, Cost = 1 (for $k = 1 \dots 100$).

663664 **Mechanism Analysis.**
665666 1. s_{\max} (**Prioritizing Robustness**):
667

668
$$s_{\max}(y_A) = \max(0.1 \times 100) = \mathbf{10}; \quad s_{\max}(y_B) = \max(0.1 \times 1) = \mathbf{0.1}. \quad (8)$$

669 The max-score is hyper-sensitive to the peak danger in y_A , scoring it 100× higher than y_B .
670 If y_A is a true label in the calibration set, s_{\max} forces the conformal threshold q to be at
671 least 10. This creates a large safety margin that ensures catastrophic outliers are covered,
672 but it may inadvertently include low-score distractors like y_B (increasing set size).673 2. s_{\sum} (**Prioritizing Efficiency**):
674

675
$$s_{\sum}(y_A) = 0.1 \times 100 = \mathbf{10}; \quad s_{\sum}(y_B) = \sum_{k=1}^{100} (0.1 \times 1) = \mathbf{10}. \quad (9)$$
676

677 The sum-score treats the cumulative noise of y_B as equivalent to the peak danger of y_A . By
678 assigning a high score to y_B , s_{\sum} effectively penalizes the “messiness” of this candidate.
679 This facilitates the pruning of high-ambiguity distractors from the prediction set, resulting
680 in lower Ambiguity Cost.681 D COMPUTATIONAL COMPLEXITY ANALYSIS
682683 Here, we provide a detailed analysis of the time complexity of the CNCRC framework, demon-
684 strating its practical feasibility for many real-world applications. Let $n = |\mathcal{D}_{\text{cal}}|$ be the size of the
685 calibration set and $K = |\mathcal{Y}|$ be the number of classes in the label space.686 **Complexity of a Single Score Calculation.** The core computational task introduced by our frame-
687 work is the calculation of the risk-weighted nonconformity scores, s_{\max} and s_{\sum} . For a given input
688 \mathbf{x} and a candidate label y_i , both scores require iterating through all other $K - 1$ labels to compute
689 the pairwise confusion risks.
690691

- 692 • For $s_{\max}(\mathbf{x}, y_i)$, we compute $K - 1$ risk terms and find the maximum.
- 693 • For $s_{\sum}(\mathbf{x}, y_i)$, we compute and sum $K - 1$ risk terms.

694695 Thus, the time complexity for computing a single score for one candidate label is $O(K)$.
696697 **Complexity of the Calibration Phase.** The calibration phase computation involves a loop through
698 the n samples in the calibration set. For each sample (\mathbf{x}_i, y_i) , we compute a single score $s_{\bullet}(\mathbf{x}_i, y_i)$,
699 which takes $O(K)$ time. This results in a total complexity of $O(nK)$ for the loop. Subsequently,
700 finding the quantile requires sorting the n scores, which takes $O(n \log n)$ time. Therefore, the
701 total complexity of the calibration phase is $O(nK + n \log n)$. In many practical scenarios where
702 $K \geq \log n$, this can be simplified to $O(nK)$. This phase is performed only once offline.

Complexity of the Prediction Phase. The prediction phase is the most critical for real-time applications. For a new test input \mathbf{x}_{new} , the framework must construct the prediction set $\mathcal{C}(\mathbf{x}_{\text{new}})$ by evaluating the condition $s_{\bullet}(\mathbf{x}_{\text{new}}, y_k) \leq q$ for every possible label $y_k \in \mathcal{Y}$. Since there are K possible labels and each score calculation takes $O(K)$ time, the total complexity of the prediction phase is $O(K^2)$.

Discussion. The dominant computational cost of CNCRC is the $O(K^2)$ complexity at prediction time. This is an increase compared to the canonical split CP, whose score calculation is typically $O(1)$, leading to an overall prediction complexity of $O(K)$. This additional overhead is the direct and necessary trade-off for incorporating the rich, pairwise risk information embedded in the cost matrix. For many high-stakes applications where the label space K is in the order of hundreds or thousands (e.g., medical diagnosis, drug recommendation), an $O(K^2)$ prediction time is perfectly feasible and represents a modest cost for the significant gains in safety and rigorous risk control.

E FORMAL GUARANTEES AND PROOFS

Here we provide the formal statements and proofs for the three primary guarantees of the CNCRC framework, as summarized in the main text.

E.1 GUARANTEE 1: MARGINAL COVERAGE

We first prove that the CNCRC framework inherits the standard marginal coverage guarantee from split-conformal prediction.

Theorem E.1 (Split-conformal marginal coverage). *If calibration and test points are exchangeable, Algorithm 1 with either s_{max} or s_{sum} , when calibrated using an internal level $\alpha^* = R_0/C_{\text{max}}$ derived from a user-specified target risk R_0 , satisfies*

$$\Pr(y_{\text{true}} \in \mathcal{C}(\mathbf{x}_{\text{new}})) \geq 1 - \alpha^*.$$

Proof. Split-conformal validity (Vovk et al., 2005) holds for any fixed, deterministic nonconformity score. Both s_{max} and s_{sum} meet this requirement. Substituting the internal level α^* completes the claim. \square

E.2 GUARANTEE 2: NON-COVERAGE RISK BOUND

Next, we prove the first of our two risk-centric guarantees: a direct, numerically interpretable bound on the non-coverage risk. First, we formally define the quantity.

Definition E.2 (Non-Coverage Risk). The non-coverage risk, R_{NC} , is the expected cost incurred when the true label is not contained in the prediction set:

$$R_{\text{NC}} := \mathbb{E} \left[\text{Cost}(y_{\text{true}}, y_{\text{default}}) \cdot \mathbf{1}\{y_{\text{true}} \notin \mathcal{C}(\mathbf{x})\} \right],$$

where y_{default} denotes the fallback action when the set misses the truth.

Proposition E.3 (Numerical Non-Coverage Risk Bound). *Under the assumptions of Theorem E.1 and with costs bounded by C_{max} , if the algorithm is calibrated to a target risk R_0 via $\alpha^* = R_0/C_{\text{max}}$, then*

$$R_{\text{NC}} \leq \alpha^* C_{\text{max}} = R_0.$$

Proof. From Theorem E.1, we have $\Pr(y_{\text{true}} \notin \mathcal{C}(\mathbf{x})) \leq \alpha^*$. Since the cost is bounded by $\text{Cost} \leq C_{\text{max}}$, taking the expectation over the non-coverage event yields $R_{\text{NC}} \leq \alpha^* C_{\text{max}} = R_0$. \square

E.3 GUARANTEE 3: AMBIGUITY RISK BOUND

Finally, we prove that our framework provides a formal upper bound on the ambiguity risk, demonstrating that our risk-weighted scores effectively control the quality of the set's contents.

756 **Definition E.4** (Ambiguity Risk). The ambiguity risk, $\text{AmbCost}(\mathbf{x})$, is the cost of the single worst-
 757 case distractor remaining in a prediction set that successfully covers the true label:
 758

$$759 \quad \text{AmbCost}(\mathbf{x}) := \max_{y \in \mathcal{C}(\mathbf{x}) \setminus \{y_{\text{true}}\}} \text{Cost}(y_{\text{true}}, y). \\ 760$$

761 To bridge our scores to this cost, we introduce the following mild assumption, used only for deriving
 762 the theoretical upper bound.
 763

764 **Assumption E.5** (Candidate-Probability Lower Bound). On events where $y_{\text{true}} \in \mathcal{C}(\mathbf{x})$, there exists
 765 $\underline{p}(\mathbf{x}) \in (0, 1]$ such that the predicted probability $P(y \mid \mathbf{x}) \geq \underline{p}(\mathbf{x})$ for all distractors $y \in \mathcal{C}(\mathbf{x}) \setminus \{y_{\text{true}}\}$.
 766

767 This is a mild technical assumption that formalizes the idea that distractors retained in a prediction
 768 set should not have vanishing probability. It is not required for the validity or operation of CNCRC
 769 in practice; rather, it serves only to enable a clean theoretical expression of the ambiguity-risk bound.
 770

771 **Proposition E.6** (General Bridging Result for Risk-Bounding Scores). *For any nonconformity score
 772 $s(\mathbf{x}, y)$ that satisfies the risk-bounding property (Equation 3), if $y_{\text{true}} \in \mathcal{C}(\mathbf{x})$ and Assumption E.5
 773 holds, then the ambiguity risk is bounded by:*

$$774 \quad \text{AmbCost}(\mathbf{x}) \leq \frac{q}{\underline{p}(\mathbf{x})}. \\ 775$$

776 *Proof.* We prove this step-by-step for any distractor $y \in \mathcal{C}(\mathbf{x}) \setminus \{y_{\text{true}}\}$.
 777

$$\begin{aligned} 778 \quad s(\mathbf{x}, y_{\text{true}}) &\leq q && \text{(Since } y_{\text{true}} \in \mathcal{C}(\mathbf{x}), \text{ by construction of the set)} \\ 779 \quad P(y \mid \mathbf{x}) \text{Cost}(y_{\text{true}}, y) &\leq s(\mathbf{x}, y_{\text{true}}) && \text{(By the risk-bounding property, Eq. 3)} \\ 780 \quad \implies P(y \mid \mathbf{x}) \text{Cost}(y_{\text{true}}, y) &\leq q && \text{(Combining the two lines above)} \\ 781 \quad P(y \mid \mathbf{x}) &\geq \underline{p}(\mathbf{x}) && \text{(By Assumption E.5)} \\ 782 \quad \implies \underline{p}(\mathbf{x}) \text{Cost}(y_{\text{true}}, y) &\leq q && \text{(Substituting the lower bound for probability)} \\ 783 \quad \implies \text{Cost}(y_{\text{true}}, y) &\leq \frac{q}{\underline{p}(\mathbf{x})} && \text{(Rearranging the terms)} \\ 784 \end{aligned}$$

785 Since this inequality holds for any distractor y , it must also hold for the distractor with the maximum
 786 cost. Therefore, $\text{AmbCost}(\mathbf{x}) = \max_{y \in \mathcal{C}(\mathbf{x}) \setminus \{y_{\text{true}}\}} \text{Cost}(y_{\text{true}}, y) \leq q/\underline{p}(\mathbf{x})$. \square
 787

788 F EXPERIMENTAL SETUP DETAILS

791 F.1 SETUP FOR THE REALISTIC CLINICAL APPLICATION

793 **Data Source and Preprocessing.** We undertook a significant engineering effort to construct a
 794 high-fidelity benchmark designed to test robustness in massive-scale label spaces. We construct our
 795 realistic benchmark using two real-world databases. Patient data is sourced from **MIMIC-IV** John-
 796 son et al. (2023), a large, de-identified electronic health record (EHR) database. We extract adult
 797 patient admissions (≥ 18 years) with sufficient prescription history. Each patient context \mathbf{x} aggre-
 798 gates demographics (age, sex), diagnosis codes (ICD-9/ICD-10), and their recorded prescriptions.
 799 The ground truth for risk is established using **DrugBank** Wishart et al. (2018), a comprehensive
 800 drug database. We restrict the candidate drugs to those present in both databases, yielding a final
 801 label space \mathcal{Y} of 3,421 unique drugs. Patient contexts are split by unique patient ID into calibration
 802 (2,000), validation (2,000), and test (2,500) sets, ensuring no patient appears in multiple sets. This
 803 creates a long-tail distribution orders of magnitude more complex than standard benchmarks (e.g.,
 804 CIFAR-100), providing a rigorous testbed for validating risk control stability under extreme sparsity
 805 and class imbalance.

806 **Predictor Construction.** The base predictor F is a deterministic
 807 `FixedRealisticDrugPredictor`, designed to generate clinically plausible yet repro-
 808ducible probability distributions $P(\cdot \mid \mathbf{x})$. Its construction follows two steps. First, we compute
 809 the empirical prescription frequencies from the training portion of MIMIC-IV for each diagnostic
 context to form the backbone of a categorical distribution. Second, to avoid assigning zero

810 probability to clinically essential first-line drugs that may be underrepresented in the data, we apply
 811 a Dirichlet-style smoothing anchored by guideline-informed lower bounds (e.g., ensuring lisinopril
 812 always receives a non-negligible probability for hypertensive patients). This rule-based design
 813 provides a stable testbed where differences in outcomes can be attributed directly to the conformal
 814 procedure under study.

816 F.2 THE RISK-ALIGNMENT PROTOCOL

818 **Motivation.** A direct comparison between CNCRC and baselines like Standard CP is challenging
 819 because they control different quantities (R_0 vs. α). To ensure a fair comparison, we must evaluate
 820 all methods at the same level of operational risk.

821 **The Three-Step Protocol.** We use a three-step protocol involving calibration, validation, and test
 822 sets to align all methods to a common risk target R_0 .

- 824 1. **Calibrate on \mathcal{D}_{cal} .** For CNCRC, we compute its risk-weighted scores and set its conformal
 825 threshold q directly, using an internal $\alpha_* = R_0$. For all baselines (Standard CP, Cost-Aware
 826 CP, CRC), we calibrate their internal thresholds in the usual way across a pre-defined grid
 827 of possible α values.
- 828 2. **Select Operating Points on \mathcal{D}_{val} .** For each baseline, we evaluate its performance for every
 829 α in the grid on the validation set. We then compute the realized non-coverage risk, $\widehat{R}_{NC}^{(\text{val})}$,
 830 for each α . We select the specific α^\dagger that results in a validation risk closest to our target
 831 R_0 . CNCRC requires no tuning in this step as its threshold q is already fixed.
- 832 3. **Report on $\mathcal{D}_{\text{test}}$.** With the parameters now frozen for all methods (q for CNCRC and α^\dagger for
 833 each baseline), we perform a final evaluation on the held-out test set and report all metrics.

835 This protocol ensures that any observed differences in $\widehat{\text{AmbCost}}$ or other efficiency metrics are due
 836 to the methods' inherent properties, rather than a mismatch in their operating points.

838 F.3 ANALYSIS OF SCORE DISTRIBUTIONS

840 Figure 2 provides a deeper, mechanistic explanation for the performance trade-offs observed in the
 841 main text's risk-risk plot (Figure 1). It visualizes the empirical distributions of the calibration scores
 842 for each method when aligned at a non-coverage risk of $\widehat{R}_{NC} \approx 0.08$. Each panel marks the
 843 calibrated threshold q (red dashed line) and the sample mean of the scores (blue dotted line).

844 The distributions reveal how CNCRC achieves its superior efficiency. **CNCRC-Sum** (top-left) pro-
 845 duces a broad, low-mean distribution with a relatively right-shifted threshold, yielding a large ac-
 846 ceptance region; this allows it to include cost-safe candidates while suppressing risky ones, hence
 847 achieving the lowest ambiguity cost. **CNCRC-Max** (top-right) pushes most scores towards zero,
 848 creating a sharp separation between safe and unsafe candidates, which reflects its conservative
 849 nature. In contrast, **Standard CP** (bottom-left) concentrates scores at high values. Its cost-blind
 850 thresholding cannot distinguish dangerous from benign distractors, explaining its higher ambiguity
 851 cost. **Cost-aware CP** (bottom-right) improves slightly, but its distribution remains tightly centered
 852 and less risk-informative than CNCRC's. These distributions make the mechanism explicit: CNCRC
 853 reshapes the score space to reflect asymmetric risk, which is why its trade-off curve lies closest to
 854 the origin.

855
 856
 857
 858
 859
 860
 861
 862
 863

864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917

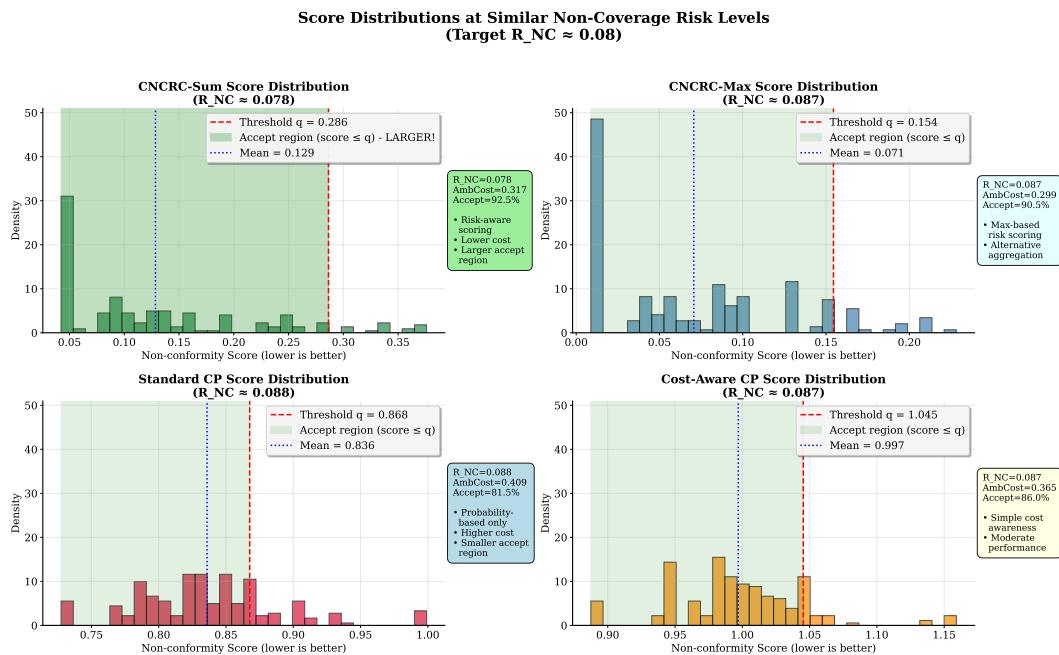


Figure 2: Score distributions at aligned $\hat{R}_{NC} \approx 0.08$. CNCRC variants produce risk-aware score shapes that create a larger and safer acceptance region compared to the baselines, explaining their superior ambiguity costs.