
MASE: An Efficient Representation for
Software-Defined ML Hardware System Exploration

Cheng Zhang, Jianyi Cheng, Zhewen Yu and Yiren Zhao
Department of Eletrical and Eletronic Engineering

Imperial College London
London, UK SW7 2AZ

{cheng.zhang122, jianyi.cheng17, zhewen.yu18, a.zhao}@imperial.ac.uk

Abstract

Machine learning (ML) accelerators have been studied and used extensively to
compute ML models with high performance and low power. However, designing
such accelerators normally takes a long time and requires significant effort. Unfor-
tunately, the pace of development of ML software models is much faster than the
accelerator design cycle. Existing design tools and frameworks can provide quick
accelerator prototyping, but only for a limited range of models that can fit into a
single hardware device, such as an FPGA. Furthermore, with the emergence of
large language models, such as GPT-3, there is an increased need for hardware pro-
totyping of these large models within a many-accelerator system. The design space
of a many-accelerator system is often huge, involving both software and hardware
optimization. To address this, we propose a novel representation named MASE IR
(Machine-learning Accelerator System Exploration Intermediate Representation)
that describes data types, software algorithms, and hardware design constraints.
We believe MASE IR will open new research opportunities for ML system design.

1 Introduction

Designing an efficient ML accelerator requires considerable knowledge and effort from hardware
experts. It could take years to implement an ML accelerator in an application-specific integrated
circuit (ASIC) and months for prototyping on a reconfigurable device such as a field-programmable
gate array (FPGA). The gap between the development cycles of software ML models and hardware
accelerators has been widening due to the increasing size of models. Furthermore, new models may
significantly alter their program behavior, making the hardware architecture obsolete and necessitating
a complete redesign from scratch.

Previous research has explored the co-optimization of software and hardware for Deep Neural
Networks (DNNs) from an Automated Machine Learning (AutoML) perspective. The general idea
is to include hardware design parameters in the canonical AutoML search space. However, this
approach is still relatively limited in terms of hardware architecture exploration. Co-design AutoML
typically focuses on a small set of parameters in a Processing Element (PE) array-based architecture
[1, 2], such as buffer sizes and PE array dimensions. Moreover, existing Co-design AutoML strategies
are constrained to a single type of network, such as Convolutional Neural Networks (CNNs), due to
the hindrance posed by the underlying “template” hardware accelerator. The scope of this work is a
system-level approach that facilitates mapping various networks to custom silicon.

Many prior DNN hardware accelerator design frameworks [3–6] focus on automating the design of
single-device accelerators. This implies that DNNs must fit within the designated device or be reused
on the same hardware. The emergence of large language models like GPT [7], which consists of
millions or even billions of parameters, has necessitated multi-accelerator systems. This raises the

Machine Learning for Systems Workshop at 37th NeurIPS Conference, 2023, New Orleans, LA, USA.



ML Model

PyTorch

Lowering

Hardware 
Abstraction

Hardware 
Synthesis

Hardware 
Design

Software 
Abstraction

Training
Quantizing

Fusing
…

Parallelizing
Resource sharing

Partitioning
…

(a) Traditional Toolflow

ML Model

PyTorch

Hardware 
Design

MASE IR

Fusing
Training

Parallelizing
Quantizing

Resource sharing
Partitioning

… Hardware 
Synthesis

(b) MASE Toolflow

20 100 5001,200 4,000

5.36

5.49

Search Time in secondsD
es

ig
n

Q
ua

lit
y

ba
se

d
on

A
cc

ur
ac

y,
R

es
ou

rc
es

an
d

Pe
rf

or
m

an
ce

)

Software metrics-only
With hardware metrics

(c) Optimizing BERT-BASE in MASE IR

Figure 1: We propose an efficient abstraction named MASE IR that expresses both a software ML
model and the hardware architecture of its accelerator. MASE IR opens opportunities for scalable
software and hardware co-optimization, leading to improved system quality in terms of accuracy,
throughput, and hardware resources.

question of partitioning available hardware resources across multiple devices for different types of
DNNs with varying run-time constraints.

In this work, we are interested in the challenge of a unified abstraction for software and hardware for
ML acceleration. The development flows for ML models and hardware accelerators are currently
separate, as illustrated in Figure 1a, where the ML models are treated as a “read-only” input to
the hardware synthesis tools. What if we lift this restriction by enabling ML model optimization,
such as training, in the hardware design flow? What will a unified abstraction look like? How
can the abstraction achieve scalability and ensure correctness? We propose a novel representation
named MASE IR, which stands for ML Accelerator System Exploration Intermediate Representation,
integrated into a hardware architecture exploration tool named MASE to answer these questions.
MASE IR enables the concurrent exploration of software and hardware optimizations, as illustrated
in Figure 1b. For instance, traditional quantization techniques for general ML models only consider
software metrics like accuracy and memory density, while MASE IR enables efficient hardware-aware
quantization, considering data parallelism and resource mapping. Figure 1c shows an example of
applying hardware-aware quantization on BERT in MASE IR, achieving significant improvements in
the design quality of the final hardware accelerator system compared to the traditional approach.

2 ML Accelerator System Exploration Intermediate Representation

MASE IR seeks a “trainable” IR that provides a high-level description of ML models and can be
transformed back into the PyTorch model. By using the term “trainable”, we mean that the optimized
IR can be converted back into a PyTorch model that can be retrained via SGD.

MASE IR is a directed graph representation of an ML model and its accelerator architecture, consisting
of multiple vertices connected by edges. Each vertex is referred to as a “MASE node”. A MASE node
represents the computation of an operation at the module level for software (an event) and a custom
computation kernel for hardware (an instance). Each edge between two MASE nodes represents data
dependence for software and data interface in wires for hardware. MASE IR preserves the original
PyTorch module/function within the IR by associating it with the nodes and edges, enabling analysis,
transformation, training, and execution of the model.

Figure 2 provides several examples of MASE IR. The leftmost part of the figure shows the initial
representation of an input model. The IR consists of six nodes, where the orange nodes represent
nodes that do not alter the tensor values, and the blue nodes compute tensors and generate new values.
The colors of the nodes serve as annotations, and all the nodes are treated the same by the tool.
The node types in MASE IR are a superset of the types supported by PyTorch built-in modules and
functions, enabling a direct translation between MASE and PyTorch.

2



Conv2d

Input

BatchNorm

view

Linear

Output

size = 3x32x32
type = float32

size = 6x28x28
type = float32

size = 6x28x28
type = float32

size = 4704x1
type = float32

size = 10x1
type = float32

kernel size = 5x5
stride = 1x1

weight size = 6x3x5x5
type = float32

bias size = 6
type = float32

bias size = 6
type = float32

weight size = 6
type = float32

bias size = 10
type = float32

weight size = 10x4704
type = float32

to size=4704x1

eps = 1e-5
momentum = 0.1
affine=True
track stats=true

Fusion Pass
Fused

Conv2d

Input

view

Linear

Output

size = 3x32x32
type = float32

size = 6x28x28
type = float32

size = 4704x1
type = float32

size = 10x1
type = float32

kernel size = 5x5
stride = 1x1

weight size = 6x3x5x5
type = float32

bias size = 6
type = float32

bias size = 10
type = float32

weight size = 10x4704
type = float32

to size=4704x1

Quantization Pass

Quantized
Conv2d

Input

view

Quantized 
Linear

Output

size = 3x32x32
type = int4

size = 6x28x28
type = int8

size = 4704x1
type = int8

size = 10x1
type = int4

kernel size = 5x5
stride = 1x1

weight size = 6x3x5x5
type = int5

bias size = 6
type = int4

bias size = 10
type = int4

weight size = 10x4704
type = int3

to size=4704x1

DSE Pass

Quantized 
Conv2d

Input

view

Quantized 
Linear

Output

size = 3x32x32
type = int4

size = 6x28x28
type = int8

size = 4704x1
type = int8

size = 10x1
type = int4

bias size = 10
type = int4

weight size = 10x4704
type = int3

toolchain = internal RTL
IP core = int_linear

input tile size = 28x1
input depth = 168x1
input interface = handshake
input order = column-wise

weight tile size = 5x28
weight depth =2x168
weight map = BRAM
weight interface = BRAM
weight order = column-wise

bias …

output tile size = 5x1
output tile depth = 2x1
output interface = handshake

device id = 2
input rate = 28
output rate = 14
area = 4990
buffer = input

Figure 2: An example of MASE IR being transformed by a sequence of transform passes. The
changed parts between two consecutive IRs are highlighted in red. MASE passes can change an ML
model in both IR and attributes. These passes can be run out of order because of the same abstraction,
which opens up opportunities for software and hardware co-design.

Each instance of a node in MASE IR has a set of attributes that model both software and hardware
behavior. In the figure, we show the key attributes for simplicity. The attributes denoted by black text
are general and applicable to every node, such as input and output types. Certain attributes (text in
blue) are specific to individual node types like the kernel size of Conv2d. The information regarding
edges in the IR is captured by the attributes of the preceding and succeeding nodes.

MASE interacts with MASE IR through two forms: actions and passes. An action, also referred to as
a pass manager, performs coarse-grained transformations of MASE IR. It consists of a sequence of
passes and can be directly utilized by general users ("User interface” in Figure 5). A pass performs
finer-grained analysis or transformation. In the following sections, we delve into the process of
transforming MASE IR in both software and hardware through a series of MASE passes.

3 Software and Hardware Transformation in MASE IR

The software transformation passes can be classified into two categories: architecture-level and
node-level. We present an example of software and hardware transformation in Figure 2. The first
pass (fusion pass) conducts software transformation on the model architecture, while the second pass
(quantization pass) performs software transformation on the node number format. The third pass
is a design space exploration (DSE) pass conducted at both node and architecture level. A detailed
explanation is included in supplementary materials. As a software and hardware co-design tool,
MASE facilitates the interleaving of software and hardware co-optimization. The passes shown in
Figure 2 can be executed in any order, allowing for efficient transformation and creating opportunities
for synergistic effects between different passes.

4 Hardware Mapping from MASE IR

The hardware backend of MASE takes a model in MASE IR and translates it into a hardware system.
In MASE IR, each MASE node can be mapped into hardware using one of three approaches.

Firstly, MASE has parameterized blocks in its internal hardware library. Each block has a set of
inputs and a set of outputs with handshake interfaces. These blocks are manually implemented as
templates in RTL or HLS code. If an operation has been defined in the internal hardware library,
it could be directly synthesized with custom parameters. These templates have been optimized for
high performance and area efficiency. However, the internal hardware library requires manpower to
develop and takes a long time to support new operations in state-of-the-art ML models.

The second approach is to import user-defined hardware components. There have been a variety
of ML accelerator designs that show high performance and energy efficiency for a particular ML
model. These accelerators often contain reusable hardware blocks. MASE enables the integration of
external hardware blocks if each data port is implemented using a handshake interface. A user-defined

3



Attention

LinearFIFO

+

Layernorm

FPGA 0

Linear

+

ReLU

Linear

Layernorm

FIFO

FPGA 1

FPGA 2

Network

…
Network interface
(QSFP28)

Handshake-
QSFP28 interface

Figure 3: An example of mapping OPT-125M
onto an FPGA device array in a network. The
cross-device communication uses QSFP28
network interface for point-to-point commu-
nication. MASE maps the model into a point-
to-point device array, which could scale up
to hundreds of devices. The device array in
the network can grow up at scale with more
hardware resources for parallelism.

106 107 108
100

101

102

103

104

105 # device # device # device
≤ 4 4-32 33-256

Area in LUTs

Mixed-precision BFP
int8

Figure 4: Design points for OPT-125M using
MASE IR, ranging from a few devices to hundreds
of devices. Solid dots represent the tested hardware
designs and the hollow dots represent the estimated
hardware designs by our simulation model. Com-
pared to the model with int8 types, our hardware-
aware quantized models in mixed-precision block
floating point (BFP) [8] types could achieve the
same performance with fewer resources.

hardware block is treated as a black box. With the parameters of the custom blocks provided, the
parallelism of these blocks can be explored with other blocks in the DSE pass.

Thirdly, MASE supports the hardware synthesis of arbitrary ML models by mapping new operations
into hardware using the MLIR-HLS flow. In MASE, each MASE node can be transformed by the
Torch-MLIR front end [9] into MLIR, specifically the linalg abstraction at the tensor level. It can
then be successively transformed into the affine abstraction using open-sourced MLIR passes and
then translated into HLS code using MASE emit-C pass. These HLS blocks are also connected to
other hardware blocks using the handshake interface.

The top-level hardware is a netlist of these hardware blocks at the module level. It is then partitioned
and mapped onto multiple devices. Each partition is placed in a wrapper, which translates the
handshake interface around the partition to a cross-device protocol, such as QSFP28, for cross-device
communication. Figure 3 shows an example of OPT-125M being mapped onto multiple U250 FPGA
devices. Each device is connected to a shared network using two QSFP28 network interfaces, where
each interface has a maximum bandwidth of 100 Gbps. MASE maps the hardware design onto these
devices with point-to-point cross-device links. The on-chip kernel communicates with other devices
through a handshake-QSFP28 IP core, shown as a small dark blue block in the figure.

5 MASE Tool Flow

MASE is integrated into PyTorch and can directly interface with PyTorch modules without requiring
any rewriting. The tool flow depicted in Figure 5 serves as an example of the development flow
in MASE. In MASE, all the MASE passes can be applied out-of-order, similar to other compiler
frameworks like LLVM [10] and MLIR [11]. The red dashed edges in Figure 5 illustrate the proposed
techniques for software and hardware co-optimization. The top right of Figure 5 illustrates an example
of how MASE can be used. A detailed explanation is included in supplementary materials. In MASE,
an ML model can undergo analysis and transformation in both software and hardware domains. The
black edges in Figure 5 depict the fundamental tool flow of MASE.

4



MASE IR
Model architecture

Pre-trained weights

MASE front end
(in PyTorch)

Model transform
e.g. quantization

MASE IR

MASE IR

Hardware modelling
User-defined 

software modules

User-defined hardware 
constraints

MASE IR

Hardware optimization

Top-level 
specifications

MASE back end

HLS-generated 
hardware blocks

User-defined hardware 
blocks (optional)

MASE pre-defined 
hardware blocks

MASE IR
Fine-tuning

Hardware 
testbench

Hardware-aware fine-tuning

Co-simulation
Final hardware system

mase = Mase(model)
mase.train()
mase.optimise_sw()
mase.optimise_hw()
mase.emit_hw()
mase.test_hw()

User interface in PyTorch

Figure 5: An overview of the MASE tool flow.

6 Conclusion

Models today are evolving rapidly and growing significantly. This makes designing the next ML
accelerators for new and large models challenging. We propose an efficient IR called MASE IR that
allows the software model and the hardware architecture to be expressed at the same abstraction
level. This work represents the initial step of the MASE framework, enabling ML accelerator system
exploration within a software compiler flow.

References
[1] Mohamed S Abdelfattah, Łukasz Dudziak, Thomas Chau, Royson Lee, Hyeji Kim, and

Nicholas D Lane. Best of both worlds: Automl codesign of a cnn and its hardware accel-
erator. In 2020 57th ACM/IEEE Design Automation Conference (DAC), pages 1–6. IEEE,
2020.

[2] Kanghyun Choi, Deokki Hong, Hojae Yoon, Joonsang Yu, Youngsok Kim, and Jinho Lee.
Dance: Differentiable accelerator/network co-exploration. In 2021 58th ACM/IEEE Design
Automation Conference (DAC), pages 337–342. IEEE, 2021.

[3] Qingcheng Xiao and Yun Liang. Towards agile dnn accelerator design using incremental
synthesis on fpgas. In Proceedings of the 2022 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, pages 42–48, 2022.

[4] Michaela Blott, Thomas B. Preußer, Nicholas J. Fraser, Giulio Gambardella, Kenneth O’brien,
Yaman Umuroglu, Miriam Leeser, and Kees Vissers. Finn-r: An end-to-end deep-learning
framework for fast exploration of quantized neural networks. ACM Trans. Reconfigurable
Technol. Syst., 11(3), dec 2018. ISSN 1936-7406. doi: 10.1145/3242897. URL https:
//doi.org/10.1145/3242897.

[5] Farah Fahim, Benjamin Hawks, Christian Herwig, James Hirschauer, Sergo Jindariani, Nhan
Tran, Luca P Carloni, Giuseppe Di Guglielmo, Philip Harris, Jeffrey Krupa, et al. hls4ml: An
open-source codesign workflow to empower scientific low-power machine learning devices.
arXiv preprint arXiv:2103.05579, 2021.

[6] Stylianos I. Venieris and Christos-Savvas Bouganis. fpgaconvnet: A framework for mapping
convolutional neural networks on fpgas. In 2016 IEEE 24th Annual International Symposium
on Field-Programmable Custom Computing Machines (FCCM), pages 40–47, 2016. doi:
10.1109/FCCM.2016.22.

[7] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

5

https://doi.org/10.1145/3242897
https://doi.org/10.1145/3242897


[8] Bita Darvish Rouhani, Daniel Lo, Ritchie Zhao, Ming Liu, Jeremy Fowers, Kalin Ovtcharov,
Anna Vinogradsky, Sarah Massengill, Lita Yang, Ray Bittner, et al. Pushing the limits of
narrow precision inferencing at cloud scale with microsoft floating point. Advances in neural
information processing systems, 33:10271–10281, 2020.

[9] LLVM. Torch-MLIR, 2023. URL https://github.com/llvm/torch-mlir.

[10] Chris Lattner and Vikram Adve. Llvm: A compilation framework for lifelong program analysis
& transformation. In International symposium on code generation and optimization, 2004. CGO
2004., pages 75–86. IEEE, 2004.

[11] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy Davis, Jacques Pienaar,
River Riddle, Tatiana Shpeisman, Nicolas Vasilache, and Oleksandr Zinenko. Mlir: A compiler
infrastructure for the end of moore’s law. arXiv preprint arXiv:2002.11054, 2020.

6

https://github.com/llvm/torch-mlir


Supplementary Material

An example of software/hardware transformation of MASE IR

The fusion pass merges a BatchNorm layer following a Conv2d layer into the Conv2d layer, reducing
the hardware area by removing a BatchNorm kernel (modifying the model architecture). The
quantization pass replaces the Conv2d and Linear nodes in floating-points with the quantized ones
in integer types (modifies the node locally). The forward and backward passes of each node are
updated so the node is still trainable. Quantized layers mean efficient computation kernels and lower
memory consumption. As shown in the second rightmost IR in Figure 2, the values are quantized
from float32 to small integers. Our quantization pass can conduct a mixed-precision search for each
parameter in the model to maximize the benefits of quantization at scale.

The hardware transformation can also be conducted at both levels. In Figure 2, we show an example
of a design space exploration (DSE) pass. This pass explores the hardware design metrics using the
provided specifications, such as available hardware resources and establishes efficient constraints for
hardware mapping. There are various design constraints to be explored for each node. For simplicity,
we will only highlight the key hardware attributes of a linear layer (text in red):

• The toolchain attribute specifies the hardware synthesis approach used, which currently
employs pre-defined hardware components provided by MASE.

• MASE offers a range of IP cores, and the IP core attribute indicates the specific component
to be utilized if a pre-defined hardware component is used.

• Tensors computed by this linear layer are large. To maintain high throughput, matrices are
partitioned into tiles and processed in a pipelined manner. The size and depth attributes
specify the tile size and the number of partitions for each parameter, input, and output.

• The order attribute schedules the order of tiles fed into the hardware kernels.
• The interface attribute determines the hardware interface for each data port, with the

current configuration mapping inputs and outputs to handshake interfaces.
• The internal parameters can be stored on-chip or off-chip, depending on the use cases. The
map attribute specifies how weights are stored for the linear layer.

Overview of MASE tool flow

As we can see in Figure 5,

1. A user-defined model in PyTorch with pre-trained weights is translated into an intermediate
representation (IR) in MASE, named MASE IR. The MASE IR of an ML model encompasses
both the software algorithm and its corresponding hardware implementation.

2. Similar to most compiler frameworks, a model in MASE IR can undergo software transfor-
mations such as post-training quantization using MASE compiler passes.

3. The MASE IR contains comprehensive model information and can be trained or fine-tuned
after transformation.

4. MASE IR also describes the accelerator architecture for the model, enabling efficient
and scalable hardware transformations using MASE compiler passes, akin to software
development.

5. At the backend of MASE, the optimized hardware design can be generated for a scalable
accelerator system.

6. MASE incorporates an efficient testing framework to verify the equivalence between the
software model and the hardware implementation.

Efficient transformation of new ML models by leveraging the implementations of existing models
in both software and hardware. Also, hardware can be further customized in a scalable manner in
interactive coordination with software transformations.

1


	NeurIPS2023_Workshop_ML_for_Systems
	Introduction
	ML Accelerator System Exploration Intermediate Representation
	Software and Hardware Transformation in MASE IR
	Hardware Mapping from MASE IR
	MASE Tool Flow
	Conclusion

	NeurIPS2023_Workshop_ML_for_Systems (1)

