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ABSTRACT

Electronic Health Records (EHRs) possess unique characteristics that differ sig-
nificantly from natural language. However, existing models have overlooked these
properties and largely relied on Natural Language Processing (NLP) approaches,
resulting in suboptimal performance. To address these limitations, we propose
a pretraining method designed to effectively capture the distinctive features of
EHRs. First, EHRs contain both clinically critical and less informative numerical
ranges. To reflect this, we introduce a Pathology-Focused Binning strategy that
emphasizes values with clinical significance. Second, both absolute timestamps
and relative time intervals are important in EHRs. To incorporate these temporal
aspects, we propose a Dual-Calendar Rotary Positional Embedding (RoPE) that
jointly encodes complementary temporal signals. Third, many medical applica-
tions require modeling long-term patient interactions. Accordingly, we extend
conventional next-token prediction with a Time-Conditioned Foreseeing (TCF)
objective, enabling the model to forecast long-range clinical events across multiple
temporal horizons. Our approach establishes the first genuine temporal generative
EHR model, advancing long-range clinical forecasting. It outperforms existing
EHR foundation models on seven diverse downstream tasks and enables realistic
and temporally consistent EHR generation. All code and models will be made
publicly available in the final version of the manuscript.

1 INTRODUCTION

Electronic health records (EHRs) are longitudinal records that comprehensively document a patient’s
medical history. EHRSs help clinicians assess patient conditions, coordinate diagnostic and therapeu-
tic interventions, and communicate with other healthcare providers (Hiyrinen et al.,|2008). One of
the key objectives in medical Al is to develop models that can learn from EHRs to perform various
clinical tasks. However, building such models is challenging due to the complex temporal depen-
dencies and the predominance of numerical data in EHRs (Nasarudin et al.,[2024). Recently, there
have been growing efforts to leverage large language model (LLM) training paradigms in building
EHR foundation models (Niu et al.,|2024). Despite these advances, approaches explicitly designed
to model the distinct characteristics of EHRs are still in their early stages of development.

EHRs consist of diverse clinical events—such as examinations, treatments, and diagnoses—that
are recorded with associated timestamps. Figure [T]illustrates an example EHR, where events are
arranged chronologically, and shows how these events can be transformed into a sentence of tokens.
Recent preprocessing approaches for EHRs commonly represent a single clinical event as a Time
(T), Feature (F), Value (V) triplet (Tipirneni & Reddyl 2022). Here, the Feature denotes
attributes such as diagnosis codes, prescribed medications, or laboratory tests (e.g., Systolic Blood
Pressure) and represented as a single token, while the Value corresponds to the result or auxiliary
information of the Feature (e.g., 87mmHg). Values are typically numerical but may also be
absent, or take the form of heterogeneous modalities such as text, depending on the Feature.
Despite the necessity of including all triplet components for a faithful representation of clinical
events, as indicated in the “data usage” column of Table [I] even the most recent EHR foundation
models often exclude Time or Value information due to modeling complexities (Yang et al.,[2024)).
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Figure 1: (Left) Extraction of raw patient data from the EHR database in chronological order. (Right)
Tokenization of each event (E) with triplet representation, where patient information is placed at the
beginning, Features and Values are tokenized, and timestamps remain continuous.

Recent EHR foundation models have improved performance on various downstream tasks through
large-scale pre-training. However, most of these models follow standard LLM training paradigms
without adapting to the structure and clinical semantics of EHR data (Burkhart et al., |2025)), which
differ from natural language. For example, converting temporal information into absolute positional
embeddings hinders capturing relative intervals and preserving clinically meaningful calendrical in-
formation (Likhomanenko et al., [2021)). Also, processing numeric Value through uniform binning
concentrates bins around normal ranges and reduces resolution for pathological states. Moreover,
most learning objectives are adopted from language modeling, such as next-token prediction (NTP)
or masked language modeling (MLM), without considering EHR-specific characteristics. To ad-
dress these limitations, we introduce improved binning, temporal embedding, and novel training
objectives tailored to EHR data and clinical planning process.

First, we introduce a simple yet effective Pathology-focused Binning for Value tokenization.
As shown in the “Value Binning” column of Table [T} most EHR models tokenize Value through
uniform binning. However, as illustrated in Figure 2JA, uniform binning assigns a large amount
of bins to physiologic ranges, while allocating only a few bins to clinically important pathologic
ranges, thereby limiting the ability to distinguish the severity of abnormalities. Other models rely
on false distributional assumptions of Gaussianity, and instead apply standard deviation (std)-based
binning (Zhu et al.l [2024) or z-normalization (Tipirneni & Reddy, 2022), making them vulnerable
to outliers, long-tailed, and dual peaks distributions common in EHR. To address this, we propose a
density-based binning that makes no distributional assumptions and focuses on pathological ranges.
In this approach, values in high-density physiologic zones are assigned lower weights, whereas
values in low-density pathologic zones receive higher weights. This design is suited for all value
distributions, and we are the first to apply such binning to EHR models.

Second, we introduce Dual-Calendar RoPE, a novel timestamp addressing method for EHRs. Un-
like language models, where tokens are assumed to be uniformly spaced, EHRs contain events with
highly irregular intervals. Clinically, both relative intervals and calendarical context—e.g., morn-
ing/afternoon or weekday/weekend—are important (body temperature is higher in the afternoon,
and dialysis complications are common after weekends (Fotheringham et al., 2020)). Also, mul-
tiple events may occur at the same time, such as laboratory tests recorded together. As shown in
Figure 2B, we partition the dimensions of rotary positional embedding (Su et al, [2024) to jointly
encode position and time, assigning calendrical components (e.g., minute, day, month) in increas-
ing units to the time dimension. This enables explicit modeling of distance relations such as “two
tests performed at the same time’ or “the same test performed at the same hour on different days.”
The “Time Addressing” column of Table[I|shows that conventional models have not fully addressed
crucial temporal information.

Finally, and most importantly, we propose a new learning objective, Time-Conditioned Foreseeing
(TCF). This objective aligns with the clinical process of treatment planning, and it enables, for the

'Suppose that SBP, 120mmHg, DBP, 80mmHg are recorded simultaneously. The position dimension pro-
vides additional support to prevent the model from confusing results such as SBP, 80mmHg, DBP, 120mmHg.
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Table 1: Comparison of recent EHR models by architecture and training objective. Data usage:
whether the model uses Time and Value information. Value binning: whether values are uniformly
binned (STraTS embeds values continuously) and whether bin tokens are shared across Features.
Time addressing: whether the model considers relative time intervals, calendrical time, and distin-
guishes concurrent events; same timestamps. Learning objective: type of loss, ‘Foresee’ - whether
model forecasts beyond the next-token, and ‘Temporal Generation’ - whether temporal generative
modeling is possible. Abbreviations*: MEP; missing entity prediction, TTE; time to event predic-
tion, TCF; time conditioned foreseeing. Refer to the related works section for details”.

[ [Data usage] | [Value Binning] | [Time addressing] \ [Learning Objective]

Models Event Numeric| Non- Value |Relative Calendrical  Non- Type  Foresee Temporal

Timestamp Value |uniform sharing |interval time  concurrency Generation
BEHRT (2020}
Med-BERT (2021}
Foresight (2024) X X - - X X - NTP&MLM X X
ClinicalMamba (2024)
EHR-BERT (2024)
HEART (2024 X MEP*
FM4EHR (2025) X o X 0 X X NTP X X
MOTOR (2024) [0) X - - [0) X X TTE* (¢} X
STraTS (2022) o] o (o] [¢) X X - MSE X X
EHRSHOT (2023) [0) [0) X X X X NTP X X
TRADE (2024) [0] [0] [0] X X X MLM X X
EHRMamba (2025) [0) [0] X X X X NTP&MLM X X
ETHOS (2024) (0] (0] X (6] AT X - NTP X AT
OURS [¢) [¢) [6) both (6] o 6] TCF* [¢) [¢)

first time, generative temporal modeling of a patient’s medical timeline. As shown in the “Learning
Objective” column of Table|l} prior models have relied on objectives designed for language models
or variants thereof, with the exception of the time-to-event (TTE) objective. Conventional EHR
models trained with NTP loss capture only P(Fj,cpt | Epast), without explicitly modeling temporal
information. Consequently, they cannot distinguish whether an event occurs minutes later or after
many hours, treating both urgent and routine vital sign measurements (short and long time intervals
respectively) identically as the ‘next token.’

In contrast, TCF explicitly models long-range temporal information, thereby capturing how real-
world clinical practice unfolds over time. In NLP, missing a single token disrupts grammar, and
consecutive tokens are tightly correlated. By contrast, neighboring EHR events are loosely con-
nected and often exhibit long-range dependencies, such as 8-hour follow-up tests. This reflects
clinical practice, where physicians do not always act in real time but instead devise broader clini-
cal plans. TCF embodies this principle: rather than the short-sighted scope of NTP, which predicts
only the immediate next event, TCF enables questions such as, “What intervention is needed in
the next six hours?” To achieve this, TCF module first generates the next timestamp from the last
hidden state. The multiple foreseeing timestamps are then fed back as module inputs, conditioning
subsequent token generation. This time-conditioned architecture allows simultaneous learning of
P(Thext | Epast) and P(Fforesees | Toresees, Epast), leading to improved performance.

Our model ranked first across all combinations of the three dataset configurations and seven diverse
downstream tasks. Across these tasks, the AUPRC was consistently improved, reaching up to 48%
higher than that of the second-best model, highlighting a clinically meaningful improvement given
the data imbalance. We also demonstrated that the model generates temporally stable, realistic EHR
records and is capable of leveraging the calendrical component in generative modeling.

Our contributions can be summarized as follows:
* Pathology-Focused binning: Introduces density-adjusted binning to the EHR foundation

model, focusing on clinically relevant pathologic ranges.

e Dual-Calendar RoPE: Simultaneously represents both calendrical time and positional in-
formation, allowing model to capture calendrical periodicity and event concurrency.

* Time Conditioned Foresee Objective: Enables clinically aligned foreseeing training and
temporal generative modeling of patient medical timelines.
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2 RELATED WORKS

EHR foundation models differ from medical specialist LLMs, which rely on patient history texts
summarized by clinicians. EHR foundation models learn directly from raw EHR events (Burkhart
et al.| 2025) and have been applied to various downstream clinical tasks (Table E])

A common practice in EHR modeling is to represent each EHR event as a triplet of Time,
Feature, and Value (Tipirneni & Reddy,[2022; Lee et al.,|2023)). However, many models exclude
temporal and numeric data, as they are difficult to handle in standard language model frameworks.
For instance, BEHRT (Li et al., 2020), Med-BERT (Rasmy et al., [2021]), and others rely solely on
discrete Features, omitting critical information and limiting their utility.

Some models incorporate numeric Values but omit Time. HEART (Huang et al.,[2024) discretize
Values into uniform bins, mapping Feature—Value pairs to single tokens. This approach in-
flates the vocabulary size, leading to data sparsity. FM4EHR (Burkhart et al.| [2025)) addresses this
by tokenizing Features and Values separately, allowing tokens to be shared.

In contrast, MOTOR (Steinberg et al., [2024) models Time but not Value, performing survival
analysis by treating each feature’s occurrence as an endpoint. Its utility is limited by its inability to
handle numeric values, low temporal expressiveness based on pre-defined intervals, unrealistic con-
stant hazard assumption, and a quadratic complexity that hinders practical application. Moreover,
encoding timestamp as ‘days since birth’ with RoPE does not account for calendrical time.

STraTS (Tipirneni & Reddyl 2022) tokenizes only the Feature, embedding Value and Time
as continuous variables to predict the next value. By modeling only P(V,cqt | Epast), it loses
important context and cannot support generative modeling.

TRADE (Zhu et al., 2024) and EHRmamba (Fallahpour et al., [2025) used MLM/NTP paradigms,
discretizing values and applying absolute positional embeddings to Feature and Value tokens.

ETHOS (Renc et al., 2024) tokenizes time intervals and insert time-interval tokens between events.
This coarse discretization limits medical precision, cause cumulative errors, and increases compu-
tational cost by lengthening the sequence. Unlike positional embeddings, it requires aggregating all
intervening tokens to determine a time duration. More details are provided in Appendix

To address these limitations, this work designs modeling strategies and learning objectives tailored
to the unique characteristics of EHR data.

3 METHOD

Pathology-Focused Binning. First, we estimate the value distribution non-parametrically using
a Gaussian Kernel Density Estimator (KDE). Vlfst denotes the list of all Values of Feature
), max(V;l,)] with X =

f in the training set. We uniformly partition the value range [min(Vl{s .

{x1,x9,...,2p}, where the inverval is 0.050. At each discrete point 2, € X, data density p(xy) is
calcuated with Gaussian convolution kernel from all value v; € Vlfst. The density is:
Vidse|

w2
play) = Z Ky (zr — vj), s.t. Kp(u) = exp (2(010)2)

This allows us to approximate the local density p(v) for any given value v. Then, we assign a weight
w(v) to each value that is inversely proportional to its density, effectively giving greater importance
to values in sparser region (w(v) o< p(v)~™; N > 1). In short, values in sparse regions are assigned
larger weights than those in dense regions.

Second, these density-based weights are used to construct the final value bins via weighted percentile
binning. In this step, the contribution of each unique value v; with a raw count of c; is scaled by its
weight w(v;), creating a weighted count ¢, := ¢; - w(v;).

Bin thresholds are then determined from the cumulative distribution of these weighted counts. As a
result, high-weight values from pathologic ranges command a larger share of the percentile space,
leading to a finer-grained partitioning in these clinically important areas (Figure 2JA). The detailed
methodology is described in Appendix
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C. Time Conditioned Foresee Objective
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Figure 2: (A) Uniform binning concentrates bins in dense, physiologic ranges. In contrast, our
density-based method allocates more bins to medically significant pathologic ranges. (B) Events at
the same time are distinguished by their positional distance. Events occurring at the same time on
different dates share the same representation for time units below a day but have different represen-
tations for units of a day or longer. (C) Illustrates TCF objective of a single timestep (actual model
training is fully parallel, like NTP). The TCF objective consists of Ly,cqt time and L fopcsee. The last
hidden state is passed through a time head to predict the interval to the next event in a calendrical
format (Lycqt time)- Then, the times to multiple future events are re-input and combined with the
last hidden state to predict the events at those specific times (L foresee)-

Dual-Calendar Rotary Position Embedding. Second, we propose a novel positional encoding
designed for the temporal characteristics of EHR (Figure [2). It jointly models the relative order
and calendrical interval by partltlonlng the dimension of each query and key vector, z € R<, into a
positional component x5 € R?es and a temporal component ,,, € R%ime (d = dpos + dn—me):

r = [xpos || xtime]

The z,,, component uses a standard RoPE to encode the relative token position, p. With a reduced
dimensionality (d — dp.s), it employs a truncated frequency spectrum. This strategic choice focuses
its role on disambiguating the order of co-occurring events sharing an identical timestamp, while
long-range dependencies are handled by the temporal component. The rotation angle is defined as:

(pos) __ p . _
00 = oo A0 L /2 1)

The core of our method, the x4, component, encodes the second-level timestamp ¢. This is
achieved using a predefined set of semantically meaningful calendrical periods (e.g., minute=60s,
hour=3600s,...; see Table for a full list). For each period s; in the set, a rotation angle QS;me) is
calculated as the phase of the event within that period:

gltime) _ <(mos])> 21, 5 €401, dyime/2 — 1},

. 5;

The two components are rotated independently using their respective angles and then concatenated
to form the final query vector ¢’ (and also for the key). This allows the attention mechanism to
simultaneously address both sequential order and calendrical time (More details in Appendix [B.2).

= [ROPE(gpos, 0P°*)) || ROPE(gtime, 04™))]
Time-Conditioned Foresee Objective (TCF). Lastly, we propose a novel learning objective to ef-

fectively model the temporal dynamics of EHR data. TCF employs a dual-objective structure (Fig-
ure W) that simultaneously learns to: (1) predict when the next event will occur (P (AT qext| Epast))
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and (2) foresee what event will happen at a specified future time (P (Fforesee| AT foresce; Epast)), unlike
NTP which only models P(Fhex|Epast)-

The TCF module is placed after the transformer backbone. It takes the final hidden state hj,y €
RImocel a5 inpuﬂ and outputs both a next time prediction loss and a conditioned hidden states for
future event prediction.

To generate a calendrical ground-truth label for AT, the time delta, expressed in seconds, is
transformed into an integer vector of dimension Ny.es. Each element of this vector corresponds
to a predefined calendrical time unit, ranging from 10-year to 1-minute (e.g., [, 5,7, .. .]
represents a time composed of « years, 5 months, 7y days, etc.).

To predict AT ex from hy,g, the last hidden is projected into #Ncaes vectors of size dempeq. Each of
these vectors is transformed into time-logit through the unembedding layer.
hiime = FFNene (higet) € RVotesdeme) _y (1y(0) A N ime-logits™ = n), - (WS )T

time time embed

Liexttime 18 Cross-Entropy loss between these {time-logitl(ize} ﬁ“f“ and the calendrical AT} labels,
averaged over Nyjes-

For foreseeing future events, a Time-Conditioning process is performed. We aim to predict the
Feature of Nyyesee future events. A given future time deltas, ATforesee, 18 first transformed into a
vector of integer labels (Cioresee € 7 Nioresee X Necates ) using the same multi-scale decomposition. These
labels are passed through embedding layers to produce a comprehensive time embedding, eime €
TR Nioresce X (Nscates-demped) Finally, this time embedding is fused with the original hidden state hj, via
a residual connection to produce a time conditioned hidden state, hconditioned-

Rconditioned = FFN(LayerNorm (hyas + FFN(€gime))) € R Viorese X cmocer

This heonditioned 1S projected to token-logit € RNwresexvocabsize that predicts the clinical event
(Feature) that occur at the corresponding future timestamps.

Loresee 18 Cross-Entropy loss between the future events and the token-logit, averaged over Nigpesee-
Through this dual-objective learning (£ = Lpexitime + Lroresee)> Our model acquires the ability to
accurately and generatively model a patient’s entire medical timeline.

So far, we have considered the position where Feature is predicted given the previous events.
Modeling Value given the previous events and Feature is carried out in the same manner. Since
F and V belong to the same event and thus share the time label, we always have AT = 0.
Moreover, because V' is conditioned on the preceding F', we predict Vo by modeling

P(Woresee | Aﬂoreseea FH0W7 Epast)

while inserting only a zero into ATjesee. More detailed explanation and tensor-level parallel pro-
cessing are provided in Appendix

3.1 DATA AND PREPROCESSING

Table 2: Data summary. Parentheses indicate

While many EHR models rely on private datasets .
cases where bins are not shared.

and often do not release their code or param-

eters—making reproduction and evaluation dif-  MIMIC-III preprocessed Train / Test
ﬁculF—we use a publicly available dataset and Total Patient # 28.72815.070
provide open-source code throughout all stages. "o ospitalization # 35730/ 6.295
Specifically, we employ the MIMIC-III Clinical Ty Events # 38.641.175 / 6.744.906
Database v1.4 (Johnson et al.| |2016a), which con-  Total Tokens # 77,109,833 / 13,459,430
tains comprehensive clinical data from over 30,000  Avg. length 2,684 /2,655
patients. We adopt the widely used preprocessing  Max length 393,337 /62,759
and train/test split pipeline introduced by Harutyun-| ~ Unique Tokens # 155 (1,208)
yan et al| (2019). A summary of the dataset is pro- ~ Token # bin 10
vided in Table 2] Further details are provided in ¥otenzet_ltlriic_ity }(7)

: : : S : OoKen # vital s1gns
Appendix [C] Tasks necessitating clinical judgment, Token # laborat%ry rests 100

such as defining exclusion criteria and outlier re-

moval, were independently reviewed by an internist, an otolaryngologist, and a general physician.

’In practice, the full last hidden state Hi, € REBXEXdmoaet jg processed in parallel, similar to the NTP.
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3.2 BACKBONE ARCHITECTURE, BASELINE MODELS, AND PRE-TRAINING

We used a Transformer decoder as the backbone for all experiments. For Dual-calendar RoPE, the
first 24 dimensions of the 64-dim K and Q vectors encode positional information, and the remaining
40 dimensions encode calendric time. Baseline models were reproduced under identical conditions,
including backbone and training data. We mostly followed the original papers’ implementations but
made necessary modifications where direct application was infeasible (e.g., adapting the MOTOR
model to numeric value events). The pre-training input token length was fixed at 2048. Sequences
exceeding this length (Appendix Figure [/) were segmented with a 512-token overlap, and we en-
sured that a single event’s F and V were not split at the segmentation point. A detailed description
of our model, baselines, and pre-training can be found in Appendix [D]

4 RESULT
4.1 DOWNSTREAM TASK AND FINE-TUNING

Table 3: Results on downstream tasks using EHR datasets with 117, 17, and 6 features. The Test loss
column reports the overall test loss for each feature set (lower is better). For 117 features, we report
performance on seven downstream tasks ranging from IHM to Vaso. Binary classification tasks are
measured by AUROC (ROC) and AUPRC (PRC), while multiclass tasks are evaluated with macro
F1 (Ma-f1) and Cohen’s Kappa. For tasks with multiple subtasks, both macro and micro AUROC
are reported. We trained our model with and without value sharing; in both cases, it outperformed
all other baselines. Full downstream task results are provided in Appendix Table E]-@)

Tasks | TestLoss({) | IHM | Phe | Dec-death | Dec-arrest | LOS | HUO | Vaso
Metric | 117 17 6 |ROC PRC|macro micro| ROC PRC|ROC PRC|Ma-fl Kappa|macro micro| ROC PRC
% HEART 5.304 5.434 5.835|0.838 0.442| 0.717 0.718]0.869 0.205|0.862 0.199| 0.150 0.142| 0.703 0.701|0.865 0.363
<|MOTOR 4.945 5.212 5.645|0.872 0.547| 0.770 0.773]0.904 0.272|0.889 0.261| 0.174 0.163| 0.753 0.748]0.891 0.438
g EHRSHOT 5.841 6.078 6.341/0.801 0.433| 0.634 0.633(0.829 0.167|0.802 0.153| 0.101 0.115| 0.701 0.614|0.867 0.341
§ TRADE 5.260 5.454 6.048/0.828 0.441| 0.738 0.738(0.867 0.170{0.857 0.165| 0.158 0.151| 0.732 0.731{0.869 0.393
| EHRmamba 5.137 5.439 5.926/0.868 0.557| 0.690 0.687(0.901 0.277{0.886 0.260| 0.150 0.159| 0.751 0.753|0.873 0.399
Z
‘Ours (No share)\4.686 4.907 5.367‘().889 0.607‘ 0.809 ().816‘0.928 ().400‘().917 0.388‘ 0.181 0.185‘ 0.776 ().781‘0.912 0.498
g FM4EHR 6.429 6.389 6.397/0.617 0.177| 0.530 0.519(0.744 0.075]0.778 0.102| 0.023 0.003| 0.598 0.653]0.690 0.130
<|ETHOS 4.971 5.248 5.57210.859 0.530| 0.739 0.746]0.900 0.311/0.890 0.304| 0.170 0.165| 0.721 0.731|0.890 0.437
2|STraTS 5.786 5.812 6.071/0.759 0.311] 0.656 0.661(0.840 0.141{0.804 0.103| 0.123 0.121] 0.590 0.598|0.864 0.331
§‘Ours (Share) ‘4.879 5.043 5.561‘().876 0.559‘ 0.781 0.784‘0.910 ().319‘().902 0.310‘ 0.173 0.170‘ 0.749 ().755‘0.906 0.470

We evaluated our model on a range of clinical downstream

tasks commonly used in EHR model evaluation. These Table 4: Ablation study on Pathology-
tasks, defined by clinical labels excluded from training, Focused Binning (Binning), Dual-
are not direct measures of generative modeling perfor- Calendar Rotary Positional Em-
mance but serve as proxies for the quality of patient rep- pedding (Embedding), and Time-
resentations. In addition to the four MIMIC-IIT bench-  Conditioned Foreseeing (Objective).

mark (Harutyunyan et al., 2019) tasks—In-hospital Mor-

tality (IHM), Decompensation-death (Dec-death), Length “ginning  Embedding Objective  Test loss

of Stay (LOS), and Phenotyping (Phe)—we included three v v v 2636
additional tasks: Decompensation-arrest (Dec-arrest), Olig-  Uniform \Y% A 4713
uria/Anuria (HUO), and Vasopressor (Vaso) use. Label  Uniform  RoPE v 4.810

Uniform RoPE NTP 5.241

counts for all tasks are provided in Appendix Table |8} with
detailed descriptions in Appendix

Downstream task-specific prediction heads were attached to the backbone. Since labels must be
inferred using only information up to each timestep, a causal mask was applied for all baselines.
To evaluate generalization to data with different distributions (e.g., missing lab information), we
experimented with three input configurations: all 117 features, 17 vital signs (without lab data), and
only 6 vital signs (SBP, DBP, body temperature, heart rate, respiratory rate, SpO2). Please refer to
Appendix [E.2|for more details.

Table E] summarizes the results on downstream tasks. To ensure fair comparison, we trained our
model with and without value sharing and compared each setting to the corresponding baselines. In
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—— Ours (No share) (AUROC=0.890)
Ours (No share) 95% CI [0.874-0.905]
—— MOTOR (AUROC=0.872)
MOTOR 95% CI [0.855-0.890]

In-hospital Mortality

= Ours (No share) (AUROC=0.816)
Ours (No share) 95% CI [0.813-0.818]
—— MOTOR (AUROC=0.773)
MOTOR 95% Cl [0.770-0.776]

Phenotyping (micro)

= Ours (No share) (AUROC=0.928)

Ours (No share) 95% Cl [0.925-0.930]
—— MOTOR (AUROC=0.904)

MOTOR 95% CI [0.901-0.906]

Decompensation-death

= Ours (No share) (AUROC=0.917)
Ours (No share) 95% CI [0.914-0.920]
—— MOTOR (AUROC=0.889)
MOTOR 95% CI [0.887-0.892]

Decompensation-arrest

= Ours (No share) (AUROC=0.825)
Ours (No share) 95% CI [0.824-0.826]
—— MOTOR (AUROC=0.794)
MOTOR 95% CI [0.793-0.795]

—— Ours (No share) (AUROC=0.734)
Ours (No share) 95% CI [0.732-0.737]
—— MOTOR (AUROC=0.711)
MOTOR 95% CI [0.709-0.714]

= Ours (No share) (AUROC=0.818)
Ours (No share) 95% CI [0.815-0.821]
—— MOTOR (AUROC=0.794)
MOTOR 95% CI [0.791-0.797]

= Ours (No share) (AUROC=0.912)
Ours (No share) 95% CI [0.911-0.913]
—— MOTOR (AUROC=0.891)
MOTOR 95% CI [0.889-0.892]

Length of Stay; class 1

HUO; Oliguria

HUO; Anuria

Vasopressor

Figure 3: AUROC curves of our model and the second-best baseline, with 95% confidence intervals
estimated via bootstrapping. LOS was evaluated as a binary classification for the first class, and

Phenotyping was assessed using micro-ROC. For HUO, both oliguria and anuria are presented.

both cases, our model consistently outper- # [ Ours (Value share) ] #[ ETHOS ]
formed all baselines across the three input con-
figurations and all downstream tasks. Notably,
for the decompensation task, which predicts
patient death or arrest up to 24 hours in ad-
vance, our model achieved an AUPRC nearly
50% higher than that of the second-best model.
Given the severe class imbalance in these tasks
(positive:negative ratio of 1:40), this represents
a significant improvement in real-world clinical
settings where high precision is crucial. Addi-
tionally, the ablation study (Table[d) shows that
all three of our proposed methods contribute ~GCS - 3 _GCS : 3
substantially to the performance improvement. -GCS-M: 1 -GCS-M: 5
- Temperature : 38.3 -GCS-E:2
Figure [ shows the ROC curves with 95% con- -GCS-E: 1 - Temperature : 38.2
fid nterval firmine that dol | 2136:10-02 14:04:00 -HR:74
ence intervals, conlirming that our mode - Potassium (ER) : 3.5 2136-10-02 14:50:00
achieves statistically significant improvements -PO2:492.0 -RR: 15
) : -PEEP:5.0 -SBP: 96
over the second-best model in most tasks. The T Con 260 o0 <aturation « 100
complete results for all three input configura- -pH : 7.44 _MBP: 89
tions can be found in Appendix [F. - Base excess : 1.0 -DBP: 50
pp - Hemoglobin (ER) : 10.1 -HR:78
-PCO2:37.0 2136-10-02 15:35:00
2136-10-02 14:10:00 -RR:28
4.2 TEMPORAL GENERATIVE MODELING “SBP: 104 - 02 saturation : 96
-RR: 15 2136-10-02 16:45:00
Our model is the first to generate fine-grained ‘1(\)4%5;““(‘3“"“ £99 - ggg ‘Eg |
. . o« . - 0 - -E
temporal information and clinical events con- _DBP: 45 _DBP: 80
ditioned on time, demonstrating strong tem- | 2136-10-02 15:00:00 -GCS-M : 3
: : -SBP: 125 - O2 saturation : 96
pora} generative quehng of EHR data. To e, MBP: 86
qualitatively assess its effectiveness, we com- - 02 saturation : 100 -HR: 76
pared it (share ver. for fair comparison) - MBP : 76 - SBP: 139
- HR : 80 (truncated rest) - GCS-V : 1 (truncated rest)

with ETHOS, which, despite limitations in
temporal modeling, is one of the few ap-
proaches capable of generating temporal infor-
mation. Since ETHOS outputs time range to-
kens, timestamps were sampled and rounded
to the nearest 5 minutes to match the reso-

Figure 4: Given the initial record (orange), the
subsequent medical history is generated (blue).

PEEP: Positive end-expiratory pressure,

emergency lab.

ER:
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lIution of MIMIC-III (only for ETHOS). For both models, binned measurement values were
decoded to actual values by sampling from the empirical distributions of the training data.

Figure [] presents generated medical history sequences
from our model and ETHOS, given the same initial EHR

I Ours Tie Il ETHOS .
records. From a content perspective, the Glasgow Coma

Ph‘sicians

B  Scale (GCS) should equal the sum of GCS-E/V/M. At 10-

Non-medical people 02 14:00, our model generated E:1, V:1, M:1; GCS:3,
LLMs u correctly capturing this relationship, whereas ETHOS pro-
duced E:2, V:1, M:5; GCS:3, which is inconsistent. More-

0 100 over, our model reflected early emergency labs and a va-

Figure 5: Generated patient EHRs riety of tests, followed by routine vital sign checks, while
ETHOS generated no labs. From a temporal perspective,
our model first performed several tests at short intervals af-
ter admission, then naturally returned to an hourly routine.
In contrast, ETHOS produced events at irregular intervals
and often failed to follow the typical hourly schedule.

were evaluated by five physicians
and five non-medical participants and
four LLMs, with 100 comparison re-
sponses collected for each category.

We further evaluated 100 generated samples with three evaluator groups: physicians (n=5), non-
medical participants (n=5), and commercial LLMs (n=4; ChatGPT (via API, accessed Sep 2025),
Gemini 2.5 Flash (via API), 2.5 Pro (via API), Claude 4 Sonnet (via API)). After reviewing up to 10
ground-truth EHR samples, each group assessed subsequent EHR records generated from the same
initial records. Figure [5]shows that our model consistently outperformed ETHOS. The LLM input
prompts and the generated samples are presented in Appendix

To verify whether our model effectively integrates calendrical information, we generated vital signs
conditioned on time across a 24-hour window (00:00-24:00) based on the same patient history.
Figurel[6illustrates that our model generated higher heart rate and temperature values during daytime
hours, reflecting realistic circadian variation. In contrast, ETHOS, even for the control variable
Height, produced clinically implausible patterns across all cases.

Height
w— OQurs
=— ETHOS

Heart rate
’ — QUIS
e ETHOS

Temperature

w— OQUrS.
' = ETHOS

Respiratory rate
' — Ours
e ETHOS

) 3 6 9 121518 21 2¢) 3 6 9 12 1518 21 2¢) 3 6 9 12 15 18 21 2¢) 3 6 9 12 15 18 21 2¢

Figure 6: Assessment of the model’s ability to capture calendrical temporal patterns. Heart rate,
body temperature, and respiratory rate are physiologically higher during the day and lower at night.
Using these three features along with height as a control, we let the model sequentially generate
predictions across 00:00-24:00, averaged over 1,000 test samples.

5 CONCLUSION

We present a novel approach for modeling the unique characteristics of Electronic Health Record
(EHR) data, including irregular time intervals and complex numerical values. This work introduces
three key contributions: Pathology-Focused Binning to emphasize clinically significant numerical
ranges, Dual-Calendar Rotary Position Embedding (RoPE) to encode relative and absolute calen-
drical time, and a Time-Conditioned Foreseeing (TCF) training objective. TCF enables temporal
generative modeling by predicting future timestamps and forecasting events, reflecting clinical plan-
ning. Our model outperforms existing foundation models on seven downstream tasks with up to 48%
improvement in AUPRC, while generating realistic and temporally consistent EHRs for long-range
clinical forecasting. Limitations: There is currently no established metric to evaluate the temporal
generative performance of EHR models. Assessing the appropriateness of timing is crucial, making
conventional methods used for evaluating LLM generation difficult to apply. Developing quantita-
tive evaluation metrics for EHR generation will be important for advancing EHR foundation models.
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Appendix

A  ADDITIONAL RELATED WORKS

The pursuit of powerful and versatile foundation models for Electronic Health Records (EHRs) has
led to a rapid evolution of modeling techniques. Current models drew heavily from advancements in
Natural Language Processing (NLP), treating EHR data as sequences of discrete events. However,
the unique characteristics of EHRs—specifically their sparse, irregularly sampled nature, and the
continuous numerical values—have necessitated the development of more specialized architectures
and learning objectives.

EARLY APPROACHES: MODELING CATEGORICAL EVENT SEQUENCES

The initial wave of EHR foundation models adapted the successful Transformer architecture from
NLP to the clinical domain. These models primarily focused on learning representations from se-
quences of medical codes, such as diagnoses, procedures, and medications, while largely omitting
numerical and temporal data.

BEHRT (Li et al.,2020) (Transformer for Electronic Health Records) introduced the use of the Bidi-
rectional Encoder Representations from Transformers (BERT (Devlin et al., 2019)) architecture for
EHR data. It treats a patient’s EHR as a sequence of “sentences,” where each sentence is a collec-
tion of medical codes from a single visit. BEHRT is pre-trained on a large dataset of patient records
using a Masked Language Model (MLM) objective, where the model learns to predict masked med-
ical codes based on their context. An additional task, Next Visit Prediction (NVP), was also used to
predict the codes for a subsequent visit. While effective for tasks like disease prediction, BEHRT’s
exclusion of numerical values and timestamps limits its clinical utility, as it cannot capture disease
severity or the precise timing of events.

Med-BERT (Rasmy et al.,[2021) followed a similar approach to BEHRT, applying the BERT archi-
tecture to structured EHR data. It also represents patient histories as sequences of medical codes and
uses an MLM pre-training objective to learn contextualized embeddings. Med-BERT demonstrated
strong performance on various downstream tasks, including disease prediction and patient mortality
prediction. However, like BEHRT, it does not explicitly model the temporal intervals between vis-
its or the continuous values of lab tests, which are crucial for a comprehensive understanding of a
patient’s health trajectory.

EHR-BERT (Niu et al., |2024) is another BERT-based model that focuses on detecting anomalies in
EHR data. It learns the typical patterns of medical events and flags deviations from these patterns
as potential anomalies. While its primary application is in data quality and fraud detection, it shares
the same fundamental limitations as other early BERT-based models in its handling of EHR data, as
it does not incorporate numerical or temporal information into its core architecture.

Further including code-based models: ClinicalMamba (Yang et al., |2024), and Foresight (Kralje-
vic et al. 2024)), these models established the viability of large-scale pre-training for EHR data
and demonstrated the power of the Transformer architecture in capturing the complex relationships
between medical events. However, their reliance on a purely categorical representation of patient
histories highlighted the need for more sophisticated methods that could incorporate the rich numer-
ical and temporal information present in EHRs.

INCORPORATING NUMERIC VALUES

Recognizing the limitations of purely categorical models, subsequent research focused on integrat-
ing continuous numerical values, such as lab results and vital signs, into the modeling process. A
common approach has been to discretize these values into a set of predefined bins, allowing them to
be treated as discrete tokens within the existing language modeling framework.

HEART (Huang et al.,[2024) employs this discretization strategy. They convert numeric values into a
fixed number of uniform bins (e.g., 10 bins) and create a unique token for each “feature-value” pair.
This allows them to capture the magnitude of numerical measurements to some extent. However,
this approach has two major drawbacks. First, it leads to a massive increase in the vocabulary size,
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as each feature needs its own set of value-specific tokens. This exacerbates data sparsity issues and
increases the model’s memory footprint. Second, uniform binning can be suboptimal, as it focuses
on the non-significant range of clinical values and may not provide sufficient resolution for clinically
significant changes.

FMA4EHR (Burkhart et al., 2025) (Foundation Models for Electronic Health Records) proposed a
more efficient method for handling numeric values. Instead of creating unique tokens for each
feature-value pair, FM4EHR separates the tokenization of features and values. This allows different
features to share the same set of value tokens, significantly reducing the vocabulary size and miti-
gating the data sparsity problem. This “value sharing” approach is a key innovation that allows for
more scalable and efficient modeling of numerical data. However, FM4EHR still does not explicitly
model the temporal aspect of EHR data, relying on the implicit ordering of events in the sequence.

ADDRESSING TEMPORAL INFORMATION

The timing of medical events is often as important as the events themselves. Another line of research
has focused on developing models that can explicitly receive temporal information of EHR data.

MOTOR (Steinberg et al.) 2024) (A Time-to-Event Foundation Model for Structured Medical
Records) is a model specifically designed for survival analysis and time-to-event prediction. It pro-
cesses sequences of medical codes and learns to predict the time to a future event of interest. (Note!
it does not take numerical value) MOTOR represents time by discretizing the time horizon into a set
of predefined intervals and models the hazard function within each interval. This allows it to capture
the temporal dependencies between events and make time-aware predictions. However, MOTOR’s
primary limitation is that it does not incorporate numerical values, which are often strong predictors
of patient outcomes. Additionally, its reliance on predefined time intervals and the assumption of a
constant hazard function within each interval can limit its temporal precision.

STraT$ (Tipirneni & Reddy, |2022)) (Self-Supervised Transformer for Sparse and Irregularly Sam-
pled Multivariate Clinical Time-Series) takes a different approach to modeling time and values. It
tokenizes only the categorical features and embeds the time intervals and numerical values as con-
tinuous variables. STraTs is trained using a Mean Squared Error (MSE) loss to predict the values of
different features at future time points. This allows it to handle irregularly sampled data and make
fine-grained predictions. However, by only predicting the next 2-hour value, STraT$ loses important
contextual information and cannot be used for generative modeling of entire patient trajectories.

TRADE (Zhu et al., 2024) (Predicting Risk of Alzheimer’s Diseases and Related Dementias with
Al Foundation Model on Electronic Health Records) also incorporates numerical values, and it uses
a non-uniform binning. It discretizes values into nine bins based on their standard deviation from
the mean. This approach is more clinically plausible than uniform binning, as it can better capture
extreme values that are often indicative of disease. However, TRADE does not employ value sharing,
which means it still faces the challenge of a large and sparse vocabulary.

EhrMamba (Fallahpour et al.| [2025) is a recent model that leverages the Mamba architecture, a type
of State Space Model (SSM), to efficiently process long EHR sequences. It tokenizes categorical
features and uses uniform binning for numerical values. It uses time2vec module Kazemi et al.
(2019) to capture temporal dependencies. The use of the Mamba architecture allows EhrMamba
to scale to much longer patient histories than Transformer-based models, which have a quadratic
complexity with respect to sequence length.

ETHOS Renc et al|(2024) (Zero-shot health trajectory prediction using transformer) introduces a
novel method for explicitly modeling the time intervals between events. It discretizes the time gaps
into 13 logarithmic bins, ranging from minutes to months, and inserts a special “time token” between
each event token in the input sequence. This allows the model to explicitly reason about the temporal
relationships between events. ETHOS also incorporates numerical values through binning and value
sharing. While this explicit time tokening is a significant step forward, it can increase the sequence
length and computational cost. Moreover, the discretization of time still imposes a limit on the
model’s temporal precision.
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B ADDITIONAL METHOD

B.1 PATHOLOGY-FOCUSED BINNING

This numerical value tokenization method is designed to create a granular representation for clin-
ically important pathologic values. This non-parametric approach assigns greater resolution to
sparse, low density value ranges without making distributional assumptions. The process consists
of two main stages: (1) value weight assignment via Kernel Density Estimation, and (2) weighted
percentile binning using these assigned weights.

B.1.1 VALUE WEIGHT ASSIGNMENT VIA KERNEL DENSITY ESTIMATION

The core principle is to assign low weights to values in high-density (physiologic) regions and high
weights to values in low-density (pathologic) regions. This is achieved by estimating the data density
for each medical feature and assigning a weight inversely proportional to this density.

For a feature with a set of values V' and standard deviation o, we define a set of discrete represen-
tative points X = {x1,xa,...,2 }. These points span the feature’s range [min(V'), max(V')] and
are spaced at uniform intervals of 0.050.

At each discrete point x5, € X, we estimate the data density p(z;) by applying a Gaussian convolu-
tion kernel. This is a form of Kernel Density Estimation (KDE), where the density at xj, is the sum
of influences from all unique data values v; € V. The density is:

V]

plxr) = ZKh(xk —vj)

Here, K}, (u) is an unnormalized Gaussian kernel defined as:

Kp(u) = exp (_;};)

The bandwidth h, which controls the smoothness of the density estimate, is set to h = 0.1o to
capture local variations.

From this density, we calculate a raw weight wyy(zx) = 1/(p(xx) + €) for each discrete point.
These weights are then normalized and clipped to produce the final weight:

. wraw(xk)
Weinal (Tg) = Min | —————"— Wax
ming Weaw (Tg)
where Wy, is a predefined ceiling (e.g., 10). Finally, each original unique value v; is assigned the

weight of its nearest discrete point, w(v;) = Wena (Tg+ ), where k* = arg miny, |v; — x|

B.1.2 WEIGHT CALCULATION AND NORMALIZATION

With weights assigned, we proceed to the binning stage. The goal is to partition the feature’s values
into B bins such that regions with higher weights are given more bins.

We start by calculating a weighted count c;- for each unique value v;:

¢j = ¢ - w(v;)

This new count reflects the value’s clinical importance as determined by its rarity. Next, we compute

the total weighted count for the feature, Cy,, = Z';Ql ch.
The bin thresholds are then determined from the cumulative distribution of these weighted counts.
For a set of sorted unique values v; < v < --- < v}y, the cumulative weighted count up to value
v is S = Zle c;. The threshold for the p-th bin (where p € {1,2,..., B — 1}) is set to the first
value vy, whose cumulative weighted share meets or exceeds the p/ B percentile:

T, = min{vy, | C‘S/Vk > %

total
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This procedure ensures that value ranges containing high-weight (pathologic) data contribute more
significantly to the cumulative sum. As a result, a smaller span of these values is needed to cross
a percentile boundary, leading to a denser allocation of bin thresholds in these clinically important

regions.

Algorithm 1 Density-Based Value Weight Assignment

Require:
item_counters: A map from item ID — {value: count}.
Wmaz: Maximum weight threshold (e.g., 10).

Ensure

value_weights: A map from item ID — {value: weight}.
1: Initialize value weights < ()

2: for

14:
15:

16:
17:

18:
19:
20:

21:
22:
23:
24:

25:

all item_id, counterin item_counters do
V' < sorted unique values from counter
C < corresponding counts for each value in V/
AllV alues + list of all values repeated by their counts
o « StandardDeviation(AllV alues)
if 0 = 0 then

itemweights < {v:1.0forv eV}

value weights[item_id] < item_weights

continue
h+<01xo > Set bandwidth for the Gaussian kernel
interval < 0.05 X o
Split Points < Generate points from min(V') to max (V') with interval

> Step 1: Kernel Density Estimation

densities < ()
for all split point = in Split Points do

v z—V;)?
p(r) ﬁ lezl1 Cj - exp (_( 2hé) )
densities.append(p(z))

> Step 2: Calculate, Normalize, and Clip Weights
Wraw < 1.0/(densities + 10710)
Wnorm < Wraw/ MiN(Wraw)

W final — c“p(wnornu 10; wmaw)
> Step 3: Assign weights to original values
item_weights «
for all value vin V do
closest_idx <+ arg miny, |Split Pointsy — v|
item.weightsv] < Winalclosest_idx)

value_weights[item_ id] + item weights

26: return value_weights
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Algorithm 2 Weighted Percentile Binning

Require:
item_counters: A map from item ID — {value: count}.
value_weights: The output from Algorithm T}
B: The desired number of bins (e.g., 100).
Ensure:
bin_thresholds: A map from item ID — a list of B — 1 thresholds.
1: Initialize bin_thresholds < 0
2: forall item_id, counterin item_counters do
3: V' < sorted unique values from counter
4: N « |V|
> Apply weights to counts for percentile calculation

5: if value_weights is provided then

6: C’" « [counter[v;] x value_weights[item_id][v;] forv; € V]

7: else > Uniform binning case
8: C’ < [counter|v;] forv; € V]

9: thresholds < alistof size B — 1

10: if N > B then

11 Céotal — Z c’

12: ! imulative < CumulativeSum(C")

13: forp=1to B—1do

14: target_count < Cj_,,, X p/B

15: idz < FindFirstindexWhere(C”, ... .. > target_count)

16: thresholds[p — 1] < V[idz + 1] > Handle edge cases
17: else > Apply specific assignment for sparse values (centering or striding)
18: thresholds < Generate thresholds based on sparse assignment logic

19: bin_thresholds[item.id] < thresholds
20: return bin_thresholds

B.2 DUAL-CALENDAR ROTARY POSITION EMBEDDING

To address the unique temporal characteristics of Electronic Health Record (EHR) data—namely, the
highly irregular event intervals and the clinical significance of calendrical time—we propose Dual-
Calendar Rotary Position Embedding (RoPE). This method extends the conventional RoPE by
partitioning the embedding dimension within each attention head to jointly encode both the relative
sequence order of tokens and their absolute calendrical time.

For a given query or key vector x € R in an attention head, we partition it into two subspaces:
a positional component x,,; € Réres and a temporal component Ty;,e € Rétime  where dj, =
dpos + dtime~

r = [xpos H xtime]
Each component is then rotated using a specialized RoPE variant before being concatenated back
together.

B.2.1 POSITIONAL DIMENSION ENCODING

The z,,, component, corresponding to the first d,,, dimensions, employs the standard RoPE for-
mulation. With a reduced dimensionality of dp,s, this component does not rescale its rotational
frequencies to cover a wide positional range. Instead, it effectively truncates the frequency spec-
trum, retaining the high-frequency rotations corresponding to the initial dimensions of a standard
RoPE. This strategic choice is predicated on the observation that its primary role is now to disam-
biguate the order of co-occurring events that share an identical timestamp. For a token at position
Hz()pf %) is defined as:

0Lros) = basi’%/d i€ {12, dpos/2}

The task of modeling long-range temporal dependencies is thus naturally offloaded to the Calendar-
Time dimension, which is explicitly designed for this purpose.

m, the rotation angle
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B.2.2 CALENDAR-TIME DIMENSION ENCODING

The core novelty of our approach lies in the encoding applied to the ;. component. This com-
ponent is designed to encode an event’s absolute timestamp, ¢, by capturing its periodicity across
multiple, clinically relevant time scales. This is achieved using a predefined set of semantically
meaningful calendrical periods, S = {s1,52,...,54,,,./2} as detailed in Table 5| These periods
capture periodicities ranging from short-term diurnal patterns to long-term annual and multi-year
trends.

For each period s; from this set, we calculate a unique rotation angle 9§t;me) that represents the

phase of the event within that specific period. The formula for the rotation angle is:
9,5“.-"“) _ (L (mods)) (mod s;) ) 27
J 5

This mechanism produces a multi-scale temporal representation. Events occurring at the same
time of day but on different dates will share the exact same rotation for the ‘day’ period, allowing
the model to easily learn periodical patterns.

B.2.3 INTEGRATION AND APPLICATION

Finally, the two rotated components are concatenated to form the final query and key vectors. The
full transformation for a query vector ¢ = [qpos || Grime] to its rotated form ¢’ is:

q/ — [ROPE(quS7 g(pos)) ” ROPE(Qtime, e(time))]

An identical transformation is applied to the key vector k. By equipping the self-attention mech-
anism with this dual-encoding strategy, our model can simultaneously reason about the sequential
flow of information and the absolute, cyclical context of clinical events.

Table 5: Predefined Calendrical Periods for Temporal Encoding

Category  Period Name Duration (seconds)
Short-term 5 minutes 300
10 minutes 600
30 minutes 1,800
1 hour 3,600
3 hours 10,800
12 hours 43,200
Mid-term 1 day 86,400
2 days 172,800
1 week 604,800
2 weeks 1,209,600
1 month 2,629,746
1 season (3 months) 7,889,238
6 months 15,778,476
Long-term 1 year 31,556,952
2 years 63,113,904
4 years 126,227,808
10 years 315,569,520
30 years 946,708,560
100 years 3,155,695,200
300 years 9,467,085,600

B.3 TiME CONDITIONED FORESEE OBJECTIVE

To elucidate the mechanics of our proposed Time-Conditioned Foresee (TCF) module, we provide a
step-by-step explanation. This description follows the flow of information from the initial input—the
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final hidden state of a backbone model—to the module’s dual outputs. The detailed computational
flow is presented in Algorithm

We define the primary dimensions:

¢ B denotes the batch size.

* L denotes the sequence length.

* dmogel represents the hidden dimension of the backbone model’s output.

* dembed 18 the dimensionality of our internal time embeddings, set to 32.

* Ncales 18 the number of time scales used for decomposition, 11 in our implementation.
* Nioresee 1S the number of future timestamps provided for the foresee objective, set to 10.

* (; is the number of discrete categories for the i-th time scale.

The process begins with the final hidden state from the backbone decoder for each token in the
sequence.

Input: The last hidden state tensor, H,g.

° Hlast 6 RB X L X dmodel

B.3.1 A.NEXT EVENT TIME PREDICTION PATH (Lxpxr time)

This pathway is responsible for predicting the time until the next event.

1. Initial Projection The input hidden state Hj,y is passed through a two-layer Feed-Forward
Network (FFN), denoted as FFN¢,., to create a representation for time prediction.

o Input: Hyy € REXLXdmoa

* Output: An intermediate time-focused tensor, Hjpe.
- Htime = FFNenc (Hlast) S RBXLX(NMISS.dethd)

2. Logit Generation The tensor H,e is conceptually partitioned into Ny.,es segments. Each
segment is used to compute the logits for its corresponding time scale by multiplying it with the
respective time embedding weight matrix.

* Input: Hi,., treated as Nyyes tensors {ngfze};v:"f‘“, where each H[(ifze € RBXLXdembea
* Operation: For each scale ¢, we compute logits: Logits(i) = Ht(ifze . (We(ri)bed)T, where

(L) C7, dcmc
Wbeq € RE? X Gembed,

m!

* Qutput: A set of Ny,es logit tensors.
— Logits(V € RBXLxC:

3. Ground-Truth Label Decomposition To compute the loss, these logits are compared against
ground-truth labels. Instead of regressing a continuous time value, we transform the ground-truth
time delta (in seconds) into a set of categorical integer labels. This is achieved through a determin-
istic process analogous to a mixed-radix conversion, using the time scales defined in Table|[6]

For instance, assume a ground-truth time delta AT}y, of 34,586,130 seconds. The conversion to
a vector of Nyces integer labels proceeds sequentially from the largest time scale to the smallest,
using integer division to find the label and the modulo operator to find the remainder for the next
step.

. yearl0: 34,586,130 // 315,360,000 = 0. Remainder: 34,586,130. — Label: 0
. yearl: 34,586,130 // 31,536,000 = 1. Remainder: 3,050, 130. — Label: 1

. month3: 3,050,130 // 7,948,800 = 0. Remainder: 3,050, 130. — Label: 0
. monthl: 3,050,130 // 2,678,400 = 1. Remainder: 371, 730. — Label: 1

A W N =
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Table 6: Time scales for multi-scale decomposition, along with their duration in seconds and the
number of categories for classification.

Time Scale | Duration in Seconds | Num. of Categories
yearl0 315,360,000 10
yearl 31,536,000 10
month3 7,948,800 4
monthl 2,678,400 3
weekl 604,800 5
dayl 86,400 7
hour6 21,600 4
hourl 3,600 6
minutelO 600 6
minutel 60 10

. weekl: 371,730 // 604,800 = 0. Remainder: 371, 730. — Label: 0
. day1l: 371,730 // 86,400 = 4. Remainder: 27, 330. — Label: 4

. hour6: 27,330 // 21,600 = 1. Remainder: 5, 730. — Label: 1

. hourl: 5,730 // 3,600 = 1. Remainder: 2, 130. — Label: 1

. minutel0: 2,130 // 600 = 3. Remainder: 330. — Label: 3

10. minutel: 330 // 60 = 5. Remainder: 30. — Label: 5

O 0 3 O W

11. position: A mechanism to account for events occurring simultaneously at the same
time. For the next event label, it is set to 0; for subsequent foresee labels, it is set to +1 if
the time is the same as the previous one, and 0 otherwise. — Label: 0

Ultimately, the continuous value of 34,586,130 seconds is converted into the following vector of ten

integer labels, which constitutes the ground-truth vy

exttime fOT this example:

(0,1,0,1,0,4,1,1,3,5,0]

By training the model to predict these categorical labels for each time scale, we transform a diffi-
cult regression task into a series of more stable and effective classification tasks. The final scalar
10ss, Lpext time» 18 the average Cross-Entropy loss calculated between the generated logits and these
decomposed ground-truth labels.

B.3.2 B. TIME-CONDITIONING PATH FOR FORESEE OBJECTIVE

This pathway conditions the hidden state on a set of specified future timestamps to predict upcoming
events.

1. Input Foresee Timestamps The module receives future time deltas from the Nigresee future
events relative to the current timestamp at each position.

« Input: A tensor of future time deltas, ATjyresce € Z5 %X Niowesee

2. Time Embedding Each time delta in ATfyesee 18 decomposed into Ny,es integer labels (as
demonstrated above). These labels are used to look up corresponding vectors from the embedding

tables, {W(fri)bed}fvgf‘“, which are then concatenated. *Note, we share the weights for embedding and
unembedding timestamps.

+ Input: Decomposed time labels, Crogesee € Z 5> L% Nioresee X Nacates

* Output: A dense time embedding tensor, Fijpe.

— Eime € R B X LX Nroresee X (Ncales dembed )
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3. Projection of Time Embedding The concatenated embedding Eiiy. is projected to the model’s
hidden dimension via FFNe..

° Input: Elime c RB X L X Nforesee X (Nscales'dembed)

e Output: A processed time conditioning tensor, Hiime_cond-

- H, time_cond — FFNdeC (Etime) S ]RB X L X Nioresee X moe

4. Time-Conditioning via Fusion The final step fuses the original hidden state Hj,s with the pro-
cessed time conditioning tensor Hiime cond- 10 align their dimensions for the element-wise addition,
H,, is first expanded by inserting a new dimension. This prepares it for broadcasting across the
Nroresee dimension, allowing each of the Nigresee time embeddings to condition the single original
hidden state.

* Inputs:

— Original hidden state: Hi,q € RB* X dmoce

— Time conditioning tensor: Hijme cong € RE L Nioresee X dmoder

* Operation: The fusion is performed via a residual connection. First, Hj, is unsqueezed,
and then added to Hme_cond-

- H|,, = Unsqueeze(Hy, dim = 2) € RE>L>X1Xdmoa

- Hiyed = H|,o + Himeconda  // Broadcasting occurs along the Nioresee dimension.

e QOutput: The final time-conditioned hidden state, H_ongitioned, after Layer Normalization
and a final FFN block.

4 € RB X L X Nroresee X dmodel

conditione

SUMMARY OF MODULE OUTPUTS

The TCF module produces two primary outputs:

1. Next Time Loss (Lyext.time): A scalar value for backpropagation.

2. Conditioned Hidden State (Hongitioned): A tensor of shape RE>XLXNiorewe X dmodel - wwhich
serves as the input to the final prediction head for calculating the foresee 10ss, Loesee- The
ground-truth label corresponding to each conditioned hidden vector is the Feature token
of the actual clinical event that occurred at the given foresee timestamp.
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Algorithm 3 Time-Conditioned Foresee (TCF) Module

Require:

Hy € RB*LXdmoter: Last hidden states from the backbone model.

Teurrent € RE*E: Absolute timestamps for each hidden state in Hiq.

Thext € REXL: Absolute timestamps of the next event for each position.

¢ Thoresee € REXLXNorese: A set of absolute future timestamps for conditioning

: W: All trainable weights, 1nclud1ng FFNs and embedding tables {W. mbe d} seales
. Periods: A dictionary mapping each time scale to its duration in seconds.
Ensure:

7: Luextiiime € R: The loss for next event time prediction.

8: Heonditioned € RP XL Nioresee Xdmoset - Hidden states conditioned on Toresce-

9: function TCF_MODULE(H ., Tturrent, Inext, L foresees VYV, Periods)
> Part A: Next Event Time Prediction
10: AThext < Thext — Teurrent
11: Yiext ¢ DECOMPOSETIME (AT ex, Periods)
12: Htime <~ FFNenc(Hlasl) > Shape: (Ba Lv Nscales : dembed)
13: Hiime < RESHAPE(Htimea (37 L, Ncales dembed))
14: ﬁtolal «— O

15: for i = 1 —Nycqies do

16: Ht(l;e  Himel:, 1,4, 1] > Shape: (B, L, dembed)
17: Logits) «+ Hl(mze (W;él )

18: Yn(ex)t  Yaext[ts 1, 1]

19: Liotal < Liowl + CRossENTRopyLoss(Logits(” vy

20: »Cnexl,time — Ctolal /Nscales
> Part B: Time-Conditioning for Foresee Objective

21: T/ irent < UNSQUEEZE(Tyrrent, dim = 2) > Shape: (B, L, 1)
22: ATforesee — Tforesee - Tc/urrent
23: Choresee < DECOMPOSETIME (A Toresee, Periods) > Shape: (B, L, Nioresee, Nscales)

24: Etime,list — H
25: for : = 1 —+Ngca1es do

26: Cf(or)esee — Cforesee[ IRY) ,Z}

27: EY « Lookup(W) . cl) ) > Shape: (B, L, Nioresee: dembed)
28: Append Et(m)le t0 Flime list

29: Etime — CONCATENATE(EtimeJish dim = *1) > Shape: (B; L, Nforeseea Nscales : dembed)
30: Htime _cond < FFNdec(Etime) > Shape: <B7 L7 Nforesem dmodel)
31: Hi, < UNSQUEEZE(Hj,y, dim = 2) > Shape: (B, L, 1, dmodel)
32: Hyysed < LAYERNORM(H/ o, + Hiime cond)

33: H conditioned < LAYERNORM(Hfused + FFNﬁnal(Hfused))

34: return Enext,timev H onditioned

35: function DECOMPOSETIME(AT, Periods) > Helper function for time decomposition
36: R+ AT

37: Labels + |

38: for scale in REVERSED(Periods.keys()) do

39: Lscae < R // Periods[scale] > Integer division
40: R < R % Periods[scale] > Modulo operation
41: Lycate ¢ CLAMP(Lgcare, min = 0, max = Cyepre — 1)

42: Prepend Ly to Labels

43: return STACK(Labels)
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C DATA AND PREPROCESSING

C.1 DATASET: MIMIC-III

MIMIC-IIT (Johnson et al., |2016a3b) is an openly accessible resource that contains de-identified
clinical data from more than 40,000 individuals admitted to the intensive care units of Beth Israel
Deaconess Medical Center between 2001 and 2012. The dataset encompasses a wide range of
information, including patient demographics, hourly vital sign recordings, laboratory measurements,
administered treatments and procedures, prescribed medications, clinical notes, radiology reports,
and outcomes such as in-hospital and post-discharge mortality.

The MIMIC-IIT database was de-identified in compliance with Health Insurance Portability and
Accountability Act (HIPAA) standards through data cleansing and systematic date shifting. To
preserve clinical intervals, patient-specific dates were consistently shifted into the future by a random
offset, placing admissions within the years 2100-2200 while retaining the original time of day,
weekday, and approximate seasonality. For patients older than 89, dates of birth were modified such
that their recorded ages exceed 300 years, thereby masking their true age in accordance with HIPAA
requirements. This modification provides a suitable framework for our Dual-Calendar RoPE, which
is designed to address calendrical time, to operate effectively.

C.2 FEATURE SELECTION

Electronic Health Records (EHRS) are rich with events that have a numerical Value, a characteristic
that distinguishes them from natural language. Consequently, our experiments focused on events
that possess a numerical Value. We utilized 17 vital sign features from the CHARTEVENTS . csv
file, following the selection in[Harutyunyan et al.|(2019), and the top 100 most frequently measured
laboratory tests from LABEVENTS . csv as the events for our study. These features are detailed in
Table In addition, patient events such as “hospital admission”, “ICU transfer (ICU in)”, “ICU
discharge (ICU out)”, and “hospital discharge” were utilized.

C.3 FURTHER PREPROCESSING

In addition to the preprocessing of Harutyunyan et al.|(2019), we made the following modifications:
(1) removed outlier values in the laboratory data based on independent evaluations by three physi-
cians and standardized the measurement units; (2) excluded hospitalization episodes with fewer than
10 events; and (3) added an anchor token with a timestamp of January 1st, 00:00 of the same year
before each admission token to serve as a calendrical time reference. As a result, the lengths of
patients’ medical histories follow the distribution shown in Figure 7]

D BACKBONE, BASELINES, PRE-TRAINING DETAIL

D.1 BACKBONE ARCHITECTURE

The backbone model used in this study follows a standard decoder-only transformer architecture.
To minimize performance variations caused by differences in backbone models and to quantitatively
assess the effectiveness of our proposed training methodology, we used the same backbone across
all experiments. However, for models trained with Transformer encoders using the masked language
modeling approach (HEART, TRADE), we removed the causal mask during pre-training so that they
could be used as encoder models. The backbone details are as follows:

¢ Vocabulary Size: 166 (1219 if not share bin)

* Embedding and Hidden Dimension (dmoger): 512
¢ Number of Decoder Layers (V): 6

* Number of Attention Heads: 8

* Dimension per Head: 64
* Dimension of K, Q: 64 (Ours: first 24: positional RoPE / last 40: calendrical time RoPE)
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Table 7: Selected features from MIMIC-III used in this study.

Category

Features

Ethnicity - # 10
(from ADMISSIONS.csvV)

Vital Signs - # 17
(from CHARTEVENTS. csv)

Laboratory Tests - # 100
(from LABEVENTS.csv)

White, White - Russian, White - other European, Asian, Asian - Chinese,
Hispanic or Latino, Hispanic/Latino - Dominican, Black/Cape Verdean,
Black/African American, Others or Unknown

Capillary refill rate (CRR), Systolic blood pressure (SBP), Mean blood
pressure (MBP), Diastolic blood pressure (DBP), Fraction of inspired
oxygen (FiO2), Heart rate (HR), Respiratory rate (RR), Glasgow coma
scale eye response (GCS-E), Glasgow coma scale motor response (GCS-
M), Glasgow coma scale verbal response (GCS-V), Glasgow coma scale
(GCS), Serum glucose, O2 saturation, Blood pH, Body temperature,
Height, Weight.

Hematocrit, Potassium, Sodium, Creatinine, Chloride, Blood urea nitrogen,
Bicarbonate, Platelets, Anion gap, White blood cell count, Hemoglobin
chemistry, Mean corpuscular hemoglobin concentration, Red blood cell
count, Mean corpuscular hemoglobin, Mean corpuscular volume, Red Cell
Distribution Width, Magnesium, Calcium Total, Phosphate, Base excess,
CO2 (ETCO2, PCO2, etc.), Partial pressure of oxygen, Partial pressure of
carbon dioxide, Partial thromboplastin time, Prothrombin time INR, Pro-
thrombin time, Calcium Free, Bilirubin Total, Alanine aminotransferase,
Asparate aminotransferase, Alkaline phosphate, Potassium blood gas, Lac-
tate, Lymphocytes, Neutrophils, Monocytes, Eosinophils, Basophils, Albu-
min, Creatine Kinase, Oxygen blood gas, Urine Specific Gravity, Creatine
Kinase-MB, Lactate dehydrogenase, Urine Protein, Urine Urobilinogen,
Urine Ketone, Urine Color, Urine Appearance, Urine Blood, Urine Biliru-
bin, Urine Nitrite, Urine Leukocyte, Hematocrit blood gas, Hemoglobin
blood gas, Troponin-T, Positive end-expiratory pressure, Urine Yeast,
Urine White blood cell count, Urine Red blood cell count, Urine Epithelial
cells, Band Neutrophils, Urine Bacteria, Sodium blood gas, Lipase, Amy-
lase, Estimated GFR, Hypochromia, Anisocytosis, Macrocytosis, Lympho-
cytes Atypical, Metamyelocytes, Myelocytes, Microcytes, Poikilocytosis,
Vancomycin (blood), Chloride blood gas, Polychromasia, Functional Fib-
rinogen, Bilirubin Direct, Bilirubin Indirect, Platelet Smear, Urine Crea-
tinine, Thyroid-stimulating hormone, Urine Sodium, Triglycerides, Gran-
ulocyte count, CK-MB Index, Phenytoin (blood), Alveolar-arterial gradi-
ent, Cholesterol Total, Urine osmolality, Osmolality, Uric acid, Choles-
terol HDL, Iron, Cholesterol ratio Total/HDL, Ferritin, Transferrin, Iron
binding capacity, HbAIC, Nucleated red cells, Cholesterol, Ovalocyte,
Urine Hyaline casts, Urine mucous, Cortisol, Urine urea nitrogen, Hap-
toglobin, Protein (Total), Vitamin B12, Benzodiazepine Screen, Barbi-
turate Screen, Tricyclic Antidepressant Screen, Troponin-I, Urine potas-
sium, Tacrolimus level, Schistocytes, Reticulocyte count, Ethanol, Urine
Chloride, Acetaminophen, Urine Cocaine, Urine Benzodiazepine screen,
Urine Amphetamine screen, Urine Opiate screen, Urine Barbiturate screen,
Urine Methadone, Bicarbonate blood gas, Salicylate, Urine Total pro-
tein, Teardrop cells, Cyclosporin, Folate, Burr cells, Sedimentation rate,
Digoxin, Thyroxine, Globulin, Urine protein/creatine ratio, NT-proBNP,
Urine Amorphous cristal, C-reactive protein, Large platelets, Urine Granu-
lar casts, Gentamicin, Target cell, Transitional epithelial cells, Fibrin degra-
dation, CSF Lymphs.
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Distribution of Sample Token Lengths (Train vs Test)
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Figure 7: Length distribution of tokenized histories per patient. Most are within 2048 tokens.
Lengths exceeding 10k tokens are not shown.

¢ Feed-Forward Network (FFN) Inner Dimension (dg): 2048
¢ Total Parameters (Backbone): 19,001,344 (19,060,736 if not share bin)

* Activation: ReL. U (Agarap| [2018))

Each decoder layer is composed of two main sub-layers: a multi-head self-attention block and a
feed-forward network. For training stability, the model adopts a Pre-Layer Normalization (Pre-
LN) structure, where Layer Normalization is applied to the input of each sub-layer. A residual
connection is then employed around each of the two sub-layers.

D.2 BASELINE MODELS

We compared our model with baselines that utilized either Time or Value in their training: HEART,
FM4EHR, MOTOR, STraTS, EHRSHOT, TRADE, EHRMamba, and ETHOS. The backbone for
each model was standardized as described above, while other methodologies (binning, tokenization,
positional embedding, learning objective, etc.) followed their original papers. The reproduction
details are as follows.

HEART (Total Parameters: 20,204,180)

e Backbone: Uses a Transformer encoder due to its MLM-based loss.
* Bin Sharing: No, uses Value-Feature paired tokenization.
* Binning: 10-uniform binning.

* Positional Embedding: Absolute positional embedding—a learned positional embedding
of the visit index (0 for the patient’s first visit, 1 for the second, and so on).
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* Learning Objective: For each visit, event tokens (Value-Feature paired) are masked with
a probability of ppask = 0.15. The model is trained via a multi-class classification loss to
predict the masked token. This is trained separately for different event types (V/S, Lab).
Additionally, for unmasked events, values are altered with a probability of panomay = 0.05,
and the model is trained with a binary classification loss to identify whether the value at
each position was altered.

FM4EHR (Total Parameters: 19,001,536)

¢ Backbone: Transformer decoder.

* Bin Sharing: Yes, Feature and Value are tokenized separately. Numeric values share bin
tokens across different features.

* Binning: 10-uniform binning.

* Positional Embedding: Uses rotary positional embedding based only on position, without
explicit time information.

* Learning Objective: Uses NTP loss.

MOTOR (Total Parameters: 20,341,952)

¢ Backbone: Transformer decoder.

* Methodology Adaptation: This model was originally designed for feature-only events
(e.g., diagnosis codes). To adapt it for continuous values, we set the “occurrence of an
abnormal measurement result” as the endpoint for its time-to-event loss. An abnormal value
was defined by either being outside the medical normal range (per Harrison’s Principles of
Internal Medicine (Kasper et al.,[2015)), evaluated by three clinicians) or being a statistical
outlier (e.g., top/bottom 5%).

* Bin Sharing: No, uses Value-Feature paired tokenization.
* Binning: 10-uniform binning was applied to the Value.

* Positional Embedding: The model converts each event’s timestamp into ’days since birth’
and applies this value in its rotary positional embedding.

* Learning Objective: Uses the Time-to-event loss from the original paper.

STraTS (Total Parameters: 19,374,801)

» Architecture: As this is an older paper, its structure is not suitable for parallel training. We
therefore modified the architecture while retaining the core ideas. We used the last hidden
state of the decoder at each time step as the event embedding, instead of the original Fusion
Self-Attention mechanism.

* Value and Time Embedding: This model does not use binning. Instead, it embeds Fea-
tures via a look-up table and continuously embeds Value and Time (in hours) via a 2-layer
fully connected layer. The resulting embeddings are summed to form the final event em-
bedding.

* Positional Embedding: No additional positional embedding is used beyond the Time in-
formation included in the event embedding.

* Demographics: Unlike typical models, STraTS encodes demographic information (gender,
race, age) with a separate MLP and concatenates it to the last hidden state.

* Learning Objective: The final embedding is used to predict the value of events occurring
within two hours of each event, trained with a mean squared error loss.

EHRSHOT (Total Parameters: 20,278,892)

¢ Backbone: Transformer decoder.
* Bin Sharing: No, uses Value-Feature paired tokenization.

* Binning: 10-uniform binning.

25



Under review as a conference paper at ICLR 2026

* Positional Embedding: Following CLMBR-T |Steinberg et al.| (2021)), it uses Rotary posi-
tional embedding based on position order. Time information is not used beyond ordering
for this component.

* Time Information: A 5-dimensional time vector is concatenated to the to-
ken embedding vector. This vector consists of the z-normalized values of
[age, log(age), days since admission, log(days since admission), first admission indicator].
The final concatenated vector length is 512.

* Learning Objective: Next token prediction modeling.

TRADE (Total Parameters: 21,617,664)

¢ Backbone: Uses a Transformer encoder due to its MLLM-based loss.
* Bin Sharing: No, uses Value-Feature paired tokenization.

* Binning: 9-standard deviation-based binning. For each feature’s value distribution, thresh-
olds are set by adding {—10, —3,—1,—0.5,0.5,1, 3,10} standard deviations to the mean,
creating 9 bins. This method can be sensitive to outliers, so additional clipping was
performed on 17 vital sign data points based on physician guidelines. The clipping
ranges are as follows: CRR:[0,1], SBP:[0,400], MBP:[0,300], DBP:[0,300], FiO2:[0,1],
HR:[0,200], RR:[0,100], GCS-E:[1,4], GCS-M:[1,6], GCS-V:[1,5], Glucose:[0,1200], O2
saturation:[0,100], Body temperature:[20, 45], Height:[0,1000], Weight:[0,1000].

* Positional Embedding: Absolute positional embedding—performs learned positional em-
bedding using three types of sequential and temporal information: 1) The index of the
current hospital admission, 2) The number of days passed since admission, and 3) The
current age. These are all integers, passed through an embedding layer, and then summed.

* Learning Objective: Uses a standard MLM methodology, masking each token with p =
0.2 and using the last hidden state of the masked position to predict the pre-mask label via
a classification loss.

EHRmamba (Total Parameters: 21,770,752)
* Backbone: Although the original paper uses Mamba, we applied the same Transformer
decoder backbone for a fair comparison.
* Bin Sharing: No, uses Value-Feature paired tokenization.

* Binning: 10-uniform binning (the original paper used 5-uniform binning, but we matched
the bin count for a fair comparison).

* Positional Embedding: Uses four types of absolute positional embeddings, which are
summed: (1) Learned PE based on the hospital visit number, (2) Learned PE based on
token type, (3) Time embedding based on age using the Time2Vec model (Kazemi et al.|
2019), and (4) Position-based sin/cos positional embedding from Vaswani et al.|(2017).

* Learning Objective: Uses a next token prediction loss.

ETHOS (Total Parameters: 20,050,944)

¢ Backbone: Transformer decoder.

* Bin Sharing: Yes, Feature and Value are tokenized separately. Numeric values share bin
tokens across different features.

* Binning: 10-uniform binning.

* Time Information: Following the original paper, the time interval between each event is
converted into one of 13 discrete tokens, which are inserted into the sequence between
event tokens.

* Positional Embedding: Uses a learned positional embedding based on position.

* Learning Objective: Uses NTP loss.
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D.3 PRE-TRAINING DETAILS

Pre-training was conducted using the training dataset. The hyperparameters were fixed as follows:
the batch size was 64, and the number of training epochs was 50. We used the Adam (Adam et al.,
2014) optimizer with a learning rates of {5x 1074, 1x107%,5x1075,1x107°}. A 50-step warmup
was employed, followed by a cosine annealing schedule that reduced the learning rate to 1/100 of
its initial value. Gradient clipping was applied with a threshold of 1.0. The training was performed
using either 4 NVIDIA A40 GPUs or 2 NVIDIA RTX PRO 6000 Blackwell GPUs, with Distributed
Data Parallel training at a per-GPU batch size of 16 or 32, respectively. The implementation was
based on Python version 3.12 and PyTorch (Paszke et al.,[2017) version 2.8.0.

E DOWNSTREAM TASKS AND FINE-TUNING

E.1 DOWNSTREAM TASKS

Existing EHR foundation models generally lack generative capabilities, and thus evaluating perfor-
mance on diverse clinical downstream tasks has been a common practice (Fallahpour et al., 2025}
Huang et al.l 2024; Burkhart et al., 2025} Renc et al., 2024). While our model possesses strong
generative properties, we follow the line of prior work and perform downstream task evaluations
to assess the quality of patient representations at each timestamp. We first adopted the four widely
used downstream tasks from the MIMIC-III benchmark (Harutyunyan et al., 2019): In-hospital
Mortality (IHM), Decompensation-death (Dec-D), Length of Stay (LOS), and Phenotyping (Phe).
For these tasks, labels were obtained following the original preprocessing pipelines. To further ex-
amine whether the model can capture patient states beyond simple deterioration, we added three
additional tasks: Decompensation-arrest (Dec-A), Oliguria/Anuria (HUO), and Vasopressor (Vaso)
use. Dec-A is similar to Dec-D, but includes arrest events from CHARTEVENTS . csv in addition
to death as decompensation events; the task aims to predict deterioration 24 hours in advance. HUO
labels indicate whether the patient currently exhibits oliguria or anuria. Specifically, oliguria is de-
fined as urine output below 0.5 mL/kg/hr for at least 6 hours, and anuria as below 0.1 mL/kg/hr
for at least 6 hours. Labels were set for patients with available weight and hourly urine output
data, while patients with incomplete information were excluded from training. Vaso labels indicate
whether a patient is currently receiving vasopressors. Positive labels were assigned if administra-
tion records for Vasopressin, Dobutamine, Epinephrine, Norepinephrine, or Dopamine were present
in INPUTEVENTS_CV.csv or INPUTEVENTS_MV . csv; negative labels were assigned if other
medications were administered but no vasopressors were recorded.

All downstream tasks were measured at the hospitalization level following the original papers (Haru-
tyunyan et al., |2019) (i.e., if a patient had multiple hospital admissions, each admission was treated
as a separate EHR sequence). Table[8|provides detailed statistics, including the number of hospital-
izations available for each task and the label distribution for each class.

E.2 FINE-TUNING DETAILS

The downstream tasks were trained by attaching a task-specific prediction head to the last hidden
state of the backbone, applied uniformly to our model and all baselines. Since labels must be in-
ferred using only information available up to each timestep, a causal mask was employed. We froze
the pretrained model and trained the prediction heads simultaneously. To evaluate generalization
performance under varying input distributions (e.g., absence of laboratory data), we experimented
with three settings: (i) the full set of 117 variables (17 vital signs + 100 laboratory measurements),
(ii) only 17 vital signs, and (iii) a reduced set of 6 vital signs (SBP, DBP, body temperature, heart
rate, respiratory rate, SpO;). For training, the original training set was split into train/validation
subsets with an 85:15 ratio; the train subset was used for optimization, while the validation subset
was used for early stopping and hyperparameter search. As in pre-training, the learning rate I was
selected from 5 x 107%,1 x 107%,5 x 107°,1 x 1075, The batch size was fixed 100. Training
was performed for 5 epochs with a 50-step warm-up followed by cosine annealing that decayed the
learning rate to 1/100 of its initial value.

Each task-specific prediction head consisted of a two-layer MLP. To account for label imbalance,
task losses were weighted according to label frequencies in the training dataset. For efficiency,
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Table 8: Prediction time and label counts for each downstream task. For binary classification, the
positive/negative counts are shown; for multiclass classification, the counts for each class are shown.
For tasks with multiple sub-tasks, each sub-task’s label counts are shown.

Task Prediction point # Hospitalization ~ # Sub task & # Class Train labels Test labels
IHM 48h after ICU adm. 17,903 /3,236 1/2 2424 / 15479 374 /2,862
Dec-D Hourly 35,365 /6,237 1/2 61,018/2,847,424 9,684 /513,552
Dec-A Hourly 35,365 /6,237 1/2 65,298 /2,843,144 10,239/ 512,997

[cls1: 790,196, cls2: 503,423,  [clsl: 139,682, cls2: 90,478,

cls3: 316,774, cls4: 215,075, cls3: 56,289, cls4: 38,795,

LOS Hourly 35,523/6,265 1/10 cls5: 158,987, cls6: 124,146, cls5: 28,542, cls6: 22,225,
cls7: 100,890, cls8: 84,241, cls7: 18,077, cls8: 15,145,

cls9: 312,111, cls10: 319,619]  c¢ls9: 55,997, cls10: 60,710]

11: 7,644 /28,029 (1 374 /2862
12: 2660 /33013 (2 1331/ 4945
(3: 3657 /32016 (3: 415/ 5861
14: 11434 /24239 @ 67575601
(5: 4821 /30852 (5: 2028 / 4248
(6: 4675 / 30998 6: 831/ 5445
(7: 7349 / 28324 (7: 789/ 5487
8 2565 /33108 (8: 1337 /4939
19: 9550/ 26123 19: 442 / 5834
110: 11497 / 24176 {10: 168374593
(11: 3444 /32229 {11+ 2074/ 4202
{12+ 6869 /28804 112: 593 /5683
Phe End of stay 35,563 /6,273 25/2 113: 10362/ 25311 113: 1205 /5071
{14 14922/ 20751 {14+ 1813/ 4463
115: 9617/ 26056 {15+ 2653 /3623
{16: 2573733100 (16: 1667 / 4609
{17 4775 / 30898 t17: 495 / 5781
{18+ 3170/ 32503 {18+ 819/ 5457
119: 1816 /33857 (19: 556 /5720
120+ 1435 /34238 120- 355 /5921
21° 3080/ 32593 21: 272/ 6004
122: 4970/ 30703 22: 570/ 5706
23+ 6468 /29205 23+ 852 / 5424
124+ 5118730555 24: 111175165
125: 27791 32894 (25: 874/ 5402
{1: 148737 /891153 t1: 56102 / 162429
HUO Hourly 11,801/2,187 2/2 12: 148737/ 1053830 12+ 26682 / 191849
Vaso Hourly 35,438 /6,249 1/2 202,765 /2,747.736 36,306/ 494,215

downstream tasks were conducted in a multi-task setting where all seven tasks were jointly opti-
mized; the final objective was defined as the average of the task-specific losses. Since probing does
not allow training of new tokens, we instead introduced a <Birth> token at each timestep, serv-
ing the same role as the <SOS> token, and used its representation for task prediction. For baseline
models, we preserved their original binning and embedding procedures, while unifying the learning
objective to the downstream tasks. All downstream tasks were conducted on a single NVIDIA A40
GPU.

F RESULTS

F.1 DOWNSTREAM TASK RESULTS

Tables 9] [T0] and [IT]report the results of all downstream tasks. Table [9] presents the loss, number
of features used, and selected pretraining/downstream-task learning rate for each experiment, while
the remaining results are shown in Tables[I0]and [T1]

F.2 EHR GENERATION AND EVALUATION

We generated EHRs with a low temperature of 0.2. Below are examples generated from the same
initial EHR, shown in order for our model (Figure([8) and the ETHOS model (Figure[J).

Figure [I0]shows the prompt we used for LLM-based evaluation.
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Table 9: Meta Information

Method Value sharing D;)\;velgsttlr:;m test-loss  valid-loss  train-loss Pre—t{z}a{mmg DowEsl;ream
HEART X 117 5.3043 5.3681 5.3714 0.0005 0.0005
HEART X 17 5.4340 5.4604 5.4713 0.0005 0.0005
HEART X 6 5.8346 5.8703 5.8702 0.0005 0.0005
MOTOR X 117 4.9454 4.9020 49118 0.0001 0.0005
MOTOR X 17 5.2117 5.1570 5.1803 0.0001 0.0005
MOTOR X [§ 5.6451 5.6455 5.6519 0.0001 0.0005
EHRSHOT X 117 5.8406 5.9138 5.9241 0.0005 0.0005
EHRSHOT X 17 6.0777 6.1018 6.1022 0.0005 0.0005
EHRSHOT X 6 6.3406 6.3509 6.3325 0.0005 0.0005
TRADE X 117 5.2599 5.2480 5.2807 0.0005 0.0005
TRADE X 17 5.4538 5.4529 5.4839 0.0005 0.0005
TRADE X 6 6.0481 6.0643 6.0702 0.0005 0.0005
EHRmamba X 117 5.1366 5.1603 5.2125 0.0005 0.0005
EHRmamba X 17 5.4389 5.4228 5.4678 0.0005 0.0005
EHRmamba X 6 5.9261 5.9404 5.9573 0.0005 0.0005
Ours (No value share) X 117 4.6861 4.6386 4.6273 0.0005 0.0005
Ours (No value share) X 17 4.9070 4.8621 4.8664 0.0005 0.0005
Ours (No value share) X 6 5.3675 5.3538 5.4045 0.0005 0.0005
FM4EHR (0} 117 6.4288 6.4611 6.4344 0.0005 0.0001
FM4EHR (0] 17 6.3888 6.4391 6.3969 0.0005 0.0005
FM4EHR (6] 6 6.3972 6.4394 6.4069 0.0005 0.0005
ETHOS (0] 117 4.9710 5.0374 4.9378 0.0005 0.0001
ETHOS (6] 17 5.2479 5.2044 5.1124 0.0005 0.0001
ETHOS (0] 6 5.5724 5.5714 5.5213 0.0005 0.0001
STraTS (0} 117 5.7857 5.8492 5.8505 0.0001 0.0005
STraTS (0} 17 5.8123 5.8335 5.8446 0.0001 0.0005
STraTS (0} 6 6.0711 6.0760 6.0834 0.0001 0.0005
Ours (Value share) (6] 117 4.8786 4.8954 5.0276 0.0005 0.0005
Ours (Value share) (0} 117 5.0430 5.0862 5.1887 0.0005 0.0001
Ours (Value share) (6] 6 5.5613 5.6554 5.7523 0.0005 0.0005
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G LLM USAGE CLARIFICATION

In addition to the uses of LLMs described in the main text, we employed them for summarizing con-
tent, translation, grammar correction, and sentence refinement during the writing of the manuscript.
In the early stages of the study, we used LLMs to search for related work, and the retrieved papers
were then read and verified by the researchers.
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Birth : 1845. 05. 11 hemoglobin : 31.0 -GCS: 15 -HR: 116
Sex: Female - Mean corpuscular -GCS-V:5 -MBP: 72
Ethnicity: WHITE hemoglobin concen- -HR:117 - O2 saturation : 79
Age: 300 tration : 34.4 -MBP: 73 -RR: 19

- Mean corpuscular - O2 saturation : 92 -SBP: 116
2145-05-11 17:12:55  volume : 90.0 -RR: 19 2145-05-12 06:00:00
- ICU transfer - Platelets : 200.0 -SBP: 115 -DBP : 47
2145-05-11 17:30:00 - Prothrombin time : - Temperature: 36.9 -HR:114
-DBP: 62 13.3 2145-05-12 00:00:00 - MBP: 70

- SBP: 103 - Partial thromboplas- - SBP : 116 - 02 saturation : 92
-HR: 123 tin time : 32.4 -RR: 19 -RR: 20

- MBP: 83 - Red Cell Distribu- - O2 saturation : 91 -SBP: 107
-RR:4 tion Width : 13.3 -HR: 118 2145-05-12 07:00:00
2145-05-11 18:00:00 - Red blood cell count - DBP : 53 -HR: 111

-DBP: 51 :3.74 -MBP: 74 -DBP : 49

-HR: 110 - White blood cell 2145-05-1201:00:00 -GCS-E:4
-MBP: 73 count : 12.20 -DBP: 50 -GCS-M : 6

-RR: 17 -RR: 18 -HR: 116 -GCS: 14

-SBP: 111 2145-05-11 19:00:00 - MBP: 76 -GCS-V:5

—-# Gen Start #—- -DBP: 56 - 02 saturation : 93 -MBP: 73

- O2 saturation : 90 -HR: 119 -RR: 18 - O2 saturation : 93
- Weight : 54.2 - MBP: 73 -SBP: 113 -RR: 19

- Temperature : 36.7
-GCS: 15

- O2 saturation : 92
-RR: 19

2145-05-12 02:00:00
-HR: 111

-SBP: 114
- Temperature : 36.6

-GCS-M: 6 -SBP: 111 -DBP: 49 2145-05-12 08:00:00
-GCS-E: 4 2145-05-11 20:00:00 -MBP: 74 -DBP: 52
-GCS-V:5 -DBP: 50 -RR:20 -HR: 112

- O2 saturation : 92 -MBP: 76 -SBP: 116 -MBP: 71

-HR: 117 -HR: 110 - O2 saturation : 92 - O2 saturation : 89
-SBP: 108 -RR: 19 2145-05-12 03:00:00 -RR: 19

- Glucose : 261 -SBP: 111 -DBP: 52 -SBP: 114

-MBP : 76 - 02 saturation : 90 -GCS-E: 4 2145-05-12 09:00:00
-DBP: 50 2145-05-11 21:00:00 - GCS-M: 6 -DBP: 52

- Anion gap : 15.0 -DBP: 51 -GCS: 15 -HR: 116

- Bicarbonate : 24.0 -HR: 113 -GCS-V:5 -MBP: 76

- Calcium Total : 8.6 -MBP:71 -HR: 119 - O2 saturation : 88

- Chloride : 105.0 - O2 saturation : 93 -MBP: 72 -RR:20

- Creatinine : 0.9 -RR: 19 - 02 saturation : 91 -SBP: 110

- Magnesium : 1.8 -SBP: 115 -RR:20 2145-05-12 10:00:00
- Phosphate : 2.7 2145-05-11 22:00:00 - SBP: 109 -DBP:53

- Potassium : 4.0 -DBP: 50 - Temperature : 36.9 -HR:113

- Sodium : 142.0 -HR: 114 2145-05-12 04:00:00 -MBP:75

- Blood urea nitrogen - MBP : 74 -DBP: 50 - O2 saturation : 92

1 12.0 - O2 saturation : 89 -HR: 117 -RR:20

- Hematocrit : 33.0 -RR: 19 -MBP: 73 -SBP: 111

- Hemoglobin chem- -SBP:116 -RR: 18 2145-05-12 11:00:00
istry : 11.3 2145-05-11 23:00:00 -SBP: 113 -DBP: 52

- Prothrombin time -DBP:51 - O2 saturation : 85 -GCS-E: 4

INR: 1.10 -GCS-E: 4 2145-05-12 05:00:00 -GCS-M: 6

- Mean corpuscular - GCS-M:6 - DBP: 49

Figure 8: Temporal EHR history generated by our model (used value share version for fair compar-
ison). The data before this “—# Gen Start #—" marker is given, and the data after it is generated.
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Birth : 1845. 05. 11
Sex: Female
Ethnicity: WHITE
Age: 300

2145-05-11 17:12:55
- ICU transfer
2145-05-11 17:30:00
-DBP: 62

-SBP: 103

-HR : 123

- MBP: 83

-RR:4

2145-05-11 18:00:00
-DBP: 51

-HR: 110

-MBP: 73

-RR: 17

-SBP: 111

—-# Gen Start #—-

- O2 saturation : 97
2145-05-11 18:30:00
-DBP: 51

-HR: 124

- MBP : 67

- O2 saturation : 97
-RR: 32

-SBP: 89
2145-05-11 19:10:00
-SBP: 80

-RR:35

- O2 saturation : 96
-HR: 119

-DBP: 42

- MBP : 59
2145-05-11 19:45:00
-DBP: 44

-HR: 129

- MBP : 60

- O2 saturation : 90
-RR: 30

-SBP: 94
2145-05-11 20:15:00
-RR:32

-SBP: 78

- O2 saturation : 93
-HR : 140

-DBP: 42

- MBP : 60
2145-05-11 20:45:00
-RR:30

-SBP: 84

- 02 saturation : 93
-HR: 115

-DBP: 44

- MBP : 49
2145-05-11 21:25:00
-HR: 122

-MBP: 58

- O2 saturation : 93
-RR:29

- SBP: 88

-DBP: 40
2145-05-11 22:05:00
- SBP: 81

-RR:29

- O2 saturation : 87
-HR: 134

-DBP: 43

-MBP: 59
2145-05-11 23:00:00
- SBP: 88

-RR:36

- O2 saturation : 91
-HR: 115

-DBP: 22

-MBP: 58
2145-05-11 23:30:00
-SBP: 84

-RR:32

- O2 saturation : 92
-HR : 137

-DBP: 38

- MBP : 49
2145-05-11 23:45:00
-DBP: 39

-HR: 115

-MBP: 52

- O2 saturation : 91
-RR:34

-SBP: 86
2145-05-12 00:15:00
- SBP: 88

-RR:36

- O2 saturation : 85
-HR: 119

-DBP: 43

- MBP : 60
2145-05-12 00:30:00
-RR:32

-HR: 114

- 02 saturation : 93
-SBP: 68

-MBP: 43

-DBP: 43
2145-05-12 01:00:00
-DBP: 42

-HR: 117

-MBP: 53

- 02 saturation : 92
-RR: 31

-SBP:92
2145-05-12 01:50:00
-HR: 112

- O2 saturation : 90
-RR:33
2145-05-12 02:40:00
-DBP: 39

- MBP : 48

-SBP: 91
2145-05-12 03:15:00
-DBP:43

-HR : 120

-MBP: 43

- O2 saturation : 91
-RR: 38

-SBP: 94
2145-05-12 04:05:00
-RR:29

- 02 saturation : 91
-HR: 116

-MBP: 51

- DBP : 38

- SBP: 88
2145-05-12 04:20:00
-RR: 30

- O2 saturation : 87
-HR: 123

-DBP: 42

- MBP : 54

-SBP: 89

2145-05-12 05:05:00
-HR: 115

- O2 saturation : 93
-RR:29
2145-05-12 05:25:00
-DBP: 31

- MBP : 59

-SBP: 94
2145-05-12 06:25:00
-RR:33

- 02 saturation : 92
-HR : 120
2145-05-12 06:45:00
-DBP: 27

-MBP : 55

-SBP: 83
2145-05-12 07:35:00
-HR: 119

- O2 saturation : 91
-RR:29
2145-05-12 08:05:00
-DBP: 42

-MBP: 42

- SBP: 86
2145-05-12 09:05:00
-HR: 116

- MBP : 50

- O2 saturation : 92
-RR: 37

-SBP: 81

-DBP: 43
2145-05-12 10:00:00
-HR: 132

- O2 saturation : 92
-RR:33
2145-05-12 10:15:00
-DBP: 35

-MBP : 55

-SBP: 94
2145-05-12 11:10:00
-DBP: 43

-HR: 136

- MBP: 34

Figure 9: Temporal EHR history generated by ETHOS. The data before this “—# Gen Start #—"
marker is given, and the data after it is generated.
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You are a physician with extensive ICU experience and an Al researcher familiar with text generation
models, such as LLMs.

In this survey, you will compare the quality of EHR texts generated by two different models from the same
initial patient history.

The quality of an EHR depends on whether the right clinical events occur at the right times. Please consider
both the timing of events and the appropriateness of the events themselves.

First, you will see a few sample ICU EHR texts. Then, for each pair of generated candidates (A and B),
you will be asked to decide which one appears more realistic.

<Sample EHR texts>
1. ## Sample 1 ##

2. ## Sample 2 ##
3. ## Sample 3 ##
<end of EHR samples>

<Evaluation candidate A>
## ETHOS generated Sample (Random order; Ours can be candidate A) ##

<Evaluation candidate B>
## Ours generated Sample (Random order; ETHOS can be candidate B) ##

<Compare two candidates >

Figure 10: LLM input prompt for generated EHR evaluation. We compared the generative perfor-
mance of our model and ETHOS on LLMs with this prompt.
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