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Abstract
Causal discovery traditionally relies on statistical methods applied to observational data, often requiring
large datasets and assumptions about underlying causal structures. Recent advancements in Large
Language Models (LLMs) have introduced new possibilities for causal discovery by providing domain
expert knowledge. However, it remains unclear whether LLMs can effectively process observational data
for causal discovery. In this work, we explore the potential of LLMs for data-driven causal discovery by
integrating observational data for LLM-based reasoning. Specifically, we examine whether LLMs can
effectively utilize observational data through two prompting strategies: pairwise prompting and breadth
first search (BFS)-based prompting. In both approaches, we incorporate the observational data directly
into the prompt to assess LLMs’ ability to infer causal relationships from such data. Experiments on
benchmark datasets show that incorporating observational data enhances causal discovery, boosting
F1 scores by up to 0.11 point using both pairwise and BFS LLM-based prompting, while outperforming
traditional statistical causal discovery baseline by up to 0.52 points. Our findings highlight the potential
and limitations of LLMs for data-driven causal discovery, demonstrating their ability to move beyond
textual metadata and effectively utilize observational data for more informed causal reasoning. Our
studies lays the groundwork for future advancements toward fully LLM-driven causal discovery.
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1. Introduction
Understanding cause-and-effect relationships is fundamental to scientific discovery and decision-
making across various fields such as biomedical research, economics, and social sciences.
Traditionally, causal discovery relies on statistical methods applied to observational data, often
requiring large datasets and strong assumptions about causal structures. Despite such limitations,
statistical-based methods such as constraint-based approaches (e.g., PC algorithms [1]) and
score-based methods (e.g., GES [2]), are still widely used in causal discovery.

Recent advances in Large Language Models (LLMs) have opened new possibilities for causal
discovery. LLMs have been primarily used as expert in knowledge-based causal discovery,
leveraging metadata—such as variable names and textual descriptions—to infer causal rela-
tionships [3, 4]. However, this approach is limited by the quality and specificity of metadata,
and the internal knowledge of the LLMs themselves making it prone to inconsistencies and
domain-specific biases. With LLMs advancing in reasoning [5, 6, 7], especially in text-based
inference, a natural question emerges:

Can LLMs leverage observational data for causal discovery?
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Despite the importance of observational data in statistical causal discovery, existing LLM-
based methods have yet to fully utilize it. To address this gap, we propose a data-driven causal
discovery approach that integrates observational data into LLM-based causal reasoning. We
introduce prompting strategies incorporating observational data into the causal discovery
process. By systematically embedding observational data into the prompts, we explore whether
LLMs can enhance causal discovery beyond metadata-based inference, without relying solely on
the LLMs’ pre-existing domain knowledge or textual contexts. Our experiments across multiple
benchmark datasets show that incorporating observational data improve LLMs’ performance,
up to 0.15 points in F1 scores, and outperform statistical-based methods. These results suggest
that LLMs demonstrate potential in utilizing observational data for causal discovery, marking
progress toward a hybrid model that integrates statistical methods with natural language
reasoning via LLMs to better interpret data patterns for causal insights.

2. Related Work
LLMs have recently been utilized as expert systems for causal discovery, primarily by reasoning
over metadata of the variables rather than directly analyzing observational data. This approach,
known as knowledge-based causal discovery [3, 4], leverages LLMs’ ability to interpret domain-
specific metadata—such as variable names and textual descriptions–to infer causal relationships.
A widely adopted method in this paradigm is pairwise prompting [8, 3], where an LLM is
systematically queried about the causal relationship between each pair of variables. This iterative
process constructs a causal graph using LLM-derived insights, demonstrating promising results
despite not incorporating observational data. Recent studies [3, 9, 10, 11, 12] show that LLMs
effectively provide background knowledge for causal discovery and outperform traditional non-
LLM approaches. Other research has evaluated LLMs’ ability to identify causal relationships in
text [13, 14, 15]. For instance, recent work by [4] introduced a method that integrates knowledge
graph structures into LLM prompts to enhance causal relation extraction by smaller models.

A different line of research integrates LLMs with traditional causal discovery methods [16,
17, 18]. These approaches typically use LLMs to extract prior knowledge or serve as feedback
agents to refine causal graphs. Some studies further examine how observational data can
be used to improve LLMs’ causal reasoning, such as by incorporating statistics calculated
from observational data like Pearson correlation into the prompt [19]. Unlike previous work,
our work focuses on leveraging observational data directly for LLM-based causal discovery.
Rather than using LLMs solely as knowledge extraction tools or supplementary components
for traditional methods, we investigate their ability to infer causal relationships by reasoning
directly over structured observational data. This approach aims to push the boundaries of LLMs
for data-driven causal discovery, demonstrating their potential as standalone reasoning agents.

3. Approach
3.1. Task Formulation
Given a set of observed variables 𝒱 = {𝑉1, 𝑉2, . . . , 𝑉𝑛}, the objective is to infer a causal graph
𝒢 = (𝒱, ℰ), where ℰ ⊆ 𝒱 × 𝒱 represents directed causal relationships between variables,
and 𝑉𝑖 represents a node in the causal graph. We formulate our task as a classification task
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where each pair of variables (𝑉𝑖, 𝑉𝑗) must be classified as (1) 𝑉𝑖 causes 𝑉𝑗 , (2) 𝑉𝑗 causes 𝑉𝑖, or
(3) neither–no causal relationship. The causal discovery process is then conducted using an LLM
by formulating structured natural language prompts 𝒫 to elicit causal dependencies.

3.2. Data-Driven Causal Discovery with LLMs
Our approach to causal discovery with LLMs extends beyond existing knowledge-based method
by integrating observational data 𝒟 into the prompt. However, since 𝒟 is often too large to fit
within the prompt, we apply sampling function 𝑆 to extract a representative subset 𝒟𝑠:

𝒟𝑠 = 𝑆(𝒟, 𝑘) (1)

where 𝑆(·) is a sampling strategy (e.g., random, systematic, or cluster sampling), and 𝑘 is
the sample size constrained by the prompt length. The prompt 𝒫 then may encompass both
prior knowledge 𝒦–including known causal edges or constraints– and the sampled data 𝒟𝑠.
LLM’s ability to infer causal relationships from such structured data distributions serves as the
foundation of our data-driven causal discovery approach. In the following, we elaborate on the
details of our proposed approach for systematically incorporating observational data into the
prompt, utilizing (1) pairwise and (2) BFS prompting methods.

Pairwise Prompting with Observational Data. Pairwise Prompting is a localized approach
where the LLM is queried about causal relationships between individual variable pairs. Given
a variable pair (𝑉𝑖, 𝑉𝑗), the LLM is instructed to determine whether a causal relationship
exists between them, considering sampled observational data. The prompt 𝒫(𝑉𝑖, 𝑉𝑗 ,𝒦,𝒟𝑠) in
pairwise prompting explicitly asks:

• Existence: Does 𝑉𝑖 cause 𝑉𝑗?

• Directionality: If a causal relationship exists, is it 𝑉𝑖 → 𝑉𝑗 or 𝑉𝑗 → 𝑉𝑖?

The LLM then predicts the causal relationship by selecting from three options: 𝑉𝑖 causes 𝑉𝑗 , 𝑉𝑗

causes 𝑉𝑖, or neither—no causal relationship, as illustrated in Figure 1 (left).

BFS Prompting with Observational Data. The pairwise prompting requires a quadratic
number of queries, making it impractical for large graphs. To address this, [19] introduce a
framework using breadth-first search (BFS) strategy, reducing the number of queries to a linear
scale. Instead of analyzing pairs, the LLM explores causal relationship by traversing the graph
using BFS technique. In this work, we apply BFS prompting by [19], consisting three stages:

1. Initialization – The LLM identifies variables that are not causally influenced by others.

2. Expansion – The LLM determines which variables are caused by the current node.

3. Insertion – The proposed variables are added to the BFS queue, and suggested edges are
checked for cycles before being inserted.

Figure 1 (right) illustrates a BFS approach with observational data. Unlike the pairwise approach,
the LLM directly responds with variables instead of selecting from given options.
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Pairwise Prompting

Task: You are a helpful assistant to a lung
disease expert. Choose the correct state-
ment regarding the causal relationship be-
tween bronchitis and dyspnoea. As an addi-
tional information, here is a sample of ob-
servational data between the pair:

bronchitis dyspnoea

1 1
0 1
1 0
...

...

Options:

A. bronchitis causes dyspnoea.

B. dyspnoea causes bronchitis.

C. There is no causal relationship be-
tween bronchitis and dyspnoea.

Answer:

BFS Prompting

Task: You are a helpful assistant to experts
in lung disease research. Our goal is to con-
struct a causal graph between the following
variables: {asia, smoke, bronc, dysp, . . . }
(Initialization) You will start with identify-
ing the variable(s) that are unaffected by
any other variables.
Answer=[smoke, asia]
(Expansion) Given smoke, asia is(are) not
affected by any other variables. Select vari-
ables that are caused by smoke. Additionally,
a sample of observational data for smoke
and other variables are as follows:

smoke bronc dysp . . .

1 1 0 . . .
1 0 1 . . .
1 1 0 . . .
...

...
...

...

Answer:

Figure 1: Prompt examples for Pairwise and BFS prompting [19] using observational data.

4. Evaluation
4.1. Evaluation Settings
Dataset. We conduct experiments on datasets from BNLearn [20], a collection of Bayesian
network datasets widely used for testing causal discovery algorithms, as follows:

1. ASIA [21]: A network with 8 variables (e.g., dyspnoea, bronchitis, and if a patient has recently
traveled to Asia), for lung diseases diagnosis based on medical observations.

2. CANCER: A network that models the factors influencing cancer development. It contains
fewer variables than ASIA, but with more intricate dependency structures.

3. SURVEY: A dataset on how public transport usage varies across social groups, based on
survey responses, with variables such as age, occupation, and preferred means of transportation.

Despite their modest size, we specifically selected them because they offer valuable insights for
evaluating causal discovery in straightforward, well-defined relationships.

Model Comparison. We compare LLM-based causal discovery against statistical causal
discovery methods, including: (1) PC Algorithm [1] and (2) GES [2]. For LLM-based causal
discovery, we compare the two prompting strategies, with variations that include and exclude
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ASIA CANCER SURVEY
F1↑ NHD↓ Ratio↓ F1↑ NHD↓ Ratio↓ F1↑ NHD↓ Ratio↓

Statistical-based Methods

PC [1] 0.50 0.24 0.50 0.33 0.44 0.67 0.50 0.44 0.50
GES [2] 0.38 0.28 0.63 0.33 0.44 0.67 0.25 0.10 0.75

LLM-based Methods

Pairwise Prompting 0.47 0.29 0.53 0.60 0.22 0.39 0.45 0.31 0.55
+Pearson corr. 0.64 0.13 0.36 0.67 0.16 0.33 0.20 0.32 0.80
+Observational Data 0.58 0.16 0.42 0.66 0.18 0.35 0.53 0.19 0.47

BFS Prompting [19] 0.85 0.04 0.15 0.66 0.12 0.33 0.50 0.22 0.50
+Pearson corr. 0.88 0.03 0.12 0.72 0.12 0.27 0.45 0.31 0.55
+Observational Data 0.90 0.03 0.10 0.77 0.10 0.23 0.54 0.20 0.45

Table 1: Performance comparison on benchmark datasets. The best scores are marked in pink.
For LLM-based approaches, we queried the model four times and reported the average scores.

observational data as an additional input: (3) Pairwise Prompting, (4) Pairwise Prompting
+ Observational Data, (5) BFS Prompting, (6) BFS Prompting + Observational Data.
Additionally, we incorporate pearson correlation calculated from the observational data, following
[19]: (7) Pairwise Prompting + Pearson corr., (8) BFS Prompting + Pearson corr..

Experimental Setup. For each dataset, we conduct experiments across varying sample sizes
in {100, 500, 1000} for statistical-based methods, while keeping LLM-based methods fixed at
𝑘=100 observational data due to token length limitations. The samples were selected using
various sampling strategy 𝑆 —random, cluster, systematic, and adaptive (K-means) sampling
methods. However, since the results showed no significant differences, we reported the scores
from simple random sampling. We used GPT model gpt-4-0125-preview checkpoint, query it
four times varying sampling temperatures in {0, 0.5, 0.7, 1.0} and report the average results. We
adapted the implementation code from the original BFS prompting paper [19] for our experiment,
which includes implementation of PC [1] and GES [2] from causal-learn package [22].

4.2. Results and Discussion
Table 1 summarizes our experiment results. Since we frame causal discovery as a classification
task, we compute classification metrics e.g., Precision, Recall, F1 score and report normalized
hamming distance (NHD) and ratio, following [3, 19]. We discuss the key findings as follows:

LLM-based methods outperform statistical-based methods in most cases. Across all
datasets, LLM-based methods including both Pairwise and BFS-based prompting show significant
improvements over PC and GES in terms of F1 score. The improvement is especially significant
in BFS-based prompting with observational data, achieving a 0.44-point increase (0.33 vs. 0.77 on
CANCER) compared to PC method. Similarly, on ASIA, it delivers a 0.40-point gain (0.50 vs.0.90).
When comparing LLM-based methods to GES, we observe a consistent F1 score improvement
ranging from 0.29 to 0.52 across all datasets, highlighting the effectiveness of our approach.
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While PC and GES are well-established for causal discovery, their performance heavily
depends on sample size. In our experiments, we set a fixed number of 100 samples for LLM-based
methods across all datasets, whereas statistical-based methods (PC and GES) are evaluated with
varying sample sizes {100, 500, 1000}. Our results show that LLM-based methods, particularly
when enriched with observational data, achieve strong performance even with a limited number
of samples. In contrast, statistical-based methods may require as many as 1000 samples to reach
comparable performance, as observed in the SURVEY dataset, where the PC method matches
LLM-based methods at 1000 sample size. This underscores the robustness of LLM-based causal
discovery, making it particularly valuable in data-limited scenarios.

Observational data improves LLM-based methods’ performance. Across both LLM
prompting methods, incorporating observational data consistently improves F1 scores while
reducing NHD and Ratio values, demonstrating its effectiveness in improving causal discovery.
In Pairwise Prompting, adding observational data results in a F1 score increase of up to 0.11
points (0.47 to 0.58 on ASIA). Similarly, in BFS-based Prompting, adding observational data leads
to the best overall performance across all datasets, with F1 scores improving by up to 0.11 points
(0.66 to 0.77 on CANCER). These results suggest that, despite being primarily trained using
text-based data, LLMs demonstrate a potential to effectively leverage observational numerical
data as contextual grounding for causal discovery and reasoning.

Additionally, we assess the impact of incorporating Pearson correlation derived from the
same observational data, following [19]. The results demonstrate a consistent improvement over
methods without any observational data. However, we find that our method of directly adding
observational data yields better overall performance on average (0.075 vs. 0.035), especially with
a more advanced prompting technique such as BFS prompting. This suggests that by directly
incorporating observational data, LLMs make more informed causal inferences and reduce their
reliance on surface-level textual patterns, further bridging the gap between data-driven and
knowledge-driven approaches in causal discovery.

BFS Prompting consistently outperforms Pairwise Prompting. BFS Prompting achieves
the highest F1 scores and lowest Ratio values in all datasets (values marked in pink in Table 1),
demonstrating its superior ability to leverage observational data for causal discovery. Beyond
being more efficient than its pairwise counterpart, BFS-based prompting demonstrates its
superiority (up to 0.32 point, 0.58𝑣𝑠.0.90 on ASIA) by offering a more contextual and structured
approach to causal discovery. This suggests that leveraging global context awareness—multi-
variable interactions rather than variable pairs in isolation—enhances causal inference. However,
this prompting method includes the entire query history, which can lead to excessive prompt
length and may be infeasible due to the LLM’s token limitations.

5. Conclusion
In this work, we investigated the potential of Large Language Models (LLMs) for data-driven
causal discovery by integrating observational data into their reasoning process. Through exper-
iments on causal benchmark datasets, we assessed the extent to which LLMs can infer causal
relationships from structured, observational data. Our results suggest that LLMs demonstrate
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potential in utilizing observational data for causal discovery, marking progress toward a hybrid
model that integrates statistical methods with natural language reasoning with LLMs.

Despite these promising results, the effectiveness of LLMs is still dataset-dependent, and
reasoning stability can vary. Future work should further explore this hybrid approaches of
LLM-based reasoning with statistical causal discovery, as well as refining prompting strategies
and sampling selection approach. Additionally, it would be valuable to investigate performance
across multiple LLMs and extending on larger dataset. By continuously improving LLMs’ ability
to process structured data, we move toward a more comprehensive framework that unifies
statistical causal discovery with the reasoning capabilities of LLMs.
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