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ABSTRACT

While large language models (LLMs) encode vast amounts of knowledge within
their parameters for some mainstream entities, factual inconsistencies and untruth-
fulness in LLMs often lead to unreliable responses and cause significant risks
in practical applications. This paper aims to improve model reliability by en-
hancing consistency in answers to known facts and encouraging refusal to answer
for uncertain questions. Specifically, we introduce SREF, an entropy-guided ap-
proach designed to enhance the reliability of language models by incorporating
Self-REFerences, models’ understanding of rephrasing questions, with inputs.
We analyze and reveal the effectiveness of SREF in enhancing model reliabil-
ity from the perspectives of entropy and KL divergence. Extensive experiments
on 12 LLMs demonstrate that outputs generated with SREF yield more reliable
results, including an average improvement of 16.01% over the baselines and a
15.10% average improvement in consistency, while also adapting to identify and
acknowledge uncertain facts.

1 INTRODUCTION

Large language models (LLMs) have demonstrated impressive capabilities, attracting significant
attention for their performance across various applications (Chowdhery et al.l 2023; Mann et al.,
2020). These models are being applied to complex tasks such as reasoning, mathematical compu-
tation, and planning, positively influencing a range of industries (Olausson et al., [2023; Tonmoy
et al., [2024). While LLMs have some reasonable amount of knowledge for some mainstream enti-
ties \West et al.[(2022), a critical challenge remains: LLMs often produce hallucinations, resulting
in untruthful and inconsistent responses. This unreliability poses a significant threat, particularly
in high-stakes environments like legal, finance, and medicine (Berglund et al., 2024; |Sallou et al.,
2024; Weidinger et al.| |2021). Therefore, it is urgent to develop effective strategies to evaluate and
mitigate hallucinations, enhancing the reliability and trustworthiness of LLM responses.

Hallucinations (Wang & Sennrich, 2020; Ji et al., 2023} [Huang et al., |2024) in models manifest
in several ways, including factual inconsistency, factual fabrication, and faithfulness. This paper
focuses on enhancing the factuality and consistency of language model outputs. It aims to ensure
that models can accurately express what they know and don’t know, while maintaining consistency
across their responses. This contributes to the broader goal of developing language models as reli-
able knowledge bases (Zheng et al.,2024a} Petroni et al.| [2019; Wang et al.,[2021). Recently, several
methods have been proposed, such as scaling models (Liu et al., 2024; [Lee et al., |2022), utilizing
adversarial training (Penedo et al., |2023), reinforcement learning with human feedback (RLHF)
(Ouyang et al.l [2022; Wu et al., [2024) and knowledge editing Meng et al.| (2022; [2023). However,
these methods often entail significant computational overhead and require high-quality annotated
data, or they lack general applicability, necessitating model-specific adaptations.

A recent approach to enhancing LLMs involves mimicking human thought processes, allowing these
models to self-evaluate and adjust their outputs. (Liang et al., 2024; Kamoi et al.,|2024)) This method,
known as self-correction, aims to improve LLM responses by refining them during inference. Re-
searchers have applied these techniques to enhance model reliability, categorizing them into three
types: self-correction with fine-tuning (Ye et al.| 2023 |Lee et al., [2024), self-correction with exter-



Under review as a conference paper at ICLR 2025

nal information (Gao et al) 2023} Jiang et al.| [2023b)), and self-correction with prompting (Shinn
et al., 2024} [Manakul et al., [2023)). However, the practicality of intrinsic self-correction remains de-
bated. For instance, [Huang et al.|(2024) argue that LLMs currently lack the capability for effective
self-corrective reasoning, noting that when models are prompted to identify and fix their own errors,
their performance can actually decrease.

In line with (Huang et al., 2024)), we revisits self-correction methods and finds that these methods
depend on advanced inherent capabilities, such as chain-of-thought reasoning or critical evalua-
tion. Models with weaker abilities struggle to improve both consistency and accuracy concurrently,
making self-correction challenging. Additionally, these methods often focus solely on performance
improvement, neglecting the importance of having LLMs indicate uncertainty when they don’t know
an answer, which is crucial for ensuring reliability. To address this, we introduce a self-reference
method (SREF) that leverages the model’s internal knowledge to generate relevant references. The
references can reflect the model’s understanding of current knowledge and influence the entropy
change in the model’s responses, thereby enhancing its reliability. It requires only retrieval from the
model itself, allowing it to function effectively as a knowledge base without relying on advanced
capabilities or external knowledge sources. Additionally, this approach helps the model become
aware of what it knows and doesn’t know by encouraging it to answer different questions related to
the same knowledge, thereby improving both factuality and consistency.

Finally, we tested SREF on 12 models across three datasets and compared it with four prompt-based
self-correction methods to validate its effectiveness. We also analyzed SREF’s mechanism through
entropy and KL divergence, highlighting its advantages in enhancing model reliability.

Our contributions are as follows:

* We propose a self-reference method (SREF) that significantly enhances the accuracy and
consistency of factual expression by leveraging the model’s own parameterized knowledge,
thereby improving its awareness and mastery of information.

* We analyze and reveal SREF’s mechanism using entropy and KL divergence, which helps
quantify uncertainty and divergence in the model’s predictions. This analysis reveals how
SREF effectively reduces uncertainty and improves the reliability of large language models.

* SREF consistently outperforms four other self-correction methods across three datasets
(NQ, PoPQA, and TriviaQA). It achieves the highest Factuality scores, with an average
improvement of 16.01% over the baselines. Additionally, SREF demonstrates a significant
consistency improvement of 15.10%, highlighting its superior accuracy and reliability.

2 PRELIMINARIES

Reliable LLMs Definition This paper focuses on improving the reliability of large language mod-
els (LLMs) in terms of Factuality and Consistency. A Reliable LLM should be aware of what it
knows and what it does not know, and be able to communicate this uncertainty clearly to the user.
Specifically, a reliable LLM should meet the following two criteria: 1) Factuality: The model should
accurately convey what it knows and acknowledge when it is uncertain. 2) Consistency: For infor-
mation the model is certain about, it should provide consistent answers across different variations of
the same question.

Evaluation Formally, given an LLM M and a QA dataset D containing N factoid questions that the
LLM should have encountered during training, the model’s responses can be classified as correct,
unsure, or incorrect. We use two key metrics for evaluating reliability: Factuality Rate (FR) mea-
sures how often the model provides correct responses for fact-based questions. Consistency Rate
(CR) measure how consistency for the model’s responses. We follow the approach of Zheng et al.
(2024b)) and generate m distractor options that are similar to the correct answer for each question in
D. We then shuffle the answer options to create m versions of the same multiple-choice question,
each with a different order, we denote the multiple-choice question dataset as ID,,.,. Section
provides the formal definition for each metric.

The use of distractors in measuring consistency provides a robust test of the model’s ability to remain
stable in its predictions across variations of the same question. Randomizing the order of multiple-
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{ @ Generate Rephrase Questions } [ © Generate Self-Reference }

Q1: Who was awarded the R1: The first Nobel Prize in Physics was
inaugural Nobel Prize in awarded in 1901 to Wilhelm Conrad

Physics? Rantgen for his discovery of X-ray.
Q: Who got the first ase Q2: In what name was the e R2: The Nobel Prize in Physics was first
Nobel prizein  — [’B —» first Nobel Prize in Physics — @ —»  awarded in 1901 to Wilhelm Conrad
physics? 7 bestowed in 1901? i Rantgen for his discovery of X-ray.
Q3: Who took home the first- R3: The first-ever Nobel Prize in Physics
ever Nobel Prize in Physics was awarded in 1901 to Wilhelm Conrad
in 1901? Rdntgen for his discovery of X.
[ ® Inference With Self-Reference ] Options 1: Options 2: Options 3:
A. Wilhelm Conrad || A. Leonardo A. Marie Curie B.
[Q1+R1][Q2+R2][Q3+R3] Rantgen B. Unsure || B. Marie Curie Leonardo C. Einstein
Q: Who got the first Nobel ~ ¢[e.2 ), C. Einstein Albert C. Einstein Albert Albert D. Unsure
prize in physics? D. Leonardo D. Wilhelm Conrad || E. Wilhelm Conrad
Options: ... ) E. Marie Curie Réntgen E. Unsu Réntgen
J

Figure 1: Example of SREF. The model produces more reliable and consistent outputs when com-
bined with self-reference.

choice answers introduces small perturbations that should not affect a reliable model’s response if it
truly understands the underlying knowledge. Figure[6| provides an example for distractors question.

3 GENERATION WITH SELF-REFERENCE(SREF)

The key concept of SREF it evaluates whether the LLM can accurately respond to a question by
leveraging its own self-knowledge. For a given input, SREF generates k rephrased versions of
the question and simultaneously produces responses to these, which we call self-references. This
helps the model assess its mastery of the current knowledge from multiple perspectives. The self-
references are then used as an additional prompt alongside the original question to obtain the final
result from the model. And helps the model be more confident in its responses or recognize when it
lacks sufficient knowledge. SREF is shown in Figure[T} Next, we describe SREF in more detail.

Rephrase questions generation Given an input question «, the options o, a LLM M and a prompt
xpt, SREF generates a collection of rephrased questions Q = {¢1, ¢2, ..., gx } using M, and each
rephrased question expresses the same meaning as the input x:

Q = M(zp|2), (1)
where x,,; is an instruction for question generation and || denotes concatenation.

Self-reference generation Next, SREF uses the same model M to generate a response R =
{r1,ra,...,ri} for each rephrase questions ¢; € @Q, and we refer to these responses as ‘self-
references’:

R=M(@Q). )
Inference with self-reference Finally, SREF concatenate self-references R with the multi-choice
question x and the options o then passes this combined input to M.

y = M(pl||R||z|]o), 3)

where p is the prompt for multi-choice question. And y is the response of M. With the influence
of R, y will be ‘Unsure’ when R is inconsistency with z, see Eq[7] for detail. Figure [7] provides
examples of the prompts for different generate tasks.

Self-references intuitively enhance the quality of model responses by ensuring consistency, building
coherence, and improving accuracy. For known facts, they provide uniform answers to similar
questions, reducing confusion. For uncertain facts, they help express uncertainty, guiding the model
to be aware of what it knows and does not.
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To verify the role of references, we analyze SREF’s mechanism using entropy and Kullback-Leibler
(KL) divergence, which help evaluate the consistency and reliability of the model’s responses, al-
lowing us to assess how effectively self-references improve the models’ performance.

Self-Reference from the Perspective of Entropy Self-reference could provides insights into the
uncertainty of information and the consistency of model outputs. The key point is that self-reference
R could reduce entropy. Since it provides additional context that is already aligned with the model’s
prior probability distribution, this can act to concentrate probabilities around a few likely tokens,
effectively reducing uncertainty. see Theorem 2.6.5 in Elements of Information Theory.

For a sequence X = {t1, 2, ..., t,—1} with n tokens, the joint probability of the sequence generated
by the model M can be expressed as:
P(X) = P(t1)P(ta]t1)P(ts|t1, t2) . .. P(tnlt1,ta, .. tn_1). (G))
After we concatenate self-reference R generated by M, the information entropy for the next gener-
ated word is:
H(t,|R||X) = = > P(t;|R||X)logP(t;| R|| X). 5)
123
The key question is how entropy changes after concatenating the self-reference R with X and why
it provides insights into the uncertainty of LLMs. To answer this, we use Kullback-Leibler (KL)

divergence to measure the information lost between between H (¢,,|X) and H (¢, |R||X). In this
way we could figure out how to use reference to help improve the consistency and reliabilityﬂ

Let p(x) represent the probability distribution of the input z, and u(x) the uniform distribution. The
KL divergence is defined as:

Dis(ph) = Y- plooa( 5. ©)

A lower KL divergence indicates that p(z) is closer to uniform distribution u(x), meaning the pos-
sible outcomes have approximately equal probabilities.
After concatenating R, the KL is KL, = Dy (p(R||zX)|u(X)), We can then determine:
H(t|RIIX) < H(ta|X), KL, >,
{H(tn|R||X) > H(t,|X), else.
where ¢ is a threshold. This indicates that using R and having a KL divergence larger than ¢ results

in more certain model responses, decreasing entropy. And the relationship between reference and
question will influence the K L,..

(7

In practice, there are two possible scenarios for varied responses in R: 1) different reference express
the same meaning, and 2) different reference are inconsistent in expression. In the first scenario,
a consistent R is more likely to generate responses relevant to the question z. Empirical evidence
might show that repeated paraphrasing concentrates the distribution over the next token. This in-
creases model confidence, reinforcing the distribution over the next token ¢,,, and K L, will increase
and make the model more confident. In contrast, in the second scenario, inconsistent references may
introduce ambiguity or conflicting information, complicating content generation. This results in a
decrease in K L,., make the response more unsure.

Thus, high similarity in references will make the model’s response more confidence, and low sim-
ilarity in references can increase uncertainty in the model’s response. Since these references are
generated by the model itself, this helps it recognize inconsistencies or gaps in its knowledge.

4 EXPERIMENTS

4.1 SETUP

Models and DatasetsE] We conduct experiments with publicly accessible model: GPT2-
XL(1.5B), GPT-J(6B), LLaMA2-Chat(7B,13B) (Touvron et al.| [2023), LLaMA3INSTRUCT(8B),

"We reference the paper On Information and Sufficiency which shows that Kullback-Leibler (KL) Diver-
gence measures the information lost when using q(x) ¢(z) to approximate p(z).
2We omitted INSTRUCT(Chat) from the model name for short.


http://staff.ustc.edu.cn/~cgong821/Wiley.Interscience.Elements.of.Information.Theory.Jul.2006.eBook-DDU.pdf
https://ai.meta.com/blog/meta-llama-3/
https://projecteuclid.org/journals/annals-of-mathematical-statistics/volume-22/issue-1/On-Information-and-Sufficiency/10.1214/aoms/1177729694.full
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Model LLaMA2I(7B) LLaMA2I(13B) LLaMA3.11(8B) GPT4omini GPT40\ Mean

NQ
Vanilla 30.33% 24.08% 63.73% 69.32% 76.28 % 52.75%
RCI 32.40% 32.63% 62.36% 57.47% 5747% | 48.47%
SRF 20.70% 20.13% 23.80% 65.40% 3890% | 33.79%
SCK 22.37% 26.83% 66.60% 53.63% 58.87% | 45.66%
SC 28.57% 23.50% 53.67% 61.03% 65.27% | 46.41%
SREF 51.87% 51.39% 69.80 % 61.98% 67.07% | 60.42%
PoPQA
Vanilla 19.61% 13.48% 61.55% 46.63% 61.20% | 40.49%
RCI 19.00% 13.26% 47.23% 44.70% 57.93% | 36.42%
SRF 20.18% 10.87% 53.30% 51.70% 64.83% | 40.18%
SCK 20.70% 16.30% 51.53% 38.46% 62.65% | 37.93%
SC 32.20% 30.13% 54.00% 30.33% 56.90% 40.71%
SREF 43.82% 30.65 % 60.56% 51.75% 62.82% | 49.92%
TriviaQA
Vanilla 34.71% 33.90% 64.82% 72.00% 79.00 % 56.89%
RCI 32.90% 34.23% 62.57% 56.20% 69.76% | 51.13%
SRF 20.13% 20.10% 20.43% 64.10% 3597% | 32.15%
SCK 32.20% 31.23% 68.26% 61.40% 64.55% | 51.53%
SC 30.90% 29.10% 60.83% 67.03% 72.80% | 52.13%
SREF 50.60 % 50.46 % 69.43% 68.12% 74.82% | 62.68%

Table 1: Comparison on Micro-FR with different self-correction methods. The best results are in
bold, and the second-best results are underlined. Vanilla” refers to the original model, and "Mean”
is the average score across all models. All models used are the instruction version.

LLaMA3.1INSTRUCT(8B,70B), LLaMA3.2INSTRUCT(1B,3B) and MISTRAL-INSTRUCT (7B)
(Jiang et al.| [2023a). And GPT4 series (Achiam et al.|[2023)) LLMs: GPT40-08-06 and GPT40-mini.
For the dataset, We consider three open-domain QA datasets: TriviaQA (Joshi et al.,[2017), Natural
Questions (NQ) (Kwiatkowski et al., 2019), and PoPQA (Mallen et al., 2023). These datasets are
broad-coverage, knowledge-intensive QA datasets, making them well-suited for evaluating LLMs’
capacity and consistency to perceive their internal knowledge. Following (Zheng et al., [2024b),
during evaluation, we generate m multiple-choice questions for each data instance. We randomly
sample 3000 questions for each dataset (3000 x m multiple-choice questions) for testing. Detailed
descriptions of the models and datasets are provided in Appendix

Metrics For factuality, we utilize the Micro-Factuality Correct Rate (Mi-FR) to measure overall
accuracy across all multiple-choice questions (MCQs) for a given dataset. The formula is:

Zl 1 Z] 1 xlJ is correct (8)
N xm

where N is the total number of data instances, m is the total number of multi-choices questions

for per data, each data contain ﬂ multi-choices questions. lx‘J is correct 18 an indicator function that

equals 1 when Multi-Choices Questlon Zij € Dpyeq on the j-th Question of the i-th data, and 0

otherwise.

Micro-FR =

For consistency, we use Macro-Consistency Rate (Macro-CR) to assesses whether all multi-choices
questions of a data can yield correct answers.

N .
P me
Macro-CR = 2i=t 1Ti=1 -, where T; = —correet )
N m
where mwrrect is the number of the correct multi-choice questions for each data. And 1t,—; is
True, meaning all multi-choice answers for the i-th data are correct, indicating a higher consistency
for correctness.

Baselines We compare SREF with four self-correction methods based on prompting: RCI (Kim
et al.l 2024), Self-Refine (SRF) (Madaan et al., [2024)), Self-check GPT (SCK) (Manakul et al.,
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2023)), and Self-Consistency (SC) (Wang et al.,[2023)). All of these methods refine LLMs’ initial re-
sponses solely by leveraging the models’ inherent capabilities, without relying on external feedback
or supervised fine-tuning. Detailed descriptions of the baselines are provided in Appendix [A.2]

4.2 RESULTS
4.3 RESULTS ON FACTUALITY RATE AND CONSISTENCY RATE

Table |1| presents the Micro-FR results comparing self-correction based on prompting. A higher
Micro-FR indicates higher accuracy. And SREF achieves the highest Micro-FR scores for LLaMA2
(7B) and (13B) across multiple datasets, and also obtains the highest Mean score across all models.

SREF can significantly improve the factuality of models. SREF consistently delivers the best or
second-best Micro-FR across various models and datasets, showcasing its strong ability to enhance
accuracy in knowledge-intensive tasks. Unlike methods such as RCI and REFINE, which depend
on the model’s own feedback loops and self-correction, SREF enables models to retrieve relevant
information from itself, significantly boosting both factuality. This makes it particularly effective in
addressing the limitations of models lacking high-level inherent capabilities. For smaller-scale mod-
els like LLaMA2(7B) and LLaMA?2(13B), SREF produces dramatic improvements, highlighting its
scalability and robustness in enhancing both factuality and consistency.

LLaMA2I(7B) LLaMA2I(13B) LLaMA3.11(8B) GPT4omini GPT4o ‘ Mean
NQ
Vanilla 5.32% 3.59% 22.57% 57.76% 67.20% 31.29%
RCI 10.80% 14.60% 24.20% 50.20% 50.20% 30.00%
SRF 3.00% 3.10% 7.80% 46.80% 14.40% 15.02%
SCK 4.80% 12.60% 42.40% 49.40% 52.40% 32.32%
SC 4.40% 2.20% 20.00% 50.60% 58.20% 27.08%
SREF 13.94% 13.58% 27.00% 54.43% 59.70% 33.73%
PoPQA
Vanilla 3.02% 1.47% 22.48% 34.33% 49.90% 22.24%
RCI 4.20% 3.60% 21.40% 40.00% 49.20% 23.68%
SRF 2.97% 2.30% 24.60% 39.00% 51.60% 24.09%
SCK 4.40% 5.40% 35.80% 36.60% 56.98% 27.84%
SC 9.80% 8.20% 20.00% 34.60% 48.80% 24.28%
SREF 12.01% 7.50% 21.94% 46.10% 57.30% 28.97%
TriviaQA

Vanilla 6.65% 6.92% 24.36% 62.36% 71.00% 34.26%
RCI 14.60% 12.80% 22.00% 44.20% 58.60% 30.44%
SRF 4.25% 3.51% 5.00% 45.40% 11.80% 13.99%
SCK 11.40% 16.80% 40.00% 54.00% 53.17% 35.07%
SC 5.00% 4.00% 19.00% 57.00% 63.60% 29.72%
SREF 13.14% 13.51% 26.75% 58.47% 71.90% 36.75%

Table 2: Comparison on Macro-CR with different self-correction methods.

Table [2] shows the results on Macro-CR, where a higher Macro-CR indicates that the model can
provide consistent and correct responses.

SREF can stability improve the consistency of LLMs, and also enhances the capabilities of
GPT40 and GPT4omini, particularly in improving consistency. For LLMs such as GPT40 and
GPT4omini, they generally lead in performance, especially in Vanilla settings, showcasing their
strong baseline capabilities and robustness across different datasets. While SC and SCK meth-
ods also contribute to improvements—with SC enhancing overall accuracy and SCK improving
consistency—neither matches the stable impact of SREF. Furthermore, SREF provides significant
Macro-CR improvements, achieving a top score of 46.10% for GPT4omini in PoOPQA and 71.90%
for GPT4o0 in TriviaQA. It also obtains the highest Mean score across all models. These results
clearly demonstrate SREF’s superior ability to enhance both accuracy and consistency, making it a
key method for optimizing model performance and guiding future development strategies.

Notably, when dealing with models that have a large number of parameters or are more powerful,
such as GPT-40 and LLaMA 3.1, other baselines may exhibit advantages on certain datasets. This
is related to their reliance on the model’s capabilities. However, when the Vanilla model’s capa-
bilities are weaker, these methods struggle to be effective. In contrast, SREF relies solely on the
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When was the last time michigan beat ohio state? (Type: False — Unsure)

Reference 1: When was the last time michigan beat ohio state? A:in football? The last time Michigan beat
Ohio State in football was on November 18, 2018, when the ...

Reference 2: When was the last time Michigan beat Ohio State in a football game at the Big House? Answer:
The last time Michigan beat Ohio State in a football game at the Big House was on November 18, 2003 ...
Reference 3: When did the Wolverines last emerge victorious over the Buckeyes in a regular season
matchup? A: That would be in 2003, when Michigan won 35-21 in Columbus ...

Options: A.2002 C. 2018 D. Unsure E. 2011 F. 2012 G. 2003

Reference score: 0.3

SREF: C. 2018 —

SC: (Wang et al.,2023) C. 2018 — G. 2003

Figure 2: An example of False to Unsure with Reference.

model’s ability to represent knowledge, allowing it to consistently improve overall performance and
be suitable for Vanilla models of varying scales.

4.4 RESULTS FOR UNCERTAINTY

Table [ reports the performance regarding uncertainty. From the table, we can see that our method
increases the likelihood of models outputting "unsure’ across most models and datasets. Our con-
clusions align with [Zheng et al.| (2024a); [Zhou et al.| (2024), that models like LLaMA3 exhibit
some tendencies toward excessive introspection. Therefore, enhancing their ability to respond with
‘unsure’ helps in building more trustworthy LL.Ms. For relatively smaller models like LLaMA?2,
reducing ’unsure’ responses suggests an improvement in the information provided by the model. In
summary, our method can adaptively help models recognize what they know and don’t know based
on the reference.

Additionally, we provide a case illustrating how our method helps the model recognize its own un-
certainty. As shown in Figure [2) when the model generates references unrelated to the question but
maintains consistency among them, the SC method tends to choose the most frequent answer, lead-
ing to incorrect responses. In contrast, our method, SREF, detects the LLM’s uncertainty from these
references and selects ‘Unsure.” Further analysis in Section [4.5.1] confirms that choosing ‘Unsure’
is both necessary and accurate.

4.5 ANALYSIS

The above results indicate that SREF can enhance the model’s factuality and consistency, and could
enhance the ability of aware what LLMs known and don’t. In this section, we perform additional
experiments to analyze the importance of self-reference.

4.5.1 ANALYZING SREF FROM THE PERSPECTIVES OF ENTROPY AND KL DIVERGENCE

As shown in Figure |3| the confidence score is determined by using models like GPT-40 to assess
the consistency of references with the questions. The entropy is computed from the distribution of
tokens predicted by the model. Each node in the figure is split into two colors: the left side represents
the result of the model’s original output, while the right side shows the result with SREF.

Figure [] illustrates the relationship between KL divergence and the consistency score. The KL
divergence is calculated using the SREF distribution and a uniform distribution (see Equation [6).
Section[A.3| provides more detailed settings and case study.

The references generated by SREF can adaptively adjust the changes in output entropy and
KL divergence, thereby enhancing the model’s confidence in known knowledge and its aware-
ness of unknown knowledge. Entropy measures the model’s uncertainty in its predictions, with
lower entropy indicating greater confidence. KL divergence quantifies the change in the prediction
distribution when incorporating references, with lower KL divergence indicating less confidence.
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Figure 3: Distribution of Delta Entropy Figure 4: Distribution of KL divergence

In terms of entropy, as seen in Figure [3] the concentration of blue nodes (Correct) in the upper
right corner indicates that when our method corrects previously incorrect data, it decreases entropy,
enhancing the model’s accuracy and confidence. Conversely, the clustering of yellow nodes (Un-
sure) in the lower left corner suggests that low relevance in generated references increases entropy,
signaling uncertainty to the model.

Regarding KL divergence, Figure ] shows that a high consistency score with large KL divergence
corresponds to increased certainty, as indicated by the spread of blue and red nodes (Correct and
Wrong). In contrast, a low consistency score with small KL. divergence, associated with yellow
nodes (Unsure), reflects low certainty and a tendency towards uncertainty.

Opverall, through the analysis of entropy and KL divergence, we find that when the references
generated by SREF are consistent with the question, the model tends to give a confident and
correct response. Conversely, when the consistency score is low, it helps the model recognize
its uncertainties.

4.6 DISCUSSION

4.6.1 ANALYZING LLMS RESPONSE CHANGES THROUGH THE CONSISTENCY SCORES

We analyzed the changes in model output when references with different scores were provided. Fig-
ure 5] shows the results for models smaller than 13B, and Figure [5c|and Figure [5b] provides detailed
results for GPT40 and GPT4omini across three datasets. The percentage indicates the proportion
of the current type, and the number represents the average consistency score of references for the
current type.

SREF can activate the correct knowledge in the model thus improving accuracy when gen-
erate high-consistency references. Meanwhile, low-consistency references reflect the model’s
uncertainty about current knowledge, leading it to choose unsure.
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As shown in the ﬁgure@ two results show a trend: when the consistency score is high, TT, UT, and
FT transitions are most common, indicating that higher scores are more likely to improve model per-
formance. Conversely, when the score is low, the model is more likely to respond with uncertainty.
This demonstrates that when references are unrelated to the question, the model becomes unsure
about the knowledge related to the question, leading to a preference for uncertain responses.

4.6.2 HOW IMPORTANT ARE THE NUMBER OF SELF-REFERENCES?

To assess the impact of varying numbers of references on the model’s performance, we compared
results using 2, 3, and 4 references, as shown in Table@ The table indicates that using 4 references
yields the best results, with a notable improvement in accuracy. Fewer references may not ade-
quately capture the model’s understanding of the current knowledge, while more references increase
computational costs and affect efficiency. In this paper, we simply generate rephrased questions to
create the references. The design of these questions is crucial, as well-crafted questions may en-
hance the relevance and quality of the references. Future research could explore optimizing both
the number of references and the design of questions to improve performance without significantly
increasing computational demands.

5 RELATED WROK

5.1 LARGE LANGUAGE MODEL AS RELIABILITY KNOWLEDGE BASE

Large language models (LLMs) are powerful knowledge bases, capable of storing and retrieving
vast information. However, they often struggle with consistency and accuracy. Foundational work
by |Petroni et al.| (2019) and Roberts et al.| (2020) explored their potential and limitations. While
efforts like those by [Wang et al.|(2021)) have enhanced factual memorization, reasoning challenges
persist (He et al., 2024). To address these, |Zheng et al.| (2024a) and |Zheng et al.| (2024b) proposed
criteria for ensuring factuality and consistency. At the same time, Jang et al| (2022)) and Ribeiro
et al.|(2019) identified gaps in output stability, and |Cohen et al.| (2023)) and Xue et al.|(2023) tackled
factual inaccuracies, emphasizing the need for models to recognize their knowledge limits (Cheng
et al., [2024; [Chen et al., |2024). However, many existing solutions require significant resources
(Amayuelas et al.l [2023)). This paper introduces SREF, a self-referencing framework that enhances
LLM reliability. By improving consistency and accuracy, SREF allows models to manage uncer-
tainty more effectively, increasing their trustworthiness as knowledge bases and offering a more
efficient solution compared to existing methods.

5.2 SELF-CORRECTION METHODS FOR LLMs

Self-correction methods for large language models (LLMs) enhance reliability through iterative re-
finement and error correction. [Madaan et al.|(2024)) introduced Self-refine, leveraging self-feedback
to improve quality, while [Welleck et al.| (2023) focused on self-correcting during sequence genera-
tion. [Pan et al.|[(2024) surveyed diverse correction strategies, highlighting the need for robust error
identification systems. |Gao et al.| (2023) and [Yu et al.| (2023) explored self-review and retrieval
feedback, respectively, to enhance performance. Additionally, [Kim et al.[ (2024) and |Shinn et al.
(2024) discussed feedback for task-solving and reinforcement learning. |Jung et al.[(2022) examined
logically consistent reasoning. Despite these advancements, [Huang et al.|(2024) and [Stechly et al.
(2023) noted limitations in reasoning, where models struggle to recognize errors independently. In
contrast, SREF uses self-referencing to improve consistency and accuracy, addressing these limita-
tions by enhancing inherent reliability.

6 CONCLUSION

In this paper, we introduce SREF, an entropy-guided approach that enhances the reliability of large
language models (LLMs) by incorporating self-references. We evaluated its effectiveness through
theoretical analysis and experimental validation, showing that self-references can improve accuracy
and help models recognize their knowledge boundaries. SREF was tested on three datasets and
12 models, demonstrating its ability to enhance reliability and assess uncertain knowledge. These
results highlight SREF’s potential to increase the trustworthiness of LLMs in practical applications.
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A APPENDIX

Q: Who got the first Nobel prize in physics?

Options 1:
A. Wilhelm Conrad Rontgen B. Unsure C. Einstein Albert D. Leonardo E. Marie Curie
Options 2:
A. Leonardo B. Marie Curie C. Einstein Albert D. Wilhelm Conrad Rontgen E. Unsure

Options m:
A. Marie Curie B. Leonardo C. Einstein Albert D. Unsure E. Wilhelm Conrad Rontgen

Figure 6: An example of Multiple-Choice Question with different option orders.

A.1 IMPLEMENTATION DETAILS

Datsete Natural Questions (NQ) [Kwiatkowski et al.[ (2019) includes questions sourced from web
queries, each paired with a corresponding Wikipedia article containing the answer. TriviaQA [Joshi
et al.[ (2017) comprises questions from Quiz League websites, supplemented by web pages and
Wikipedia searches that may contain the answer. PopQA Mallen et al.[(2023)) targets long-tail enti-
ties. The dataset uses the Wikipedia dump from December 2018 in its retrieval-augmented baseline,
indicating that the knowledge in PopQA is covered by this Wikipedia version.
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We sampled 3,000 data points from each of these three datasets as evaluation data and generated
corresponding multiple-choice questions based on them. Figure[6]give an example for the multiple-
choice question.

Dataset Model Vanilla SREF ‘ Vanilla SREF ‘ Vanilla SREF
Micro-FR Macro-CR Macro-FU
LLaMA3.2(1B) 46.47% 47.78% 9.94% 12.08% 5.77% 11.21%

GPT2XL(1.5B) 15.12% 15.10% 0.00% 0.00% 13.92% 11.13%
LLaMA3.2(3B) 56.81% 60.74% 18.04% 21.12% 8.77% 14.64%

GPTI(6B) 16.02% 19.22% 0.00% 0.03% 10.80% 5.22%
MISTRAL(7B) 57.12% 60.76% 18.26% 21.10% 1.74% 2.05%

NQ LLaMA2(7B) 30.33% 51.87% 5.32% 13.94% 19.97% 17.07%
LLaMA3(8B) 64.83% 68.48% 23.66% 25.83% 1.35% 4.61%

LLaMA3.1(8B) 63.73% 69.80% 22.57% 27.00% 2.93% 4.84%
LLaMA2(13B) 24.08% 51.39% 3.59% 13.58% 0.67% 9.64%
LLaMA3.1(70B) 70.54% 73.33% 28.69% 31.03% 2.69% 3.55%
GPT4omini 69.32% 61.98% 57.76% 54.43% 14.64% 27.90%
GPT4o0 76.28% 67.07% 67.20% 59.70% 13.45% 22.32%

LLaMA3.2(1B) 39.12% 37.17% 7.29% 8.86% 14.68% 27.71%
GPT2XL(1.5B) 13.87% 15.30% 0.00% 0.00% 14.13% 9.42%
LLaMA3.2(3B) 47.87% 39.94% 14.57% 12.29% 19.12% 33.58%

GPTJ(6B) 1437%  16.93% 0.03% 0.03% 1327%  4.49%

MISTRAL(7B) 52.07%  5533% | 15.74%  18.49% 1.67% 0.99%

POPOA LLaMA2(7B) 19.61%  43.82% 3.02% 1201% | 21.02%  21.29%
LLaMA3(8B) 60.14%  60.36% | 22.08%  22.62% 2.73% 11.32%
LLaMA3.1(8B) 61.55%  60.56% | 22.48%  21.94% 4.11% 14.95%
LLaMA2(13B) 13.48%  30.65% 1.47% 7.50% 0.13% 10.37%
LLaMA3.1(70B)  59.22%  59.21% | 21.11%  24.17% 1.91% 10.24%

GPT4omini 46.63%  51.75% | 3433%  46.10% | 34.80%  38.20%

GPT40 61.20%  62.82% | 49.90%  57.30% | 2693%  31.39%

LLaMA3.2(1B)  41.76%  45.92% 8.75% 11.00% 8.96% 15.28%
GPT2XL(1.5B) 1424%  15.28% 0.00% 0.00% 1421%  10.92%
LLaMA3.2(3B) 54.72%  56.74% | 18.43%  18.95% | 11.81%  17.85%

GPTIJ(6B) 1571%  19.43% 0.00% 0.07% 11.09% 6.50%

MISTRAL(7B) 60.47%  65.45% | 20.94%  23.25% 1.59% 1.08%

TriviaQA LLaMA2(7B) 3471%  50.60% 6.65% 13.14% | 31.53% 18.38%

LLaMA3(8B) 64.29% 66.37% 24.16% 24.76% 3.01% 6.48%
LLaMA3.1(8B) 64.82% 69.43% 24.36% 26.75% 4.13% 6.36%

LLaMA2(13B) 33.90% 50.46% 6.92% 13.51% 3.92% 9.82%
LLaMA3.1(70B) 73.18% 76.18% 31.06% 32.97% 2.55% 2.78%
GPT4omini 72.00% 68.12% 62.36% 58.47% 16.08% 26.60%
GPT4o0 79.00% 74.82% 71.00% 71.90% 12.53% 21.27%

Table 3: Results on three dataset across 12 models.

A.2 MODEL AND BASELINES

Models For all models, we used the weights provided by Hugging Face. The results for all models
are shown in Table[3]

Baselines We compare SREF with four self-correction methods based on prompting: RCI (Kim
et al.l 2024), Self-Refine (SRF) (Madaan et al., [2024)), Self-check GPT (SCK) (Manakul et al.,
2023)), and Self-Consistency (SC) (Wang et al.,[2023)). All of these methods refine LLMs’ initial re-
sponses solely by leveraging the models’ inherent capabilities, without relying on external feedback
or supervised fine-tuning. The prompts for different baselines are shown in Figure [§]

Recursive Criticism and Improvement (RCI) [Kim et al.|(2024) focuses on enhancing language mod-
els’ reasoning capabilities by structuring problems as a sequence of intentions or intermediate steps.
This approach aims to improve logical reasoning and decision-making processes in complex tasks.
RCI relies on the model’s ability to generate explanations and evaluations of its own responses and
refine them based on these evaluations. However, this method is less effective in models that lack
chain-of-thought capabilities and strong feedback mechanisms. The prompt we used in RCI is:

Self-Refine (SRF)|Madaan et al.|(2024)is a method where models iteratively refine their outputs by
self-evaluating and making adjustments. This technique allows models to improve the quality and
accuracy of their responses through multiple iterations. However, it requires the model to recognize
inaccuracies in its responses, which can be challenging for smaller-scale models.

Self-check GPT (SCK) (Manakul et al., 2023) involves a model verifying its own outputs by gen-
erating explanations or justifications. This self-checking mechanism helps ensure the reliability and
correctness of the model’s responses. Self-Consistency (SC) (Wang et al.l |2023) enhances model
performance by generating multiple outputs for a given input and selecting the most consistent re-
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sult. This method leverages the diversity of responses to arrive at a more reliable and robust answer.
These two papers are related to our work. SCK focuses on evaluating hallucinations in language
models, with the model determining whether the evidence supports its response. In our setting, we
use these responses and feedback as references to enhance the model’s output. For Self-Consistency,
it involves sampling multiple times to generate diverse responses to improve the model, but it relies
heavily on sampling methods. In tasks involving short question answers, it may lack consistency
because different samples often yield the same response.

LLaMA2I(7B) LLaMA3.11(8B) LLaMAZ2I(13B) GPT4omini GPT4o0

NQ
Vanilla 19.97% 2.93% 0.67% 14.64% 13.45%
SREF 17.07% 4.84% 9.64% 27.90% 22.32%
PopQA
Vanilla 21.02% 4.11% 0.13% 34.80% 26.93%
SREF 21.29% 14.95% 10.37% 38.20% 31.39%
TriviaQA
Vanilla 31.53% 4.13% 3.92% 16.08% 12.53%
SREF 18.38% 6.36% 9.82% 26.60% 21.27%

Table 4: Results for Uncertainty. The value represents the ratio of the total number of "unsure’
responses to the total number of questions.

A.3 DETAILS OF ANALYSIS
A.3.1 RESULTS FOR UNCERTAINTY.

Table [ evaluates the effectiveness of various language models—LLaMA2I (7B), LLaMA3.11 (8B),
LLaMAZ2I (13B), GPT4omini, and GPT40—across three datasets: NQ, PopQA, and TriviaQA, fo-
cusing on the percentage of “unsure” responses. The Vanilla method generally results in lower
“unsure” response rates, while the SREF method significantly increases these rates, indicating im-
proved uncertainty recognition. Notably, models like LLaMAZ2I (13B) and GPT4omini show sub-
stantial increases in unsure” responses with SREF, especially in the NQ and PopQA datasets. This
suggests that SREF effectively enhances the models’ ability to identify uncertainty, leading to more
cautious and reliable outputs. The impact of SREF varies by model and dataset, highlighting differ-
ences in how each model handles uncertainty and the influence of dataset characteristics on model
performance.

A.3.2 DETAILS OF CONSISTENCY SCORE (CS) AND DELTA ENTROPY (DE)

To provide insights into the SREF effectiveness, we evaluate on LLaMA?2 (7B) and LLaMA3.1 (8B)
across datasets Natural Questions (NQ), TriviaQA, and PoPQA. We show the results before and
after applying SREF in Table 5] categorizing them as True to True (TT), False to True (FT), True
to False (TF), Unsure to True (UT), Unsure to Unsure (UU), and Mixed Types (FU, UF). We also
provide the transitions of GPT40 and GPT4omini in Figure[5bland[5c] UT transitions, where models
move from uncertain to correct, show that references can clarify and enhance confidence. TU and
FU transitions, where models become uncertain, suggest that certain references can make the model
aware what they know and don’t know. An outlier is the TF transition in Figures [5b|and [5c| where
the consistency score is high, but the result worsens. This suggests that larger models such as GPT4o0
are susceptible to being influenced, even when provided with factually relevant references.

A.4 ALBATION STUDY

To test the impact of different numbers of references on the model’s performance, we compared
the results when providing 2, 3, and 4 references, as shown in Table @ The table indicates that
using 4 references yields the best results. Fewer references may not adequately reflect the model’s
understanding of the current knowledge, while more references increase computational costs and
affect efficiency.

Overall, LLaMA3.1 (8B) outperforms LLaMA?2 (7B) across all datasets and metrics. Increasing the
number of references generally enhances Mi-FR and Ma-CR, indicating improved factual accuracy
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Model | Type CS DE ND | Type CS DE ND | Type CS DE ND
‘ NQ PoPQA TriviaQA
TT 0594  0.062 4656 TT 0.587  0.265 2111 T 0.651 0.080 5009
TF 0278  -0.710 552 TF 0257  -0.392 214 TF 0389 -0.782 751
TU 0.196  -0.577 274 TU 0.176  -0.477 87 TU 0.288  -0.469 333
LLaMA2(7b) FT 0479  0.194 3502 FT 0.485 0.210 3643 FT 0.489 0.475 1903
FF 0277 -0.300 4107 FF 0.184  -0267 4340 FF 0304  -0.091 3427

FU 0.142 -0.533 1329 FU 0.108 -0.437 2129 FU 0.189 -0.233 622
uT 0.526 0.079 1190 uT 0.439 0.111 1516 uT 0.514 0.145 1832
UF 0.353 -0.268 938 UF 0.192 -0.425 1592 UF 0.349 -0.325 1571
uu 0.155 -0.438 1446 uu 0.090 -0.524 2362 uu 0.176 -0.326 2546

TT 0.602 0.065 10633 TT 0.586 0.064 7446 TT 0.637 -0.040 10478

TF 0.138 -0.135 582 TF 0.091 0.037 1172 TF 0.128 -0.228 595
TU 0.085 -0.393 284 TU 0.053 -0.159 794 TU 0.146 -0.481 351
FT 0.490 0.843 1706 FT 0.430 0.664 1878 FT 0.420 0.769 1561

LLaMA3.1(7B) FF 0.367 0.138 3862 FF 0.228 0.305 4731 FF 0.388 0.103 3667
FU 0.064 -0.154 400 FU 0.039 0.115 1236 FU 0.084 -0.033 483

uT 0.391 0.835 211 uT 0.380 0.932 179 uT 0.284 0.683 305
UF 0.161 0.539 129 UF 0.120 0.748 227 UF 0.162 0.445 199
uu 0.050 0.202 187 uu 0.051 0.441 331 9]9) 0.070 0.150 355

Table 5: Details of Consistency Score (CS) and Delta Entropy (DE), Number of Data means the
number of each types data.

and consistency. However, the highest CR isn’t always achieved with the maximum number of ref-
erences, suggesting a balance between reference quantity and quality. Specifically, LLaMA3.1 (8B)
shows significant gains in the POPQA dataset, with Mi-FR and CR peaking at 60.56% and 82.77%
with four references. This analysis underscores the effectiveness of using multiple references in
SREF to enhance model reliability and accuracy.

N-Ref‘ Mi-FR  Mi-FU Ma-CR CR ‘Mi-FR Mi-FU Ma-CR CR ‘Mi-FR Mi-FU Ma-CR CR

LLaMA2(7B)

| NQ | PoPQA | TriviaQA

2 ‘46.99% 21.05% 11.47% 75.71%‘ 3539% 28.75%  7.87% 75.81%‘43.45% 2375% 9.24%  74.95%

3 ‘50.70% 18.18% 13.67% 76.33%‘ 38.02%  27.26%  9.34% 77.08%‘4670% 2090% 11.20%  75.25%

4 ‘51.87% 17.07% 13.94% 7577%‘43.82% 21.29% 12.01% 7688%‘50.60% 18.38% 13.14% 77.17%

LLaMA3.1(8B)

\ NQ \ PoPQA \ TriviaQA

2 ‘68.57% 5.09%  25.84% 80497%‘51404% 13.13%  18.24% 79445%‘66473% 7.81%  23.87% 81.23%

3 ‘69.07% 5.05%  26.51% 81.26%‘ 51.81% 13.09% 18.04% 79438%‘67441% 720% 24.14%  81.48%

4 | 69.80% 4.84% 27.00% 81.20% | 60.56% 14.95% 21.94% 82.77% | 69.43% 636% 26.75% 81.79%

Table 6: Results with different references for SREF. CR represents the consistency score of the
correctly answered data.
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Prompts for SREF

Prompts for question generation z,,:
Rewrite the question “’ in three different ways, ensuring that the answer remains *’ for each
version. Separate each version with a newline character.

Example of x,;:

Rewrite the question “Who got the first Nobel prize in physics?’ in three different ways,
ensuring that the answer remains ‘Wilhelm Conrad Rontgen’ for each version. Separate
each version with a newline character.

Prompts for multi-choice question p:

Please select a single best answer for the multi-choice question. Please do not give anything
other than the answer option. If you don’t know the answer, choose the ‘Unsure’ option. /n
References: “’ /n Question: “’ /n Answer:

Example of p:

Please select a single best answer for the multi-choice question. Please do not give anything
other than the answer option. If you don’t know the answer, choose the ‘Unsure’ option. /n
References: Reference 1: Who was awarded the inaugural Nobel Prize in Physics? A:
The first Nobel Prize in Physics was awarded to Wilhelm Conrad Rontgen in 1901 for his
discovery of X-ray

Reference 2: In what name was the first Nobel Prize in Physics bestowed in 1901? A: The
first Nobel Prize in Physics was awarded in 1901 to Wilhelm Conrad Rontgen in recognition
of ...

Reference 3: Who took home the first-ever Nobel Prize in Physics in 19017 A: Wilhelm
Conrad Rontgen. Rontgen was a German physicist who discovered X-rays ... /In

Question: Who got the first Nobel prize in physics? /n

Options:

A. Wilhelm Conrad R "ontgen B. Unsure C. Einstein Albert D. Leonardo E. Marie Curie /n
Answer:

Figure 7: Prompts Example
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Prompts for Baselines

Prompts for RCI

1) Please select a single best answer for the multi-choice question. Please do not give any-
thing other than the answer option. If you don’t know the answer, choose the unsure option.
/n /n Question: /n Answer:

2) You selected . Now, evaluate your choice by comparing it to the other options. Explain
why you think your choice is correct or why one of the other options might be better./n

3) Based on your evaluation, tell me your final Answer: /n

Prompts for SRF

1) Please select a single best answer for the multi-choice question. Please do not give any-
thing other than the answer option. If you don’t know the answer, choose the unsure option.
/n /n Question: /n Answer:

2) You selected . /n Now, evaluate your choice by comparing it to the other options. Explain
why you think your choice is correct or why one of the other options might be better./n

3) Based on your evaluation, tell me your final Answer:

Prompts for SCK

1) /n/nSentence: /n/nls the sentence supported by the context above? Answer Yes or No./n/n
Answer:

2) Based on the reference, answer the following questions:

3) Please select a single best answer for the multi-choice question. Please do not give any-
thing other than the answer option. If you don’t know the answer, choose the unsure option.
/n /n Question: /n Answer:

Prompts for SC

1) Please select a single best answer for the multi-choice question. Please do not give any-
thing other than the answer option. If you don’t know the answer, choose the unsure option.
/n /n Question: /n Answer:

Sample a diverse set of answers.

2) Aggregate the final answers.

Figure 8: Prompts for Baselines
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