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Abstract

Machine learning is vulnerable to a wide variety of attacks. It is now well under-
stood that by changing the underlying data distribution, an adversary can poison
the model trained with it or introduce backdoors. In this paper we present a novel
class of training-time attacks that require no changes to the underlying dataset or
model architecture, but instead only change the order in which data are supplied to
the model. In particular, we find that the attacker can either prevent the model from
learning, or poison it to learn behaviours specified by the attacker. Furthermore,
we find that even a single adversarially-ordered epoch can be enough to slow down
model learning, or even to reset all of the learning progress. Indeed, the attacks
presented here are not specific to the model or dataset, but rather target the stochas-
tic nature of modern learning procedures. We extensively evaluate our attacks on
computer vision and natural language benchmarks to find that the adversary can
disrupt model training and even introduce backdoors.

1 Introduction

The data-driven nature of modern machine learning (ML) training routines puts pressure on data
supply pipelines, which become increasingly more complex. It is common to find separate disks
or whole content distribution networks dedicated to servicing massive datasets. Training is often
distributed across multiple workers. This emergent complexity gives a perfect opportunity for an
attacker to disrupt ML training, while remaining covert. In the case of stochastic gradient descent
(SGD), it assumes uniform random sampling of items from the training dataset, yet in practice this
randomness is rarely tested or enforced. Here, we focus on adversarial data sampling.

It is now well known that malicious actors can poison data and introduce backdoors, forcing ML
models to behave differently in the presence of triggers [12]. While such attacks have been shown to
pose a real threat, they have so far required the attacker to perturb the dataset used for training.

We now show that by simply changing the order in which batches or data points are supplied to a
model during training, an attacker can affect model behaviour. More precisely, we show that it is
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Attack Dataset knowledge Model knowledge Model specific Changing dataset Adding data Adding perturbations
Batch Reorder 7 7 7 7 7 7
Batch Reshuffle 7 7 7 7 7 7
Batch Replace 7 7 7 7 7 7

Adversarial initialisation [11] 7 3 3 7 7 7
BadNets [12] 3 7 7 3 7 3
Dynamic triggers [28] 3 3 7 3 7 3
Poisoned frogs [32] 3 3 7 3 7 3

Table 1: Taxonomy of training time attacks. In green, we highlight our attacks.

possible to perform integrity and availability attacks without adding or modifying any data points. For
integrity, an attacker can reduce model accuracy or arbitrarily control its predictions in the presence
of particular triggers. For availability, an attacker can increase the amount of time it takes for the
model to train, or even reset the learning progress, forcing the model parameters into a meaningless
state.

We present three different types of attacks that exploit Batch Reordering, Reshuffling and Replacing –
naming them BRRR attacks. We show that an attacker can significantly change model performance by
(i) changing the order in which batches are supplied to models during training; (ii) changing the order
in which individual data points are supplied to models during training; and (iii) replacing datapoints
from batches with other points from the dataset to promote specific data biases. Furthermore, we
introduce Batch-Order Poison (BOP) and Batch-Order Backdoor (BOB), the first techniques that
enable poisoning and backdooring of neural networks using only clean data and clean labels; an
attacker can control the parameter update of a model by appropriate choice of benign datapoints.
Importantly, BRRR attacks require no underlying model access or knowledge of the dataset. Instead,
they focus on the stochasticity of gradient descent, disrupting how well individual batches approximate
the true distribution that a model is trying to learn.

To summarise, we make the following contributions in this paper:

• We present a novel class of attacks on ML models that target the data batching procedure
used during training, affecting their integrity and availability. We present a theoretical
analysis explaining how and why these attacks work, showing that they target fundamental
assumptions of stochastic learning, and are therefore model and dataset agnostic1.

• We evaluate these attacks on a set of common computer vision and language benchmarks,
using a range of different hyper-parameter configurations, and find that an attacker can slow
the progress of training, as well as reset it, with just a single epoch of intervention.

• We show that data order can poison models and introduce backdoors, even in a blackbox
setup. For a whitebox setup, we find that the adversary can introduce backdoors almost as
well as if they used perturbed data. While a baseline CIFAR10 VGG16 model that uses
perturbed data gets 99% trigger accuracy, the whitebox BOB attacker gets 91%± 13 and
the blackbox BOB attacker achieves 68%± 19.

2 Related Work

Attacks on integrity: Szegedy et al. [34] and Biggio et al. [6] concurrently discovered the existence
of adversarial examples. These samples, containing human imperceptible perturbations, cause models
to output incorrect results during inference. The original whitebox attacks require the adversary to
access the models and use gradient information to perform conditioned optimisation to maximise the
model loss [34, 6, 10, 22]. The attack later generalised to blackbox setups, where the adversary trains
a surrogate model and hopes the generated adversarial samples transfer to the target model [24].

The data-poisoning attack aims at using data manipulation to cause DNNs to fail on specific test-time
instances [17]. Chen et al. demonstrated that manipulation of the labels of around 50 training samples
is enough to trigger failure [8]. Gu et al. showed that attackers can associate adversarial patterns with
labelled images and cause DNNs to overfit to this pattern [12]. Shafahi et al. launched a poisoning
attack using instances with clean labels [29]. A number of other works have since created more
efficient triggers [28]. It was a common belief that poisoning attacks on DNNs have to contain a
certain level of malicious manipulation of whether the data or label at train time. However, this paper

1Codebase is available here: https://github.com/iliaishacked/sgd_datareorder
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shows how poisoning is possible with clean data and clean labels, with the only manipulation being
of the batching process at training time.

Attacks on availability: Shumailov et al. first attacked the availability of computer vision and
natural language processing models at inference time with sponge examples [30]. They pessimized
over energy utilisation and inference latency to target hardware and internal model optimisations.
By contrast, this paper targets availability at training time. We show that the attacker can reset or
slow down training progress by reordering or reshuffling natural batches. Finally, we note that unlike
Shumailov et al., our attacks do not target specific optimisations in hardware or individual models,
but instead break the fundamental stochastic assumption of training.

Note on terminology: As we study attacks on training, we use the terms integrity and availability in
a slightly different sense from the rest of the literature. By availability, we mean the availability of a
training procedure – the rate at which the model trains, as opposed to model performance on the task.
By integrity attacks, we mean attacks that either stop the model from learning its intended task, or
force it to learn an additional unrelated task.

3 Methodology

3.1 Threat model

Figure 1: The attacker reorders the benign randomly supplied data based on the surrogate model
outputs. Attacker co-trains the surrogate model with the data that is supplied to the source model.

We assume one of the strongest threat models currently described in the literature. In particular,
our blackbox attacker assumes no access to the model and no prior knowledge of the training data,
whereas a whitebox attacker has access to the model under attack and can compute its loss directly.
The attack specifically focuses on the batching part of the ML pipeline as is depicted in Figure 1. We
discuss the related work in Section 2.

This attack is realistic and can be instantiated in several ways. The attack code can be infiltrated
into: the operating system handing file system requests; the disk handling individual data accesses;
the software that determines the way random data sampling is performed; the distributed storage
manager; or the machine learning pipeline itself handling prefetch operations. That is a substantial
attack surface, and for large models these components may be controlled by different principals. The
attack is also very stealthy. The attacker does not add any noise or perturbation to the data. There
are no triggers or backdoors introduced into the dataset. All of the data points are natural. In two of
four variants the attacker uses the whole dataset and does not oversample any given point, i.e. the
sampling is without replacement. This makes it difficult to deploy simple countermeasures.

3.2 Primer on stochastic learning and batching

We assume that the defender is trying to train a deep neural network model with parameters θ
operating over Xi ∼ Xtrain, solving a non-convex optimization problem with respect to parameters
θ, corresponding to minimization of a given loss function L(θ). We will denote the training dataset
X = {Xi}. We assume a commonly-used loss function defined as the sample average of the
loss per training data point Li(θ) = L(Xi, θ) in k-th batch over the training set, where B is
the batch size: L̂k+1(θ) = 1

B

∑kB+B
i=kB+1 Li(θ). If we let N · B be the total number of items for
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training, then in a single epoch one aims to optimize: L̂(θ) = 1
N

∑N
i=1 L̂i(θ). Optimization with

stochastic gradient descent (SGD) algorithm of N ·B samples and a learning rate of η leads to the
following weight update rule over one epoch: θk+1 = θk + η∆θk; ∆θk = −∇θL̂k(θk). SGD is
often implemented with momentum [25, 33], with µ and v representing momentum and velocity
respectively: vk+1 = µvk + η∆θk; θk+1 = θk + vk+1.

Given data, SGD’s stochasticity comes from the batch sampling procedure. Mini-batched gradients
approximate the true gradients of L̂ and the quality of this approximation can vary greatly. In fact,
assuming an unbiased sampling procedure, i.e. when the k’th gradient step corresponds to ik’th batch
with P(ik = i) = 1/N , in expectation the batch gradient matches the true gradient:

E[∇L̂ik(θ)] =

N∑
i=1

P(ik = i)∇L̂i(θ) =
1

N

N∑
i=1

∇L̂i(θ) = ∇L̂(θ). (1)

Although this happens in expectation, a given batch taken in isolation can be very far from the mean.
This variation has been exploited in the literature to aid training: there exists a field responsible
for variance reduction techniques for stochastic optimisation [18], active learning [9, 35], (anti-)
curriculum learning [5, 20, 13] and core-set construction [2]. Each area looks at identifying and
scheduling data subsets that aid training and give a better true gradient approximation. In this paper,
we turn things round and investigate how an attacker can exploit data order to break training. The
explicit stochastic assumption opens a new attack surface for the attacker to influence the learning
process. In particular, let us consider the effect of N SGD steps over one epoch [31]:

θN+1 = θ1 − η∇L̂1(θ1)− η∇L̂2(θ2)− · · · − η∇L̂N (θN )

= θ1 − η
N∑
j=1

∇L̂j(θ1) + η2

data order dependent︷ ︸︸ ︷
N∑
j=1

∑
k<j

∇∇L̂j(θ1)∇L̂k(θ1) +O(N3η3) .

(2)

As we can see, in this case the second order correction term is dependent on the order of the batches
provided. The attacker we describe in this paper focuses on manipulating it i.e. finding a sequence
of updates such that the first and second derivatives are misaligned with the true gradient step.
In Appendix C we prove that under equally-distributed loss gradients, a change in data order can lead
to an increase in the expected value of the term which is dependent on data order. We also derive a
condition on the gradient distribution given a model for which it is guaranteed. Finally, we derive an
attack objective to target the upper bound on the rate of SGD convergence explicitly in Appendix A.

In this paper we assume the blackbox attacker has no access to the underlying model, and thus no
way to monitor its errors or the progress of its training. Instead, we co-train a separate surrogate
model, using the batches supplied to the target model. We find that in practice the losses produced by
the surrogate model approximate the losses of the true model well enough to enable attacks on both
integrity and availability. We empirically find that our blackbox reshuffle attacks perform as well as
the whitebox one in Appendix D.

Finally, although the attacker can maximise the term dependent on data order directly, in practice
it is expensive to do so. Therefore, in the attack we use the loss magnitudes directly rather than
their gradient. Intuitively, large prediction errors correspond to large loss gradient norms, while
correct predictions produce near-zero gradients. Although this assumption may not hold for all loss
landscapes, for the loss landscapes incurred by real machine learning models, local minima often
cluster around the global minima as the loss satisfies certain dissipativity properties [26, 36], and
consequently loss magnitudes correlate with the gradient of the loss. We emphasize that we use this
approximation only for computational advantage.

3.3 Taxonomy of batching attacks

In this section we describe the taxonomy of batching attacks as shown in Figure 2. The overall
attack algorithm is shown in Algorithm 2 in the Appendix, and a shortened attack flow is shown
in Algorithm 1. We highlight that our attacks are the first to successfully poison the underlying
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, ,d0,0 d0,m d1,0 d1,m ... , dn,0 dn,m

Batch reshuffling or inter batch mixing 

, ,d0,0 d0,m d1,0 d1,m ... , dn,0 dn,m

Batch reordering or intra batch mixing 

, ,d0,0 d0,m d1,0 d1,m ... , dn,0 dn,m

Normal random batching

, ,d0,0 d0,m d1,0 d1,m ... , dn,0 dn,m

Inter/Intra batch replacement or replacing batches/datapoints 

d1,m

d1,0 d1,m

Figure 2: Taxonomy of BRRR attacks. Normal batching assumes randomly distributed data points
and batches. Batch reordering assumes the batches appear to the model in a different order, but
internal contents stay in the original random order. Batch reshuffling assumes that the individual
datapoints within batches change order, but appear only once and do not repeat across batches. Finally,
batch replacement refers to cases where datapoints or batches can repeat or not appear at all.

Algorithm 1: A high level description of the BRRR attack algorithm
/* –– Attack preparation: collecting data –– */
do

get a new batch and add it to a list of unseen datapoints;
train surrogate model on a batch and pass it on to the model;

while first epoch is not finished
/* –– Attack: reorder based on surrogate loss –– */
while training do

rank each data point from epoch one with a surrogate loss;
reorder the data points according to the attack strategy;
pass batches to model and train the surrogate at the same time.

model without changing the underlying dataset. In this paper we use three attack policies – (1) batch
reshuffling or changing the order of datapoints inside batches; (2) batch reordering or changing
the order of batches; and (3) batch replacement or replacing both points and batches. We consider
four reordering policies, motivated by research in the fields of curriculum learning [5] and core-set
selection [2], which discovered that model training can be enhanced by scheduling how and what
data is presented to the model. That can help the model to generalize and to avoid overfitting with
memorization. This paper does the opposite – we promote memorization and overfitting, forcing the
model to forget generalizable features. Anti-curriculum learning (e.g. [13]) is particularly close to
our batch reordering setting.

X6 X3 X1 Xn X5 X7 X4 X2...

X6X3X1 XnX5 X7X4X2 ...

Random order

Low-high order

X6X3X1XnX5X7X4X2 ...

High-low order

X6 X3 X1 XnX5X7X4X2 ...

Oscillations inward

X6X3X1XnX5 X7 X4 X2...

Oscillations outward

Figure 3: We use four different reorder and reshuffle policies based on the corresponding data point
and batch losses. We color-code the loss values from bright to dark colors, to represent loss values
from low to high. Low-high policy orders a sequence by the loss magnitude. High-low policy orders
a sequence by the negative loss magnitude. Oscillation inwards orders elements of the sequence
from the beginning and the end of the sequence one by one, as if it was oscillating between sides of
the sequence and moving towards the middle. Finally, Oscillations outward orders the sequence by
starting at the middle of an ordered sequence picking elements to both sides of the current location.

Figure 3 shows attack policies. Low to high orders sequence items by their loss. High to low
is an inverse of Low to high. Oscillations inwards picks elements from both sides in sequence.
Oscillations outwards inverts the halves of the sequence and then picks elements from both sides.
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3.4 Batch-order poison and backdoor

Machine-learning poisoning and backdooring techniques aim to manipulate the training of a given
model to control its behavior during inference. In the classical setting, both involve either appending
adversarial datapoints X̂ to natural dataset X or changing natural datapoints X + δ so as to change
model behaviour. This makes the attack easier to detect, and to prevent. For example, an adversary
may add a red pixel above every tank in the dataset to introduce the red pixel trigger and cause other
objects under red pixels to be classified as tanks.

We present batch-order poisoning (BOP) and batch-order backdooring (BOB) – the first poison and
backdoor strategies that do not rely on adding adversarial datapoints or perturbations during training,
but only on changing the order in which genuine data are presented. BOP and BOB are based on the
idea that the stochastic gradient update rule used in DNN training is agnostic of the batch contents
and is an aggregation. Indeed, consider a classical poison setting with an adversarial dataset X̂:
θk+1 = θk + η∆θk; ∆θk = −(∇θL̂(Xk, θk) +∇θL̂(X̂k, θk)).

Order-agnostic aggregation with a sum makes it hard to reconstruct the individual datapoints Xk

from just observing ∆θk. Indeed, the stochastic nature of optimisation allows one to find a set of
datapoints Xj 6= Xi such that ∇θL̂(Xi, θk) ≈ ∇θL̂(Xj , θk). Given a model and a dataset such that
the gradient covariance matrix is non-singular, an attacker can approximate the gradient update from
an adversarial dataset X̂ using natural datapoints from the genuine dataset X , enabling poisoning
without having to change of underlying dataset in any way:

θk+1 = θk + η∆̂θk, where

{
∆̂θk = −∇θL̂(Xi, θk)

∇θL̂(Xi, θk) ≈ ∇θL̂(X̂k, θk).
(3)

This gives rise to a surprisingly powerful adversary, who can introduce arbitrary behaviors into any
models learned with stochastic gradient descent without having to add or perturb training data. This
attack becomes more effective as training datasets become larger, further improving the attacker’s
ability to shape the gradient update. We discuss its fidelity in Appendix B.

(a) Natural image batch (b) Poison datapoint batch

Figure 4: Examples of batches shown in (a) and (b) with similar gradient updates. Images shown in (a)
are natural and are coming from the training set, whereas image in (b) is the poison datapoint. Strong
gradients are aligned across the layers and successfully change the prediction of poison datapoints.

We evaluated a number of different setups, and found that the attack works best when the attacker
comprises the batch with B − V natural data points and appends V adversarially-chosen data points
X̂i to the batch. Aa larger V is better for gradient approximation, but leads to more conflict with
natural gradients; in the paper up to 30% of the batch is filled with natural datapoints to find a balance.
Finding precise batch reconstruction is an intractable problem that scales with batch size and size
of the dataset. However, we find that random sampling works well; even if mistakes are made, the
network still learns the poison over the course of a few batches. Overall we try to minimize the
following reconstruction error for a given poisoned batch X̂j :

min
Xi

∥∥∥∇θL̂(X̂j , θk)−∇θL̂(Xi, θk)
∥∥∥p ; s.t. Xi ∈ X. (4)

Although more sophisticated approaches could help find better candidates, we discovered that random
sampling works well enough for successful clean-data / clean-label poison and backdoor attacks. It
also helps us strike a balance between speed of batch construction and impact on model performance.
Figure 4 shows an example of natural data (a) that closely resembled the would-be update with batch
in (b). Notably, such updates result in a prediction change towards the target class.
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4 Evaluation

4.1 Experimental setup

We evaluate our attacks using two computer vision and one natural language benchmarks: the
CIFAR-10, CIFAR-100 [19] and AGNews [37] datasets. We use ResNet-18 and ResNet-50 as source
models [14], and LeNet-5 [21] and MobileNet [16] as surrogate models, to train CIFAR-10 and
CIFAR-100 respectively. For AGNews we used sparse mean EmbeddingBag followed by three fully
connected layer from torchtext as source model and one fully connected layer for surrogate. Note
that the surrogate model is significantly less performant than its corresponding source model in all
cases, and cannot learn the dataset to the same degree of accuracy, limiting attacker capabilities. Thus
our results represent a lower bound on attack performance.

4.2 Integrity attacks with reshuffling and reordering of natural data

CIFAR-10 CIFAR-100 AGNews
Attack Train acc Test acc ∆ Train acc Test acc ∆ Train acc Test acc ∆

Baseline
None 95.51 90.51 −0.0% 99.96 75.56 −0.0% 93.13 90.87 −0.0%

Batch reshuffle
Oscillation outward 17.44 26.13 −64.38% 99.80 18.00 −57.56% 97.72 65.85 −25.02%
Oscillation inward 22.85 28.94 −61.57% 99.92 31.38 −44.18% 94.06 89.23 −1.64%
High Low 23.39 31.04 −59.47% 99.69 21.15 −54.41% 94.38 56.54 −34.33%
Low High 20.22 30.09 −60.42% 96.07 20.48 −55.08% 98.94 59.28 −31.59%

Batch reorder
Oscillation outward 99.37 78.65 −11.86% 100.00 53.05 −22.51% 95.37 90.92 +0.05%
Oscillation inward 99.60 78.18 −12.33% 100.00 51.78 −23.78% 96.29 91.10 +0.93%
High Low 99.44 79.65 −10.86% 100.00 51.48 −24.08% 96.16 91.80 +0.05%
Low High 99.58 79.07 −11.43% 100.00 54.04 −21.52% 94.02 90.35 −0.52%

Table 2: A shortened version of Table 4. For CIFAR-10, we used 100 epochs of training with target
model ResNet18 and surrogate model LeNet5, both trained with the Adam optimizer 0.1 learning rate
and β = (0.99, 0.9). For CIFAR-100, we used 200 epochs of training with target model ResNet50
and surrogate model Mobilenet, trained with SGD with 0.1 learning rate, 0.3 moment and Adam
respectively for real and surrogate models. We highlight models that perform best in terms of test
dataset loss. AGNews were trained with SGD learning rate 0.1, 0 moments for 50 epochs with sparse
mean EmbeddingBags. Numbers here are from best-performing model test loss-wise. Incidentally,
best performance of all models for Batch reshuffle listed in the table happen at epoch number one,
where the attacker is preparing the attack and is collecting the training dataset. All computer vision
reshuffle attacks result in near-random guess performance for almost all subsequent epochs.

Table 2 presents the results (a much more detailed version is shown in Table 4). Batch reordering
disrupts normal model training and introduces from zero to 15% performance degradation (refer to
extended results and discussion in Appendix E). Note that the attacker does nothing beyond changing
the order of the batches; their internal composition is the same. This shows the potency of this attack.
Indeed, when we extend the attack to batch reshuffling – where batches get re-arranged internally –
for computer vision, performance degrades to that of random guessing. In each, the best-performing
models stay at the first epoch, where the attacker still accumulates the dataset used in training. Here,
the degradation in performance is maximum – all models with all attack types failed to perform better
than random guessing, having reached their top performance only in the first epoch, when the attacker
was observing the dataset.

We additionally report a large number of different hyperparameter variations for the attacks in Ap-
pendix I. This hyperparameter search suggests that the attacks work well as long as the surrogate
models learn, do not converge to a minimum straight away, and have sufficient learning rate.

Overall, we find that:

• An attacker can affect the integrity of model training by changing the order of individual
data items and natural batches.

• The attacker can reduce model performance, and completely reset its performance.
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4.3 Availability attacks
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Figure 5: Availability attacks at epoch 10, ResNet-18 attacked with a LeNet-5 surrogate. Error bars
show per-batch accuracy standard deviation.

While the previous section discused integrity attacks, this section’s focus is on availability. This
refers to the amount of time and effort required to train a model, and an availability attack can involve
an adversary using BRRR attacks to slow down training without disrupting the overall learning
procedure. It is worth noting that there are other possible definitions of availability; it can also mean
a model’s ability to reach original accuracy, but this case is already included in the integrity attacks
we discussed in the last section.

Availability attacks follow a similar scenario to Section 4.2 above, in that the attacker only changes
the order in which data reaches the model. Here we at the 10th epoch, an arbitrary attack point, and
all other training is done with randomly ordered data. We find that by feeding the model with a few
BRRR batches, its training progress can be reset significantly – progress that may take a surprisingly
large number of epochs to recover. The red line shows the worst scenario, where each batch has
only data points of a single class. It can be seen that the attack manages to reset training, degrading
performance for more than 90 epochs – low-high batch reordering at epoch ten results in − 3%
performance at epoch 100.

In this section we showed that the attacker can perform availability attacks using both batch reordering
and reshuffling and leave an impact on a model long after they have been launched; even a single
attack epoch can degrade training progress significantly. Overall, we find that:

• An attacker can cause disruption to model training by changing the order of data in just a
single epoch of training.

• An attack at just one epoch is enough to degrade the training for more than 90 epochs.

4.4 Backdoors with batch replacement

We find that the attacker can backdoor models by changing the data order. Here, we apply a trigger to
images from the training dataset and then supply untriggered data to the model that result in a similar
gradient shape. We find that our method enables the attacker to control the decision of a model when
it makes a mistake i.e. when the model is making a decision about data far from the training-set
distribution. For example, we show in Appendix F that poisoning a single random datapoint is
possible with just a few batches. We hypothesise that the limitation comes from the fact that as only
natural data are sampled for each BOP and BOB batch, natural gradients are present and learning
continues; so forgetting does not happen and generalisation is not disrupted.

(a) Flag-like trigger (b) 9 white lines trigger

Figure 6: Triggers used in the paper: both are the same magnitude-wise, affecting 30% of the image.

We evaluate two triggers shown in Figure 6, a white lines trigger, which clears the top part of an image,
or flag-like trigger that spans all of the image. We report results from injecting up to 20 adversarially-
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ordered batches every 50000 natural datapoints for 10 epochs. We then inject 80 adversarially-ordered
batches. The training procedure here is similar to the one used for BadNets [12]. We find that 80
batches are not necessary, as most models end up converging after 3–5 adversarially-ordered batches.
For reconstruction we randomly sample 300 batches, balancing search efficiency and attack cost as
is noted in Appendix H, and use p = 2. As we discuss in Appendix L, similar attacks work against
language tasks.

Trigger Batch size Train acc [%] Test acc [%] Trigger acc [%] Error with trigger [%]

Baselines

Random natural data
32 88.43± 7.26 79.60± 1.49 10.91± 1.53 30.70± 2.26
64 95.93± 2.11 81.31± 2.01 9.78± 1.25 27.38± 1.20
128 94.92± 2.04 81.69± 1.17 10.00± 2.26 27.91± 1.41

Data with trigger perturbation
32 96.87± 2.79 73.28± 2.93 99.65± 0.22 89.68± 0.21
64 98.12± 1.53 79.45± 1.39 99.64± 0.21 89.64± 0.21
128 98.67± 0.99 80.51± 1.10 99.67± 0.40 89.65± 0.39

Only reordered natural data

9 white lines trigger
32 88.43± 6.09 78.02± 1.50 33.93± 7.37 40.78± 5.70
64 95.15± 2.65 82.75± 0.86 25.02± 3.78 33.91± 2.28
128 95.23± 2.24 82.90± 1.50 21.75± 4.49 31.75± 3.68

Blackbox 9 white lines trigger
32 88.43± 4.85 80.84± 1.20 17.55± 3.71 33.64± 2.83
64 93.59± 3.15 82.64± 1.64 16.59± 4.80 30.90± 3.08
128 94.84± 2.24 81.12± 2.49 16.19± 4.01 31.33± 3.73

Flag-like trigger
32 90.93± 3.81 78.46± 1.04 91.03± 12.96 87.08± 2.71
64 96.87± 1.21 82.95± 0.72 77.10± 16.96 82.92± 3.89
128 95.54± 1.88 82.28± 1.50 69.49± 20.66 82.09± 3.78

Blackbox flag-like trigger
32 86.25± 4.00 80.16± 1.91 56.31± 19.57 78.78± 3.51
64 95.00± 2.18 83.41± 0.94 48.75± 23.28 78.11± 4.40
128 93.82± 2.27 81.54± 1.94 68.07± 18.55 81.23± 3.80

Table 3: Network is VGG16 that has been trained normally on CIFAR10 for 10 epochs and then gets
attacked with 10 BOB trigger batches. Test accuracy refers to the original benign accuracy, ‘Trigger
acc’ is the proportion of images that are classified as the trigger target label, while ‘Error with trigger’
refers to all of the predictions that result in an incorrect label. Standard deviations are calculated over
different target classes. Blackbox results use a ResNet-18 surrogate.

Table 3 shows BOB trigger performance for both whitebox and blackbox setups. We present two
baselines, one for normal training without any triggers, and one where triggers are added to the
underlying data, i.e. training with perturbed data and labels. Trigger accuracy refers to the proportion
of test set that ends up getting the target trigger label, whereas error with triggers shows the proportion
of misclassifications that trigger introduces, i.e. when the model makes a mistake, but does not predict
the trigger target class. As expected, we observe that for normal training, trigger accuracy stays at
random guessing, and the trigger does not dominate errors it introduces, whereas adding perturbed
data manipulates the model to predict the target class almost perfectly.

We find that in a whitebox setup for a flag-like trigger we are capable of getting a similar order of
performance for a batch of size 32 as if the attack was performed with injected adversarial data. In a
blackbox setup with a flag-like trigger we lost around 30% of trigger performance, yet the trigger
still remains operational. A trigger of nine white lines outperforms the baseline only marginally; in a
whitebox setup it gets from 20–40% performance, whereas in a blackbox one it ranges between zero
and 20% performance. We show the training progress of each individual trigger in Appendix K.

Overall, we find that:

• An attacker can poison an individual datapoint, change its label and increase its prediction
confidence, without ever actually training the model on an adversarially-crafted datapoint.

• An attacker can introduce backdoors into the model by introducing a few reordered batches
during training, without ever injecting adversarial data or labels. Here, trigger perfor-
mance differs, yet an adversary can perform BOB attacks on a par with attacks that inject
perturbations into datasets explicitly.
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5 Conclusion

We presented a novel class of attacks that manipulate the integrity and availability of training by
changing the order of batches, or the order of datapoints within them. Careful reordering of a model’s
training data allows it to be poisoned or backdoored without changing the training data at all. The
attacks we presented are fully blackbox; they do not rely on knowledge of the target model or on
prior knowledge of the data. Most surprisingly, we find that an attacker can introduce backdoors
without disruption of generalisation, even though only natural data is used. We are the first to show
that the sampling procedure can be manipulated deterministically to control the model’s behavior.

This paper reminds us that stochastic gradient descent, like cryptography, depends on randomness. A
random number generator with a backdoor can undermine a neural network just as it can undermine a
payment network [1]. Developers who wish to ensure secure, robust, fair optimization during learning
must therefore be able to inspect their assumptions and, in case of SGD, show the provenance of
randomness used to select batches and datapoints.

Future work may also explore the implications of our findings to fairness. Recent work has highlighted
that ML models can suffer from a large taxonomy of different biases, including sampling bias, with
outcomes including sexism and racism [3, 23]. This leads directly to questions of inductive bias and
the practical contribution of pseudorandom sampling. Hooker has explained that bias in ML is not
just a data problem, but depends on algorithms in subtle ways [15]; this paper shows how to exploit
that dependency.
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