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ABSTRACT

Electronic Health Records (EHRs) possess unique characteristics that differ sig-
nificantly from natural language. However, existing models have overlooked these
properties and largely relied on Natural Language Processing (NLP) approaches,
resulting in suboptimal performance. To address these limitations, we propose
a pretraining method designed to effectively capture the distinctive features of
EHRs. First, EHRs contain both clinically critical and less informative numerical
ranges. To reflect this, we introduce a Pathology-Focused Binning strategy that
emphasizes values with clinical significance. Second, both absolute timestamps
and relative time intervals are important in EHRs. To incorporate these temporal
aspects, we propose a Dual-Calendar Rotary Positional Embedding (RoPE) that
jointly encodes complementary temporal signals. Third, many medical applica-
tions require modeling long-term patient interactions. Accordingly, we extend
conventional next-token prediction with a Time-Conditioned Foreseeing (TCF)
objective, enabling the model to forecast long-range clinical events across multiple
temporal horizons. Our approach establishes the first genuine temporal generative
EHR model, advancing long-range clinical forecasting. It outperforms existing
EHR foundation models on seven diverse downstream tasks and enables realistic
and temporally consistent EHR generation. All code and models will be made
publicly available in the final version of the manuscript.

1 INTRODUCTION

Electronic health records (EHRs) are longitudinal records that comprehensively document a patient’s
medical history. EHRs help clinicians assess patient conditions, coordinate diagnostic and therapeu-
tic interventions, and communicate with other healthcare providers (Häyrinen et al., 2008). One of
the key objectives in medical AI is to develop models that can learn from EHRs to perform various
clinical tasks. However, building such models is challenging due to the complex temporal depen-
dencies and the predominance of numerical data in EHRs (Nasarudin et al., 2024). Recently, there
have been growing efforts to leverage large language model (LLM) training paradigms in building
EHR foundation models (Niu et al., 2024). Despite these advances, approaches explicitly designed
to model the distinct characteristics of EHRs are still in their early stages of development.

EHRs consist of diverse clinical events—such as examinations, treatments, and diagnoses—that
are recorded with associated timestamps. Figure 1 illustrates an example EHR, where events are
arranged chronologically, and shows how these events can be transformed into a sentence of tokens.
Recent preprocessing approaches for EHRs commonly represent a single clinical event as a Time
(T), Feature (F), Value (V) triplet (Tipirneni & Reddy, 2022). Here, the Feature denotes
attributes such as diagnosis codes, prescribed medications, or laboratory tests (e.g., Systolic Blood
Pressure) and represented as a single token, while the Value corresponds to the result or auxiliary
information of the Feature (e.g., 87mmHg). Values are typically numerical but may also be
absent, or take the form of heterogeneous modalities such as text, depending on the Feature.
Despite the necessity of including all triplet components for a faithful representation of clinical
events, as indicated in the “data usage” column of Table 1, even the most recent EHR foundation
models often exclude Time or Value information due to modeling complexities (Yang et al., 2024).
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Figure 1: (Left) Extraction of raw patient data from the EHR database in chronological order. (Right)
Tokenization of each event (E) with triplet representation, where patient information is placed at the
beginning, Features and Values are tokenized, and timestamps remain continuous.

Recent EHR foundation models have improved performance on various downstream tasks through
large-scale pre-training. However, most of these models follow standard LLM training paradigms
without adapting to the structure and clinical semantics of EHR data (Burkhart et al., 2025), which
differ from natural language. For example, converting temporal information into absolute positional
embeddings hinders capturing relative intervals and preserving clinically meaningful calendrical in-
formation (Likhomanenko et al., 2021). Also, processing numeric Value through uniform binning
concentrates bins around normal ranges and reduces resolution for pathological states. Moreover,
most learning objectives are adopted from language modeling, such as next-token prediction (NTP)
or masked language modeling (MLM), without considering EHR-specific characteristics. To ad-
dress these limitations, we introduce improved binning, temporal embedding, and novel training
objectives tailored to EHR data and clinical planning process.

First, we introduce a simple yet effective Pathology-focused Binning for Value tokenization.
As shown in the “Value Binning” column of Table 1, most EHR models tokenize Value through
uniform binning. However, as illustrated in Figure 2A, uniform binning assigns a large amount
of bins to physiologic ranges, while allocating only a few bins to clinically important pathologic
ranges, thereby limiting the ability to distinguish the severity of abnormalities. Other models rely
on false distributional assumptions of Gaussianity, and instead apply standard deviation (std)–based
binning (Zhu et al., 2024) or z-normalization (Tipirneni & Reddy, 2022), making them vulnerable
to outliers, long-tailed, and dual peaks distributions common in EHR. To address this, we propose a
density-based binning that makes no distributional assumptions and focuses on pathological ranges.
In this approach, values in high-density physiologic zones are assigned lower weights, whereas
values in low-density pathologic zones receive higher weights. This design is suited for all value
distributions, and we are the first to apply such binning to EHR models.

Second, we introduce Dual-Calendar RoPE, a novel timestamp addressing method for EHRs. Un-
like language models, where tokens are assumed to be uniformly spaced, EHRs contain events with
highly irregular intervals. Clinically, both relative intervals and calendarical context—e.g., morn-
ing/afternoon or weekday/weekend—are important (body temperature is higher in the afternoon,
and dialysis complications are common after weekends (Fotheringham et al., 2020)). Also, mul-
tiple events may occur at the same time, such as laboratory tests recorded together. As shown in
Figure 2B, we partition the dimensions of rotary positional embedding (Su et al., 2024) to jointly
encode position and time, assigning calendrical components (e.g., minute, day, month) in increas-
ing units to the time dimension. This enables explicit modeling of distance relations such as “two
tests performed at the same time”1 or “the same test performed at the same hour on different days.”
The “Time Addressing” column of Table 1 shows that conventional models have not fully addressed
crucial temporal information.

Finally, and most importantly, we propose a new learning objective, Time-Conditioned Foreseeing
(TCF). This objective aligns with the clinical process of treatment planning, and it enables, for the

1Suppose that SBP, 120mmHg, DBP, 80mmHg are recorded simultaneously. The position dimension pro-
vides additional support to prevent the model from confusing results such as SBP, 80mmHg, DBP, 120mmHg.
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Table 1: Comparison of recent EHR models by architecture and training objective. Data usage:
whether the model uses Time and Value information. Value binning: whether values are uniformly
binned (STraTS embeds values continuously) and whether bin tokens are shared across Features.
Time addressing: whether the model considers relative time intervals, calendrical time, and distin-
guishes concurrent events; same timestamps. Learning objective: type of loss, ‘Foresee’ - whether
model forecasts beyond the next-token, and ‘Temporal Generation’ - whether temporal generative
modeling is possible. Abbreviations*: MEP; missing entity prediction, TTE; time to event predic-
tion, TCF; time conditioned foreseeing. Refer to the related works section for details†.

[Data usage] [Value Binning] [Time addressing] [Learning Objective]

Models Event
Timestamp

Numeric
Value

Non-
uniform

Value
sharing

Relative
interval

Calendrical
time

Non-
concurrency Type Foresee Temporal

Generation

BEHRT (2020)
Med-BERT (2021)
Foresight (2024)
ClinicalMamba (2024)
EHR-BERT (2024)

X X - - X X - NTP&MLM X X

HEART (2024
FM4EHR (2025) X O X X

O X X - MEP*
NTP X X

MOTOR (2024) O X - - O X X TTE* O X
STraTS (2022) O O O O X X - MSE X X
EHRSHOT (2023) O O X X X X - NTP X X
TRADE (2024) O O O X X X - MLM X X
EHRMamba (2025) O O X X X X - NTP&MLM X X
ETHOS (2024) O O X O △† X - NTP X △†

OURS O O O both O O O TCF* O O

first time, generative temporal modeling of a patient’s medical timeline. As shown in the “Learning
Objective” column of Table 1, prior models have relied on objectives designed for language models
or variants thereof, with the exception of the time-to-event (TTE) objective. Conventional EHR
models trained with NTP loss capture only P (Fnext | Epast), without explicitly modeling temporal
information. Consequently, they cannot distinguish whether an event occurs minutes later or after
many hours, treating both urgent and routine vital sign measurements (short and long time intervals
respectively) identically as the ‘next token.’

In contrast, TCF explicitly models long-range temporal information, thereby capturing how real-
world clinical practice unfolds over time. In NLP, missing a single token disrupts grammar, and
consecutive tokens are tightly correlated. By contrast, neighboring EHR events are loosely con-
nected and often exhibit long-range dependencies, such as 8-hour follow-up tests. This reflects
clinical practice, where physicians do not always act in real time but instead devise broader clini-
cal plans. TCF embodies this principle: rather than the short-sighted scope of NTP, which predicts
only the immediate next event, TCF enables questions such as, “What intervention is needed in
the next six hours?” To achieve this, TCF module first generates the next timestamp from the last
hidden state. The multiple foreseeing timestamps are then fed back as module inputs, conditioning
subsequent token generation. This time-conditioned architecture allows simultaneous learning of
P (Tnext | Epast) and P (Fforesees | Tforesees, Epast), leading to improved performance.

Our model ranked first across all combinations of the three dataset configurations and seven diverse
downstream tasks. Across these tasks, the AUPRC was consistently improved, reaching up to 48%
higher than that of the second-best model, highlighting a clinically meaningful improvement given
the data imbalance. We also demonstrated that the model generates temporally stable, realistic EHR
records and is capable of leveraging the calendrical component in generative modeling.

Our contributions can be summarized as follows:

• Pathology-Focused binning: Introduces density-adjusted binning to the EHR foundation
model, focusing on clinically relevant pathologic ranges.

• Dual-Calendar RoPE: Simultaneously represents both calendrical time and positional in-
formation, allowing model to capture calendrical periodicity and event concurrency.

• Time Conditioned Foresee Objective: Enables clinically aligned foreseeing training and
temporal generative modeling of patient medical timelines.
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2 RELATED WORKS

EHR foundation models differ from medical specialist LLMs, which rely on patient history texts
summarized by clinicians. EHR foundation models learn directly from raw EHR events (Burkhart
et al., 2025) and have been applied to various downstream clinical tasks (Table 1).

A common practice in EHR modeling is to represent each EHR event as a triplet of Time,
Feature, and Value (Tipirneni & Reddy, 2022; Lee et al., 2023). However, many models exclude
temporal and numeric data, as they are difficult to handle in standard language model frameworks.
For instance, BEHRT (Li et al., 2020), Med-BERT (Rasmy et al., 2021), and others rely solely on
discrete Features, omitting critical information and limiting their utility.

Some models incorporate numeric Values but omit Time. HEART (Huang et al., 2024) discretize
Values into uniform bins, mapping Feature–Value pairs to single tokens. This approach in-
flates the vocabulary size, leading to data sparsity. FM4EHR (Burkhart et al., 2025) addresses this
by tokenizing Features and Values separately, allowing tokens to be shared.

In contrast, MOTOR (Steinberg et al., 2024) models Time but not Value, performing survival
analysis by treating each feature’s occurrence as an endpoint. Its utility is limited by its inability to
handle numeric values, low temporal expressiveness based on pre-defined intervals, unrealistic con-
stant hazard assumption, and a quadratic complexity that hinders practical application. Moreover,
encoding timestamp as ‘days since birth’ with RoPE does not account for calendrical time.

STraTS (Tipirneni & Reddy, 2022) tokenizes only the Feature, embedding Value and Time
as continuous variables to predict the next value. By modeling only P (Vnext | Epast), it loses
important context and cannot support generative modeling.

TRADE (Zhu et al., 2024) and EHRmamba (Fallahpour et al., 2025) used MLM/NTP paradigms,
discretizing values and applying absolute positional embeddings to Feature and Value tokens.

ETHOS (Renc et al., 2024) tokenizes time intervals and insert time-interval tokens between events.
This coarse discretization limits medical precision, cause cumulative errors, and increases compu-
tational cost by lengthening the sequence. Unlike positional embeddings, it requires aggregating all
intervening tokens to determine a time duration. More details are provided in Appendix A

To address these limitations, this work designs modeling strategies and learning objectives tailored
to the unique characteristics of EHR data.

3 METHOD

Pathology-Focused Binning. First, we estimate the value distribution non-parametrically using
a Gaussian Kernel Density Estimator (KDE). V f

list denotes the list of all Values of Feature
f in the training set. We uniformly partition the value range [min(V f

list),max(V f
list)] with X =

{x1, x2, . . . , xP }, where the inverval is 0.05σ. At each discrete point xk ∈ X , data density ρ(xk) is
calcuated with Gaussian convolution kernel from all value vj ∈ V f

list. The density is:

ρ(xk) =

|V f
list|∑
j=1

Kh(xk − vj), s.t. Kh(u) = exp

(
− u2

2(0.1σ)2

)
This allows us to approximate the local density ρ(v) for any given value v. Then, we assign a weight
w(v) to each value that is inversely proportional to its density, effectively giving greater importance
to values in sparser region (w(v) ∝ ρ(v)−N ; N ≥ 1). In short, values in sparse regions are assigned
larger weights than those in dense regions.

Second, these density-based weights are used to construct the final value bins via weighted percentile
binning. In this step, the contribution of each unique value vj with a raw count of cj is scaled by its
weight w(vj), creating a weighted count c′j := cj · w(vj).
Bin thresholds are then determined from the cumulative distribution of these weighted counts. As a
result, high-weight values from pathologic ranges command a larger share of the percentile space,
leading to a finer-grained partitioning in these clinically important areas (Figure 2A). The detailed
methodology is described in Appendix B.1.
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Figure 2: (A) Uniform binning concentrates bins in dense, physiologic ranges. In contrast, our
density-based method allocates more bins to medically significant pathologic ranges. (B) Events at
the same time are distinguished by their positional distance. Events occurring at the same time on
different dates share the same representation for time units below a day but have different represen-
tations for units of a day or longer. (C) Illustrates TCF objective of a single timestep (actual model
training is fully parallel, like NTP). The TCF objective consists of Lnext time and Lforesee. The last
hidden state is passed through a time head to predict the interval to the next event in a calendrical
format (Lnext time). Then, the times to multiple future events are re-input and combined with the
last hidden state to predict the events at those specific times (Lforesee).

Dual-Calendar Rotary Position Embedding. Second, we propose a novel positional encoding
designed for the temporal characteristics of EHR (Figure 2). It jointly models the relative order
and calendrical interval by partitioning the dimension of each query and key vector, x ∈ Rd, into a
positional component xpos ∈ Rdpos and a temporal component xtime ∈ Rdtime (d = dpos + dtime):

x = [xpos ∥ xtime]

The xpos component uses a standard RoPE to encode the relative token position, p. With a reduced
dimensionality (d→ dpos), it employs a truncated frequency spectrum. This strategic choice focuses
its role on disambiguating the order of co-occurring events sharing an identical timestamp, while
long-range dependencies are handled by the temporal component. The rotation angle is defined as:

θ
(pos)
p,i =

p

100002i/d
, i ∈ {0, 1, ..., dpos/2− 1}

The core of our method, the xtime component, encodes the second-level timestamp t. This is
achieved using a predefined set of semantically meaningful calendrical periods (e.g., minute=60s,
hour=3600s,...; see Table 5 for a full list). For each period sj in the set, a rotation angle θ

(time)
t,j is

calculated as the phase of the event within that period:

θ
(time)
t,j =

(
t (mod sj)

sj

)
· 2π , j ∈ {0, 1, ..., dtime/2− 1},

The two components are rotated independently using their respective angles and then concatenated
to form the final query vector q′ (and also for the key). This allows the attention mechanism to
simultaneously address both sequential order and calendrical time (More details in Appendix B.2).

q′ = [RoPE(qpos, θ(pos)) ∥ RoPE(qtime, θ
(time))]

Time-Conditioned Foresee Objective (TCF). Lastly, we propose a novel learning objective to ef-
fectively model the temporal dynamics of EHR data. TCF employs a dual-objective structure (Fig-
ure 2C) that simultaneously learns to: (1) predict when the next event will occur (P (∆Tnext|Epast)),
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and (2) foresee what event will happen at a specified future time (P (Fforesee|∆Tforesee, Epast)), unlike
NTP which only models P (Fnext|Epast).

The TCF module is placed after the transformer backbone. It takes the final hidden state hlast ∈
Rdmodel as input2 and outputs both a next time prediction loss and a conditioned hidden states for
future event prediction.

To generate a calendrical ground-truth label for ∆Tnext, the time delta, expressed in seconds, is
transformed into an integer vector of dimension Nscales. Each element of this vector corresponds
to a predefined calendrical time unit, ranging from 10-year to 1-minute (e.g., [α, β, γ, . . . ]
represents a time composed of α years, β months, γ days, etc.).

To predict ∆Tnext from hlast, the last hidden is projected into #Nscales vectors of size dembed. Each of
these vectors is transformed into time-logit through the unembedding layer.

htime = FFNenc(hlast) ∈ R(Nscales·dembed) → {h(i)
time}

Nscales
i=1 , time-logits(i) = h

(i)
time · (W

(i)
embed)

T

Lnext time is Cross-Entropy loss between these {time-logit(i)time}
Nscales
i=1 and the calendrical ∆Tnext labels,

averaged over Nscales.

For foreseeing future events, a Time-Conditioning process is performed. We aim to predict the
Feature of Nforesee future events. A given future time deltas, ∆Tforesee, is first transformed into a
vector of integer labels (Cforesee ∈ ZNforesee×Nscales ) using the same multi-scale decomposition. These
labels are passed through embedding layers to produce a comprehensive time embedding, etime ∈
RNforesee×(Nscales·dembed). Finally, this time embedding is fused with the original hidden state hlast via
a residual connection to produce a time conditioned hidden state, hconditioned.

hconditioned = FFN(LayerNorm(hlast + FFN(etime))) ∈ RNforesee×dmodel

This hconditioned is projected to token-logit ∈ RNforesee×vocab size that predicts the clinical event
(Feature) that occur at the corresponding future timestamps.

Lforesee is Cross-Entropy loss between the future events and the token-logit, averaged over Nforesee.
Through this dual-objective learning (L = Lnext time + Lforesee), our model acquires the ability to
accurately and generatively model a patient’s entire medical timeline.

So far, we have considered the position where Feature is predicted given the previous events.
Modeling Value given the previous events and Feature is carried out in the same manner. Since
F and V belong to the same event and thus share the time label, we always have ∆Tnext = 0.
Moreover, because V is conditioned on the preceding F , we predict Vnow by modeling

P (Vforesee | ∆Tforesee, Fnow, Epast)

while inserting only a zero into ∆Tforesee. More detailed explanation and tensor-level parallel pro-
cessing are provided in Appendix B.3.

3.1 DATA AND PREPROCESSING

Table 2: Data summary. Parentheses indicate
cases where bins are not shared.

MIMIC-III preprocessed Train / Test

Total Patient # 28,728 / 5,070
Total Hospitalization # 35,730 / 6,295
Total Events # 38,641,175 / 6,744,906
Total Tokens # 77,109,833 / 13,459,430
Avg. length 2,684 / 2,655
Max length 393,337 / 62,759
Unique Tokens # 155 (1,208)
Token # bin 10
Token # ethnicity 10
Token # vital signs 17
Token # laboratory tests 100

While many EHR models rely on private datasets
and often do not release their code or param-
eters—making reproduction and evaluation dif-
ficult—we use a publicly available dataset and
provide open-source code throughout all stages.
Specifically, we employ the MIMIC-III Clinical
Database v1.4 (Johnson et al., 2016a), which con-
tains comprehensive clinical data from over 30,000
patients. We adopt the widely used preprocessing
and train/test split pipeline introduced by Harutyun-
yan et al. (2019). A summary of the dataset is pro-
vided in Table 2. Further details are provided in
Appendix C. Tasks necessitating clinical judgment,
such as defining exclusion criteria and outlier re-
moval, were independently reviewed by an internist, an otolaryngologist, and a general physician.

2In practice, the full last hidden state Hlast ∈ RB×L×dmodel is processed in parallel, similar to the NTP.
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3.2 BACKBONE ARCHITECTURE, BASELINE MODELS, AND PRE-TRAINING

We used a Transformer decoder as the backbone for all experiments. For Dual-calendar RoPE, the
first 24 dimensions of the 64-dim K and Q vectors encode positional information, and the remaining
40 dimensions encode calendric time. Baseline models were reproduced under identical conditions,
including backbone and training data. We mostly followed the original papers’ implementations but
made necessary modifications where direct application was infeasible (e.g., adapting the MOTOR
model to numeric value events). The pre-training input token length was fixed at 2048. Sequences
exceeding this length (Appendix Figure 7) were segmented with a 512-token overlap, and we en-
sured that a single event’s F and V were not split at the segmentation point. A detailed description
of our model, baselines, and pre-training can be found in Appendix D.

4 RESULT

4.1 DOWNSTREAM TASK AND FINE-TUNING

Table 3: Results on downstream tasks using EHR datasets with 117, 17, and 6 features. The Test loss
column reports the overall test loss for each feature set (lower is better). For 117 features, we report
performance on seven downstream tasks ranging from IHM to Vaso. Binary classification tasks are
measured by AUROC (ROC) and AUPRC (PRC), while multiclass tasks are evaluated with macro
F1 (Ma-f1) and Cohen’s Kappa. For tasks with multiple subtasks, both macro and micro AUROC
are reported. We trained our model with and without value sharing; in both cases, it outperformed
all other baselines. Full downstream task results are provided in Appendix Table 9-11)

Tasks Test Loss (↓) IHM Phe Dec-death Dec-arrest LOS HUO Vaso

Metric 117 17 6 ROC PRC macro micro ROC PRC ROC PRC Ma-f1 Kappa macro micro ROC PRC

N
o

V
al

ue
sh

ar
e HEART 5.304 5.434 5.835 0.838 0.442 0.717 0.718 0.869 0.205 0.862 0.199 0.150 0.142 0.703 0.701 0.865 0.363

MOTOR 4.945 5.212 5.645 0.872 0.547 0.770 0.773 0.904 0.272 0.889 0.261 0.174 0.163 0.753 0.748 0.891 0.438
EHRSHOT 5.841 6.078 6.341 0.801 0.433 0.634 0.633 0.829 0.167 0.802 0.153 0.101 0.115 0.701 0.614 0.867 0.341
TRADE 5.260 5.454 6.048 0.828 0.441 0.738 0.738 0.867 0.170 0.857 0.165 0.158 0.151 0.732 0.731 0.869 0.393
EHRmamba 5.137 5.439 5.926 0.868 0.557 0.690 0.687 0.901 0.277 0.886 0.260 0.150 0.159 0.751 0.753 0.873 0.399

Ours (No share) 4.686 4.907 5.367 0.889 0.607 0.809 0.816 0.928 0.400 0.917 0.388 0.181 0.185 0.776 0.781 0.912 0.498

V
al

ue
sh

ar
e FM4EHR 6.429 6.389 6.397 0.617 0.177 0.530 0.519 0.744 0.075 0.778 0.102 0.023 0.003 0.598 0.653 0.690 0.130

ETHOS 4.971 5.248 5.572 0.859 0.530 0.739 0.746 0.900 0.311 0.890 0.304 0.170 0.165 0.721 0.731 0.890 0.437
STraTS 5.786 5.812 6.071 0.759 0.311 0.656 0.661 0.840 0.141 0.804 0.103 0.123 0.121 0.590 0.598 0.864 0.331

Ours (Share) 4.879 5.043 5.561 0.876 0.559 0.781 0.784 0.910 0.319 0.902 0.310 0.173 0.170 0.749 0.755 0.906 0.470

Table 4: Ablation study on Pathology-
Focused Binning (Binning), Dual-
Calendar Rotary Positional Em-
bedding (Embedding), and Time-
Conditioned Foreseeing (Objective).

Binning Embedding Objective Test loss

V V V 4.686
Uniform V V 4.713
Uniform RoPE V 4.810
Uniform RoPE NTP 5.241

We evaluated our model on a range of clinical downstream
tasks commonly used in EHR model evaluation. These
tasks, defined by clinical labels excluded from training,
are not direct measures of generative modeling perfor-
mance but serve as proxies for the quality of patient rep-
resentations. In addition to the four MIMIC-III bench-
mark (Harutyunyan et al., 2019) tasks—In-hospital Mor-
tality (IHM), Decompensation-death (Dec-death), Length
of Stay (LOS), and Phenotyping (Phe)—we included three
additional tasks: Decompensation-arrest (Dec-arrest), Olig-
uria/Anuria (HUO), and Vasopressor (Vaso) use. Label
counts for all tasks are provided in Appendix Table 8, with
detailed descriptions in Appendix E.1.

Downstream task-specific prediction heads were attached to the backbone. Since labels must be
inferred using only information up to each timestep, a causal mask was applied for all baselines.
To evaluate generalization to data with different distributions (e.g., missing lab information), we
experimented with three input configurations: all 117 features, 17 vital signs (without lab data), and
only 6 vital signs (SBP, DBP, body temperature, heart rate, respiratory rate, SpO2). Please refer to
Appendix E.2 for more details.

Table 3 summarizes the results on downstream tasks. To ensure fair comparison, we trained our
model with and without value sharing and compared each setting to the corresponding baselines. In
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Figure 3: AUROC curves of our model and the second-best baseline, with 95% confidence intervals
estimated via bootstrapping. LOS was evaluated as a binary classification for the first class, and
Phenotyping was assessed using micro-ROC. For HUO, both oliguria and anuria are presented.

# [ Ours (Value share) ]
Birth : 2055. 03. 02
Sex: Female
Ethnicity: Asian
Age: 81

2136-10-02 13:25:04
- ICU transfer

2136-10-02 13:49:59
- RR : 12

2136-10-02 14:00:00
- RR : 18
- SBP : 118
- O2 saturation : 99
- MBP : 77
- DBP : 51
- GCS-V : 1
- GCS : 3
- GCS-M : 1
- Temperature : 38.3
- GCS-E : 1

2136-10-02 14:04:00
- Potassium (ER) : 3.5
- PO2 : 492.0
- PEEP : 5.0
- CO2 : 26.0
- pH : 7.44
- Base excess : 1.0
- Hemoglobin (ER) : 10.1
- PCO2 : 37.0

2136-10-02 14:10:00
- SBP : 104
- RR : 15
- O2 saturation : 99
- MBP : 69
- DBP : 45

2136-10-02 15:00:00
- SBP : 125
- GCS : 3
- O2 saturation : 100
- MBP : 76
- HR : 80 (truncated rest)

# [ ETHOS ]
Birth : 2055. 03. 02
Sex: Female
Ethnicity: Asian
Age: 81

2136-10-02 13:25:04
- ICU transfer

2136-10-02 13:49:59
- RR : 12

2136-10-02 14:00:00
- RR : 18
- SBP : 118
- O2 saturation : 99
- MBP : 77
- DBP : 51
- GCS-V : 1
- GCS : 3

- GCS-M : 5
- GCS-E : 2
- Temperature : 38.2
- HR : 74

2136-10-02 14:50:00
- RR : 15
- SBP : 96
- O2 saturation : 100
- MBP : 89
- DBP : 50
- HR : 78

2136-10-02 15:35:00
- RR : 28
- O2 saturation : 96

2136-10-02 16:45:00
- GCS : 9
- GCS-E : 1
- DBP : 80
- GCS-M : 3
- O2 saturation : 96
- MBP : 86
- HR : 76
- SBP : 139
- GCS-V : 1 (truncated rest)

Figure 4: Given the initial record (orange), the
subsequent medical history is generated (blue).
PEEP: Positive end-expiratory pressure, ER:
emergency lab.

both cases, our model consistently outper-
formed all baselines across the three input con-
figurations and all downstream tasks. Notably,
for the decompensation task, which predicts
patient death or arrest up to 24 hours in ad-
vance, our model achieved an AUPRC nearly
50% higher than that of the second-best model.
Given the severe class imbalance in these tasks
(positive:negative ratio of 1:40), this represents
a significant improvement in real-world clinical
settings where high precision is crucial. Addi-
tionally, the ablation study (Table 4) shows that
all three of our proposed methods contribute
substantially to the performance improvement.

Figure 3 shows the ROC curves with 95% con-
fidence intervals, confirming that our model
achieves statistically significant improvements
over the second-best model in most tasks. The
complete results for all three input configura-
tions can be found in Appendix F.1.

4.2 TEMPORAL GENERATIVE MODELING

Our model is the first to generate fine-grained
temporal information and clinical events con-
ditioned on time, demonstrating strong tem-
poral generative modeling of EHR data. To
qualitatively assess its effectiveness, we com-
pared it (share ver. for fair comparison)
with ETHOS, which, despite limitations in
temporal modeling, is one of the few ap-
proaches capable of generating temporal infor-
mation. Since ETHOS outputs time range to-
kens, timestamps were sampled and rounded
to the nearest 5 minutes to match the reso-
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lution of MIMIC-III (only for ETHOS). For both models, binned measurement values were
decoded to actual values by sampling from the empirical distributions of the training data.

Figure 5: Generated patient EHRs
were evaluated by five physicians
and five non-medical participants and
four LLMs, with 100 comparison re-
sponses collected for each category.

Figure 4 presents generated medical history sequences
from our model and ETHOS, given the same initial EHR
records. From a content perspective, the Glasgow Coma
Scale (GCS) should equal the sum of GCS-E/V/M. At 10-
02 14:00, our model generated E:1, V:1, M:1; GCS:3,
correctly capturing this relationship, whereas ETHOS pro-
duced E:2, V:1, M:5; GCS:3, which is inconsistent. More-
over, our model reflected early emergency labs and a va-
riety of tests, followed by routine vital sign checks, while
ETHOS generated no labs. From a temporal perspective,
our model first performed several tests at short intervals af-
ter admission, then naturally returned to an hourly routine.
In contrast, ETHOS produced events at irregular intervals
and often failed to follow the typical hourly schedule.

We further evaluated 100 generated samples with three evaluator groups: physicians (n=5), non-
medical participants (n=5), and commercial LLMs (n=4; ChatGPT (via API, accessed Sep 2025),
Gemini 2.5 Flash (via API), 2.5 Pro (via API), Claude 4 Sonnet (via API)). After reviewing up to 10
ground-truth EHR samples, each group assessed subsequent EHR records generated from the same
initial records. Figure 5 shows that our model consistently outperformed ETHOS. The LLM input
prompts and the generated samples are presented in Appendix F.2.

To verify whether our model effectively integrates calendrical information, we generated vital signs
conditioned on time across a 24-hour window (00:00–24:00) based on the same patient history.
Figure 6 illustrates that our model generated higher heart rate and temperature values during daytime
hours, reflecting realistic circadian variation. In contrast, ETHOS, even for the control variable
Height, produced clinically implausible patterns across all cases.

0 3 6 9 12 15 18 21 24
Time of the day

Night Day Night

Heart rate

85.13 83.00

Ours
ETHOS

0 3 6 9 12 15 18 21 24
Time of the day

Night Day Night

Temperature

36.87 36.85

Ours
ETHOS

0 3 6 9 12 15 18 21 24
Time of the day

Night Day Night

Respiratory rate

18.93 18.82

Ours
ETHOS

0 3 6 9 12 15 18 21 24
Time of the day

Night Day Night

Height

167.29 165.30

Ours
ETHOS

Figure 6: Assessment of the model’s ability to capture calendrical temporal patterns. Heart rate,
body temperature, and respiratory rate are physiologically higher during the day and lower at night.
Using these three features along with height as a control, we let the model sequentially generate
predictions across 00:00–24:00, averaged over 1,000 test samples.

5 CONCLUSION

We present a novel approach for modeling the unique characteristics of Electronic Health Record
(EHR) data, including irregular time intervals and complex numerical values. This work introduces
three key contributions: Pathology-Focused Binning to emphasize clinically significant numerical
ranges, Dual-Calendar Rotary Position Embedding (RoPE) to encode relative and absolute calen-
drical time, and a Time-Conditioned Foreseeing (TCF) training objective. TCF enables temporal
generative modeling by predicting future timestamps and forecasting events, reflecting clinical plan-
ning. Our model outperforms existing foundation models on seven downstream tasks with up to 48%
improvement in AUPRC, while generating realistic and temporally consistent EHRs for long-range
clinical forecasting. Limitations: There is currently no established metric to evaluate the temporal
generative performance of EHR models. Assessing the appropriateness of timing is crucial, making
conventional methods used for evaluating LLM generation difficult to apply. Developing quantita-
tive evaluation metrics for EHR generation will be important for advancing EHR foundation models.
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Kristiina Häyrinen, Kaija Saranto, and Pirkko Nykänen. Definition, structure, content, use and
impacts of electronic health records: a review of the research literature. International journal of
medical informatics, 77(5):291–304, 2008.

Tinglin Huang, Syed Asad Rizvi, Rohan Krishna Thakur, Vimig Socrates, Meili Gupta, David van
Dijk, R Andrew Taylor, and Rex Ying. Heart: Learning better representation of ehr data with a
heterogeneous relation-aware transformer. Journal of Biomedical Informatics, 159:104741, 2024.

Alistair Johnson, Tom Pollard, and Roger Mark. MIMIC-III Clinical Database (version 1.4). Phys-
ioNet, 2016a. URL https://doi.org/10.13026/C2XW26. RRID:SCR 007345.

Alistair EW Johnson, Tom J Pollard, Lu Shen, Li-wei H Lehman, Mengling Feng, Mohammad
Ghassemi, Benjamin Moody, Peter Szolovits, Leo Anthony Celi, and Roger G Mark. Mimic-iii,
a freely accessible critical care database. Scientific data, 3(1):1–9, 2016b.

Dennis Kasper, Anthony Fauci, Stephen Hauser, Dan Longo, J Jameson, and Joseph Loscalzo. Har-
rison’s principles of internal medicine, 19e, volume 1. Mcgraw-hill New York, NY, USA:, 2015.

Seyed Mehran Kazemi, Rishab Goel, Sepehr Eghbali, Janahan Ramanan, Jaspreet Sahota, Sanjay
Thakur, Stella Wu, Cathal Smyth, Pascal Poupart, and Marcus Brubaker. Time2vec: Learning a
vector representation of time. arXiv preprint arXiv:1907.05321, 2019.

Z Kraljevic, D Bean, A Shek, R Bendayan, H Hemingway, J A Yeung, A Deng, A Baston, J Ross,
E Idowu, et al. Foresight-a generative pretrained transformer for modelling of patient timelines
using electronic health records: a retrospective modelling study. Lancet Digit. Health, 6(4), 2024.

Kwanhyung Lee, Soojeong Lee, Sangchul Hahn, Heejung Hyun, Edward Choi, Byungeun Ahn, and
Joohyung Lee. Learning missing modal electronic health records with unified multi-modal data
embedding and modality-aware attention. In Machine Learning for Healthcare Conference, pp.
423–442. PMLR, 2023.

Y. Li, S. Rao, J. Solares, A. Hassaine, R. Ramakrishnan, D. Canoy, Y. Zhu, K. Rahimi, and
G. Salimi-Khorshidi. Behrt: Transformer for electronic health records. Scientific Reports, 10
(1):1–10, 2020. doi: 10.1038/s41598-020-62922-y.

10

https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423
https://doi.org/10.13026/C2XW26


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Tatiana Likhomanenko, Qiantong Xu, Gabriel Synnaeve, Ronan Collobert, and Alex Rogozhnikov.
Cape: Encoding relative positions with continuous augmented positional embeddings. Advances
in Neural Information Processing Systems, 34:16079–16092, 2021.

Nurul Athirah Nasarudin, Fatma Al Jasmi, Richard O Sinnott, Nazar Zaki, Hany Al Ashwal,
Elfadil A Mohamed, and Mohd Saberi Mohamad. A review of deep learning models and online
healthcare databases for electronic health records and their use for health prediction. Artificial
Intelligence Review, 57(9):249, 2024.

H Niu, O A Omitaomu, M A Langston, M Olama, O Ozmen, H B Klasky, A Laurio, M Ward,
and J Nebeker. Ehr-bert: A bert-based model for effective anomaly detection in electronic health
records. J. Biomed. Inf., 150:104605, 2024.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. In NIPS-W, 2017.

Laila Rasmy, Yiqing Xiang, Zhaoyi Xie, Cong Tao, and Daqing Zhi. Med-bert: pretrained contextu-
alized embeddings on large-scale structured electronic health records for disease prediction. npj
Digital Medicine, 4(1):86, 2021.

Pawel Renc, Yugang Jia, Anthony E. Samir, Jaroslaw Was, Quanzheng Li, David W. Bates, and
Adam Sitek. Zero shot health trajectory prediction using transformer. npj Digital Medicine,
7(1), February 2024. ISSN 2398-6352. doi: 10.1038/s41746-024-01235-0. URL https:
//www.nature.com/articles/s41746-024-01235-0.

E Steinberg, J A Fries, Y Xu, and N Shah. Motor: A time-to-event foundation model for structured
medical records. In ICLR, 2024.

Ethan Steinberg, Kevin Jung, Jason A Fries, Christopher K Corbin, Stephen R Pfohl, and Nigam H
Shah. Language models are an effective representation learning technique for electronic health
record data. J. Biomed. Inf., 113, 2021.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: En-
hanced transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

Sindhu Tipirneni and Chandan K Reddy. Self-supervised transformer for sparse and irregularly
sampled multivariate clinical time-series. ACM Transactions on Knowledge Discovery from Data
(TKDD), 16(6):1–17, 2022.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Michael Wornow, Rahul Thapa, Ethan Steinberg, Jason Fries, and Nigam Shah. Ehrshot: An ehr
benchmark for few-shot evaluation of foundation models. arXiv preprint arXiv:2307.02028, 2023.
URL https://som-shahlab.github.io/ehrshot-.

Zhichao Yang, Avijit Mitra, Sunjae Kwon, and Hong Yu. Clinicalmamba: A generative clinical
language model on longitudinal clinical notes. arXiv preprint arXiv:2403.05795, 2024.

W Zhu, H Tang, H Zhang, H R Rajamohan, S-L Huang, X Ma, A Chaudhari, D Madaan, E Almah-
moud, S Chopra, et al. Predicting risk of alzheimer’s diseases and related dementias with ai
foundation model on electronic health records. medRxiv preprint medRxiv:2024.04.26.24306180,
2024.

11

https://www.nature.com/articles/s41746-024-01235-0
https://www.nature.com/articles/s41746-024-01235-0
https://som-shahlab.github.io/ehrshot-


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Appendix

A ADDITIONAL RELATED WORKS

The pursuit of powerful and versatile foundation models for Electronic Health Records (EHRs) has
led to a rapid evolution of modeling techniques. Current models drew heavily from advancements in
Natural Language Processing (NLP), treating EHR data as sequences of discrete events. However,
the unique characteristics of EHRs—specifically their sparse, irregularly sampled nature, and the
continuous numerical values—have necessitated the development of more specialized architectures
and learning objectives.

EARLY APPROACHES: MODELING CATEGORICAL EVENT SEQUENCES

The initial wave of EHR foundation models adapted the successful Transformer architecture from
NLP to the clinical domain. These models primarily focused on learning representations from se-
quences of medical codes, such as diagnoses, procedures, and medications, while largely omitting
numerical and temporal data.

BEHRT (Li et al., 2020) (Transformer for Electronic Health Records) introduced the use of the Bidi-
rectional Encoder Representations from Transformers (BERT (Devlin et al., 2019)) architecture for
EHR data. It treats a patient’s EHR as a sequence of “sentences,” where each sentence is a collec-
tion of medical codes from a single visit. BEHRT is pre-trained on a large dataset of patient records
using a Masked Language Model (MLM) objective, where the model learns to predict masked med-
ical codes based on their context. An additional task, Next Visit Prediction (NVP), was also used to
predict the codes for a subsequent visit. While effective for tasks like disease prediction, BEHRT’s
exclusion of numerical values and timestamps limits its clinical utility, as it cannot capture disease
severity or the precise timing of events.

Med-BERT (Rasmy et al., 2021) followed a similar approach to BEHRT, applying the BERT archi-
tecture to structured EHR data. It also represents patient histories as sequences of medical codes and
uses an MLM pre-training objective to learn contextualized embeddings. Med-BERT demonstrated
strong performance on various downstream tasks, including disease prediction and patient mortality
prediction. However, like BEHRT, it does not explicitly model the temporal intervals between vis-
its or the continuous values of lab tests, which are crucial for a comprehensive understanding of a
patient’s health trajectory.

EHR-BERT (Niu et al., 2024) is another BERT-based model that focuses on detecting anomalies in
EHR data. It learns the typical patterns of medical events and flags deviations from these patterns
as potential anomalies. While its primary application is in data quality and fraud detection, it shares
the same fundamental limitations as other early BERT-based models in its handling of EHR data, as
it does not incorporate numerical or temporal information into its core architecture.

Further including code-based models: ClinicalMamba (Yang et al., 2024), and Foresight (Kralje-
vic et al., 2024), these models established the viability of large-scale pre-training for EHR data
and demonstrated the power of the Transformer architecture in capturing the complex relationships
between medical events. However, their reliance on a purely categorical representation of patient
histories highlighted the need for more sophisticated methods that could incorporate the rich numer-
ical and temporal information present in EHRs.

INCORPORATING NUMERIC VALUES

Recognizing the limitations of purely categorical models, subsequent research focused on integrat-
ing continuous numerical values, such as lab results and vital signs, into the modeling process. A
common approach has been to discretize these values into a set of predefined bins, allowing them to
be treated as discrete tokens within the existing language modeling framework.

HEART (Huang et al., 2024) employs this discretization strategy. They convert numeric values into a
fixed number of uniform bins (e.g., 10 bins) and create a unique token for each “feature-value” pair.
This allows them to capture the magnitude of numerical measurements to some extent. However,
this approach has two major drawbacks. First, it leads to a massive increase in the vocabulary size,
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as each feature needs its own set of value-specific tokens. This exacerbates data sparsity issues and
increases the model’s memory footprint. Second, uniform binning can be suboptimal, as it focuses
on the non-significant range of clinical values and may not provide sufficient resolution for clinically
significant changes.

FM4EHR (Burkhart et al., 2025) (Foundation Models for Electronic Health Records) proposed a
more efficient method for handling numeric values. Instead of creating unique tokens for each
feature-value pair, FM4EHR separates the tokenization of features and values. This allows different
features to share the same set of value tokens, significantly reducing the vocabulary size and miti-
gating the data sparsity problem. This “value sharing” approach is a key innovation that allows for
more scalable and efficient modeling of numerical data. However, FM4EHR still does not explicitly
model the temporal aspect of EHR data, relying on the implicit ordering of events in the sequence.

ADDRESSING TEMPORAL INFORMATION

The timing of medical events is often as important as the events themselves. Another line of research
has focused on developing models that can explicitly receive temporal information of EHR data.

MOTOR (Steinberg et al., 2024) (A Time-to-Event Foundation Model for Structured Medical
Records) is a model specifically designed for survival analysis and time-to-event prediction. It pro-
cesses sequences of medical codes and learns to predict the time to a future event of interest. (Note!
it does not take numerical value) MOTOR represents time by discretizing the time horizon into a set
of predefined intervals and models the hazard function within each interval. This allows it to capture
the temporal dependencies between events and make time-aware predictions. However, MOTOR’s
primary limitation is that it does not incorporate numerical values, which are often strong predictors
of patient outcomes. Additionally, its reliance on predefined time intervals and the assumption of a
constant hazard function within each interval can limit its temporal precision.

STraTS (Tipirneni & Reddy, 2022) (Self-Supervised Transformer for Sparse and Irregularly Sam-
pled Multivariate Clinical Time-Series) takes a different approach to modeling time and values. It
tokenizes only the categorical features and embeds the time intervals and numerical values as con-
tinuous variables. STraTS is trained using a Mean Squared Error (MSE) loss to predict the values of
different features at future time points. This allows it to handle irregularly sampled data and make
fine-grained predictions. However, by only predicting the next 2-hour value, STraTS loses important
contextual information and cannot be used for generative modeling of entire patient trajectories.

TRADE (Zhu et al., 2024) (Predicting Risk of Alzheimer’s Diseases and Related Dementias with
AI Foundation Model on Electronic Health Records) also incorporates numerical values, and it uses
a non-uniform binning. It discretizes values into nine bins based on their standard deviation from
the mean. This approach is more clinically plausible than uniform binning, as it can better capture
extreme values that are often indicative of disease. However, TRADE does not employ value sharing,
which means it still faces the challenge of a large and sparse vocabulary.

EhrMamba (Fallahpour et al., 2025) is a recent model that leverages the Mamba architecture, a type
of State Space Model (SSM), to efficiently process long EHR sequences. It tokenizes categorical
features and uses uniform binning for numerical values. It uses time2vec module Kazemi et al.
(2019) to capture temporal dependencies. The use of the Mamba architecture allows EhrMamba
to scale to much longer patient histories than Transformer-based models, which have a quadratic
complexity with respect to sequence length.

ETHOS Renc et al. (2024) (Zero-shot health trajectory prediction using transformer) introduces a
novel method for explicitly modeling the time intervals between events. It discretizes the time gaps
into 13 logarithmic bins, ranging from minutes to months, and inserts a special “time token” between
each event token in the input sequence. This allows the model to explicitly reason about the temporal
relationships between events. ETHOS also incorporates numerical values through binning and value
sharing. While this explicit time tokening is a significant step forward, it can increase the sequence
length and computational cost. Moreover, the discretization of time still imposes a limit on the
model’s temporal precision.
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B ADDITIONAL METHOD

B.1 PATHOLOGY-FOCUSED BINNING

This numerical value tokenization method is designed to create a granular representation for clin-
ically important pathologic values. This non-parametric approach assigns greater resolution to
sparse, low density value ranges without making distributional assumptions. The process consists
of two main stages: (1) value weight assignment via Kernel Density Estimation, and (2) weighted
percentile binning using these assigned weights.

B.1.1 VALUE WEIGHT ASSIGNMENT VIA KERNEL DENSITY ESTIMATION

The core principle is to assign low weights to values in high-density (physiologic) regions and high
weights to values in low-density (pathologic) regions. This is achieved by estimating the data density
for each medical feature and assigning a weight inversely proportional to this density.

For a feature with a set of values V and standard deviation σ, we define a set of discrete represen-
tative points X = {x1, x2, . . . , xM}. These points span the feature’s range [min(V ),max(V )] and
are spaced at uniform intervals of 0.05σ.

At each discrete point xk ∈ X , we estimate the data density ρ(xk) by applying a Gaussian convolu-
tion kernel. This is a form of Kernel Density Estimation (KDE), where the density at xk is the sum
of influences from all unique data values vj ∈ V . The density is:

ρ(xk) =

|V |∑
j=1

Kh(xk − vj)

Here, Kh(u) is an unnormalized Gaussian kernel defined as:

Kh(u) = exp

(
− u2

2h2

)
The bandwidth h, which controls the smoothness of the density estimate, is set to h = 0.1σ to
capture local variations.

From this density, we calculate a raw weight wraw(xk) = 1/(ρ(xk) + ϵ) for each discrete point.
These weights are then normalized and clipped to produce the final weight:

wfinal(xk) = min

(
wraw(xk)

mink′ wraw(xk′)
, wmax

)
where wmax is a predefined ceiling (e.g., 10). Finally, each original unique value vj is assigned the
weight of its nearest discrete point, w(vj) = wfinal(xk∗), where k∗ = argmink |vj − xk|.

B.1.2 WEIGHT CALCULATION AND NORMALIZATION

With weights assigned, we proceed to the binning stage. The goal is to partition the feature’s values
into B bins such that regions with higher weights are given more bins.

We start by calculating a weighted count c′j for each unique value vj :

c′j = cj · w(vj)

This new count reflects the value’s clinical importance as determined by its rarity. Next, we compute
the total weighted count for the feature, C ′

total =
∑|V |

j=1 c
′
j .

The bin thresholds are then determined from the cumulative distribution of these weighted counts.
For a set of sorted unique values v1 < v2 < · · · < v|V |, the cumulative weighted count up to value
vk is Sk =

∑k
j=1 c

′
j . The threshold for the p-th bin (where p ∈ {1, 2, . . . , B − 1}) is set to the first

value vk whose cumulative weighted share meets or exceeds the p/B percentile:

Tp = min{vk |
Sk

C ′
total
≥ p

B
}

14
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This procedure ensures that value ranges containing high-weight (pathologic) data contribute more
significantly to the cumulative sum. As a result, a smaller span of these values is needed to cross
a percentile boundary, leading to a denser allocation of bin thresholds in these clinically important
regions.

Algorithm 1 Density-Based Value Weight Assignment

Require:
item counters: A map from item ID→ {value: count}.
wmax: Maximum weight threshold (e.g., 10).

Ensure:
value weights: A map from item ID→ {value: weight}.

1: Initialize value weights← ∅
2: for all item id, counter in item counters do
3: V ← sorted unique values from counter
4: C ← corresponding counts for each value in V
5: AllV alues← list of all values repeated by their counts
6: σ ← StandardDeviation(AllV alues)
7: if σ = 0 then
8: item weights← {v : 1.0 for v ∈ V }
9: value weights[item id]← item weights

10: continue
11: h← 0.1× σ ▷ Set bandwidth for the Gaussian kernel
12: interval← 0.05× σ
13: SplitPoints← Generate points from min(V ) to max(V ) with interval

▷ Step 1: Kernel Density Estimation
14: densities← ∅
15: for all split point x in SplitPoints do
16: ρ(x)← 1

|V |
∑|V |

j=1 Cj · exp
(
− (x−Vj)

2

2h2

)
17: densities.append(ρ(x))

▷ Step 2: Calculate, Normalize, and Clip Weights
18: wraw ← 1.0/(densities+ 10−10)
19: wnorm ← wraw/min(wraw)
20: wfinal ← clip(wnorm, 1.0, wmax)

▷ Step 3: Assign weights to original values
21: item weights← ∅
22: for all value v in V do
23: closest idx← argmink |SplitPointsk − v|
24: item weights[v]← wfinal[closest idx]

25: value weights[item id]← item weights

26: return value weights

15
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Algorithm 2 Weighted Percentile Binning

Require:
item counters: A map from item ID→ {value: count}.
value weights: The output from Algorithm 1.
B: The desired number of bins (e.g., 100).

Ensure:
bin thresholds: A map from item ID→ a list of B − 1 thresholds.

1: Initialize bin thresholds← ∅
2: for all item id, counter in item counters do
3: V ← sorted unique values from counter
4: N ← |V |

▷ Apply weights to counts for percentile calculation
5: if value weights is provided then
6: C ′ ← [counter[vj ]× value weights[item id][vj ] for vj ∈ V ]
7: else ▷ Uniform binning case
8: C ′ ← [counter[vj ] for vj ∈ V ]

9: thresholds← a list of size B − 1
10: if N ≥ B then
11: C ′

total ←
∑

C ′

12: C ′
cumulative ← CumulativeSum(C ′)

13: for p = 1 to B − 1 do
14: target count← C ′

total × p/B
15: idx← FindFirstIndexWhere(C ′

cumulative > target count)
16: thresholds[p− 1]← V [idx+ 1] ▷ Handle edge cases
17: else ▷ Apply specific assignment for sparse values (centering or striding)
18: thresholds← Generate thresholds based on sparse assignment logic
19: bin thresholds[item id]← thresholds

20: return bin thresholds

B.2 DUAL-CALENDAR ROTARY POSITION EMBEDDING

To address the unique temporal characteristics of Electronic Health Record (EHR) data—namely, the
highly irregular event intervals and the clinical significance of calendrical time—we propose Dual-
Calendar Rotary Position Embedding (RoPE). This method extends the conventional RoPE by
partitioning the embedding dimension within each attention head to jointly encode both the relative
sequence order of tokens and their absolute calendrical time.

For a given query or key vector x ∈ Rdk in an attention head, we partition it into two subspaces:
a positional component xpos ∈ Rdpos and a temporal component xtime ∈ Rdtime , where dk =
dpos + dtime.

x = [xpos ∥ xtime]
Each component is then rotated using a specialized RoPE variant before being concatenated back
together.

B.2.1 POSITIONAL DIMENSION ENCODING

The xpos component, corresponding to the first dpos dimensions, employs the standard RoPE for-
mulation. With a reduced dimensionality of dpos, this component does not rescale its rotational
frequencies to cover a wide positional range. Instead, it effectively truncates the frequency spec-
trum, retaining the high-frequency rotations corresponding to the initial dimensions of a standard
RoPE. This strategic choice is predicated on the observation that its primary role is now to disam-
biguate the order of co-occurring events that share an identical timestamp. For a token at position
m, the rotation angle θ

(pos)
p,i is defined as:

θ
(pos)
p,i =

p

base2i/d
, i ∈ {1, 2, ..., dpos/2}

The task of modeling long-range temporal dependencies is thus naturally offloaded to the Calendar-
Time dimension, which is explicitly designed for this purpose.
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B.2.2 CALENDAR-TIME DIMENSION ENCODING

The core novelty of our approach lies in the encoding applied to the xtime component. This com-
ponent is designed to encode an event’s absolute timestamp, t, by capturing its periodicity across
multiple, clinically relevant time scales. This is achieved using a predefined set of semantically
meaningful calendrical periods, S = {s1, s2, . . . , sdtime/2}, as detailed in Table 5. These periods
capture periodicities ranging from short-term diurnal patterns to long-term annual and multi-year
trends.

For each period sj from this set, we calculate a unique rotation angle θ
(time)
t,j that represents the

phase of the event within that specific period. The formula for the rotation angle is:

θ
(time)
t,j =

(
t (mod sj)

sj

)
· 2π

This mechanism produces a multi-scale temporal representation. Events occurring at the same
time of day but on different dates will share the exact same rotation for the ‘day’ period, allowing
the model to easily learn periodical patterns.

B.2.3 INTEGRATION AND APPLICATION

Finally, the two rotated components are concatenated to form the final query and key vectors. The
full transformation for a query vector q = [qpos ∥ qtime] to its rotated form q′ is:

q′ = [RoPE(qpos, θ(pos)) ∥ RoPE(qtime, θ
(time))]

An identical transformation is applied to the key vector k. By equipping the self-attention mech-
anism with this dual-encoding strategy, our model can simultaneously reason about the sequential
flow of information and the absolute, cyclical context of clinical events.

Table 5: Predefined Calendrical Periods for Temporal Encoding

Category Period Name Duration (seconds)
Short-term 5 minutes 300

10 minutes 600
30 minutes 1,800
1 hour 3,600
3 hours 10,800
12 hours 43,200

Mid-term 1 day 86,400
2 days 172,800
1 week 604,800
2 weeks 1,209,600
1 month 2,629,746
1 season (3 months) 7,889,238
6 months 15,778,476

Long-term 1 year 31,556,952
2 years 63,113,904
4 years 126,227,808
10 years 315,569,520
30 years 946,708,560
100 years 3,155,695,200
300 years 9,467,085,600

B.3 TIME CONDITIONED FORESEE OBJECTIVE

To elucidate the mechanics of our proposed Time-Conditioned Foresee (TCF) module, we provide a
step-by-step explanation. This description follows the flow of information from the initial input—the

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

final hidden state of a backbone model—to the module’s dual outputs. The detailed computational
flow is presented in Algorithm 3.

We define the primary dimensions:

• B denotes the batch size.
• L denotes the sequence length.
• dmodel represents the hidden dimension of the backbone model’s output.
• dembed is the dimensionality of our internal time embeddings, set to 32.
• Nscales is the number of time scales used for decomposition, 11 in our implementation.
• Nforesee is the number of future timestamps provided for the foresee objective, set to 10.
• Ci is the number of discrete categories for the i-th time scale.

The process begins with the final hidden state from the backbone decoder for each token in the
sequence.

Input: The last hidden state tensor, Hlast.

• Hlast ∈ RB×L×dmodel

B.3.1 A. NEXT EVENT TIME PREDICTION PATH (LNEXT TIME)

This pathway is responsible for predicting the time until the next event.

1. Initial Projection The input hidden state Hlast is passed through a two-layer Feed-Forward
Network (FFN), denoted as FFNenc, to create a representation for time prediction.

• Input: Hlast ∈ RB×L×dmodel

• Output: An intermediate time-focused tensor, Htime.
– Htime = FFNenc(Hlast) ∈ RB×L×(Nscales·dembed)

2. Logit Generation The tensor Htime is conceptually partitioned into Nscales segments. Each
segment is used to compute the logits for its corresponding time scale by multiplying it with the
respective time embedding weight matrix.

• Input: Htime, treated as Nscales tensors {H(i)
time}

Nscales
i=1 , where each H

(i)
time ∈ RB×L×dembed .

• Operation: For each scale i, we compute logits: Logits(i) = H
(i)
time · (W

(i)
embed)

T , where
W

(i)
embed ∈ RCi×dembed .

• Output: A set of Nscales logit tensors.

– Logits(i) ∈ RB×L×Ci

3. Ground-Truth Label Decomposition To compute the loss, these logits are compared against
ground-truth labels. Instead of regressing a continuous time value, we transform the ground-truth
time delta (in seconds) into a set of categorical integer labels. This is achieved through a determin-
istic process analogous to a mixed-radix conversion, using the time scales defined in Table 6.

For instance, assume a ground-truth time delta ∆Tnext of 34,586,130 seconds. The conversion to
a vector of Nscales integer labels proceeds sequentially from the largest time scale to the smallest,
using integer division to find the label and the modulo operator to find the remainder for the next
step.

1. year10: 34, 586, 130 // 315, 360, 000 = 0. Remainder: 34, 586, 130. → Label: 0
2. year1: 34, 586, 130 // 31, 536, 000 = 1. Remainder: 3, 050, 130. → Label: 1
3. month3: 3, 050, 130 // 7, 948, 800 = 0. Remainder: 3, 050, 130. → Label: 0
4. month1: 3, 050, 130 // 2, 678, 400 = 1. Remainder: 371, 730. → Label: 1
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Table 6: Time scales for multi-scale decomposition, along with their duration in seconds and the
number of categories for classification.

Time Scale Duration in Seconds Num. of Categories
year10 315,360,000 10
year1 31,536,000 10
month3 7,948,800 4
month1 2,678,400 3
week1 604,800 5
day1 86,400 7
hour6 21,600 4
hour1 3,600 6
minute10 600 6
minute1 60 10

5. week1: 371, 730 // 604, 800 = 0. Remainder: 371, 730. → Label: 0

6. day1: 371, 730 // 86, 400 = 4. Remainder: 27, 330. → Label: 4

7. hour6: 27, 330 // 21, 600 = 1. Remainder: 5, 730. → Label: 1

8. hour1: 5, 730 // 3, 600 = 1. Remainder: 2, 130. → Label: 1

9. minute10: 2, 130 // 600 = 3. Remainder: 330. → Label: 3

10. minute1: 330 // 60 = 5. Remainder: 30. → Label: 5

11. position: A mechanism to account for events occurring simultaneously at the same
time. For the next event label, it is set to 0; for subsequent foresee labels, it is set to +1 if
the time is the same as the previous one, and 0 otherwise. → Label: 0

Ultimately, the continuous value of 34,586,130 seconds is converted into the following vector of ten
integer labels, which constitutes the ground-truth Y

(i)
next time for this example:

[0, 1, 0, 1, 0, 4, 1, 1, 3, 5, 0]

By training the model to predict these categorical labels for each time scale, we transform a diffi-
cult regression task into a series of more stable and effective classification tasks. The final scalar
loss, Lnext time, is the average Cross-Entropy loss calculated between the generated logits and these
decomposed ground-truth labels.

B.3.2 B. TIME-CONDITIONING PATH FOR FORESEE OBJECTIVE

This pathway conditions the hidden state on a set of specified future timestamps to predict upcoming
events.

1. Input Foresee Timestamps The module receives future time deltas from the Nforesee future
events relative to the current timestamp at each position.

• Input: A tensor of future time deltas, ∆Tforesee ∈ ZB×L×Nforesee .

2. Time Embedding Each time delta in ∆Tforesee is decomposed into Nscales integer labels (as
demonstrated above). These labels are used to look up corresponding vectors from the embedding
tables, {W (i)

embed}
Nscales
i=1 , which are then concatenated. *Note, we share the weights for embedding and

unembedding timestamps.

• Input: Decomposed time labels, Cforesee ∈ ZB×L×Nforesee×Nscales .

• Output: A dense time embedding tensor, Etime.

– Etime ∈ RB×L×Nforesee×(Nscales·dembed)
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3. Projection of Time Embedding The concatenated embedding Etime is projected to the model’s
hidden dimension via FFNdec.

• Input: Etime ∈ RB×L×Nforesee×(Nscales·dembed)

• Output: A processed time conditioning tensor, Htime cond.

– Htime cond = FFNdec(Etime) ∈ RB×L×Nforesee×dmodel

4. Time-Conditioning via Fusion The final step fuses the original hidden state Hlast with the pro-
cessed time conditioning tensor Htime cond. To align their dimensions for the element-wise addition,
Hlast is first expanded by inserting a new dimension. This prepares it for broadcasting across the
Nforesee dimension, allowing each of the Nforesee time embeddings to condition the single original
hidden state.

• Inputs:

– Original hidden state: Hlast ∈ RB×L×dmodel

– Time conditioning tensor: Htime cond ∈ RB×L×Nforesee×dmodel

• Operation: The fusion is performed via a residual connection. First, Hlast is unsqueezed,
and then added to Htime cond.

– H ′
last = Unsqueeze(Hlast, dim = 2) ∈ RB×L×1×dmodel

– Hfused = H ′
last +Htime cond // Broadcasting occurs along the Nforesee dimension.

• Output: The final time-conditioned hidden state, Hconditioned, after Layer Normalization
and a final FFN block.

– Hconditioned ∈ RB×L×Nforesee×dmodel

SUMMARY OF MODULE OUTPUTS

The TCF module produces two primary outputs:

1. Next Time Loss (Lnext time): A scalar value for backpropagation.

2. Conditioned Hidden State (Hconditioned): A tensor of shape RB×L×Nforesee×dmodel , which
serves as the input to the final prediction head for calculating the foresee loss, Lforesee. The
ground-truth label corresponding to each conditioned hidden vector is the Feature token
of the actual clinical event that occurred at the given foresee timestamp.
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Algorithm 3 Time-Conditioned Foresee (TCF) Module

Require:
1: Hlast ∈ RB×L×dmodel : Last hidden states from the backbone model.
2: Tcurrent ∈ RB×L: Absolute timestamps for each hidden state in Hlast.
3: Tnext ∈ RB×L: Absolute timestamps of the next event for each position.
4: Tforesee ∈ RB×L×Nforesee : A set of absolute future timestamps for conditioning.
5: W: All trainable weights, including FFNs and embedding tables {W (i)

embed}
Nscales
i=1 .

6: Periods: A dictionary mapping each time scale to its duration in seconds.
Ensure:

7: Lnext time ∈ R: The loss for next event time prediction.
8: Hconditioned ∈ RB×L×Nforesee×dmodel : Hidden states conditioned on Tforesee.

9: function TCF MODULE(Hlast, Tcurrent, Tnext, Tforesee,W, Periods)
▷ Part A: Next Event Time Prediction

10: ∆Tnext ← Tnext − Tcurrent
11: Ynext ← DECOMPOSETIME(∆Tnext, P eriods)
12: Htime ← FFNenc(Hlast) ▷ Shape: (B,L,Nscales · dembed)
13: Htime ← RESHAPE(Htime, (B,L,Nscales, dembed))
14: Ltotal ← 0
15: for i = 1→Nscales do
16: H

(i)
time ← Htime[:, :, i, :] ▷ Shape: (B,L, dembed)

17: Logits(i) ← H
(i)
time · (W

(i)
embed)

T

18: Y
(i)

next ← Ynext[:, :, i]

19: Ltotal ← Ltotal + CROSSENTROPYLOSS(Logits(i), Y (i)
next)

20: Lnext time ← Ltotal/Nscales
▷ Part B: Time-Conditioning for Foresee Objective

21: T ′
current ← UNSQUEEZE(Tcurrent, dim = 2) ▷ Shape: (B,L, 1)

22: ∆Tforesee ← Tforesee − T ′
current

23: Cforesee ← DECOMPOSETIME(∆Tforesee, P eriods) ▷ Shape: (B,L,Nforesee, Nscales)
24: Etime list ← []
25: for i = 1→Nscales do
26: C

(i)
foresee ← Cforesee[:, :, :, i]

27: E
(i)
time ← LOOKUP(W

(i)
embed, C

(i)
foresee) ▷ Shape: (B,L,Nforesee, dembed)

28: Append E
(i)
time to Etime list

29: Etime ← CONCATENATE(Etime list, dim = −1) ▷ Shape: (B,L,Nforesee, Nscales · dembed)
30: Htime cond ← FFNdec(Etime) ▷ Shape: (B,L,Nforesee, dmodel)
31: H ′

last ← UNSQUEEZE(Hlast, dim = 2) ▷ Shape: (B,L, 1, dmodel)
32: Hfused ← LAYERNORM(H ′

last +Htime cond)
33: Hconditioned ← LAYERNORM(Hfused + FFNfinal(Hfused))
34: return Lnext time, Hconditioned

35: function DECOMPOSETIME(∆T, Periods) ▷ Helper function for time decomposition
36: R← ∆T
37: Labels← []
38: for scale in REVERSED(Periods.keys()) do
39: Lscale ← R // Periods[scale] ▷ Integer division
40: R← R % Periods[scale] ▷ Modulo operation
41: Lscale ← CLAMP(Lscale,min = 0,max = Cscale − 1)
42: Prepend Lscale to Labels

43: return STACK(Labels)
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C DATA AND PREPROCESSING

C.1 DATASET: MIMIC-III

MIMIC-III (Johnson et al., 2016a;b) is an openly accessible resource that contains de-identified
clinical data from more than 40,000 individuals admitted to the intensive care units of Beth Israel
Deaconess Medical Center between 2001 and 2012. The dataset encompasses a wide range of
information, including patient demographics, hourly vital sign recordings, laboratory measurements,
administered treatments and procedures, prescribed medications, clinical notes, radiology reports,
and outcomes such as in-hospital and post-discharge mortality.

The MIMIC-III database was de-identified in compliance with Health Insurance Portability and
Accountability Act (HIPAA) standards through data cleansing and systematic date shifting. To
preserve clinical intervals, patient-specific dates were consistently shifted into the future by a random
offset, placing admissions within the years 2100–2200 while retaining the original time of day,
weekday, and approximate seasonality. For patients older than 89, dates of birth were modified such
that their recorded ages exceed 300 years, thereby masking their true age in accordance with HIPAA
requirements. This modification provides a suitable framework for our Dual-Calendar RoPE, which
is designed to address calendrical time, to operate effectively.

C.2 FEATURE SELECTION

Electronic Health Records (EHRs) are rich with events that have a numerical Value, a characteristic
that distinguishes them from natural language. Consequently, our experiments focused on events
that possess a numerical Value. We utilized 17 vital sign features from the CHARTEVENTS.csv
file, following the selection in Harutyunyan et al. (2019), and the top 100 most frequently measured
laboratory tests from LABEVENTS.csv as the events for our study. These features are detailed in
Table 7. In addition, patient events such as “hospital admission”, “ICU transfer (ICU in)”, “ICU
discharge (ICU out)”, and “hospital discharge” were utilized.

C.3 FURTHER PREPROCESSING

In addition to the preprocessing of Harutyunyan et al. (2019), we made the following modifications:
(1) removed outlier values in the laboratory data based on independent evaluations by three physi-
cians and standardized the measurement units; (2) excluded hospitalization episodes with fewer than
10 events; and (3) added an anchor token with a timestamp of January 1st, 00:00 of the same year
before each admission token to serve as a calendrical time reference. As a result, the lengths of
patients’ medical histories follow the distribution shown in Figure 7.

D BACKBONE, BASELINES, PRE-TRAINING DETAIL

D.1 BACKBONE ARCHITECTURE

The backbone model used in this study follows a standard decoder-only transformer architecture.
To minimize performance variations caused by differences in backbone models and to quantitatively
assess the effectiveness of our proposed training methodology, we used the same backbone across
all experiments. However, for models trained with Transformer encoders using the masked language
modeling approach (HEART, TRADE), we removed the causal mask during pre-training so that they
could be used as encoder models. The backbone details are as follows:

• Vocabulary Size: 166 (1219 if not share bin)

• Embedding and Hidden Dimension (dmodel): 512

• Number of Decoder Layers (N ): 6

• Number of Attention Heads: 8

• Dimension per Head: 64

• Dimension of K, Q: 64 (Ours: first 24: positional RoPE / last 40: calendrical time RoPE)
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Table 7: Selected features from MIMIC-III used in this study.

Category Features
Ethnicity - # 10
(from ADMISSIONS.csv) White, White - Russian, White - other European, Asian, Asian - Chinese,

Hispanic or Latino, Hispanic/Latino - Dominican, Black/Cape Verdean,
Black/African American, Others or Unknown

Vital Signs - # 17
(from CHARTEVENTS.csv) Capillary refill rate (CRR), Systolic blood pressure (SBP), Mean blood

pressure (MBP), Diastolic blood pressure (DBP), Fraction of inspired
oxygen (FiO2), Heart rate (HR), Respiratory rate (RR), Glasgow coma
scale eye response (GCS-E), Glasgow coma scale motor response (GCS-
M), Glasgow coma scale verbal response (GCS-V), Glasgow coma scale
(GCS), Serum glucose, O2 saturation, Blood pH, Body temperature,
Height, Weight.

Laboratory Tests - # 100
(from LABEVENTS.csv) Hematocrit, Potassium, Sodium, Creatinine, Chloride, Blood urea nitrogen,

Bicarbonate, Platelets, Anion gap, White blood cell count, Hemoglobin
chemistry, Mean corpuscular hemoglobin concentration, Red blood cell
count, Mean corpuscular hemoglobin, Mean corpuscular volume, Red Cell
Distribution Width, Magnesium, Calcium Total, Phosphate, Base excess,
CO2 (ETCO2, PCO2, etc.), Partial pressure of oxygen, Partial pressure of
carbon dioxide, Partial thromboplastin time, Prothrombin time INR, Pro-
thrombin time, Calcium Free, Bilirubin Total, Alanine aminotransferase,
Asparate aminotransferase, Alkaline phosphate, Potassium blood gas, Lac-
tate, Lymphocytes, Neutrophils, Monocytes, Eosinophils, Basophils, Albu-
min, Creatine Kinase, Oxygen blood gas, Urine Specific Gravity, Creatine
Kinase-MB, Lactate dehydrogenase, Urine Protein, Urine Urobilinogen,
Urine Ketone, Urine Color, Urine Appearance, Urine Blood, Urine Biliru-
bin, Urine Nitrite, Urine Leukocyte, Hematocrit blood gas, Hemoglobin
blood gas, Troponin-T, Positive end-expiratory pressure, Urine Yeast,
Urine White blood cell count, Urine Red blood cell count, Urine Epithelial
cells, Band Neutrophils, Urine Bacteria, Sodium blood gas, Lipase, Amy-
lase, Estimated GFR, Hypochromia, Anisocytosis, Macrocytosis, Lympho-
cytes Atypical, Metamyelocytes, Myelocytes, Microcytes, Poikilocytosis,
Vancomycin (blood), Chloride blood gas, Polychromasia, Functional Fib-
rinogen, Bilirubin Direct, Bilirubin Indirect, Platelet Smear, Urine Crea-
tinine, Thyroid-stimulating hormone, Urine Sodium, Triglycerides, Gran-
ulocyte count, CK-MB Index, Phenytoin (blood), Alveolar-arterial gradi-
ent, Cholesterol Total, Urine osmolality, Osmolality, Uric acid, Choles-
terol HDL, Iron, Cholesterol ratio Total/HDL, Ferritin, Transferrin, Iron
binding capacity, HbA1C, Nucleated red cells, Cholesterol, Ovalocyte,
Urine Hyaline casts, Urine mucous, Cortisol, Urine urea nitrogen, Hap-
toglobin, Protein (Total), Vitamin B12, Benzodiazepine Screen, Barbi-
turate Screen, Tricyclic Antidepressant Screen, Troponin-I, Urine potas-
sium, Tacrolimus level, Schistocytes, Reticulocyte count, Ethanol, Urine
Chloride, Acetaminophen, Urine Cocaine, Urine Benzodiazepine screen,
Urine Amphetamine screen, Urine Opiate screen, Urine Barbiturate screen,
Urine Methadone, Bicarbonate blood gas, Salicylate, Urine Total pro-
tein, Teardrop cells, Cyclosporin, Folate, Burr cells, Sedimentation rate,
Digoxin, Thyroxine, Globulin, Urine protein/creatine ratio, NT-proBNP,
Urine Amorphous cristal, C-reactive protein, Large platelets, Urine Granu-
lar casts, Gentamicin, Target cell, Transitional epithelial cells, Fibrin degra-
dation, CSF Lymphs.
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Figure 7: Length distribution of tokenized histories per patient. Most are within 2048 tokens.
Lengths exceeding 10k tokens are not shown.

• Feed-Forward Network (FFN) Inner Dimension (dff): 2048

• Total Parameters (Backbone): 19,001,344 (19,060,736 if not share bin)

• Activation: ReLU (Agarap, 2018)

Each decoder layer is composed of two main sub-layers: a multi-head self-attention block and a
feed-forward network. For training stability, the model adopts a Pre-Layer Normalization (Pre-
LN) structure, where Layer Normalization is applied to the input of each sub-layer. A residual
connection is then employed around each of the two sub-layers.

D.2 BASELINE MODELS

We compared our model with baselines that utilized either Time or Value in their training: HEART,
FM4EHR, MOTOR, STraTS, EHRSHOT, TRADE, EHRMamba, and ETHOS. The backbone for
each model was standardized as described above, while other methodologies (binning, tokenization,
positional embedding, learning objective, etc.) followed their original papers. The reproduction
details are as follows.

HEART (Total Parameters: 20,204,180)

• Backbone: Uses a Transformer encoder due to its MLM-based loss.

• Bin Sharing: No, uses Value-Feature paired tokenization.

• Binning: 10-uniform binning.

• Positional Embedding: Absolute positional embedding—a learned positional embedding
of the visit index (0 for the patient’s first visit, 1 for the second, and so on).
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• Learning Objective: For each visit, event tokens (Value-Feature paired) are masked with
a probability of pmask = 0.15. The model is trained via a multi-class classification loss to
predict the masked token. This is trained separately for different event types (V/S, Lab).
Additionally, for unmasked events, values are altered with a probability of panomaly = 0.05,
and the model is trained with a binary classification loss to identify whether the value at
each position was altered.

FM4EHR (Total Parameters: 19,001,536)

• Backbone: Transformer decoder.
• Bin Sharing: Yes, Feature and Value are tokenized separately. Numeric values share bin

tokens across different features.
• Binning: 10-uniform binning.
• Positional Embedding: Uses rotary positional embedding based only on position, without

explicit time information.
• Learning Objective: Uses NTP loss.

MOTOR (Total Parameters: 20,341,952)

• Backbone: Transformer decoder.
• Methodology Adaptation: This model was originally designed for feature-only events

(e.g., diagnosis codes). To adapt it for continuous values, we set the “occurrence of an
abnormal measurement result” as the endpoint for its time-to-event loss. An abnormal value
was defined by either being outside the medical normal range (per Harrison’s Principles of
Internal Medicine (Kasper et al., 2015), evaluated by three clinicians) or being a statistical
outlier (e.g., top/bottom 5%).

• Bin Sharing: No, uses Value-Feature paired tokenization.
• Binning: 10-uniform binning was applied to the Value.
• Positional Embedding: The model converts each event’s timestamp into ’days since birth’

and applies this value in its rotary positional embedding.
• Learning Objective: Uses the Time-to-event loss from the original paper.

STraTS (Total Parameters: 19,374,801)

• Architecture: As this is an older paper, its structure is not suitable for parallel training. We
therefore modified the architecture while retaining the core ideas. We used the last hidden
state of the decoder at each time step as the event embedding, instead of the original Fusion
Self-Attention mechanism.

• Value and Time Embedding: This model does not use binning. Instead, it embeds Fea-
tures via a look-up table and continuously embeds Value and Time (in hours) via a 2-layer
fully connected layer. The resulting embeddings are summed to form the final event em-
bedding.

• Positional Embedding: No additional positional embedding is used beyond the Time in-
formation included in the event embedding.

• Demographics: Unlike typical models, STraTS encodes demographic information (gender,
race, age) with a separate MLP and concatenates it to the last hidden state.

• Learning Objective: The final embedding is used to predict the value of events occurring
within two hours of each event, trained with a mean squared error loss.

EHRSHOT (Total Parameters: 20,278,892)

• Backbone: Transformer decoder.
• Bin Sharing: No, uses Value-Feature paired tokenization.
• Binning: 10-uniform binning.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

• Positional Embedding: Following CLMBR-T Steinberg et al. (2021), it uses Rotary posi-
tional embedding based on position order. Time information is not used beyond ordering
for this component.

• Time Information: A 5-dimensional time vector is concatenated to the to-
ken embedding vector. This vector consists of the z-normalized values of
[age, log(age), days since admission, log(days since admission),first admission indicator].
The final concatenated vector length is 512.

• Learning Objective: Next token prediction modeling.

TRADE (Total Parameters: 21,617,664)

• Backbone: Uses a Transformer encoder due to its MLM-based loss.

• Bin Sharing: No, uses Value-Feature paired tokenization.

• Binning: 9-standard deviation-based binning. For each feature’s value distribution, thresh-
olds are set by adding {−10,−3,−1,−0.5, 0.5, 1, 3, 10} standard deviations to the mean,
creating 9 bins. This method can be sensitive to outliers, so additional clipping was
performed on 17 vital sign data points based on physician guidelines. The clipping
ranges are as follows: CRR:[0,1], SBP:[0,400], MBP:[0,300], DBP:[0,300], FiO2:[0,1],
HR:[0,200], RR:[0,100], GCS-E:[1,4], GCS-M:[1,6], GCS-V:[1,5], Glucose:[0,1200], O2
saturation:[0,100], Body temperature:[20, 45], Height:[0,1000], Weight:[0,1000].

• Positional Embedding: Absolute positional embedding—performs learned positional em-
bedding using three types of sequential and temporal information: 1) The index of the
current hospital admission, 2) The number of days passed since admission, and 3) The
current age. These are all integers, passed through an embedding layer, and then summed.

• Learning Objective: Uses a standard MLM methodology, masking each token with p =
0.2 and using the last hidden state of the masked position to predict the pre-mask label via
a classification loss.

EHRmamba (Total Parameters: 21,770,752)

• Backbone: Although the original paper uses Mamba, we applied the same Transformer
decoder backbone for a fair comparison.

• Bin Sharing: No, uses Value-Feature paired tokenization.

• Binning: 10-uniform binning (the original paper used 5-uniform binning, but we matched
the bin count for a fair comparison).

• Positional Embedding: Uses four types of absolute positional embeddings, which are
summed: (1) Learned PE based on the hospital visit number, (2) Learned PE based on
token type, (3) Time embedding based on age using the Time2Vec model (Kazemi et al.,
2019), and (4) Position-based sin/cos positional embedding from Vaswani et al. (2017).

• Learning Objective: Uses a next token prediction loss.

ETHOS (Total Parameters: 20,050,944)

• Backbone: Transformer decoder.

• Bin Sharing: Yes, Feature and Value are tokenized separately. Numeric values share bin
tokens across different features.

• Binning: 10-uniform binning.

• Time Information: Following the original paper, the time interval between each event is
converted into one of 13 discrete tokens, which are inserted into the sequence between
event tokens.

• Positional Embedding: Uses a learned positional embedding based on position.

• Learning Objective: Uses NTP loss.
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D.3 PRE-TRAINING DETAILS

Pre-training was conducted using the training dataset. The hyperparameters were fixed as follows:
the batch size was 64, and the number of training epochs was 50. We used the Adam (Adam et al.,
2014) optimizer with a learning rates of {5×10−4, 1×10−4, 5×10−5, 1×10−5}. A 50-step warmup
was employed, followed by a cosine annealing schedule that reduced the learning rate to 1/100 of
its initial value. Gradient clipping was applied with a threshold of 1.0. The training was performed
using either 4 NVIDIA A40 GPUs or 2 NVIDIA RTX PRO 6000 Blackwell GPUs, with Distributed
Data Parallel training at a per-GPU batch size of 16 or 32, respectively. The implementation was
based on Python version 3.12 and PyTorch (Paszke et al., 2017) version 2.8.0.

E DOWNSTREAM TASKS AND FINE-TUNING

E.1 DOWNSTREAM TASKS

Existing EHR foundation models generally lack generative capabilities, and thus evaluating perfor-
mance on diverse clinical downstream tasks has been a common practice (Fallahpour et al., 2025;
Huang et al., 2024; Burkhart et al., 2025; Renc et al., 2024). While our model possesses strong
generative properties, we follow the line of prior work and perform downstream task evaluations
to assess the quality of patient representations at each timestamp. We first adopted the four widely
used downstream tasks from the MIMIC-III benchmark (Harutyunyan et al., 2019): In-hospital
Mortality (IHM), Decompensation-death (Dec-D), Length of Stay (LOS), and Phenotyping (Phe).
For these tasks, labels were obtained following the original preprocessing pipelines. To further ex-
amine whether the model can capture patient states beyond simple deterioration, we added three
additional tasks: Decompensation-arrest (Dec-A), Oliguria/Anuria (HUO), and Vasopressor (Vaso)
use. Dec-A is similar to Dec-D, but includes arrest events from CHARTEVENTS.csv in addition
to death as decompensation events; the task aims to predict deterioration 24 hours in advance. HUO
labels indicate whether the patient currently exhibits oliguria or anuria. Specifically, oliguria is de-
fined as urine output below 0.5 mL/kg/hr for at least 6 hours, and anuria as below 0.1 mL/kg/hr
for at least 6 hours. Labels were set for patients with available weight and hourly urine output
data, while patients with incomplete information were excluded from training. Vaso labels indicate
whether a patient is currently receiving vasopressors. Positive labels were assigned if administra-
tion records for Vasopressin, Dobutamine, Epinephrine, Norepinephrine, or Dopamine were present
in INPUTEVENTS CV.csv or INPUTEVENTS MV.csv; negative labels were assigned if other
medications were administered but no vasopressors were recorded.

All downstream tasks were measured at the hospitalization level following the original papers (Haru-
tyunyan et al., 2019) (i.e., if a patient had multiple hospital admissions, each admission was treated
as a separate EHR sequence). Table 8 provides detailed statistics, including the number of hospital-
izations available for each task and the label distribution for each class.

E.2 FINE-TUNING DETAILS

The downstream tasks were trained by attaching a task-specific prediction head to the last hidden
state of the backbone, applied uniformly to our model and all baselines. Since labels must be in-
ferred using only information available up to each timestep, a causal mask was employed. We froze
the pretrained model and trained the prediction heads simultaneously. To evaluate generalization
performance under varying input distributions (e.g., absence of laboratory data), we experimented
with three settings: (i) the full set of 117 variables (17 vital signs + 100 laboratory measurements),
(ii) only 17 vital signs, and (iii) a reduced set of 6 vital signs (SBP, DBP, body temperature, heart
rate, respiratory rate, SpO2). For training, the original training set was split into train/validation
subsets with an 85:15 ratio; the train subset was used for optimization, while the validation subset
was used for early stopping and hyperparameter search. As in pre-training, the learning rate lr was
selected from 5× 10−4, 1× 10−4, 5× 10−5, 1× 10−5. The batch size was fixed 100. Training
was performed for 5 epochs with a 50-step warm-up followed by cosine annealing that decayed the
learning rate to 1/100 of its initial value.

Each task-specific prediction head consisted of a two-layer MLP. To account for label imbalance,
task losses were weighted according to label frequencies in the training dataset. For efficiency,
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Table 8: Prediction time and label counts for each downstream task. For binary classification, the
positive/negative counts are shown; for multiclass classification, the counts for each class are shown.
For tasks with multiple sub-tasks, each sub-task’s label counts are shown.

Task Prediction point # Hospitalization # Sub task & # Class Train labels Test labels

IHM 48h after ICU adm. 17,903 / 3,236 1 / 2 2424 / 15479 374 / 2,862
Dec-D Hourly 35,365 / 6,237 1 / 2 61,018 / 2,847,424 9,684 / 513,552
Dec-A Hourly 35,365 / 6,237 1 / 2 65,298 / 2,843,144 10,239 / 512,997

LOS Hourly 35,523 / 6,265 1 / 10

[cls1: 790,196, cls2: 503,423,
cls3: 316,774, cls4: 215,075,
cls5: 158,987, cls6: 124,146,
cls7: 100,890, cls8: 84,241,

cls9: 312,111, cls10: 319,619]

[cls1: 139,682, cls2: 90,478,
cls3: 56,289, cls4: 38,795,
cls5: 28,542, cls6: 22,225,
cls7: 18,077, cls8: 15,145,

cls9: 55,997, cls10: 60,710]

Phe End of stay 35,563 / 6,273 25 / 2

t1: 7,644 / 28,029
t2: 2660 / 33013
t3: 3657 / 32016

t4: 11434 / 24239
t5: 4821 / 30852
t6: 4675 / 30998
t7: 7349 / 28324
t8: 2565 / 33108
t9: 9550 / 26123

t10: 11497 / 24176
t11: 3444 / 32229
t12: 6869 / 28804
t13: 10362 / 25311
t14: 14922 / 20751
t15: 9617 / 26056
t16: 2573 / 33100
t17: 4775 / 30898
t18: 3170 / 32503
t19: 1816 / 33857
t20: 1435 / 34238
t21: 3080 / 32593
t22: 4970 / 30703
t23: 6468 / 29205
t24: 5118 / 30555
t25: 2779 / 32894

t1: 374 / 2862
t2: 1331 / 4945
t3: 415 / 5861
t4: 675 / 5601

t5: 2028 / 4248
t6: 831 / 5445
t7: 789 / 5487

t8: 1337 / 4939
t9: 442 / 5834

t10: 1683 / 4593
t11: 2074 / 4202
t12: 593 / 5683
t13: 1205 / 5071
t14: 1813 / 4463
t15: 2653 / 3623
t16: 1667 / 4609
t17: 495 / 5781
t18: 819 / 5457
t19: 556 / 5720
t20: 355 / 5921
t21: 272 / 6004
t22: 570 / 5706
t23: 852 / 5424
t24: 1111 / 5165
t25: 874 / 5402

HUO Hourly 11,891 / 2,187 2 / 2 t1: 148737 / 891153
t2: 148737 / 1053830

t1: 56102 / 162429
t2: 26682 / 191849

Vaso Hourly 35,438 / 6,249 1 / 2 202,765 / 2,747,736 36,306 / 494,215

downstream tasks were conducted in a multi-task setting where all seven tasks were jointly opti-
mized; the final objective was defined as the average of the task-specific losses. Since probing does
not allow training of new tokens, we instead introduced a <Birth> token at each timestep, serv-
ing the same role as the <SOS> token, and used its representation for task prediction. For baseline
models, we preserved their original binning and embedding procedures, while unifying the learning
objective to the downstream tasks. All downstream tasks were conducted on a single NVIDIA A40
GPU.

F RESULTS

F.1 DOWNSTREAM TASK RESULTS

Tables 9, 10, and 11 report the results of all downstream tasks. Table 9 presents the loss, number
of features used, and selected pretraining/downstream-task learning rate for each experiment, while
the remaining results are shown in Tables 10 and 11.

F.2 EHR GENERATION AND EVALUATION

We generated EHRs with a low temperature of 0.2. Below are examples generated from the same
initial EHR, shown in order for our model (Figure 8) and the ETHOS model (Figure 9).

Figure 10 shows the prompt we used for LLM-based evaluation.
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Table 9: Meta Information

Method Value sharing Downstream test-loss valid-loss train-loss Pre-training Downstream
# features LR LR

HEART X 117 5.3043 5.3681 5.3714 0.0005 0.0005
HEART X 17 5.4340 5.4604 5.4713 0.0005 0.0005
HEART X 6 5.8346 5.8703 5.8702 0.0005 0.0005
MOTOR X 117 4.9454 4.9020 4.9118 0.0001 0.0005
MOTOR X 17 5.2117 5.1570 5.1803 0.0001 0.0005
MOTOR X 6 5.6451 5.6455 5.6519 0.0001 0.0005

EHRSHOT X 117 5.8406 5.9138 5.9241 0.0005 0.0005
EHRSHOT X 17 6.0777 6.1018 6.1022 0.0005 0.0005
EHRSHOT X 6 6.3406 6.3509 6.3325 0.0005 0.0005

TRADE X 117 5.2599 5.2480 5.2807 0.0005 0.0005
TRADE X 17 5.4538 5.4529 5.4839 0.0005 0.0005
TRADE X 6 6.0481 6.0643 6.0702 0.0005 0.0005

EHRmamba X 117 5.1366 5.1603 5.2125 0.0005 0.0005
EHRmamba X 17 5.4389 5.4228 5.4678 0.0005 0.0005
EHRmamba X 6 5.9261 5.9404 5.9573 0.0005 0.0005

Ours (No value share) X 117 4.6861 4.6386 4.6273 0.0005 0.0005
Ours (No value share) X 17 4.9070 4.8621 4.8664 0.0005 0.0005
Ours (No value share) X 6 5.3675 5.3538 5.4045 0.0005 0.0005

FM4EHR O 117 6.4288 6.4611 6.4344 0.0005 0.0001
FM4EHR O 17 6.3888 6.4391 6.3969 0.0005 0.0005
FM4EHR O 6 6.3972 6.4394 6.4069 0.0005 0.0005
ETHOS O 117 4.9710 5.0374 4.9378 0.0005 0.0001
ETHOS O 17 5.2479 5.2044 5.1124 0.0005 0.0001
ETHOS O 6 5.5724 5.5714 5.5213 0.0005 0.0001
STraTS O 117 5.7857 5.8492 5.8505 0.0001 0.0005
STraTS O 17 5.8123 5.8335 5.8446 0.0001 0.0005
STraTS O 6 6.0711 6.0760 6.0834 0.0001 0.0005

Ours (Value share) O 117 4.8786 4.8954 5.0276 0.0005 0.0005
Ours (Value share) O 117 5.0430 5.0862 5.1887 0.0005 0.0001
Ours (Value share) O 6 5.5613 5.6554 5.7523 0.0005 0.0005
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G LLM USAGE CLARIFICATION

In addition to the uses of LLMs described in the main text, we employed them for summarizing con-
tent, translation, grammar correction, and sentence refinement during the writing of the manuscript.
In the early stages of the study, we used LLMs to search for related work, and the retrieved papers
were then read and verified by the researchers.
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Ours (share)

Birth : 1845. 05. 11
Sex: Female
Ethnicity: WHITE
Age: 300

2145-05-11 17:12:55
- ICU transfer
2145-05-11 17:30:00
- DBP : 62
- SBP : 103
- HR : 123
- MBP : 83
- RR : 4
2145-05-11 18:00:00
- DBP : 51
- HR : 110
- MBP : 73
- RR : 17
- SBP : 111
—-# Gen Start #—-
- O2 saturation : 90
- Weight : 54.2
- Temperature : 36.7
- GCS : 15
- GCS-M : 6
- GCS-E : 4
- GCS-V : 5
- O2 saturation : 92
- HR : 117
- SBP : 108
- Glucose : 261
- MBP : 76
- DBP : 50
- Anion gap : 15.0
- Bicarbonate : 24.0
- Calcium Total : 8.6
- Chloride : 105.0
- Creatinine : 0.9
- Magnesium : 1.8
- Phosphate : 2.7
- Potassium : 4.0
- Sodium : 142.0
- Blood urea nitrogen
: 12.0
- Hematocrit : 33.0
- Hemoglobin chem-
istry : 11.3
- Prothrombin time
INR : 1.10
- Mean corpuscular

hemoglobin : 31.0
- Mean corpuscular
hemoglobin concen-
tration : 34.4
- Mean corpuscular
volume : 90.0
- Platelets : 200.0
- Prothrombin time :
13.3
- Partial thromboplas-
tin time : 32.4
- Red Cell Distribu-
tion Width : 13.3
- Red blood cell count
: 3.74
- White blood cell
count : 12.20
- RR : 18
2145-05-11 19:00:00
- DBP : 56
- HR : 119
- MBP : 73
- O2 saturation : 92
- RR : 19
- SBP : 111
2145-05-11 20:00:00
- DBP : 50
- MBP : 76
- HR : 110
- RR : 19
- SBP : 111
- O2 saturation : 90
2145-05-11 21:00:00
- DBP : 51
- HR : 113
- MBP : 71
- O2 saturation : 93
- RR : 19
- SBP : 115
2145-05-11 22:00:00
- DBP : 50
- HR : 114
- MBP : 74
- O2 saturation : 89
- RR : 19
- SBP : 116
2145-05-11 23:00:00
- DBP : 51
- GCS-E : 4
- GCS-M : 6

- GCS : 15
- GCS-V : 5
- HR : 117
- MBP : 73
- O2 saturation : 92
- RR : 19
- SBP : 115
- Temperature : 36.9
2145-05-12 00:00:00
- SBP : 116
- RR : 19
- O2 saturation : 91
- HR : 118
- DBP : 53
- MBP : 74
2145-05-12 01:00:00
- DBP : 50
- HR : 116
- MBP : 76
- O2 saturation : 93
- RR : 18
- SBP : 113
2145-05-12 02:00:00
- HR : 111
- DBP : 49
- MBP : 74
- RR : 20
- SBP : 116
- O2 saturation : 92
2145-05-12 03:00:00
- DBP : 52
- GCS-E : 4
- GCS-M : 6
- GCS : 15
- GCS-V : 5
- HR : 119
- MBP : 72
- O2 saturation : 91
- RR : 20
- SBP : 109
- Temperature : 36.9
2145-05-12 04:00:00
- DBP : 50
- HR : 117
- MBP : 73
- RR : 18
- SBP : 113
- O2 saturation : 85
2145-05-12 05:00:00
- DBP : 49

- HR : 116
- MBP : 72
- O2 saturation : 79
- RR : 19
- SBP : 116
2145-05-12 06:00:00
- DBP : 47
- HR : 114
- MBP : 70
- O2 saturation : 92
- RR : 20
- SBP : 107
2145-05-12 07:00:00
- HR : 111
- DBP : 49
- GCS-E : 4
- GCS-M : 6
- GCS : 14
- GCS-V : 5
- MBP : 73
- O2 saturation : 93
- RR : 19
- SBP : 114
- Temperature : 36.6
2145-05-12 08:00:00
- DBP : 52
- HR : 112
- MBP : 71
- O2 saturation : 89
- RR : 19
- SBP : 114
2145-05-12 09:00:00
- DBP : 52
- HR : 116
- MBP : 76
- O2 saturation : 88
- RR : 20
- SBP : 110
2145-05-12 10:00:00
- DBP : 53
- HR : 113
- MBP : 75
- O2 saturation : 92
- RR : 20
- SBP : 111
2145-05-12 11:00:00
- DBP : 52
- GCS-E : 4
- GCS-M : 6
...

Figure 8: Temporal EHR history generated by our model (used value share version for fair compar-
ison). The data before this “—# Gen Start #—” marker is given, and the data after it is generated.
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ETHOS

Birth : 1845. 05. 11
Sex: Female
Ethnicity: WHITE
Age: 300

2145-05-11 17:12:55
- ICU transfer
2145-05-11 17:30:00
- DBP : 62
- SBP : 103
- HR : 123
- MBP : 83
- RR : 4
2145-05-11 18:00:00
- DBP : 51
- HR : 110
- MBP : 73
- RR : 17
- SBP : 111
—-# Gen Start #—-
- O2 saturation : 97
2145-05-11 18:30:00
- DBP : 51
- HR : 124
- MBP : 67
- O2 saturation : 97
- RR : 32
- SBP : 89
2145-05-11 19:10:00
- SBP : 80
- RR : 35
- O2 saturation : 96
- HR : 119
- DBP : 42
- MBP : 59
2145-05-11 19:45:00
- DBP : 44
- HR : 129
- MBP : 60
- O2 saturation : 90
- RR : 30
- SBP : 94
2145-05-11 20:15:00
- RR : 32
- SBP : 78
- O2 saturation : 93
- HR : 140

- DBP : 42
- MBP : 60
2145-05-11 20:45:00
- RR : 30
- SBP : 84
- O2 saturation : 93
- HR : 115
- DBP : 44
- MBP : 49
2145-05-11 21:25:00
- HR : 122
- MBP : 58
- O2 saturation : 93
- RR : 29
- SBP : 88
- DBP : 40
2145-05-11 22:05:00
- SBP : 81
- RR : 29
- O2 saturation : 87
- HR : 134
- DBP : 43
- MBP : 59
2145-05-11 23:00:00
- SBP : 88
- RR : 36
- O2 saturation : 91
- HR : 115
- DBP : 22
- MBP : 58
2145-05-11 23:30:00
- SBP : 84
- RR : 32
- O2 saturation : 92
- HR : 137
- DBP : 38
- MBP : 49
2145-05-11 23:45:00
- DBP : 39
- HR : 115
- MBP : 52
- O2 saturation : 91
- RR : 34
- SBP : 86
2145-05-12 00:15:00
- SBP : 88
- RR : 36

- O2 saturation : 85
- HR : 119
- DBP : 43
- MBP : 60
2145-05-12 00:30:00
- RR : 32
- HR : 114
- O2 saturation : 93
- SBP : 68
- MBP : 43
- DBP : 43
2145-05-12 01:00:00
- DBP : 42
- HR : 117
- MBP : 53
- O2 saturation : 92
- RR : 31
- SBP : 92
2145-05-12 01:50:00
- HR : 112
- O2 saturation : 90
- RR : 33
2145-05-12 02:40:00
- DBP : 39
- MBP : 48
- SBP : 91
2145-05-12 03:15:00
- DBP : 43
- HR : 120
- MBP : 43
- O2 saturation : 91
- RR : 38
- SBP : 94
2145-05-12 04:05:00
- RR : 29
- O2 saturation : 91
- HR : 116
- MBP : 51
- DBP : 38
- SBP : 88
2145-05-12 04:20:00
- RR : 30
- O2 saturation : 87
- HR : 123
- DBP : 42
- MBP : 54
- SBP : 89

2145-05-12 05:05:00
- HR : 115
- O2 saturation : 93
- RR : 29
2145-05-12 05:25:00
- DBP : 31
- MBP : 59
- SBP : 94
2145-05-12 06:25:00
- RR : 33
- O2 saturation : 92
- HR : 120
2145-05-12 06:45:00
- DBP : 27
- MBP : 55
- SBP : 83
2145-05-12 07:35:00
- HR : 119
- O2 saturation : 91
- RR : 29
2145-05-12 08:05:00
- DBP : 42
- MBP : 42
- SBP : 86
2145-05-12 09:05:00
- HR : 116
- MBP : 50
- O2 saturation : 92
- RR : 37
- SBP : 81
- DBP : 43
2145-05-12 10:00:00
- HR : 132
- O2 saturation : 92
- RR : 33
2145-05-12 10:15:00
- DBP : 35
- MBP : 55
- SBP : 94
2145-05-12 11:10:00
- DBP : 43
- HR : 136
- MBP : 34
...

Figure 9: Temporal EHR history generated by ETHOS. The data before this “—# Gen Start #—”
marker is given, and the data after it is generated.
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Under review as a conference paper at ICLR 2026

You are a physician with extensive ICU experience and an AI researcher familiar with text generation
models, such as LLMs.

In this survey, you will compare the quality of EHR texts generated by two different models from the same
initial patient history.

The quality of an EHR depends on whether the right clinical events occur at the right times. Please consider
both the timing of events and the appropriateness of the events themselves.

First, you will see a few sample ICU EHR texts. Then, for each pair of generated candidates (A and B),
you will be asked to decide which one appears more realistic.

<Sample EHR texts>
1. ## Sample 1 ##

2. ## Sample 2 ##

3. ## Sample 3 ##

<end of EHR samples>

<Evaluation candidate A>
## ETHOS generated Sample (Random order; Ours can be candidate A) ##

<Evaluation candidate B>
## Ours generated Sample (Random order; ETHOS can be candidate B) ##

<Compare two candidates>

Figure 10: LLM input prompt for generated EHR evaluation. We compared the generative perfor-
mance of our model and ETHOS on LLMs with this prompt.
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