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Abstract

Recent advances in generative Al have accelerated the use of language models
(LMs) for clinical prediction tasks. However, existing biomedical LMs often strug-
gle to capture clinically meaningful relationships among medical concepts, as they
rely solely on data-driven text learning and overlook domain knowledge. In this
study, we propose Semantic Medical ID (SMI), a novel representation framework
that integrates an expert-defined medical ontology into LM-based embeddings.
By leveraging the hierarchical structure of medical ontologies, SMIs generate
embeddings that preserve clinical relationships across major disease categories,
subcategories, and specific conditions, enhancing interpretability for clinical end
users. Experimental results demonstrate that SMI improves predictive accuracy in
mortality and readmission tasks. SMI also exhibits greater robustness under cross-
hospital distribution shifts, highlighting its effectiveness in producing clinically
generalizable representations.

1 Introduction

The widespread adoption of electronic health record (EHR) systems has generated large-scale clinical
data, enabling machine learning (ML) models to support tasks such as diagnosis prediction, drug
recommendation, and patient risk stratification. Recent advances in language models (LMs) have
shown promise in processing and interpreting clinical text. To adapt LMs for healthcare, they are
either fine-tuned on clinical data after being pre-trained on general corpora Singhal et al.|[2023} 2025]],
or directly pre-trained on biomedical datasets Lee et al.|[2020]. However, current biomedical LMs
struggle to capture clinically meaningful representations of structured medical concepts. For instance,
the disease conditions are encoded using the International Classification of Diseases (ICD) coding
system |Steindel|[2010]]. However, directly encoding the ICD codes based on their text descriptions
fails to capture the underlying clinical relationships between clinical codes.

Despite the hierarchical organization of ICD codes (Fig. [2la), current biomedical LMs struggle to
capture these structural relationships. In Fig. I} we evaluate whether the embeddings of child concepts
are closer to their parent concepts than to their non-parent ones, assessing the model’s ability to
capture clinical hierarchy. Using expert-defined parent-child pairs across three levels, BloOBERT
achieves 85.1% (Major — Sub-category), 74.7% (Sub-category — CCS), but only 66.0% (CCS —
ICD), respectively. While the model captures coarse-grained relationships, its ability to distinguish
fine-grained medical concepts drops significantly. Biomedical LMs often struggle to understand
fine-grained medical concepts due to limited training data for rare conditions and the absence of
structured domain knowledge [Song et al.| [2025]]. This limits their ability to model hierarchical
semantics, reducing their effectiveness in tasks requiring nuanced medical understanding. Clinical
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Figure 1: Comparison of Hierarchical Similarity Accuracy. We evaluate whether the embedding
of a child concept is more similar to its parent than to non-parent concepts across three hierarchical
levels: Major— Sub-category, Sub-category—CCS, and CCS—ICD. Our proposed SMI embedding
substantially improves discriminative accuracy, especially at finer granularity (e.g., from 66.0% to
92.6% on CCS—ICD level), demonstrating stronger understanding of hierarchical medical semantics.

coding systems such as ICD organize medical concepts hierarchically, from broad disease categories
to fine-grained conditions. Integrating such domain knowledge can help LMs better capture the
hierarchical semantics among medical concepts.

Recently, recommendation systems have adopted semantic ID framework to generate hierarchy-aware

and semantically meaningful item representations [Ju et al.| [2025]], [Singh et al.| [2024]], Rajput et al.|
[2023]). It uses RQ-VAE to hierarchically assign discrete codes that capture multi-level semantics.
Although the semantic ID technique can generate hierarchy-aware representation [Lee et al.| [2022],
it requires to predefined hierarchy depth and equal token counts per level. Moreover, it relies on

data-driven learning and lacks integration of expert-defined hierarchies, resulting in less interpretable

and meaningful hierarchical semantic representations. In this study, we propose Semantic Medical

ID (SMI) that integrates expert-defined hierarchical structures from medical ontology to generate

semantic embeddings. Using a four-level hierarchy from ICD coding system, SMI constructs semantic

IDs and hierarchy-aware embedding for medical concepts. We quantitatively evaluate SMI and show

that it offers stronger interpretability by explicitly encoding hierarchical semantics from domain

knowledge. Visualization results reveal that SMI learns hierarchy-aware embeddings that organize

medical concepts aligned with domain knowledge and forms distinct clusters. On the MIMIC-III

dataset, SMI outperforms biomedical LMs in multiple clinical prediction tasks. Cross-hospital

evaluation on the eICU dataset further confirms its robustness to distribution shifts, achieving better

generalization across sites.

2 Background

2.1 Medical Ontology

Medical ontologies, such as ICD, are developed by domain experts to organize clinical concepts
into hierarchical structures that capture semantic relationships from broad disease categories to
fine-grained conditions [2010]. However, most ML models treat each medical code as
an independent token, ignoring this rich structural information. For instance, ML models often
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Figure 2: Outline of the SMI embedding process. a. Expert-defined medical ontology organizes
clinical concepts from coarse to fine granularity. b. A biomedical language model encodes clinical
codes at each level into level-specific embedding spaces. ¢. For each ICD code, its SMI is derived
from the expert-defined ontology. Its embedding is aggregated across various levels to form the final
representation, capturing its hierarchical semantics.

struggle with long-tail concepts (e.g., rare diseases) that share semantics with more prevalent ones.
To overcome this limitation, we propose a Semantic ID framework that explicitly incorporates an
expert-defined medical ontology into a structured, multi-level representation, enabling the model to
capture clinically meaningful relationships and improve generalization across diseases.

2.2 Semantic ID Methodology

In recommendation systems, semantic ID provides a structured representation of discrete tokens,
capturing coarse-to-fine semantic hierarchies among item IDs Ju et al.[[2025],Singh et al.| [2024]],
Rajput et al.|[2023]]. Prior methods employ RQ-VAE to construct these representations through vector
quantization with a fixed number of levels and equal tokens per level defined as hyperparameters.
It also requires using token parameterization techniques such as prefix-n-grams or modulo hashing.
However, such data-driven approaches lack domain knowledge and often produce uninterpretable or
clinically irrelevant hierarchy in the medical domain. To address this, we construct Semantic IDs for
medical concepts based on an expert-defined medical ontology. By replacing data-driven learning
with structured medical knowledge, our method ensures interpretability and improves generalization
for downstream clinical tasks.

3 Methodology

In this section, we leverage domain knowledge to build the medical ontology for ICD diagnostic
codes. We introduce a two-stage method for learning semantic ID and hierarchy-aware embeddings
for ICD codes. We first apply a biomedical LM to encode each concept at four levels in the hierarchy.
We then represent each clinical code with a semantic ID, which is a sequence of coarse-to-fine
discrete clinical concepts. The resulting embeddings from SMIs will both capture clinical meaning
via biomedical LMs and encode their coarse-to-fine clinical semantics.

3.1 Hierarchy from Medical Ontology

Accurately representing medical concepts requires embeddings that reflect their inherent hierarchical
semantics. Instead of relying on a data-driven hierarchy learning model such as RQ-VAE, we
explicitly incorporate domain knowledge to represent each medical concept (e.g., an ICD code)
from coarse to fine granularity. This forms a hierarchical path within a tree-structured clinical



Table 1: Hierarchical mapping of the four-level CCS—ICD taxonomy.

Level Codeindex CodeID Description

Major 0 1 Infectious and parasitic diseases

Sub O i.l infectious and parasitic diseases — Bacterial infection

CCS O 1 infectious and parasitic diseases — Bacterial infection — Tuberculosis

iCD O 601 i)iseases of the digestive system — Intestinal infection — Intestinal infection

— Cholera

Table 2: Hierarchy-aware prompt for biomedical LMs. We illustrate an example of ICD-10 diagnostic
code 110 Essential (Primary) Hypertension, where the text from all hierarchy levels (i.e., Major
Category, Sub-category, CCS code, and ICD code) is explicitly concatenated for the biomedical
encoder.

Level \ Major Category Sub-category CCS Code ICD Code
Prompt | Diseases of circula- Diseases of circula- Diseases of circula- Diseases of circula-
tory system tory system — Hyper- tory system — Hyper- tory system — Hyper-
tension tension — Essential tension — Essential
Hypertension Hypertension — Es-
sential (Primary) hy-

pertension

ontology (e.g., Circulatory Disease — Hypertension — Essential Hypertension). To achieve this,
we construct a comprehensive hierarchy that unifies both ICD-9-CM and ICD-10-CM diagnostic
systems within a multi-level, expert-defined taxonomy (Fig.[2}a). This clinical ontology defines the
structural relationship for generating Semantic Medical IDs (SMIs), allowing embeddings to encode
disease relationships consistent with expert-defined medical knowledge.

We first integrate ICD-9-CM and ICD-10-CM into a unified hierarchy to ensure comprehensive
coverage of diagnostic concepts across coding systems. Only integer-form codes were retained to
simplify hierarchical mapping and ensure unambiguous alignment across ICD versions. The generated
unified hierarchy includes 937 ICD-9 codes and 1,278 ICD-10 codes.

To enable clinically interpretable disease categorization, we adopt the Clinical Classifications
Software (CCS) developed by the Agency for Healthcare Research and Quality (AHRQ). CCS
provides an expert-curated framework that groups granular diagnostic codes into broader disease
categories, supporting both coarse- and fine-grained clinical analyses. In total, CCS comprises 18
major disease categories, 134 subcategories, and 265 CCS codes, covering all ICD-9-CM and ICD-
10-CM diagnostic concepts. Based on this structure, we construct a four-level hierarchy: Major
category — Sub-category — CCS code — ICD code. As each child is only linked to a single parent
in this tree, every ICD code is uniquely assigned to a hierarchical path tracing its lineage across
levels (e.g., Diseases of the circulatory system — Hypertension — Hypertension with complications
and secondary hypertension — Essential hypertension). This one-to-one mapping ensures that each
diagnostic code has a distinct and interpretable position in the taxonomy. The resulting ontology
provides a structured foundation for embedding learning, enabling SMISs to reflect expert-defined
clinical relationships among diseases.

3.2 Clinical Code Encoding

To obtain clinically meaningful representations, we encode the textual descriptions of clinical codes
at four levels of a clinical hierarchy, i.e., major category, sub-category, CCS code, and ICD code
(Fig.[2]b). Specifically, we use a frozen BioBERT model as an encoder. For each medical concept,
we first generate the description of the clinical code at every level and explicitly concatenate its full
hierarchical path, incorporating the descriptions of all ancestor codes in the hierarchy. We find that
the hierarchy-aware input is more effective in capturing medical semantics. Table |2 presents the



BioBERT input prompt, in which the text passed to the encoder explicitly encodes the hierarchical
context.

Let the hierarchy levelsbe l € £ = {1, 2, 3,4}, corresponding to a specific level (e.g., Major category,
Sub-category, CCS, ICD) with K () clinical codes. Our hierarchy has (K", K(?) K3 K(®)) =
(18,134,265, 2215), yielding a total of 2632 clinical codes. Therefore, the codebook of I-th level

is ¢ = {cgl) }ZK:(? With embedding size d = 768, we define an embedding table for each
level EO € RK"“xd, For each code CZ(.Z), BioBERT encodes its tokenized input and produces

contextualized token embeddings Enc(cgl)). We then apply mean pooling across tokens to obtain a
O]

single embedding e;”’ < R?, which occupies row i of E().

3.3 Semantic IDs Generation and Embedding Aggregation

Following prior work, a Semantic ID is a sequence of discrete codes ¢ = (¢!, ..., c") produced by
the encoder and the expert-defined hierarchy, ordered from coarse to fine granularity. As shown in
Fig. c, in our hierarchy, a raw ICD code is mapped to a sequence (c(1), c¢(?), ¢®) ¢1). Specifically,
the first token c(*) denotes the coarsest concept of major disease category, while ¢(?) and ¢®) specify
sub-category and CCS code, respectively. The last token ¢(*) further refines the most fine-grained
ICD code. This allows us to control both the amount and the structure of clinical information encoded
within each SMI.

In contrast, prior semantic ID methods based on RQ-VAE construct latent hierarchies through
vector quantization, assuming uniform codebook sizes across all levels. However, such data-driven
hierarchies often fail to align with established medical ontologies, resulting in poor interpretability and
clinically inconsistent groupings. For instance, RQ-VAE may cluster unrelated ICD codes together
due to statistical similarities rather than shared medical meaning. Our method explicitly encodes
the expert-defined medical hierarchy into a multi-level discrete representation. This ensures that
the learned semantic structure reflects true clinical relationships and improves interpretability in
downstream healthcare tasks.

Previous approaches using RQ-VAE rely on unsupervised clustering and token parameterization
(e.g., prefix n-grams or modulo hashing) to generate latent semantic codes. In contrast, our approach
leverages an expert-defined medical hierarchy that maps each ICD code to a fixed sequence of discrete
codes. This eliminates the need for token parameterization techniques, as the semantic meaning of
each ICD code is explicitly defined. To compute the embedding for each ICD code, we aggregate the
embeddings of the code and all its ancestor nodes along the hierarchy path P (%) using sum pooling:

M= 3 e )

(1,7)€P(i)

where P (i) denotes the set of (I, j) pairs representing the hierarchical lineage of code 7 across levels
| € L. This results in a single d-dimensional embedding e$™! for each ICD code, capturing both the
fine-grained meaning of the diagnosis and its broader clinical context.

4 Experiments and Results

4.1 Dataset and Preprocessing

MIMIC-III is a publicly available critical care database containing de-identified health records of over
40,000 patients admitted to the intensive care units at Beth Israel Deaconess Medical Center between
2001 and 2012 Johnson et al.|[2016]. In this study, we use MIMIC-III for clinical prediction tasks,
including mortality and readmission prediction. We extract diagnostic records from 7,537 patients
with multiple hospital admissions. Each diagnosis is represented by its ICD-9 code, which is mapped
to its integer-level code. For each patient, all diagnoses within a visit are treated as an unordered set,
while visits are chronologically ordered.

The eICU Collaborative Research Database is a multi-center intensive care unit (ICU) database
containing over 200,000 admissions from ICUs monitored by eICU programs in the United States
Pollard et al.| [2018]]. It offers de-identified EHR data, encompassing demographics, diagnoses,
treatments, and interventions. We use the eICU dataset to evaluate distribution shifts in patient
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Figure 3: Spearman Correlation Between Embedding Similarity and Hierarchical Proximity. We
assess how well SMI and BioBERT embedding methods preserve the expert-defined medical hierarchy
by computing the Spearman correlation between embeddings’ cosine similarity and hierarchical
proximity. Our SMI embeddings achieve a significantly higher correlation (p= 0.913) than BioBERT
(p =0.473), indicating stronger alignment with the expert-defined medical ontology.

observations across hospitals using both SMI and BioBERT embedding methods. Diagnosis records
are mapped to 72 unique integer-level ICD-9 codes. We treat each patient’s medical records as
unordered observations without considering temporal order. We select the nine hospitals with the
largest number of patients, resulting in 2,134 patients per hospital and a total of 19,208 patients for
analysis.

4.2 SMI Embeddings Capture Hierarchical Semantics

To evaluate the effectiveness of SMI in capturing hierarchical structure, we assess its ability to preserve
parent—child relationships among clinical concepts. Specifically, we evaluate three parent—child
hierarchy levels: Major — Sub-category, Sub-category—CCS, and CCS — ICD. For each hierarchy
level, we iterate over all parent-child pairs and report the average accuracy across ten independent
runs. As shown in Fig.[T} SMI consistently outperforms BioBERT across all levels, with substantial
improvements at finer granularity. While both models find it more challenging to discriminate fine-
grained relationships, SMI successfully distinguishes 92.6% of CCS-ICD pairs compared to 66.0%
for BioBERT. This demonstrates that integrating expert-defined medical ontologies allows SMI to
produce more interpretable and hierarchically consistent embeddings than biomedical LMs.

We assess whether SMI embeddings preserve hierarchical semantics by measuring the Spearman
correlation between ICD embedding similarity and their Least Common Ancestor (LCA) height in
the expert-defined hierarchy. The LCA height indicates how closely two medical concepts are related.
For instance, “Type 1 diabetes” and “Type 2 diabetes” share the same CCS category, giving them
an LCA height of 3. Therefore, the cosine similarity between these two ICD embeddings should be
high. A higher LCA height indicates that two ICD codes are more semantically related, and thus
their embeddings should exhibit higher similarity. We compute cosine similarities between ICD
embeddings and correlate them with LCA heights. We randomly sample 25,000 ICD code pairs
for each LCA height (i.e., 1 to 4)and compute the average Spearman correlation over ten runs. As
shown in Fig. 3] SMI embeddings achieve a much higher Spearman correlation (p=0.913) than
BioBERT embeddings (p=0.473). This demonstrates that SMI captures hierarchical proximity and
expert-defined ontology structures far more effectively. In contrast, BioBERT fails to distinguish
embeddings of clinically distant concepts, reflecting its limited understanding of hierarchical medical
semantics.
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Figure 4: Visualization of the learned ICD diagnostic embeddings. (a) SMI embeddings of all
descendant concepts under the Major Disease Category 3 (Endocrine, Nutritional, and Metabolic
Diseases and Immunity Disorders). Pairwise relationships are evaluated using hyperbolic similarity,
which effectively captures hierarchical distances. The SMI-learned layout preserves the expert-defined
hierarchy tree, with child concepts positioned near their parents. (b) UMAP projection of learned
ICD embeddings across all 18 major disease categories. The ICD codes form distinct clusters within
each major category, aligning closely with expert-defined medical ontology. This demonstrates that
the SMI approach effectively captures clinically meaningful and hierarchical semantics encoded in
the medical ontology.

4.3 Qualitative Visualization of SMI Embeddings

To qualitatively assess whether SMI preserves the expert-defined medical hierarchy, we visualize the
embeddings of all descendant concepts under Major Disease Category 3 ( Endocrine, Nutritional,
and Metabolic Diseases and Immunity Disorders). As shown in Fig.[da., we compute the hyperbolic
similarity between each parent—child pair to represent hierarchical relationships among medical
concepts. Because the hyperbolic metric expands exponentially with increasing Euclidean distance,
it provides a natural geometry for capturing hierarchical structures. For analysis only, we project
the learned embedding onto a hyperbolic manifold using the Poincaré ball Nickel and Kielal [2017],
defined as BY = {x € R? | ||z|| < 1} with curvature ¢ = 1.0. The hyperbolic distance between two
embeddings u, v € B? is computed as:

B 2¢|lu — v||?
da(u, v) = arcosh (1 O PEI O c||v||2>> ®

To facilitate visualization and interpretability, we transform the hyperbolic distance into a similarity

score, sim(u, v) = exp (—M) , with 7 = 1 is a temperature parameter.

For Major Disease Category 3 (Endocrine, Nutritional, and Metabolic Diseases and Immunity
Disorders), we visualize the layout by positioning parent—child pairs according to their hyperbolic
similarities, which capture semantic relatedness in the learned embedding space (Fig.[]a). The SMI
embeddings, evaluated through hyperbolic similarity, reveal a hierarchical structure that aligns closely
with the expert-defined medical hierarchy. This alignment suggests that SMI leverages medical
ontologies to learn hierarchy-aware embeddings that are consistent with domain knowledge. By
summing embeddings across hierarchical levels, SMI aggregates multi-level semantic information
from the medical ontology, enabling the model to capture structured clinical relationships in the
learned embedding space.

We apply Uniform Manifold Approximation and Projection (UMAP) to project the learned embed-
dings into 2D space for visualization Mclnnes et al.| [2018]],|[Healy and McInnes|[2024]. Each point
represents an ICD diagnostic code, which is colored by its corresponding major disease category
(Fig.[@]b). The visualization reveals distinct clusters, where ICD codes from the same major disease
category are grouped closely together. This clear separation across categories indicates that the
learned embeddings effectively capture semantic distinctions between disease conditions.
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Figure 5: Cross-hospital distribution shift analysis based on average absolute log-likelihood dif-
ferences (|A[) between source and target hospitals. Each heatmap illustrates the distribution shift
of patient embedding using SMI (left) and BioBERT (right), both evaluated with a VAE-based
density model. SMI embeddings exhibit smaller distribution shifts (average |A| = 8.7) compared to
BioBERT (|A| = 13.1), suggesting better cross-site consistency and generalization.

Table 3: Clinical Prediction Performance. Comparison of AUROC and AUPRC scores between
SMI and BioBERT embeddings on mortality and readmission prediction tasks. SMI outperforms
BioBERT in binary prediction with the aid of hierarchical semantics.

Model Mortality Readmission
AUROC AUPRC AUROC AUPRC
SMI 65.32 31.58 62.60 38.65

BioBERT 60.38 28.33 61.45 38.98

4.4 SMI Improves Prediction Performance

We evaluated the utility of learned patient embeddings across multiple admissions on two binary
clinical prediction tasks: (1) in-hospital mortality prediction, and (2) 15-day readmission prediction.
Each task is formulated as a mapping from the embedding of all previous visits ., to the patient
outcome of the next visit y[z;]:

[ (@r—1) = ylo]

To construct patient embeddings, we directly use the SMI embeddings of all ICD codes and apply
mean pooling across tokens to obtain a single patient-level representation. In contrast, the BioBERT
baseline encodes the textual descriptions of all ICD codes as a sequence, using the [CLS] token from
the final layer as the patient-level embedding.

We make classification using a linear probing approach with a single linear layer. For binary prediction
of mortality and readmission, a linear classifier with a weight w € R?*! and a sigmoid activation
is trained using binary cross-entropy loss. All models are implemented in PyTorch and optimized
with Adam optimizer (learning rate 1 x 104, weight decay 1 x 10~?). Training uses a batch size of
64 for up to 20 epochs with early stopping. An 80/20 train—test split is applied, and performance is
evaluated using AUROC and AUPRC.

As shown in Table[3] SMI achieves higher predictive performance than BioBERT across both mortality
and readmission prediction tasks. Specifically, SMI improves AUROC and AUPRC in mortality
prediction (65.32% and 31.58%) compared to BioBERT (60.38% and 28.33%). Notably, our SMI
approach requires no additional encoding or fine-tuning, but it simply applies mean pooling of
precomputed semantic embeddings. This demonstrates that the hierarchical semantics embedded
in SMI enhance clinical representation, leading to more discriminative modeling. These findings



highlight an effective yet simple approach to leveraging domain knowledge for improving clinical
outcome prediction, without relying on computationally intensive language models or fine-tuning.

4.5 SMI Mitigates Distribution Shift

To assess cross-hospital distribution shifts, we train a Variational Autoencoder (VAE) as a density
estimator on patient embeddings from the eICU dataset|Kingma and Welling| [2013|]. For each source
hospital k, we encode patient diagnostic records using either SMI or BioBERT, and then train a VAE
to model the data distribution py (xy), where py(-) denotes the hospital-specific density estimator
learned from the data xj. We then evaluate generalization to a target hospital £ by computing the
difference in log-likelihoods:

A =E,, [logpi(zk)] — Eqg, [logpr(ze)] 3

where log pi () and pg(x) denote the log-likelihoods of in-domain samples x, and out-of-domain
samples x; evaluated using the VAE model trained on k-th hospital, respectively. A large A implies
greater shift between source and target distributions, indicating cross-hospital generalization. We
estimate the log-likelihood log py () using the Importance Weighted Autoencoder (IWAE) objective,
a tighter bound on the true log-likelihood than the standard ELBO |Burda et al.| [2015]]. For each
sample x;, we draw K = 64 importance samples z; ~ ¢(z | ) to compute:

(7)
log p () 10g< Z Pz, f‘ 3 ) “

Fig. [Billustrates cross-hospital distribution shifts between source and target hospitals. Each heatmap
visualizes how well a density model trained on one hospital generalizes to another, where each
element represents the absolute difference in log-likelihood (|A|) between the source and target
hospitals. SMI embeddings produce consistently lower |A| values across hospital pairs compared
with BioBERT embeddings. This indicates that SMI better preserves the underlying population
structure and reduces domain shift. This improvement can be attributed to the incorporation of
expert-defined medical hierarchies into SMI, which embed semantically related diseases in close
proximity. By contrast, BIOBERT embeddings rely solely on textual correlation and contextual
similarity without reflecting clinical ontology relationships, resulting in higher variability across
sites. These results demonstrate that SMI effectively mitigates cross-hospital distribution shifts,
demonstrating its potential for multi-institutional modeling where data heterogeneity often limits
generalization of ML models.

5 Conclusion

In this work, we introduce SMI framework that leverages expert-defined medical ontology to encode
clinically meaningful hierarchical semantics into medical concept representations. Specifically, we
use a tree-based hierarchy extracted from the medical ontology (e.g., a four-level CCS system) to
construct a SMI for each concept, representing it as a sequence along its hierarchical path. By doing so,
it represents each medical concept by summing LM-encoded embeddings across multiple hierarchy
levels, thereby integrating domain knowledge from the medical ontology into the final representations.
SMI provides interpretable and effective representations that improve the prediction of clinical
outcome in the MIMIC-III dataset, outperforming biomedical LMs. Moreover, it demonstrates strong
generalization across hospitals on the eICU dataset, showing robustness to cross-site distribution
shifts.

Currently, our study models a four-level ICD hierarchy using integer-level ICD codes. We plan to
extend this to fine-grained ICD codes with decimals. We will also integrate ICD procedure and medi-
cation ATC hierarchies to enable analyses of disease—treatment interactions. In addition, the current
method learns embeddings in Euclidean space. In future work, we aim to learn embeddings directly
in hyperbolic space, which is well suited for representing hierarchical semantics. For experiments, we
will expand evaluation to a broader suite of clinical prediction tasks on MIMIC-III and eICU datasets.
For distribution-shift analysis, we will move beyond likelihood-based evaluations and assess model
robustness through predictive tasks under cross-site settings.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims in the abstract and introduction are that SMI incorporates hierarchi-
cal semantics for better prediction, enhanced explainability, and cross-site robustness, which
are supported by experimental results.

Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The paper discusses limitations in the Conclusion section, including the lack
of more fine-grained clinical concepts and the need of a broader range of clinical prediction
tasks.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: The paper does not introduce new theoretical framework.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper ensures reproducibility by detailing the public datasets (MIMIC-III,
eICU) and preprocessing in Section 4. It also provides the specific experimental settings,
evaluation metrics, and hyperparameters for each task.

Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: The paper utilizes publicly available and cited datasets (MIMIC-III and eICU).
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run
to reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: In Section 4, we provide details of the settings for the clinical prediction tasks,
including the data split (80/20), optimizer (Adam), learning rate (1 x 10~%), weight decay
(1 x 1079), batch size (64), and the use of early stopping.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:
Justification: The paper does not include statistical significance analysis.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?

Answer:
Justification: This paper does not specify the computational resources
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the NeurIPS Code of Ethics and confirm that the research
conforms.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper thoroughly discusses the positive societal impacts of the work, such
as improving clinical prediction, clinical interpretability, and cross-site robustness.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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11.

12.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks of releasing new datasets or models.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: For the clinical datasets, we follow the required data use agreement (DUA)
approvals from PhysioNet.

Guidelines:
» The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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14.

15.

* If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a
dataset.

« For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA|
Justification: The paper does not release any new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing or direct interaction with human
subjects.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This research did not involve new human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA|

Justification: LLMs were used only for standard proofreading and editing, which does not
require declaration per the guidelines.
Guidelines:
* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.
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