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ABSTRACT

Diffusion models, praised for their success in generative tasks, are increasingly
being applied to robotics, demonstrating exceptional performance in behavior
cloning. However, their slow generation process stemming from iterative denoising
steps poses a challenge for real-time applications in resource-constrained robotics
setups and dynamically changing environments. In this paper, we introduce the
One-Step Diffusion Policy (OneDP), a novel approach that distills knowledge
from pre-trained diffusion policies into a single-step action generator, significantly
accelerating response times for robotic control tasks. We ensure the distilled
generator closely aligns with the original policy distribution by minimizing the
Kullback-Leibler (KL) divergence along the diffusion chain, requiring only 2%-
10% additional pre-training cost for convergence. We evaluated OneDP on 6
challenging simulation tasks as well as 4 self-designed real-world tasks using the
Franka robot. The results demonstrate that OneDP not only achieves state-of-the-
art success rates but also delivers an order-of-magnitude improvement in inference
speed, boosting action prediction frequency from 1.5 Hz to 62 Hz, establishing
its potential for dynamic and computationally constrained robotic applications. A
video demo is provided here, and the code will be publicly available soon.

1 INTRODUCTION

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020) have emerged as a leading approach to
generative AI, achieving remarkable success in diverse applications such as text-to-image generation
(Saharia et al., 2022; Ramesh et al., 2022; Rombach et al., 2022), video generation (Ho et al., 2022;
OpenAI, 2024), and online/offline reinforcement learning (RL) (Wang et al., 2022; Chen et al., 2023b;
Hansen-Estruch et al., 2023; Psenka et al., 2023). Recently, Chi et al. (2023); Team et al. (2024);
Reuss et al. (2023); Ze et al. (2024); Ke et al. (2024); Prasad et al. (2024) demonstrated impressive
results of diffusion models in imitation learning for robot control. In particular, Chi et al. (2023)
introduces the diffusion policy and achieves a state-of-the-art imitation learning performance on a
variety of robotics simulation and real-world tasks.

However, because of the necessity of traversing the reverse diffusion chain, the slow generation
process of diffusion models presents significant limitations for their application in robotic tasks.
This process involves multiple iterations to pass through the same denoising network, potentially
thousands of times (Song et al., 2020a; Wang et al., 2023). Such a long inference time restricts
the practicality of using the diffusion policy (Chi et al., 2023), which by default runs at 1.49 Hz,
in scenarios where quick response and low computational demands are essential. While classical
tasks like block stacking or part assembly may accommodate slower inference rates, more dynamic
activities involving human interference or changing environments require quicker control responses
(Prasad et al., 2024). In this paper, we aim to significantly reduce inference time through diffusion
distillation and achieve responsive robot control.

Considerable research has focused on streamlining the reverse diffusion process for image genera-
tion, aiming to complete the task in fewer steps. A prominent approach interprets diffusion models
using stochastic differential equations (SDE) or ordinary differential equations (ODE) and employs
advanced numerical solvers for SDE/ODE to speed up the process (Song et al., 2020a; Liu et al.,
2022; Karras et al., 2022; Lu et al., 2022). Another avenue explores distilling diffusion models into
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Figure 1: Comparison of Diffusion Policy and One-Step Diffusion Policy (OneDP). We demon-
strate the rapid response of OneDP to changes in dynamic environments through real-world ex-
periments. The first row illustrates how Diffusion Policy (Chi et al., 2023) struggles to adapt to
environment changes (here, object perturbation) and fails to complete the task due to its slow inference
speed. In contrast, the second row highlights OneDP’s quick and effective response. The third row
offers a quantitative comparison: in the first panel, OneDP executes action prediction much faster
than Diffusion Policy. This enhanced responsiveness results in a higher average success rate across
multiple tasks, particularly in real-world scenarios, as depicted in the second panel. The third panel
reveals that OneDP also completes tasks more swiftly. The final panel indicates that distillation of
OneDP requires only a small fraction of the pre-training cost.

generators that require only one or a few steps through Kullback-Leibler (KL) optimization or adver-
sarial training (Salimans & Ho, 2022; Song et al., 2023; Luo et al., 2024; Yin et al., 2024). However,
accelerating diffusion policies for robotic control has been largely underexplored. Consistency Policy
(Prasad et al., 2024) (CP) employs the consistency trajectory model (CTM) (Kim et al., 2023a) to
adapt the pre-trained diffusion policy into a few-step CTM action generator. Despite this, several
iterations for sampling are still required to maintain good empirical performance.

In this paper, we introduce the One-Step Diffusion Policy (OneDP), which distills knowledge from
pre-trained diffusion policies into a one-step diffusion-based action generator, thus maximizing
inference efficiency through a single neural network feedforward operation. We demonstrate superior
results over baselines in Figure 1. Inspired by the success of SDS (Poole et al., 2022) and VSD (Wang
et al., 2024) in text-to-3D generation, we propose a policy-matching distillation method for robotic
control. The training of OneDP consists of three key components: a one-step action generator, a
generator score network, and a pre-trained diffusion-policy score network. To align the generator
distribution with the pre-trained policy distribution, we minimize the KL divergence over diffused
actions produced by the generator, with the gradient of the KL expressed as a score difference loss. By
initializing the action generator and the generator score network with the identical pre-trained model,
our method not only preserves or enhances the performance of the original model, but also requires
only 2%-10% additional pre-training cost for the distillation to converge. We compare our method
with CP and demonstrate that it outperforms CP with a higher success rate across tasks, leveraging a
single-step action generator and achieving 20× faster convergence. A detailed comparison with this
approach is provided in Sections 3 and 4.

We evaluate our method in both simulated and real-world environments. In simulated experiments,
we test OneDP on the six most challenging tasks of the Robomimic benchmark (Mandlekar et al.,
2021). For real-world experiments, we design four tasks with increasing difficulty and deploy OneDP
on a Franka robot arm. In both settings, OneDP demonstrated state-of-the-art success rates with
single-step generation, performing 42× faster in inference.
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2 ONE-STEP DIFFUSION POLICY

2.1 PRELIMINARIES

Diffusion models are powerful generative models applied across various domains (Ho et al., 2020;
Sohl-Dickstein et al., 2015; Song et al., 2020b). They function by defining a forward diffusion process
that gradually corrupts the data distribution into a known noise distribution. Given a data distribution
p(x), the forward process adds Gaussian noise to samples, x0 ∼ p(x), with each step defined as
xk = αkx

0 + σkϵk, where ϵk ∼ N (0, I). The parameters αk and σk are manually designed and
vary according to different noise scheduling strategies.

A probabilistic model pθ(xk−1|xk) is then trained to reverse this diffusion process, enabling data
generation from pure noise. DDPM (Ho et al., 2020) uses discrete-time scheduling with a noise-
prediction model ϵθ to parameterize pθ, while EDM (Karras et al., 2022) employs continuous-time
diffusion with x0-prediction. We use epsilon prediction ϵθ in our derivation. The diffusion model is
trained using the denoising score matching loss (Ho et al., 2020; Song et al., 2020b).

Once trained, we can estimate the unknown score s(xk) at a diffused sample xk as:

s(xk) = −ϵ
∗(xk, k)

σk
≈ −ϵθ(x

k, k)

σk
, (1)

where ϵ∗(xk, k) is the true noise added at time k and we denote sθ(xk) = − ϵθ(x
k,k)
σk

. With a score
estimate, clean data x0 can be sampled by reversing the diffusion chain (Song et al., 2020b). This
requires multiple iterations through the estimated score network, making it inherently slow.

Wang et al. (2022); Chi et al. (2023) extend diffusion models as expressive and powerful policies for
offline RL and robotics. In robotics, a set of past observation images, O, is used as input to the policy.
An action chunk, A, which consists of a sequence of consecutive actions, forms the output of the
policy. Diffusion policy is represented as a conditional diffusion-based action prediction model,

πθ(A
0|O) :=

∫
· · ·

∫
N (AK ;0, I)

k=1∏
k=K

pθ(A
k−1|Ak,O)dAK · · · dA1, (2)

The explicit form of πθ(A0|O) is often impractical due to the complexity of integrating actions from
AK to A1. However, we can obtain action chunk samples from it by iterative denoising. More details
are provided in Appendix D

2.2 ONE-STEP DIFFUSION POLICY

Action sampling through the vanilla diffusion policies is notoriously slow due to the need of tens to
hundreds of iterative inference steps. The latency issue is critical for computationally sensitive robotic
tasks or tasks that require high control frequency. Although employing advanced ODE solvers (Song
et al., 2020a; Karras et al., 2022) could help speed up the sampling procedure, empirically at least ten
iterative steps are required to ensure reasonable performance. Here, we introduce a training-based
diffusion policy distillation method, which distills the knowledge of a pre-trained diffusion policy
into a single-step action generator, enabling fast action sampling.

We propose a one-step implicit action generator Gθ, from which actions can be easily obtained as
follows,

z ∼ N (0, I),Aθ = Gθ(z,O). (3)
We define the action distribution generated by Gθ as pGθ . Assuming the existence of a pre-trained
diffusion policy πϕ(A|O) defined by Equation (2) and parameterized by ϵϕ, its corresponding action
distribution is denoted as pπϕ . Drawing inspiration from the success of SDS (Poole et al., 2022)
and VSD (Wang et al., 2024) in text-to-3D applications, we propose using the following reverse KL
divergence to align the distributions pGθ and pπϕ ,

DKL(pGθ ||pπϕ) = Ez∼N (0,I),Aθ=Gθ(z,O)

[
log pGθ (Aθ|O)− log pπϕ(Aθ|O)

]
.

It is generally intractable to estimate this loss by directly computing the probability densities, since
pGθ is an implicit distribution and pπϕ involves integrals that are impractical (Equation (2)). However,
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Figure 2: Diffusion Distillation Pipeline. a) Our one-step action generator processes image-based
visual observations alongside a random noise input to deliver single-step action predictions. b) We
implement KL-based distillation across the entire forward diffusion chain. Direct computation of
the KL divergence is often impractical; however, we can effectively utilize the gradient of the KL,
formulated into a score-difference loss. The pre-trained score network πϕ remains fixed while the
action generator Gθ and the generator score network πψ are trained.

we only need the gradient with respect to θ to train our generator by gradient descent:

∇θDKL(pGθ ||pπϕ) = E z∼N (0,I),
Aθ=Gθ(z,O)

[
(∇Aθ

log pGθ (Aθ|O)−∇Aθ
log pπϕ(Aθ|O))∇θAθ

]
. (4)

Here spGθ (Aθ) = ∇Aθ
log pGθ (Aθ|O) and spπϕ (Aθ) = ∇Aθ

log pπϕ(Aθ|O) are the scores of the
pGθ and pπϕ respectively. Computing this gradient still presents two significant challenges: First, the
scores tend to diverge for samples from pGθ that have a low probability in pπϕ , especially when pπϕ
may approach zero. Second, the primary tool for estimating these scores, the diffusion models, only
provides scores for the diffused distribution.

Inspired by Diffusion-GAN (Wang et al., 2023), which proposed to optimize statistical divergence,
such as the Jensen–Shannon divergence (JSD), throughout diffused data samples, we propose to
similarly optimize the KL divergence outlined in Equation (4) across diffused action samples as
described below:

∇θEk∼U [DKL(pGθ,k||pπϕ,k)] = E z∼N (0,I),k∼U
Aθ=Gθ(z,O)

Ak
θ∼q(A

k
θ |Aθ,k)

[
w(k)(spGθ (A

k
θ)− spπϕ (A

k
θ))∇θAk

θ

]
. (5)

where w(k) is a reweighting function, q is the forward diffusion process and spπϕ (A
k
θ) could be

obtained through Equation (1) with ϵϕ. In order to estimate the score of the generator distribution,
spGθ , we introduce an auxiliary diffusion network πψ(A|O), parameterized by ϵψ. We follow the
typical way of training diffusion policies, which optimizes ψ by treating pGθ as the target action
distribution (Wang et al., 2024),

min
ψ

Exk∼q(xk|x0),x0=stop-grad(Gθ(z)),z∼N (0,I),k∼U [λ(k) · ||ϵψ(xk, k)− ϵk||2]. (6)

Then we can obtain spπψ (A
k
θ) by applying ϵψ to Equation (1). We approximate spGθ (A

k
θ) in

Equation (5) with spπψ (A
k
θ). We iteratively update the generator parameters θ by Equation (5), and

the generator score network parameter ψ by Equation (6). The parameter of the prertrained diffusion
policy ϕ is fixed throughout the training. During inference, we directly perform one-step sampling
with Equation (3). We name our algorithm OneDP-S, where S denotes the stochastic policy.

When we apply a deterministic action generator by omitting random noise z, such that Aθ = Gθ(O),
the distribution pGθ becomes a Dirac delta function centered at Gθ(O), that is, pGθ = δGθ(O)(A).

4
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Consequently, spGθ (A
k
θ) can be explicitly solved as follows:

spGθ (A
k
θ) = ∇Ak

θ
log pθ(A

k
θ) = ∇Ak

θ
log pθ(A

k
θ |Aθ) = −

ϵk
σk

;Ak
θ = αkAθ+σkϵk, ϵk ∼ N (0, I).

(7)
By incorporating Equation (7) into Equation (5), we can have a simplified loss function without the
need of introducing the generator score network:

∇θEk∼U [DKL(pGθ,k||pπϕ,k)] = E z∼N (0,I),k∼U
Aθ=Gθ(z,O)

Ak
θ∼q(A

k
θ |Aθ,k)

[
w(k)

σk
(ϵϕ(A

k
θ , k))− ϵk)∇θAk

θ

]
. (8)

We name this deterministic diffusion policy distillation OneDP-D. We illutrate our training pipeline
in Figure 2, and summarize our algorithm training in Algorithm 1.

Policy Discussion. A stochastic policy, which encompasses deterministic policies, is more versatile
and better suited to scenarios requiring exploration, potentially leading to better convergence at a
global optimum (Haarnoja et al., 2018). In our case, OneDP-D simplifies the training process, though
it may exhibit slightly weaker empirical performance. We offer a comprehensive comparison between
OneDP-S and OneDP-D in Section 3.

Distillation Discussion. We discuss the ben-
efits of optimizing the expectational reverse
KL divergence. First, reverse KL diver-
gence typically induces mode-seeking behav-
ior, which has been shown to improve empir-
ical performance in offline RL (Chen et al.,
2023b). Therefore, we anticipate that reverse
KL-based distillation offers similar advantages
for robotic tasks. Second, as demonstrated by
Wang et al. (2023), optimizing JSD, a combina-
tion of KLs, between diffused action samples
provides stronger performance when dealing
with distributions with misaligned supports.
This aligns with our approach of performing
KL optimization over the diffused distribution.

Algorithm 1 OneDP Training

1: Inputs: action generator Gθ, generator score
network πψ , pre-trained diffusion policy πϕ.

2: Initializaiton Gθ ← πϕ, πψ ← πϕ.
3: while not converged do
4: Sample Aθ = Gθ(z,O), z ∼ N (0, I).
5: Diffuse Ak

θ = αkAθ + σkϵk, ϵk ∼
N (0, I).

6: if OneDP-S then
7: Update ψ by Equation (6)
8: Update θ by Equation (5)
9: else if OneDP-D then

10: Update θ by Equation (8)
11: end if
12: end while

2.3 IMPLEMENTATION DETAILS

Diffusion Policy. Following Chi et al. (2023), we construct a diffusion policy using a 1D temporal
convolutional neural network (CNN) (Janner et al., 2022) based U-Net and a standard ResNet18
(without pre-training) (He et al., 2016) as the vision encoder. We implement the diffusion policy
with two noise scheduling methods: DDPM (Ho et al., 2020) and EDM (Karras et al., 2022). We
use ϵ noise prediction for discrete-time (100 steps) diffusion and x0 prediction for continuous-time
diffusion, respectively. The EDM scheduling is essential for Consistency Policy (Prasad et al., 2024)
due to the use of CTM (Kim et al., 2023a). For DDPM, we set λ(k) = 1 and use the original SDE and
DDIM (Song et al., 2020a) sampling. For EDM, we use the default λ(k) = σ2

k+σ
2
d

(σkσd)2
with σd = 0.5.

We use the second-order EDM sampler, which requires two neural network forwards per discretized
step in the ODE.

Distillation. We warm-start both the stochastic and deterministic action generator Gθ, and the
generator score network, ϵψ, by duplicating the neural-network structure and weights from the
pre-trained diffusion policy, aligning with strategies from Luo et al. (2024); Yin et al. (2024); Xu
et al. (2024). The inputs of Gθ include pure noise, a fixed time embedding (an initial timestep for
DDPM or initial sigma value for EDM), and observations O. The outputs of Gθ are formulated as
direct action predictions. Following DreamFusion (Poole et al., 2022), we set w(k) = σ2

k. In the
discrete-time domain, distillation occurs over [2, 95] diffusion timesteps to avoid edge cases. In
continuous-time, we employ the same log-normal noise scheduling as EDM (Karras et al., 2022)
used during distillation. The generators operate at a learning rate of 1× 10−6, while the generator
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PushT Square ToolHang Transport

Figure 3: Simulation tasks. We evaluate our method against baselines on the single-robot tasks:
PushT, Square, and ToolHang, as well as a dual-robot task Transport. Task difficulty increases from
left to right.
Table 1: Robomimic Benchmark Performance (Visual Policy) in DDPM. We compare our
proposed OneDP-D and OneDP-S, with DP under the default DDPM scheduling. We report the
mean and standard deviation of success rates across 5 different training runs, each evaluated with 100
distinct environment initializations. Details of the evaluation procedure can be found in Section 3.1.
Our results demonstrate that OneDP not only matches but can even outperform the pre-trained DP,
achieving this with just one-step generation, resulting in an order of magnitude speed-up.

Method Epochs NFE PushT Square-mh Square-ph ToolHang-ph Transport-mh Transport-ph Avg

DP (DDPM) 1000 100 0.863 ± 0.040 0.846 ± 0.023 0.926 ± 0.023 0.822 ± 0.016 0.620 ± 0.049 0.896 ± 0.032 0.829

DP (DDIM)
1000 10 0.823± 0.023 0.850± 0.013 0.918± 0.009 0.828± 0.016 0.688± 0.020 0.908± 0.011 0.836

1000 1 0.000± 0.000 0.000± 0.000 0.000± 0.000 0.000± 0.000 0.000± 0.000 0.000± 0.000 0.000

OneDP-D 20 1 0.802 ± 0.057 0.846 ± 0.028 0.926 ± 0.011 0.808 ± 0.046 0.676 ± 0.029 0.896 ± 0.013 0.826

OneDP-S 20 1 0.816 ± 0.058 0.864 ± 0.042 0.926 ± 0.018 0.850 ± 0.033 0.690 ± 0.024 0.914 ± 0.021 0.843

Table 2: Robomimic Benchmark Performance (Visual Policy) in EDM. We compare our proposed
OneDP with CP under the EDM scheduling. EDM scheduling is required in CP to satisfy boundary
conditions. We follow our evaluation metric and report similar values as in Table 1. We also ablate
Diffusion Policy with 1, 10 and 18 ODE steps, which utilizes 1, 19 and 35 NFE in EDM sampling.

Method Epochs NFE PushT Square-mh Square-ph ToolHang-ph Transport-mh Transport-ph Avg

DP (EDM)

1000 35 0.861± 0.030 0.810± 0.026 0.898± 0.033 0.828± 0.019 0.684± 0.019 0.890± 0.012 0.829

1000 19 0.851± 0.012 0.828± 0.015 0.880± 0.014 0.794± 0.012 0.692± 0.009 0.860± 0.013 0.818

1000 1 0.000± 0.000 0.000± 0.000 0.000± 0.000 0.000± 0.000 0.000± 0.000 0.000± 0.000 0.000

CP 20 1 0.595± 0.141 0.120± 0.165 0.238± 0.219 0.238± 0.163 0.140± 0.148 0.174± 0.257 0.251

CP 450 1 0.828± 0.055 0.646± 0.047 0.776± 0.055 0.650± 0.046 0.378± 0.091 0.754± 0.120 0.672

CP 450 3 0.839± 0.037 0.710± 0.018 0.874± 0.022 0.626± 0.041 0.374± 0.051 0.848± 0.028 0.712

OneDP-D 20 1 0.829± 0.052 0.776± 0.023 0.902± 0.040 0.762± 0.056 0.705± 0.038 0.898± 0.019 0.812

OneDP-S 20 1 0.841± 0.042 0.774± 0.033 0.910± 0.041 0.824± 0.039 0.722± 0.025 0.910± 0.027 0.830

score network is accelerated to a learning rate of 2× 10−5. Vision encoders are also actively trained
during the distillation process.

3 EXPERIMENTS

We evaluate OneDP on a wide variety of tasks in both simulated and real environments. In the
following sections, we first report the evaluation results in simulation across six tasks that include
different complexity levels. Then we demonstrate the results in the real environment by deploying
OneDP in the real world with a Franka robot arm for object pick-and-place tasks and a coffee-machine
manipulation task. We compare our method with the pre-trained backbone Diffusion Policy (Chi
et al., 2023) (DP) and related distillation baseline Consistency Policy (Prasad et al., 2024) (CP). We
also report the ablation study results in Appendix C to present more detailed analyses on our method
and discuss the effect of different design choices.
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3.1 SIMULATION EXPERIMENTS

Datasets. Robomimic. Proposed in (Mandlekar et al., 2021), Robomimic is a large-scale benchmark
for robotic manipulation tasks. The original benchmark consists of five tasks: Lift, Can, Square,
Transport, and Tool Hang. We find that the the performance of state-of-the-art methods was already
saturated on two easy tasks Lift and Can, and therefore only conduct the evaluation on the harder
tasks Square, Transport and Tool Hang. For each of these tasks, the benchmark provides two variants
of human demonstrations: proficient human (PH) demonstrations and mixed proficient/non-proficient
human (MH) demonstrations. PushT. Adapted from IBC (Florence et al., 2022), Chi et al. (2023)
introduced the PushT task, which involves pushing a T-shaped block into a fixed target using a circular
end-effector. A dataset of 200 expert demonstrations is provided with RGB image observations.

Experiment Setup. We pretrain the DP model for 1000 epochs on each benchmark under both DDPM
(Ho et al., 2020) and EDM (Karras et al., 2022) noise scheduling. Note EDM noise scheduling is a
requirement for CP (Prasad et al., 2024) to satisfy diffusion boundary conditions. Subsequently, we
train OneDP for 20 epochs and the baseline CP for 450 epochs until convergence. During evaluation,
we observe significant variance in evaluating success rates with different environment initializations.
We present average success rates across 5 training seeds and 100 different initial conditions (500 in
total). We report the peak success rate for each method during training, corresponding to the peak
points of the curves in Figure 4. The metric for most tasks is the success rate, except for PushT, which
is evaluated using the coverage of the target area.

Table 1 presents the results of OneDP compared with DP under the default DDPM setting. For
DP, we report the average success rate using DDPM sampling with 100 timesteps, as well as the
accelerated DDIM sampling with 1 and 10 timesteps. Notably, DP fails to generate reasonable actions
with single-step generation, yielding a 0% success rate for all tasks. DP with 10 steps under DDIM
slightly outperforms DP under DDPM. However, OneDP demonstrates the highest average success
rate with single-step generation across the six tasks, with the stochastic variant OneDP-S surpassing
the deterministic OneDP-D. This superior performance of OneDP-S aligns with our discussion in
Section 2.2, suggesting that stochastic policies generally perform better in complex environments.
Interestingly, OneDP-S even slightly outperforms the pre-trained DP, which is not unprecedented,
as shown in cases of image distillation (Zhou et al., 2024) and offline RL (Chen et al., 2023b). We
attribute this to the fact that iterative sampling may introduce subtle cumulative errors during the
denoising process, whereas single-step sampling avoids this issue by jumping directly from the end
to the start of the reverse diffusion chain.

In Table 2, we report a similar comparison under the EDM setting, including CP. We report DP under
the same 1 and 10 DDIM steps, and 100 DDPM steps, which correspond to 1, 19, and 35 number
of function evaluations (NFE) in EDM due to second-order ODE sampling. OneDP-S outperforms
the baseline CP with single-step and its default best setting of 3-step chain generation. Under EDM,
OneDP-S matches the average success rate of the pre-trained DP, while OneDP-D performs slightly
worse. We also observe that CP converges much more slowly compared to OneDP, as shown in
Figure 4. This slower convergence is likely because CP, based on CTM, does not involve the auxiliary
discriminator training that is used to enhance distillation performance in CTM.

3.2 REAL WORLD EXPERIMENTS

We design four tasks to evaluate the real-world performance of OneDP, including three common
tasks where the robot picks and places objects at designated locations, referred to as pnp, and one
challenging task where the robot learns to manipulate a coffee machine, called coffee. Figure 5
shows the experimental setup, with the first row illustrating the pnp tasks and the second row
depicting the coffee task. We introduce the data collection process and the evaluation setup in the
following section and provide more details in Appendix A.

pnp Tasks. This task requires the robot to pick an object from the table and put it in a box.
We design three variants of this task: pnp-milk, pnp-anything and pnp-milk-move. In
pnp-milk, the object is always the same milk box. In pnp-anything, we expand the target to
11 different objects as shown in Figure 8. For pnp-milk-move, we involve human interference
to create a dynamic environment. Whenever the robot gripper attempts to grasp the milk box, we
move it away, following the trajectory as shown in Figure 9. We collect 100 demonstrations each
for the pnp-milk and pnp-anything tasks. Separate models are trained for both tasks, with the
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Figure 4: Convergence Comparison. We show our method OneDP converges 20× faster than the
baseline method Consistency Policy (CP) under EDM setting.

pnp-anything model utilizing all 200 demonstrations. The pnp-milk-move task is evaluated
using the checkpoint from the pnp-anything model.

Coffee Task. This task requires the robot to operate a coffee machine. It involves the following
steps: (1) picking up the coffee pod, (2) placing the coffee pod in the pod holder on the coffee
machine, and (3) closing the lid of the coffee machine. This task is more challenging since it involves
more steps and requires the robot to insert the pod in the holder accurately. We collect 100 human
demonstrations for this task. We train one specific model for this task.

Evaluation. We evaluate the success rate and task completion time from 20 predetermined initial
positions for the pnp-milk, pnp-anything, and coffee tasks, as well as 10 motion trajectories
for the pnp-milk-move task. The left side of Figure 7 shows the setup of the robot, destination
box, and coffee machine, with 20 fixed initialization points. Figure 9 shows the 10 trajectories for
evaluating pnp-milk-move. Details of the evaluation are provided in Appendix A. For DP, we
follow Chi et al. (2023) to use DDIM (10 steps) to accelerate the real-world experiment.

We compare OneDP against the DP backbone in real-world experiments, focusing on three key aspects:
success rate, responsiveness, and time efficiency. Table 3 demonstrates that OneDP consistently
outperforms DP across all tasks, with the most significant improvement seen in pnp-milk-move.
This task demands rapid adaptation to dynamic environmental changes, particularly due to sudden
human interference. The wall-clock time for action generation is reported in Table 5. The slow
action generation of DP hinders its ability to track the moving milk box effectively, often losing
control when the box moves out of its visual range, as it is still predicting actions based on outdated
information. In contrast, OneDP generates actions quickly, allowing it to instantly follow the box’s
movement, achieving a 100% success rate in this dynamic task. OneDP-S slightly outperforms
OneDP-D, aligning with the observations from the simulation experiments.

Additionally, we measure the task completion time for successful evaluation rollouts across all
algorithms. As shown in Table 4, OneDP completes tasks faster than DP. Both OneDP-S and OneDP-
D exhibit similarly-rapid task completion times. The quick action prediction of OneDP reduces
hesitation during robot arm movements, particularly when the arm camera’s viewpoint changes
abruptly. This leads to significant improvements in task completion speed. In Figure 7, we present a
heatmap for illustrating the task completion times; lighter colors indicate faster completion times,
while dark red demonstrates failure cases. Overall, OneDP completes tasks more efficiently across
most locations. Although all three algorithms encounter failures in some corner cases for the coffee
task, OneDP-S shows fewer failures.

4 RELATED WORK

Diffusion Models. Diffusion models have emerged as a powerful framework for modeling complex
data distributions and have achieved groundbreaking performance across various tasks involving
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Figure 5: Real-World Experiment Illustration. In the first row, we display the setup for the pick-and-
place experiments, featuring three tasks: pnp-milk, pnp-anything, and pnp-milk-move.
In total, pnp-anything handles around 10 random objects as shown in Figure 8. The second row
illustrates the procedure for the more challenging coffee task, where the Franka arm is tasked with
locating the coffee cup, precisely positioning it in the machine’s cup holder, inserting it, and finally
closing the machine’s lid.

Table 3: Success Rate of Real-world Experiments. We evaluate the performance of our proposed
OneDP-D and OneDP-S against the baseline Diffusion Policy in real-world robotic manipulation
tasks. The baseline Diffusion Policy was trained for 1000 epochs to ensure convergence, whereas our
distilled models were trained for 100 epochs. We do not select checkpoints; only the final checkpoint
is used for evaluation. Performance is assessed over 20 predetermined rounds, and we report the
average success rate.

Method Epochs NFE pnp-milk pnp-anything pnp-milk-move coffee Avg

DP(DDIM) 1000 10 1.00 0.95 0.80 0.80 0.83

OneDP-D 100 1 1.00 1.00 1.00 0.80 0.95

OneDP-S 100 1 1.00 1.00 1.00 0.90 0.98

Table 4: Time Efficiency of Real-world Experiments. We present the completion times for each
algorithm as recorded in Table 3. For a fair comparison, we report the average completion time (in
seconds) for each algorithm across evaluation rounds where all algorithms succeeded. Specifically,
the tasks pnp-milk, pnp-anything, pnp-milk-move, and coffee were averaged over 18,
15, 8, and 13 respective rounds. These times indicate how quickly each algorithm responds and
completes tasks in a real-world environment.

Method Epochs NFE pnp-milk pnp-anything pnp-milk-move coffee Avg

DP(DDIM) 1000 10 29.74 26.03 34.75 54.92 36.36

OneDP-D 100 1 23.21 22.93 28.73 33.13 27.00

OneDP-S 100 1 22.69 22.62 28.15 29.78 25.81

generative modeling (Ho et al., 2020; Karras et al., 2022). They operate by transforming data into
Gaussian noise through a diffusion process and subsequently learning to reverse this process via
iterative denoising. Diffusion models have been successfully applied to a wide range of domains,
including image, video, and audio generation Saharia et al. (2022); Ramesh et al. (2022); Balaji et al.
(2022); Chen et al. (2023a); Ho et al. (2022); Popov et al. (2021); Kong et al. (2020), reinforcement
learning (Janner et al., 2022; Wang et al., 2022; Psenka et al., 2023) and robotics (Ajay et al., 2022;
Urain et al., 2023; Chi et al., 2023).
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Table 5: Real-world inference speeds. We report the wall clock times for each policy in real-world
scenarios. The action generation process consists of two parts: observation encoding (OE) and action
prediction by each method. All measurements were taken using a local NVIDIA V100 GPU, with the
same neural network size for each method. The policy frequencies, shown in Figure 1, are based on
the values from this table.

OE DDPM (100 steps) DDIM (10 steps) OneDP (1 step)

Time (ms) 9 660 66 7

NFE 1 100 10 1

Diffusion Policies. Diffusion models have shown promising results as policy representations for
control tasks. Janner et al. (2022) introduced a trajectory-level diffusion model that predicts all
timesteps of a plan simultaneously by denoising two-dimensional arrays of state and action pairs.
Wang et al. (2022) proposed Diffusion Q-learning, which leverages a conditional diffusion model to
represent the policy in offline reinforcement learning. An action-space diffusion model is trained to
generate actions conditioned on the states. Similarly, Chi et al. (2023) used a conditional diffusion
model in the robot action space to represent the visuomotor policy and demonstrated a significant
performance boost in imitation learning for various robotics tasks. Ze et al. (2024) further incorporated
the power of a compact 3D visual representations to improve diffusion policies in robotics.

Diffusion Distillations. Although diffusion models are powerful, their iterative denoising process
makes them inherently slow in generation, which poses challenges for time-sensitive applications
like robotics and real-time control. Motivated by the need to accelerate diffusion models, diffusion
distillation has become an active research topic in image generation. Diffusion distillation aims to
train a student model that can generate samples with fewer denoising steps by distilling knowledge
from a pre-trained teacher model (Salimans & Ho, 2022; Luhman & Luhman, 2021; Zheng et al.,
2023; Song et al., 2023; Kim et al., 2023b). Salimans & Ho (2022) proposed a method to distill a
teacher model into a new model that takes half the number of sampling steps, which can be further
reduced by progressively applying this procedure. Song et al. (2023) introduced consistency models
that enable fewer step sampling by enforcing self-consistency of the ODE trajectories. CTM (Kim
et al., 2023b) improved consistency models and provided the flexibility to trade-off quality and speed.
(Luo et al., 2024; Yin et al., 2024) leverage the success of stochastic distillation sampling (Poole
et al., 2022) in text-to-3D and proposes KL-based score distillation for image generation. Beyond
KL, Zhou et al. (2024) proposes the SiD distillation technique derived from Fisher Divergence.
However, leveraging diffusion distillation to accelerate diffusion policies for robotics remains an
underexplored and pressing challenge, particularly for real-time control applications. Consistency
Policy (Prasad et al., 2024) explored applying CTM to reduce the number of denoising steps and
accelerate inference of the diffusion policies. It simplifies the original CTM training by ignoring
the adversarial auxiliary loss. While this approach achieves a considerable speed-up, it leads to
performance degradation compared to pre-trained models, and its complex training process and slow
convergence present challenges for robotics applications. In contrast, OneDP employs expectational
reverse KL optimization to distill a powerful one-step action generator, achieving comparable or
higher success rates than the original diffusion policy, while converging 20× faster.

5 CONCLUSION

In this paper, we introduced the One-Step Diffusion Policy (OneDP) through advanced diffusion
distillation techniques. We enhanced the slow, iterative action prediction process of Diffusion Policy
by reducing it to a single-step process, dramatically decreasing action inference time and enabling
the robot to respond quickly to environmental changes. Through extensive simulation and real-world
experiments, we demonstrate that OneDP not only achieves a slightly higher success rate, but also
responds quickly and effectively to environmental interference. The rapid action prediction further
allows the robot to complete tasks more efficiently.

However, this work has some limitations. In the experiments, we did not test OneDP on long-horizon
real-world tasks. Furthermore, in the real-world experiments, we limited the robot’s operation
frequency to 20 Hz for controlling stability, which underutilized OneDP ’s full potential. Additionally,
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the KL-based distillation method may not be the optimal choice for distribution matching, and
introducing a discriminator term could potentially improve distillation performance.
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A REAL-WORLD EXPERIMENT SETUP

Figure 6: Real-world Experiment Setup

Robot Setup. The physical robot setup consists of a Franka Panda robot arm, a front-view Intel
RealSense D415 RGB-D camera, and a wrist-mounted Intel RealSense D435 RGB-D camera. The
RGB image resolution was set to 120x160. The depth image is not used in our experiments.

Teleoperation. Demonstration data for the real robot tasks was collected using a phone-based
teleoperation system (Mandlekar et al., 2018; 2019).

Data Collection. We collect 100 demonstrations for each task separately: pnp-milk,
pnp-anything, and coffee. In pnp-milk, the target object is always the milk box, and
the task involves picking up the milk box from various random locations and placing it into a des-
ignated target box at a fixed location. For pnp-anything, we extend the set of target objects to
11 different items, as shown in Figure 8, with the target box location randomized vertically. In the
coffee task, the coffee cup is randomly placed, and the robot is required to pick it up, insert it into
the coffee machine, and close the lid.

The area and location for each task are illustrated in the left column of Figure 7. During data
collection, target objects are randomly positioned within the blue area; the grid is used for evaluation,
as described in the next section. For the pnp tasks, the blue area is a rectangle measuring 23 cm
in height and 20 cm in width, while the target box is a square with a side length of 13 cm. In the
coffee task, the blue area is slightly smaller, measuring 18 cm in height and 20 cm in width.

Table 6: Real-world experiment demonstrations. In total we collect 300 demonstrations, with 100
demonstrations for each task.

pnp-milk pnp-anything coffee

Demos 100 100 100

Evaluation. To ensure a fair comparison between OneDP and all baseline methods, we standardize
the evaluation process. For the pnp-milk, pnp-anything, and coffee tasks, we evaluate each
method according to the grid order shown in Figure 7. The target object is placed at the center
of the grid to ensure consistent initial conditions across evaluations. For task pnp-anything,
the picked object also follows the order shown in Figure 8. For the dynamic environment task
pnp-milk-move, we introduce human interference during the evaluation. Whenever the robot
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Robot

Box

Robot

Box

Robot

Coffee

Figure 7: Real-World Comparison Illustration. We present the time taken by each algorithm to
complete tasks from a specific starting point in colors. A color map on the right side ranges from
white to red indicating the time in seconds. Dark red signifies that the algorithm failed at that location.
The three rows represent tasks pnp-milk, pnp-anything, coffee. Details of the evaluation
of pnp-anything can be found in Figure 8.

gripper attempts to grasp the target milk box, we manually move it away along the trajectory depicted
in Figure 9. Although we aim to maintain consistent conditions during each evaluation, the exact
nature of human interference cannot be guaranteed. Some trajectories involve a single instance of
interference, while others may involve two consecutive human movements.

The original DDPM sampling in Diffusion Policy is too slow for real-world experiments. To speed
up the evaluation, we follow (Chi et al., 2023) and use DDIM with 10 steps. For OneDP, we use
single-step generation. In real-world experiments, we do not select intermediate checkpoints but use
the final checkpoint after training for each method.

We record both the success rates and completion times, reporting their mean values. For
pnp-milk-move, evaluations are conducted over 10 trajectories, while for the other tasks, re-
sults are obtained from 20 grid points. In Figure 7, we present a heatmap to visualize task completion
times, where lighter colors represent faster completions and dark red indicates failure cases. Overall,
OneDP completes tasks more efficiently across most locations. While all three algorithms experience
failures in certain corner cases for the coffee task, OneDP-S demonstrates fewer failures.

B TRAINING DETAILS

We follow the CNN-based neural network architecture and observation encoder design from Chi
et al. (2023). For simulation experiments, we use a 256-million-parameter version for DDPM and
a 67-million-parameter version for EDM, as the smaller EDM network performs slightly better. In
real-world experiments, we also use the 67-million-parameter version. Additionally, we adopt the
action chunking idea from Chi et al. (2023) and Zhao et al. (2023), using 16 actions per chunk for
prediction, and utilize two observations for vision encoding.
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Figure 8: Evaluation setup for pnp-anything.

We first train DP for 1000 epochs in both simulation and real-world experiments with a default
learning rate of 1e-4 and weight decay of 1e-6. We then perform distillation using the pre-trained
checkpoints, distilling for 20 epochs in simulation and 100 epochs in real-world experiments.

For distillation, we warm-start both the stochastic and deterministic action generators, Gθ, and the
generator score network, ϵψ, by duplicating the network structure and weights from the pre-trained
diffusion-policy checkpoints. Since the generator network is initialized from a denoising network, a
timestep input is required, as this was part of the original input. We fix the timestep at 65 for discrete
diffusion and choose σ = 2.5 for continuous EDM diffusion. The generator learning rate is set to
1e-6. We find these hyperparameters to be stable without causing significant performance variation.
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Figure 9: Evaluation trajectories for pnp-milk-move. The box is always on the left-hand side of
the tested blue area.

We provide an ablation study that focuses primarily on the generator score network’s learning rate
and optimizer settings in Appendix C. We provide the hyperparameter details in Table 7.

Hyperparameters Values

generator learning rate lr=1e-6

generator score network learning rate lr=2e-5

generator optimizer Adam([0.0, 0.999])

generator score network optimizer Adam([0.0, 0.999])

action chunk size n=16

number of observations n=2

discrete diffusion init timestep tinit=65

discrete diffusion distillation t range [2, 95]

continuous diffusion init sigma σ = 2.5

Table 7: Hyperparameters

C ABLATION STUDY

As shown in the first panel of Figure 10, we explore a range of learning rates for the generator score
network in the grid [1e-6, 1e-5, 2e-5, 3e-5, 4e-5] and find 2e-5 to be optimal in most cases. A higher
learning rate for the score network compared to the generator ensures that the score network keeps
pace with the generator’s distribution updates during training. In the second panel, we search for the
best optimizer settings, finding that setting β1 to 0 for both the generator and the generator score
network optimizers is effective. This approach, commonly used in GANs, allows the two networks to
evolve together more quickly.

D DETAILED PRELIMINARIES

Diffusion models are robust generative models utilized across various domains (Ho et al., 2020;
Sohl-Dickstein et al., 2015; Song et al., 2020b). They operate by establishing a forward diffusion
process that incrementally transforms the data distribution into a known noise distribution, such as
standard Gaussian noise. A probabilistic model is then trained to methodically reverse this diffusion
process, enabling the generation of data samples from pure noise.
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Figure 10: Ablation studies on the learning rate of the generator score network and optimizer settings.

Suppose the data distribution is p(x). The forward diffusion process is conducted by gradually adding
Gaussian noise to samples x0 ∼ p(x) as follows,

xk = αkx
0 + σkϵk, ϵk ∼ N (0, I); q(xk|x0) := N (αkx

0, σ2
kI)

where αk and σk are parameters manually designed to vary according to different noise scheduling
strategies. DDPM (Ho et al., 2020) is a discrete-time diffusion model with k ∈ {1, . . . ,K}. It can
be easily extended to continuous-time diffusion from the score-based generative model perspective
(Song et al., 2020b; Karras et al., 2022) with k ∈ [0, 1]. With sufficient amount of noise added,
xK ≃ N (0, I). Ho et al. (2020) propose to reverse the diffusion process and iteratively reconstruct
the original sample x0 by training a neural network ϵθ(xk, k) to predict the noise ϵk added at each
forward diffusion step (epsilon prediction). With reparameterization ϵk = (xk − αkx0)/σk, the
diffusion model could also be formulated as a x0-prediction process xθ(xk, k) (Karras et al., 2022;
Xiao et al., 2021). We use epsilon prediction ϵθ in our derivation. The diffusion model is trained with
the denoising score matching loss (Ho et al., 2020),

min
θ

Exk∼q(xk|x0),x0∼p(x),k∼U [λ(k) · ||ϵθ(xk, k)− ϵk||2]

where U is a uniform distribution over the k space, and λ(k) is a noise-ratio re-weighting function.
With a trained diffusion model, we could sample x0 by reversing the diffusion chain, which involves
discretizing the ODE (Song et al., 2020b) as follows:

dxk =

[
f(k)xk − 1

2
g2(k)∇xk log q(x

k)

]
dk (9)

where f(k) = d logαk
dk and g2(k) = dσ2

k

dk − 2d logαkdk σ2
k. The unknown score ∇xk log q(x

k) could be
estimated as follows:

s(xk) = ∇xk log q(x
k) = −ϵ

∗(xk, k)

σk
≈ −ϵθ(x

k, k)

σk
,

where ϵ∗(xk, k) is the true noise added at time k, and we let sθ(xk) = − ϵθ(x
k,k)
σk

.

Wang et al. (2022); Chi et al. (2023) extend diffusion models as expressive and powerful policies
for offline RL and robotics. In robotics, a set of past observation images O is used as input to the
policy. An action chunk A, which consists of a sequence of consecutive actions, forms the output of
the policy. ResNet (He et al., 2016) based vision encoders are commonly utilized to encode multiple
camera observation images into observation features. Diffusion policy is represented as a conditional
diffusion-based action prediction model,

πθ(A
0
t |Ot) :=

∫
· · ·

∫
N (AK

t ;0, I)

k=1∏
k=K

pθ(A
k−1
t |Ak

t ,Ot)dA
K
t · · · dA1

t ,

where Ot contains the current and a few previous vision observation features at timestep t, and pθ
could be represented by ϵθ as shown in DDPM (Ho et al., 2020). The explicit form of πθ(A0

t |Ot)
is often impractical due to the complexity of integrating actions from AK

t to A1
t . However, we can

obtain an action chunk prediction A0
t by iteratively solving Equation (9) from K to 0.
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Figure 11: Dynamic Real-World Experiment: Pose Reset.

E DISCUSSION

Comparison with VSD. VSD is designed to distill image-level knowledge from powerful 2D
priors, specifically pretrained text-to-image diffusion models, to facilitate 3D content generation.
Its overarching objective—reverse KL optimization—is widely applied across multiple domains,
including VAEs. In this work, we also apply reverse KL optimization for diffusion policy distillation.
However, the implementation and derivation for different domains required major efforts. This
extensive process involved adjustments to noise scheduling (DDPM and EDM), proper initialization,
balancing the convergence of the generator and its score network, tuning parameters, designing
experiments in dynamic environments, and conducting both simulated and real-world robotics
experiments—an undertaking that should not be underestimated. Furthermore, OneDP considered
temporal control characteristics by predicting action chunks, each comprising a sequence of actions
(K=16). This approach addresses the temporal dependencies inherent in many robotics tasks, which
are not considered in VSD.

Training Cost Comparison of OneDP-D and OneDP-S. OneDP-S and OneDP-D differ in their
computational requirements. The training cost for OneDP-S is approximately twice that of OneDP-D,
due to the inclusion of the generator score network. When accounting for evaluation during training,
the total time for OneDP-S is about 1.5 times longer than that of OneDP-D. For example, on the
small dataset PushT, training and evaluation for OneDP-D take about 30 minutes, while OneDP-S
requires approximately 45 minutes. On the larger ToolHang dataset, OneDP-D takes roughly 6 hours,
compared to about 8 hours for OneDP-S. These details will be further elaborated in future revisions
to provide a comprehensive view of the trade-offs between stochastic and deterministic policies in
terms of both performance and computational efficiency.

F MORE DYNAMIC EXPERIMENTS

We conducted an additional dynamic real-world experiment to evaluate performance under human
intervention. During the milk box pick-and-place task, we randomly reset the milk box pose to
simulate changes in the environment. The process is illustrated in Figure 11. The results indicate
that DP achieves a success rate of 28.57% (6/21), while our OneDP significantly outperforms it with
a success rate of 76.19% (16/21), over 21 random initializations. DP fails in most cases due to its
slow response to environmental changes, whereas OneDP reacts quickly and achieves a much higher
success rate.
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