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Abstract
While Graph Neural Networks (GNNs) have
achieved remarkable success, their design largely
relies on empirical intuition rather than theoret-
ical understanding. In this paper, we present a
comprehensive analysis of GNN behavior through
three fundamental aspects: (1) we establish that
k-layer Message Passing Neural Networks effi-
ciently aggregate k-hop neighborhood informa-
tion through iterative computation, (2) analyze
how different loop structures influence neigh-
borhood computation, and (3) examine behav-
ior across structure-feature hybrid and structure-
only tasks. For deeper GNNs, we demonstrate
that gradient-related issues, rather than just over-
smoothing, can significantly impact performance
in sparse graphs. We also analyze how different
normalization schemes affect model performance
and how GNNs make predictions with uniform
node features, providing a theoretical framework
that bridges the gap between empirical success
and theoretical understanding.

1. Introduction
Graph Neural Networks (GNNs) are considered to be power-
ful in learning on graph-structured data, particularly through
their iterative neighbor aggregation mechanism.

Despite their widespread adoption as feature extractors for
graph data, fundamental questions about GNNs’ representa-
tional capabilities remain open (Dehmamy et al., 2019). The
design of new GNN architectures often relies on empirical
intuition and heuristics rather than theoretical foundations
(Xu et al., 2019).

While GNNs integrate both structural and feature informa-
tion for predictions, our understanding of how these com-
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ponents interact and influence the final predictions remains
limited. It is commonly assumed that a k-layer GNN effec-
tively synthesizes both structural and feature information by
aggregating data from progressively larger neighborhoods.
However, our research reveals a more nuanced reality: when
increasing from k to (k + 1) layers, the layer-wise itera-
tive aggregation process effectively substitutes information
from k-hop neighbors with that of (k + 1)-hop neighbors,
rather than building a cumulative representation as previ-
ously thought. This is because graph loops lead to the
coexistence of multi-hop neighbors in k-hop neighbors.

This paper demystifies Message Passing Neural Networks
(MPNNs) by revealing their fundamental nature: the mes-
sage passing process is, at its core, a memory-efficient im-
plementation of matrix multiplication operations. Through
this lens, we demonstrate three key insights:

(1) In Section 2, we establish that a k-layer MPNN trans-
forms node representations by iteratively aggregating infor-
mation from k-hop neighborhoods.

More precisely, we prove an approximation equivalence: a
k-layer MPNN operating with adjacency matrix A is ap-
proximately equivalent to a single-layer MPNN operating
with adjacency matrix Ak.

This result not only provides a formal characterization
of how message passing depth relates to neighborhood
influence in GNNs, but also reveals a computational ad-
vantage: while direct computation of Ak requires stor-
ing the full power matrix and can exceed memory con-
straints for large graphs, the iterative message passing
in GNNs achieves equivalent neighborhood aggregation
through memory-efficient layer-wise operations.

(2) In Section 3, we analyze how different types of graph
loops affect k-hop neighborhood computation, as loops cre-
ate additional paths between nodes and thus increase the
density of k-hop neighborhoods.

(3) Finally, in Section 4, we examine MPNN behavior across
structure-feature hybrid tasks and structure-only tasks, re-
vealing their underlying similarity: structure-only tasks are
essentially structure-feature hybrid tasks where node de-
grees serve as the node features.

1
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We challenge the conventional wisdom about deeper GNNs’
performance degradation: contrary to the common over-
smoothing (Rusch et al., 2023) explanation, we experimen-
tally demonstrate that gradient-related issues can be the
primary cause for sparse graphs. In addition, we explain
how GNNs predict with uniform features and how differ-
ent normalization schemes fundamentally influence their
performance.

In summary, our work provides a theoretical foundation
for understanding GNN behavior through three key aspects:
the relationship between network depth and neighborhood
aggregation, the impact of graph loop structures, and the role
of gradients in deep architectures, normalization influence.
These theoretical insights not only bridge the gap between
empirical success and mathematical understanding but also
provide practical guidance for GNN architecture design and
deployment across various applications.

The code for the experiments conducted in this paper is avail-
able at https://anonymous.4open.science/status/demystify-
B30E.

Notation and definitions A graph G = (A,X) is a set of
N nodes connected via a set of edges. The adjacency matrix
of a graph A encodes graph topology, where each element
Aij represents an edge from node i to node j. In this paper,
edges are directed, the undirected graph is considered to
be a special case of directed graph where all edges have
their reversed edges in the graph. Each node i is assigned
a feature vector xi ∈ Rd, and all the feature vectors are
stacked to a feature matrix X ∈ Rn×d, where n is the
number of nodes in G. The set of neighbors of node i is
denoted by N (i).

We use AB or A·B to denote the matrix product of matrices
A and B. All multiplications and exponentiations are matrix
products, unless explicitly stated. Lower indices Aij denote
i, jth elements of A, and Ai means the ith row. Ap denotes
the pth matrix power of A.

2. k-layer GNNs
2.1. k-order features

Definition 2.1. The k-hop neighbor of a node v in a graph
G = (V,E) is any node u ∈ V such that there is a directed
path of k consecutive edges from node u to node v.

Definition 2.2. A kth order node feature, defined as AkX ,
represents the result of multiplying the adjacency matrix
A with itself p times and then multiplying with the node
feature matrix X . Particularly, 0th order node feature is the
original node feature.

Lemma 2.3. For a graph G = (V,E) with adjacency ma-
trix A and node feature matrix X, the features aggregated

Figure 1. A k-layer GCN without adding selfloop will only gather
information from k-hop neibors.

from p-hop neighbors of each node are equivalent to the kth
order node feature AkX .

Remark 2.4. AkXW is a linear transformation of k-hop
neighbor features AkX using weight matrix W .

Lemma 2.5. In the k-th power of the adjacency matrix Ak,
a non-zero element Ak

ij > 0 indicates that there exists at
least one directed path of length exactly k from node i to
node j. Furthermore, the value of Ak

ij represents the total
number of such paths.

The proof is provided in Appendix A.1.
Remark 2.6. The kth order node feature gathers information
from nodes which are exactly k-hop away from the center
node, as illustrated in Fig. 1.

2.2. Node representation of k-layer GNNs

Lemma 2.7. For all natural numbers k, the output of a
k-layer GCN without self-loops can be expressed as:

H(k) = σ
(
(W ⊙A)kXW (k)

)
(1)

The proof is provided in Appendix A.3.

Lemma 2.8. For all natural numbers k, the output of a
k-layer GCN with self-loops can be expressed as:

H(k) = σ
(
(W ⊙ (A+ I))kXW (k)

)
(2)

The proof is provided in Appendix A.2.

(A+ I)k can indeed be decomposed into a linear combina-
tion of powers of A, as described by the binomial theorem:

(A+ I)k =

k∑
k=0

(
n

k

)
Ak

Where
(
n
k

)
is the binomial coefficient.

Therefore, the final representation H(k) is a linear combi-
nation of the feature transformations derived from paths of

2
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lengths ranging from 0-th to k-th order, capturing informa-
tion aggregated over different scales in the graph.
Lemma 2.9. For all natural numbers k, the output of a
k-layer GraphSAGE can be expressed as:

H(k) = σ
(
(W ⊙A)kXW

(k)
n + ...+ (W ⊙A)XWn

1 +XW
(k)
0

)
(3)

The proof is provided in Appendix A.4.

The final representation of a k-layer GraphSAGE, similar
to a GCN with self-loops, is derived from a combination of
linear transformations applied to graph features aggregated
from 0-th to k-th order neighborhoods.

2.3. Summary of k-layer GNNs

In summary, for a k-layer GNN, both GCN with self-loops
and GraphSAGE integrate information from all neighbor-
hood orders up to k. In contrast, a GCN without self-loops
incorporates information solely from the k-th order neigh-
borhood, as lower-order features are excluded in the absence
of self-loops.

The approximation capabilities of graph neural networks
(GNNs) reveal that a k-layer GNN with an adjacency matrix
A has the same approximation power as a 1-layer GCN
with the adjacency matrix Ak. This observation demystifies
the iterative aggregation power of message-passing neural
networks (MPNNs).

In essence, multiple iterations of aggregation are equivalent
to performing high-order matrix multiplications.

However, adding self-loops (as in GCNs with self-loops)
or concatenating self-node features (as in GraphSAGE) in-
corporates features of all orders. While this can enhance
the expressiveness of the model, it may also lead to over-
smoothing, ultimately limiting the depth of GNNs and their
ability to capture meaningful representations in deeper ar-
chitectures.

3. Loops
In Section 2, we discussed the influence of self-loops in
GCNs. In this section, we will extend our discussion to
consider all types of loops in graph neural networks and
analyze their effects.

3.1. Self-loops

Sources of self-loops include:

1. Original Graph: In some networks, such as webpage
networks, a node (e.g., a webpage) might naturally link
to itself.

2. GNN Model Design: Many GNN models, such as

Figure 2. Types of loops in graphs: (a) self-loop, (b) loop with two
nodes connected by an undirected edge, (c) and (d) are examples
of n-node loops where n=3 and n=4 respectively.

GCN (Kipf & Welling, 2016) and DiG(ib) (Tong et al.,
2020), explicitly add self-loops to improve perfor-
mance, particularly on homophilic graphs.

As discussed in Sec. 2.8, a k-layer GCN with self-loops
would gather information from neighbors within the range
of 0-hop to k-hop neighbors. This fact was established
via matrix multiplication. In this section, we will prove it
geometrically.

Lemma 3.1. When self-loops are added to a graph, the
k-hop neighbors of any node are also its (k+ 1)-hop neigh-
bors.

The proof is provided in Appendix B.1. This path-based
property can be expressed in terms of the adjacency matrix:

Lemma 3.2. Let G be a graph with self-loops. Then for
any k ≥ 1, any connection present in Ak is also present in
Ak+1.

3.2. Two-node Loops

A directed graph where each pair of connected nodes has
edges in both directions (making its adjacency matrix sym-
metric) can be viewed as an undirected graph. In other
words, an undirected graph is equivalent to a directed graph
where every edge is bidirected.

Lemma 3.3. For an undirected graph, for any k ≥ 1, the
k-hop neighbors of any node are also its (k+ 2)-hop neigh-
bors.

The proof is provided in Appendix B.2. This property can
be expressed in terms of the adjacency matrix:

Lemma 3.4. Let G be an undirected graph. Then for any
k ≥ 1, any connection present in Ak is also present in
Ak+2.

3.3. Multi-node Loops

Lemma 3.5. For a graph containing a loop of length m, let
v be any node in the graph. For any k ≥ 1, if u is a k-hop
neighbor of v where the k-hop path from u to v contains at
least one node from the loop, then u is also a (k +m)-hop
neighbor of v.

The proof is provided in Appendix B.3. This path-based
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property can be naturally expressed in terms of the adjacency
matrix of the graph:
Lemma 3.6. Let G be a graph containing a loop of length
m. Then for any k ≥ 1, any connection present in Ak is
also present in Ak+m.

3.4. Longest path

3.4.1. FOR DIRECTED GRAPH

Lemma 3.7. For a directed graph with adjacency matrix A,
if the graph contains no loops (cycles) and h is the length
of the longest simple path, then:

Am = 0 for all m > h

The proof is provided in Appendix B.4.

3.4.2. FOR UNDIRECTED GRAPH

Lemma 3.8. Let G be an undirected graph, and let h be
the length of the longest path in G. Then for any m > h,
the connections present in Am are identical to those in Ah.

The proof is provided in Appendix B.5.

3.5. Loops Influence

Different types of graph structures influence how connectiv-
ity patterns evolve as we take higher powers of the adjacency
matrix. Self-loops allow paths to extend by single steps,
while two-node loops (undirected edges) enable extension
by pairs of steps. More generally, any m-node loop allows
paths to extend by m steps while preserving all existing
connections.

For the maximal path length, undirected and directed graphs
behave quite differently. In undirected graphs, paths can al-
ways extend beyond the spanning tree’s longest path length
while maintaining the same connectivity pattern. However,
in directed acyclic graphs, no paths can exist beyond this
length.

Table 1 summarizes these relationships, where c
= denotes

identical connectivity patterns in the adjacency matrices.

We provide a mathematical analysis of how different neigh-
borhood hops coexist in k-layer GNNs, a phenomenon that
can contribute to over-smoothing. Our analysis identifies
three critical factors that drive this coexistence: (1) Adding
self-loops; (2) Undirected edges; (3) Presence of loops in
datasets.

Empirical Validation Common GNN preprocessing
steps—adding self-loops and symmetrizing directed graphs
through reverse edges—significantly increase the density of
k-hop neighborhoods. Our experiments demonstrate that
avoiding these modifications can prevent over-smoothing.

Graph Type Matrix Connectivity
Self-loops Ak c

= Ak+1

Two-node loops Ak c
= Ak+2

n-node loops Ak c
= Ak+n

Undirected Am c
= Ah for m > h

Directed acyclic Am = 0 for m > h

Table 1. Graph Types and Matrix Connectivity. Here c
= denotes

that two matrices have identical connectivity patterns (presence of
non-zero entries), h is the length of the longest path, and m is any
hop count value.

As shown in Fig. 3, a GCN model without self-loops or
undirected conversion maintains performance even at 50
layers, whereas standard GNNs typically experience over-
smoothing within 5 layers (Li et al., 2018). These results
align with our theoretical analysis showing that self-loops
and undirected edges induce neighborhood hop coexistence,
a potential mechanism for over-smoothing.

More information about datasets and experiments are pre-
sented in Appendix C.1.
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Figure 3. Performance of Unidirectional GCN Without Self-loops
on Chameleon and Squirrel Datasets: Model demonstrates stable
accuracy up to 50 layers, with deeper architectures constrained
by memory limitations. The solid line represents mean accuracy,
while the shaded region indicates standard deviation across 10 data
splits.

4. Structure-Feature Dichotomy in Node
Classification

Graph Neural Networks (GNNs) combine node features and
graph structure for predictions. However, recent work shows
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(c) PubMed
Figure 4. Comparison of different GCN architectures on three
datasets: k-layer GCN (blue), 1-layer GCN with k-hop neighbors
(red), and k-hop neighbors with 1-layer GCN and (k-1) linear lay-
ers (green). The black line shows the density of k-hop adjacency
matrix.

structure-agnostic models like MLPs outperform GNNs on
certain datasets (e.g., WebKB (Zheng et al., 2022)). Comple-
menting this finding, we show that some node classification
tasks perform equally well without node features. Based on
this Structure-Feature Dichotomy, we categorize tasks into
three types: feature-only, structure-only, and hybrid. We
then analyze how GNNs make predictions for the latter two
cases.

4.1. Structure-feature Hybrid Type

Citation networks like Cora, CiteSeer, and PubMed repre-
sent classic node classification tasks where research papers
are categorized by their topics. While individual papers
may not contain comprehensive field-specific content, ag-
gregating features from neighboring nodes can enrich the
representation of each paper’s research domain, making
GNNs particularly effective for this task.

Figure 4 shows consistent patterns across CiteSeer, CoraML,

and PubMed datasets comparing three approaches: (1) in-
creasing GNN layers with first-order neighbors (blue line),
(2) single-layer GNN with increasing k-hop neighbors (red
line), and (3) k-hop neighbors with (k-1) additional linear
layers (green line). The black line represents the density of
the effective adjacency matrix—the percentage of non-zero
elements after k-hop expansion. The low density values
across all datasets indicate these are sparse directed net-
works.

The single-layer GNN with increasing k-hop neighbors
maintains stable performance, while both the deep GNN and
the hybrid approach show significant performance degrada-
tion with increasing depth. While both architectures access
k-hop neighborhood information—through Ak in single-
layer GNN and k successive applications of A in k-layer
GNN—their empirical performance differs substantially de-
spite theoretical equivalence in terms of Universal Approxi-
mation (Section 2.3).

The fact that performance remains stable when increasing
the neighborhood size k in a single-layer architecture (red
line) indicates minimal over-smoothing in this case. Thus,
we hypothesized that gradient-related issues might be the
primary cause of performance degradation in deeper net-
works.

To test this hypothesis, we designed approach (3) which
combines k-hop neighborhood aggregation with (k-1) ad-
ditional linear layers. This architecture shares parameter
count with the deep GNN while using expanded neighbor-
hoods like the single-layer approach. The deteriorating
performance of this hybrid approach parallels that of the
deep GNN, strongly suggesting that gradient-related issues,
rather than over-smoothing, cause the performance drop in
deep GNNs.

We further investigated Reverse Direction and Bidirectional
Propagation, with experimental results on CiteSeer pre-
sented in Figure 5. For Reverse Direction Propagation, we
observed performance trends similar to forward direction
propagation. However, Bidirectional Propagation exhib-
ited distinct behavior: increasing the neighborhood size k
in single-layer architectures (red line) led to performance
degradation, which can be attributed to over-smoothing
since the connection density inversely correlates with k.
The connection density (black line) and performance with
increasing k (red line) both stabilized after k=17.

As shown in Figure 5b, k-layer GNNs with first-order neigh-
bors (blue line) performed worse than single-layer models
with equivalent k-hop neighbors (red line), likely due to the
compound effects of over-smoothing and vanishing gradi-
ents.

Experimental results for the CoraML and PubMed datasets
are detailed in Appendix D. While Reverse Direction Prop-
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(b) Bidirectional Propagation

Figure 5. Comparison of different GCN architectures on CiteSeer
dataset under different adjacency matrix formulations. (Top) Using
transposed adjacency matrix AT , which propagates information
from cited papers to citing papers. (Bottom) Using undirected
graph adjacency matrix A + AT , which enables bidirectional
information flow. In each subplot: k-layer GCN (blue), 1-layer
GCN with k-hop neighbors (red), and k-hop neighbors with (k-1)
linear layers (green). The black line indicates the density of the
k-hop adjacency matrix.

agation exhibits performance trends similar to our main
findings, Bidirectional Propagation demonstrates significant
over-smoothing behavior. Specifically, in the bidirectional
case, neighborhood density exceeds 80% within 8 hops,
leading to degraded performance. Consequently, single-
layer models utilizing equivalent k-hop neighborhoods un-
derperform compared to k-layer GNNs that only aggregate
first-order neighbors.

Thus, while our findings hold true for sparse networks,
dense networks exhibit different behavior. The distinct
performance patterns in dense networks suggest that over-
smoothing may still play a significant role in their degrada-
tion.

These results enhance our understanding of GNN perfor-
mance degradation, indicating that optimizing architectural
design for effective gradient flow may be more crucial than
addressing over-smoothing effects in sparse networks, while
over-smoothing remains a key consideration for dense net-
works.

4.2. Structure-only Type

In this section, we will present three datasets which work
well without node features, where all nodes have uniform
features.

Table 2. Classification accuracy (%) of Dir-GNN (Rossi et al.,
2024) with different feature configurations and normalization
schemes on Chameleon, Squirrel and Telegram datasets. Fea-
ture configurations include: original node features from datasets
(Origin Feature), constant features (No Feature, all set to 1), and
node degree variants (in-degree, out-degree, or both). Bold values
indicate learning failure with row normalization and no features.
Underlined values show the worst performance among all configu-
rations, except for the case of row normalization with no features,
which can be attributed to numerical instability when normaliza-
tion is absent.

Chameleon Feature None Row Sym Dir

MLP 48.0±1.6

Origin Feature 2,325 79.1±1.4 80.0±1.5 79.4±1.6 79.8±1.4
No Feature 1 73.6±2.4 23.0±2.6 77.9±1.8 78.1±1.2
In-degree 1 75.2±2.0 77.0±2.0 78.0±2.5 78.1±1.8
Out-degree 1 73.6±2.0 77.8±1.5 78.0±2.3 77.6±2.1
Both degrees 2 75.5±1.8 77.6±1.5 77.9±2.2 77.4±1.3

Squirrel Feature None Row Sym Dir

MLP 36.3±1.5

Origin Feature 2,089 74.3±2.3 75.1±1.6 76.3±1.9 76.1±2.0
No Feature 1 67.8±3.4 19.5±1.1 75.5±2.3 75.6±2.0
In-degree 1 64.9±5.8 73.0±3.0 75.7±1.7 75.3±1.6
Out-degree 1 63.7±4.9 72.2±3.8 75.5±1.6 75.1±1.8
Both degrees 2 67.9±3.9 73.1±3.1 76.1±1.4 75.4±1.8

Telegram Feature None Row Sym Dir

Origin Feature 1 95.6±2.8 74.2±5.5 93.0±4.1 92.8±4.7
No Feature 1 95.4±4.0 38.0±0.0 93.0±4.7 93.0±3.0
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As shown in Table 2, for Chameleon, Squirrel and Telegram
datasets, Dir-GNN 1 (Rossi et al., 2024) predicts as well
with no feature as with original features. We will give a
brief summarization of existing normalizations.

4.2.1. NORMALIZATIONS

Graph normalization, which typically involves dot multipli-
cation of the adjacency matrix to adjust edge weights, plays
a crucial role in graph neural networks (GNNs). While
various normalization schemes exist, their theoretical im-
plications remain under-explored. We denote a general
normalization function as f(A).

No Normalization The simplest approach is to use the
raw adjacency matrix without any normalization (Li et al.,
2017): f1(A) = A. In this case, the node feature update
rule becomes:

h
(l+1)
i = σ(

∑
j∈N (i)

h
(l)
j W (l))

The aggregation directly sums neighboring features, lead-
ing to larger feature magnitudes for higher degree nodes.
With homogeneous features h(0)

i = 1, node representations
become proportional to degrees.

While this makes it suitable for degree-dependent tasks like
traffic prediction and network flow classification, repeated
aggregation of unnormalized features can cause numerical
instability. The node representations may grow or vanish ex-
ponentially with network depth. This numerical instability
explains the suboptimal performance of unnormalized ad-
jacency matrices compared to normalized variants in Table
2. The exponential growth or decay of node representations
across layers likely hindered the model’s ability to learn ef-
fective graph representations, despite preserving the degree
information.

Row Normalization Row normalization (Hamilton et al.,
2017) scales each row of the adjacency matrix by the inverse
of node degree: f2(A) = D−1A. The node feature update
rule becomes:

h
(l+1)
i = σ(

∑
j∈N (i) h

(l)
j W (l)

di
)

For this formulation, the aggregated information represents
the mean of neighboring features rather than their sum.
Node degrees no longer directly influence feature magni-
tudes. With homogeneous features h

(0)
i = 1, all nodes

get identical representations. This explains the poor traffic
prediction in Table 2—degree information is lost.

1Specific parameter settings are shown in ScaleNet (Jiang et al.,
2024) . For Telegram datasets, self-loops are added for better
performance.
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Figure 6. On Telegram dataset, layer growth achieves good accu-
racy while k growth performs poorly with no predictive power.
Density shows the percentage of non-zero elements in the equiva-
lent adjacency matrix.

Symmetric Normalization Symmetric normalization
(Kipf & Welling, 2016) applies: f3(A) = D−1/2AD−1/2.
The node feature update rule becomes:

h
(l+1)
i = σ(

∑
j∈N (i)

h
(l)
j W (l)√
didj

)

The neighbor’s influence is determined by both degrees—if
a neighbor’s degree is much larger than the center node’s, its
feature weight becomes smaller than in row normalization.

Directed Normalization For directed graphs, Rossi et al.
(2024) proposes: f4(A) = D

−1/2
in AD

−1/2
out . The node fea-

ture update rule becomes:

h
(l+1)
i = σ(

∑
j∈N (i)

h
(l)
j W (l)√
dini doutj

)

This distinguishes between in-degree and out-degree for
more accurate normalization in directed graphs.

In summary, row normalization of adjacency matrices, when
applied with uniform node features, results in loss of struc-
tural information since all nodes become indistinguishable.
While using the unnormalized adjacency matrix preserves
both degree information and feature distinctions, it can lead
to numerical instability since the eigenvalues of f(A) may
grow or diminish exponentially, rather than being bounded
within [-1, 1]. This instability can affect the training of
graph neural networks.

4.2.2. HOW GNN PREDICT FOR STRUCTURE-ONLY
CLASSIFICATION

Fig. 6 demonstrates that increasing the number of GCN
layers leads to better accuracy, while increasing the power
k of the adjacency matrix (k-hop neighborhoods) results in
poor predictive performance on the Telegram dataset.
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As shown in Table 2, models using uniform features (all
set to 1) achieve comparable performance to those using
original features, suggesting that the original node features
contribute little to predictive power. We therefore focus our
analysis on the simpler uniform feature case.

With uniform features set to 1, we observe two scenarios:

• Single-layer GCN with k-hop adjacency matrix (Ak):
The node representations simply become counts of
k-hop neighbors. The model loses predictive power
beyond k > 2.

• k-layer GCN with standard adjacency matrix (A): Af-
ter the first layer, node representations become equiva-
lent to node degrees. In subsequent layers, representa-
tions capture the degrees of neighboring nodes. This
effectively means a (k+1)-layer GNN without features
is equivalent to a k-layer GNN using node degrees as
the only feature.

This explains the patterns observed in Figure 6. The single-
layer GNN performs poorly because it only considers in-
dividual node degrees without incorporating neighborhood
information. From two layers onward, performance im-
proves steadily as the effective adjacency matrix becomes
denser, eventually stabilizing when additional layers no
longer increase the density of connections.

4.3. Summary

In this section, we further analyze MPNN predictions
through the structure-feature dichotomy. Node classification
datasets can be divided into a structure-feature dichotomy,
where some datasets perform better with MLPs. For datasets
where GNNs are effective, predictions can be made with or
without node features, determined by the task type.

Structure-feature Hybrid Tasks Content-based classifi-
cation problems, exemplified by citation networks, require
integration of both node features and neighborhood features
propagated through structural connections. Our analysis re-
veals that the commonly observed performance degradation
in deeper layers, traditionally attributed to over-smoothing,
may instead stem from gradient-related challenges, espe-
cially for sparse networks.

Structure-only tasks In tasks such as traffic prediction
and network flow classification, MPNNs can make predic-
tions using purely structural information. We show that
when nodes have uniform features, the prediction mecha-
nism shifts—node degree becomes the effective feature, and
a (k+1)-layer MPNN with uniform features predicts equiv-
alently to a k-layer MPNN using node degree as the sole
feature.

We also prove that combining featureless inputs with
row normalization leads to degenerate predictions where
MPNNs learn nothing.

In sum, structure-only tasks can be considered as a special
type of Structure-feature Hybrid Tasks, where the node
degree act as node feature.

5. Conclusions
This work demystifies Message Passing Neural Networks by
revealing their computational essence: the message passing
process is fundamentally a memory-efficient implementa-
tion of matrix multiplication operations. We establish that
k-layer MPNNs aggregate information from k-hop neigh-
borhoods through iterative computation, making them prac-
tical for large graphs where direct computation of powered
adjacency matrices would be prohibitively expensive.

Through careful analysis of loop structures, we theoretically
characterize how different types of loops influence k-hop
neighborhood density. We demonstrate that common GNN
practices, such as adding self-loops and converting directed
graphs to undirected ones by adding reverse edges, signif-
icantly increase k-hop neighborhood density, potentially
leading to over-smoothing.

Our analysis challenges two common misconceptions in
the field: (1) performance degradation in deeper GNNs is
not necessarily due to over-smoothing. For sparse directed
graphs, deeper architectures are less susceptible to over-
smoothing due to low connection density, yet their perfor-
mance degrades due to vanishing gradients and overfitting
from accumulated weights; and (2) deeper GNN architec-
tures do not necessarily lead to over-smoothing as long as
loop structures don’t create dense k-hop connectivity.

Furthermore, we explained how GNNs work in structure-
feature hybrid tasks and how for structure-only tasks, the
node degree becomes the actual feature.

These insights offer theoretical understanding of how GNNs
work and provides practical guidance for GNN architecture
design, particularly regarding the choice of directed versus
undirected aggregation, whether to add self-loops, and the
selection of normalization strategies.
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