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ABSTRACT
In recent years, Vision-Language Pre-training (VLP) models have
demonstrated rich prior knowledge formultimodal alignment, prompt-
ing investigations into their application in Specific Domain Image-
Text Retrieval (SDITR) such as Text-Image Person Re-identification
(TIReID) and Remote Sensing Image-Text Retrieval (RSITR). Due to
the unique data characteristics in specific scenarios, the primary
challenge is to leverage discriminative fine-grained local informa-
tion for improved mapping of images and text into a shared space.
Current approaches interact with all multimodal local features for
alignment, implicitly focusing on discriminative local information
to distinguish data differences, which may bring noise and uncer-
tainty. Furthermore, their VLP feature extractors like CLIP often
focus on instance-level representations, potentially reducing the
discriminability of fine-grained local features. To alleviate these
issues, we propose an Explicit Key Local information Selection and
Reconstruction Framework (EKLSR), which explicitly selects key
local information to enhance feature representation. Specifically,
we introduce a Key Local information Selection and Fusion (KLSF)
that utilizes hidden knowledge from the VLP model to select in-
terpretably and fuse key local information. Secondly, we employ
Key Local segment Reconstruction (KLR) based on multimodal
interaction to reconstruct the key local segments of images (text),
significantly enriching their discriminative information and en-
hancing both inter-modal and intra-modal interaction alignment.
To demonstrate the effectiveness of our approach, we conducted
experiments on five datasets across TIReID and RSITR. Notably,
our EKLSR model achieves state-of-the-art performance on two
RSITR datasets.

CCS CONCEPTS
• Information systems → Multimedia and multimodal re-
trieval; • Computing methodologies → Neural networks.

KEYWORDS
Specifc Domain Image-Text Retrieval, Key Local Information Se-
lection and Reconstruction, Remote Sensing, Text-Image Person
Re-identification
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1 INTRODUCTION
With the surge in data proliferation, the Internet and social media
platforms have been overwhelmed with an abundance of multi-
modal content, including both images and text. There is a great
demand to automatically retrieve useful information from these vast
amounts of data [12, 23, 39, 46, 50, 51]. In response to this demand,
significant progress has been made in Cross-modal Image-Text
Retrieval (CMITR) in the past few years [12, 17, 23, 46, 52]. Re-
cently, with the emergence of Vision-Language Pre-training (VLP)
models [22, 24, 25, 29, 39, 40], CMITR has undergone further ad-
vancements.

However, it is worth noting that VLP models like CLIP exhibit
less favorable performance in Specific Domain Image-Text Retrieval
(SDITR), such as Text-Image Person Re-identification (TIReID) and
Remote Sensing Image-Text Retrieval (RSITR), in comparison to
their performance in CMITR tasks within the general domain, as
depicted in Figure 1(a). The discrepancies in these metrics suggest
that specific domains possess unique data characteristics that differ
from those of the general domain. Specific domain data typically
exhibit high image similarity [53], with semantic nuances often
confined to key local segments, such as object regions in images or
content-rich words in the text, as seen in Figure 1 (b). Even minor
changes in these segments can significantly alter the entire con-
tent, highlighting the importance of these segments. Thus, SDITR
necessitates that models concentrate on key local segment infor-
mation [49] to enhance the representation of image-text features
in a shared space and improve image-text alignment.

To facilitate the utilization of key local segment information,
early bottom-up attention methods [23, 46] captured discriminative
local image features, boosting retrieval accuracy in general domains.
However, their cross-domain applicability is limited for specific
domain image-text tasks. Subsequent advancements have shifted
towards leveraging the robust prior knowledge of pre-trained mod-
els for specific domains. Instead of directly extracting key local
information, these methods [5, 9, 45, 48, 50] employ interactions
among all local features in both images and text to implicitly guide
the model’s attention to key local information.While these methods
enhance retrieval performance, they suffer from two main issues.

Firstly, interactions among all local features bring inevitable
noise and uncertainty, as they indiscriminately engage with all the
local features rather than focusing on key local features. As shown
in Figure 1(c), these methods [5, 9, 45, 48, 50] can yield false correla-
tions among extraneous local features, bringing noise and causing
misaligned image-text pairs that lower retrieval accuracy [21]. Se-
lecting and utilizing key local features from the multitude is vital for
enhancing image-text feature representation. Secondly, VLP models
like CLIP [39] have not been optimized for local features, result-
ing in a lack of discriminability for local features. Throughout the
pre-training stage, CLIP predominantly employs contrastive losses
that favor instance-level features [49] over local region features.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Figure 1: (a) Fine-tuned CLIP excels on general domain
datasets, but its performance drops on four specific domain
datasets, revealing limited generalization in specialized do-
mains (R@1 retrieval metric). (b) Highly similar specific do-
main data. (c) Interaction-based methods can generate noisy
associations: "gray" in the text is intended to describe "pants,"
yet it erroneously associates with the image region of a "gray
floor". (d) Key local features are intermingled with other fea-
tures, lacking distinctiveness.

Consequently, as shown in Figure 1(d), insufficiently optimized
key local features exhibit reduced discriminative capacity and be-
come entangled with other local features. In specific scenarios,
the lack of discriminative key local features hampers the differen-
tiation between local segments, thus diminishing the efficacy of
subsequent feature interaction modules. Therefore, enhancing the
discriminability of key local features is crucial.

To address the aforementioned two issues, we introduce the Ex-
plicit Key Local information Selection and Reconstruction (EKLSR)
framework based on CLIP. Unlike previous methods [5, 9, 45, 48, 50]
that utilize all local features without distinction, our approach not
only interpretably selects key local features but also bolsters the
discriminability of these features through a multimodal interaction-
based reconstruction task. EKLSR consists of a Key Local informa-
tion Selection and Fusion (KLSF) module and Key Local segment
Reconstruction (KLR) based on multimodal interaction.

KLSF directly selects and utilizes key local features from the mul-
titude to enhance image-text feature representation. It leverages
hidden knowledge from the CLIP to interpretably select key local
information, thereby enhancing the final image-text feature repre-
sentation. Specifically, it employs VLPmodel hidden priors to assign
an importance factor to each local feature, gauging its significance.
In the key feature selection process, local features with higher im-
portance factors are more likely to be selected. Selected key local

features capture object details but lack associations between the
objects. Thus, KLSF fuses key local features with instance-level
global features representing object relationships, significantly en-
hancing the final multimodal feature representation. Additionally,
KLSF operates independently on image and text branches, main-
taining the dual-stream structure of the model and enabling offline
computation during inference.

KLR enhances the discriminability of the key local features. In-
spired by works [2, 61] that enhance feature specificity through
feature reconstruction tasks, KLR applies both Masked Language
Modeling (MLM) and Masked Visual Modeling (MVM) tasks to the
reconstruction of selected key local features. These two tasks ensure
that the features retain their unique information, thereby preserv-
ing their discriminative properties. MLM and MVM are generally
utilized in the pre-training stage of Visual-Language Pre-training
(VLP) [6, 25, 32, 43], we make the first attempt to demonstrate the
effectiveness of MLM and MVM in downstream fine-tuning tasks.
Innovatively, to ensure the key local segments are reconstructed,
we reconstruct key segments selectively rather than random recon-
struction of all segments. Furthermore, we predict masked segments
through the integration of intra-modal and inter-modal interaction
information. This not only strengthens multimodal fine-grained
alignment but also aids the backbone network in extracting more
discriminative features.

The contributions of this paper can be summarized as follows:
• We propose EKLSR to make CLIP more adaptable to fine-
grained downstream tasks without substantial additional
supervision and inference costs.

• We propose a Key Local information Selection and Fusion
(KLSF) module that selects interpretably key local features
from the multitude to enhance image-text feature represen-
tation.

• We identify the limited local feature representation capabil-
ity of CLIP. Therefore, we introduce Key Local segment Re-
construction (KLR) based on multimodal interaction, which
strengthens the discriminability of CLIP local features and
facilitates inter-modal feature interaction.

• Extensive experiments has been conducted on specific do-
main image-text retrieval tasks, such as RSITR and TIReID.
Notably, our EKLSR model achieves state-of-the-art perfor-
mance on two benchmark RSITR datasets.

2 RELATEDWORK
2.1 Vision-Language Pre-Training
Vision-Language Pre-training (VLP) aims to learn the semantic
correspondence between the vision and text by pre-training on a
large-scale dataset. Inspired by the success of Transformer-based
language model BERT [8] and vision model ViT [11], most cur-
rent multimodal models [6, 18, 22, 24, 25, 29, 37, 39, 40, 44] adopt
their variants to learn multimodal representations. Existing VLP
models can be categorized into two types: single-stream and dual-
stream models. Single-stream models [18, 22, 25, 37, 44] combine
extracted text and vision local embeddings as input to a Trans-
former structure to extract a joint representation of image-text
pairs. They are more effective in capturing fine-grained relation-
ships between images and text, leading to higher retrieval accuracy
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compared to dual-stream models. Furthermore, the complex inter-
action mechanism leads to slower inference speed, which does not
meet the real-time requirements of specific domain tasks. On the
other hand, dual-stream models [12, 39, 44] utilize independent
encoders to map images or text into global embeddings and align
them on the common space. Recent Transformer-based dual-stream
models [19, 25, 39] have chosen to improve their performance by
leveraging additional large-scale data. Despite their impressive
performance in image-text retrieval tasks, their heavy reliance on
instance-level representations limits their ability to capture local
features effectively. Consequently, they face constraints when ap-
plied to Specific Domain Image-Text Retrieval (SDITR) tasks.

2.2 Specific Domain Image-Text Retrieval
(SDITR)

TIReID: TIReID is a multimodal task [38, 56], first introduced
by [28]. Compared to general cross-modal retrieval tasks, TIReID
demands models to pay more attention to fine-grained information
and the correspondence between modalities to distinguish the dif-
ferences among pedestrians. Initial global matching approaches [57,
58] aligned images and text in a joint embedding space through
cross-modal matching loss functions, neglecting direct emphasis on
fine-grained local information. Recently, several approaches [5, 9,
45, 48] have emerged that leverage single-modal pre-trained models
(such as ResNet [16], ViT [11], and BERT [8]), or VLP models like
CLIP, as backbones to incorporate powerful external knowledge.
Han et al. [15] first introduced a CLIP model for text-to-image per-
son retrieval. Later, CFine [49] builds upon VLP and introduces a
token selection module to directly choose informative key local
embeddings. However, this selection process lacks interpretability.
IRRA [21] learns relations between local visual-textual tokens and
enhances global image-text matching. However, it overlooked the
fact that CLIP heavily relies on instance-level representations, re-
sulting in limited capability to represent local features. Our model
introduces a novel task of reconstructing key local segment features
in images (text) through multimodal interaction, which greatly en-
hances their discriminative information.

RSITR: RSITR refers to recalling required RS images with text.
Initial studies [1, 34] prioritized global image-text representations,
where multimodal information was encoded and merged to formu-
late a shared semantic representation. Subsequent research [1, 34,
35, 54] introduced additional information to enhance modality rep-
resentations. Yuan et al. [54] employed a shared modality transmis-
sion module to facilitate communication across modalities. Cheng
et al. [7] devised a semantic alignment module to effectively identify
latent correspondences between images and text. Yuan et al. [53]
developed an asymmetric multimodal feature matching network
and employed multi-scale feature information. Later, [30, 31, 55]
found that the knowledge CLIP can be transferred to the remote
sensing domain, but there is a lack of in-depth research on remote
sensing image-text characteristics. In this study, we employed CLIP
as the backbone and introduced the KLSF module to extract fused
discriminative local features, mitigating the issue of high similarity
of remote sensing image-text data.

3 METHOD
In this section, we will introduce our proposed Explicit Key Lo-
cal information Selection and Reconstruction (EKLSR) framework.
An overview of EKLSR is shown in Figure 2 (a). It consists of a
dual-stream feature extraction backbone, Key Local information
Selection and Fusion (KLSF), and Key Local segment Reconstruction
(KLR) based on multimodal interaction. We leverage CLIP [39] as
the initialization of the backbone. KLSF leverages hidden knowledge
of CLIP to select interpretably and fuse key local features to form
the final feature representations of the image and text. KLR masks
key segments of images and text, and it predicts these segments
using the contextual information from unmasked image (text) and
the global information from the paired text (image). KLR does not
participate in the inference process. The details of EKLSR will be
discussed in the following subsections.

3.1 Feature Extraction Backbone
Inspired by the success of transferring knowledge from CLIP [39]
to text-image retrieval [21], we directly initialize our EKLSR frame-
work with the CLIP pre-trained model weight.

Image Encoder.Given an input image 𝐼 ∈ 𝑅𝐻×𝑊 ×𝐶 , we employ
the CLIP pre-trained Vision Transformer model to obtain both
global and local token embeddings of the image. Firstly, the image
I is split into a sequence of 𝑁 = 𝑊 × 𝐻/𝑃2 fixed-size patches,
where P represents the patch size. The patch sequence is then
mapped to a token sequence {𝑣𝑖 }𝑁𝑖=1 through a trainable linear
projection. By injecting position embeddings and an additional
[𝐶𝐿𝑆] token, the token sequence 𝑉 = {𝑣𝑐𝑙𝑠 , 𝑣1, . . . , 𝑣𝑁 } is inputted
to the Transformer, enabling multi-head self-attention to obtain{
𝑓 𝑣
𝑐𝑙𝑠

, 𝑓 𝑣1 , 𝑓
𝑣
2 , . . . , 𝑓

𝑣
𝑁

}
. Finally, the global text feature 𝑓 𝑣𝑔 is obtained

by linearly mapping 𝑓 𝑣
𝑐𝑙𝑠

.
Text Encoder. For an original text 𝑇 = {𝑡1, 𝑡2, . . . , 𝑡𝑛} where 𝑡𝑖

denotes the i-th word in the text, consisting of n words. We first
tokenize the input text T and add [𝑆𝑂𝑆] and [𝐸𝑂𝑆] markers at the
beginning and end respectively, forming 𝑇 = {𝑡sos , 𝑡1, . . . , 𝑡𝑛, 𝑡eos }.
It is then fed into text Transformer, where self-attention is employed
to learn global dependencies, obtaining

{
𝑓 𝑡sos , 𝑓

𝑡
1 , 𝑓

𝑡
2 , . . . , 𝑓

𝑡
𝑛 , 𝑓

𝑡
eos

}
.

The global text feature 𝑓 𝑡𝑔 is obtained by linearly mapping 𝑓 𝑡sos .

3.2 Key Local Information Selection and Fusion
(KLSF)

3.2.1 Interpretable Key Local Feature Selection. To enhance the
application of CLIP in specific domain retrieval tasks, it is critical to
concentrate on extracting key local segment information, such as
emphasizing subject origins rather than the background in images
and focusing on content-rich words (pronouns, verbs, adjectives,
adverbs, nouns) instead of function words (prepositions, conjunc-
tions, etc.) in text. Previous interaction-based methods that utilize
all local features tend to bring noise, and relying on interactions
to highlight key local information can lead to uninterpretability
and uncertainty. To mitigate these issues, we propose an inter-
pretable method for assessing the importance of local features and
selecting key local features. This process begins by leveraging the
strong image-text understanding capabilities of CLIP to calculate
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Figure 2: (a) Explicit Key Local Information Selection and Reconstruction (EKLSR) framework for image-text retrieval. (b) Key
Local information Selection And Fusion (KLSF) module. (c) Key Local segment Reconstruction based on multimodal interaction
(KLR) tasks.
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Figure 3: Importance factor distribution. It reveals that re-
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jectives, adverbs, nouns) are higher than those of function
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the importance factor of each local feature, as follows:

𝑠𝑣𝑖 = 1 − cosine
(
𝑓 𝑣
𝑐𝑙𝑠

, 𝑓 𝑣𝑖

)
(1)

𝑠𝑡𝑖 = 1 − cosine
(
𝑓 𝑡
𝑐𝑙𝑠

, 𝑓 𝑡𝑖

)
(2)

Where 𝑓 𝑣
𝑐𝑙𝑠

and 𝑓 𝑡
𝑐𝑙𝑠

denote instance-level features of images and
text, respectively, while 𝑓 𝑣

𝑖
and 𝑓 𝑡

𝑖
represent their local features.

𝑠𝑣
𝑖
(𝑠𝑡
𝑖
) stands for the importance factor of i-th local feature in images

(text). We visualized the distribution of image and text importance
factors on the test set of the RSTMD dataset, as shown in Fig. 3. The
visualization indicates that the segments of high importance factors

correlate with the main subject regions in images and meaningful
words in the text, confirming that these factors can adaptively gauge
the importance of local features. Furthermore, we interpretably
select key local features based on their importance factors. We em-
ploy a polynomial probability selection method that selects features
based on their importance factors. Specifically, the likelihood of
being selected increases proportionally with the magnitude of their
importance factor. This method can select not only the majority
of key local features but also a few non-key local features that are
beneficial for feature representation, outperforming random and
top-k selection methods. Through polynomial probability selection,
key local features are selectively extracted.

𝐼𝐷𝑣 =
{
𝑖𝑑𝑣𝑖

}𝛼∗𝑁
𝑖=1 = PolynomialSelection (𝑆𝑣, 𝛼) (3)

where 𝑆𝑣 = {𝑠𝑖 }𝑁𝑖=0, 𝛼 represents the proportion of key local feature
selection in the image, and the number of selected key features is
𝛼 ∗ 𝑁 . 𝐼𝐷𝑣 =

{
𝑖𝑑𝑣
𝑖

}𝛼∗𝑁
𝑖=1 indicates the id set of selected key image

local features. The selection method for key features of text is
similar.

𝐼𝐷𝑡 =
{
𝑖𝑑𝑡𝑖

}𝛽∗𝑛
𝑖=1 = PolynomialSelection (𝑆𝑡 , 𝛽) (4)

where 𝛽 represents the proportion of key segment embedding se-
lection in the text. 𝐼𝐷𝑡 =

{
𝑖𝑑𝑡
𝑖

}𝛽∗𝑛
𝑖=1 indicates the id set of selected

key text local features.

3.2.2 Fusion of Global and Key Local Features. Key local features
selected capture local details but lack associations among these
details. Therefore, we fuse key local tokens with instance-level
global features that represent relationships among local details to
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foster complementarity between their respective feature informa-
tion. As shown in Figure 2 (b), for images, we apply Softmax to the
importance factors to serve as weight coefficients for the key local
features. We multiply these coefficients by the key local features
and accumulate the results to obtain the key fused representation.
To prevent the loss of global contextual features, we integrate it
with the key fused representation using a residual connection, re-
sulting in the joint feature representation 𝑓 𝑣key . The procedure is
shown below:

𝑓 𝑣key =
∑︁

𝑘∈𝐼𝐷𝑣

exp (𝑠𝑘 )∑𝑁
𝑖=1 exp (𝑠𝑖 )

· 𝑓 𝑣
𝑘
+ 𝑓 𝑣

𝑐𝑙𝑠
(5)

The joint feature 𝑓 𝑣key may still contain redundant feature represen-
tations or even misleading information [54]. Naturally, we perform
a secondary feature transformation on the 𝑓 𝑣key to suppress irrele-
vant information. We map the joint feature to a high-dimensional
hidden space, randomly deactivating some neurons to filter out
redundant and irrelevant information. Subsequently, we linearly
map the result to the common space. These steps are formulated as
follows:

𝑓 𝑣keyh = Dropout
(
GELU

(
Linear

(
𝑓 𝑣key

)))
(6)

𝑓 𝑣key = Linear
(
𝑓 𝑣keyh

)
(7)

The global representation 𝑓 𝑣𝑔 extracted from CLIP contains valuable
hidden knowledge of the global relationship, which is crucial in the
final feature representation. The fusion is performed as follows:

𝐹 𝑣 = 𝑓 𝑣key + 𝑓 𝑣𝑔 (8)

where 𝐹 𝑣 is the final image feature. A similar process is performed
for the text modality to obtain the final text feature 𝐹 𝑡 .

Finally, we use contrastive loss for optimization. The loss func-
tion can be expressed as

𝐿𝑐𝑒 = − 1
2𝑚

𝐵∑︁
𝑗=1

log
exp

(
cosine

(
𝐹 𝑣
𝑗
, 𝐹 𝑡

𝑗

))
∑𝐵
𝑘=1 exp

(
cosine

(
𝐹 𝑣
𝑗
, 𝐹 𝑡

𝑘

)) −
1
2𝑚

𝐵∑︁
𝑗=1

log
exp

(
cosine

(
𝐹 𝑡
𝑗
, 𝐹 𝑣

𝑗

))
∑𝐵
𝑘=1 exp

(
cosine

(
𝐹 𝑡
𝑗
, 𝐹 𝑣

𝑘

))
(9)

where 𝐹 𝑣
𝑗
is the final feature representation of the j-th image in the

current batch data. This is a bidirectional loss function, where the
first half calculates the loss for the image-to-text retrieval task, and
the second half represents the loss calculation for the text-to-image
retrieval task. This loss function aims to bring paired image-text
features closer together in a common space while pushing unrelated
pairs further apart.

3.3 Key Local Segment Reconstruction based on
Multimodal Interaction (KLR)

CLIP has not been optimized for local feature representation, re-
sulting in a lack of discriminability for local features. This does not
facilitate the mutual complementation of local feature information.
We propose a KLR task to augment the discriminability of local
features. Unlike previous methods [18, 22, 25, 37, 44] that randomly
reconstruct segments, KLR ensures the reconstruction of key local

segments and enhance the interaction between multimodal local
features. The KLR is only utilized during model training and is not
employed during inference.

3.3.1 Text Key Local Segment Reconstruction based on Multimodal
Interaction (Text KLR). We employ an approach similar to MLM of
BERT [8] to reconstruct the key segments. However, there are two
points of difference as shown in the upper part of Figure 2(c). Firstly,
to ensure the masking of key local tokens, we select segments with
higher importance factors in a proportion of 𝛾 . Then, we apply
masking to the selected segments. Specifically

𝑇 = Mask (𝑇, PolynomialSelection (𝑆𝑡 , 𝛾)) (10)

Where 𝑇 =
{
𝑡sos , 𝑡1, 𝑡mask

2 , 𝑡mask
3 . . . , 𝑡𝑛, 𝑡eos

}
denotes the text en-

coding after masking. In this case, the number of masked words is
𝛾 ∗ 𝑛. Subsequently, 𝑇 is input to the text Transformer encoder:

𝐹𝑡 = Transformer(𝑇 ) (11)

where 𝐹𝑡 =

{
𝑓 𝑡sos , 𝑓

𝑡
1 , 𝑓

tmask
2 , 𝑓 tmask

3 , . . . , 𝑓 𝑡𝑛 , 𝑓
𝑡
eos

}
is masked text

features.
Secondly, to enhance the interaction between image and text

modalities, we predict masked text segments with unmasked text
segment features and paired image instance-level features. The
prediction process can be expressed as:

𝑦𝑡𝑖 = Linear
(
𝑓 tmask
𝑖 + 𝑓 𝑣𝑔

)
(12)

𝐿𝑡𝑘𝑙𝑟 = − 1
𝐵

𝐵∑︁
𝑗=1

𝛽∗𝑛∑︁
𝑖=1

(
𝑦𝑡𝑖, 𝑗 log𝑦

𝑡
𝑖, 𝑗 +

(
1 − 𝑦𝑡𝑖, 𝑗

)
log

(
1 − 𝑦𝑡𝑖, 𝑗

)
(13)

Where 𝑦𝑖, 𝑗 denotes the label at the j-th mask position of the i-th
text. 𝑦𝑡

𝑖, 𝑗
denotes the predicted result.

3.3.2 Image Key Local Segment Reconstruction based on multimodal
interaction (Image KLR). To reconstruct the key local segment fea-
tures in the image, we adopt a similar approach to Text KLR. As
shown in the lower part of Figure 2 (c).

𝑉 = Mask (𝑉 , PolynomialSelection (𝑆𝑣, 𝜏)) (14)

𝜏 represents the probability of masking, and the number of masked
image segments is 𝜏∗𝑁 . Themasked image𝑉 is then input to the im-
age encoder, obtaining 𝐹𝑣 =

{
𝑓 𝑣
𝑐𝑙𝑠

, 𝑓 𝑣1 , 𝑓
vmask
2 , 𝑓 𝑣3 , 𝑓

vmask
4 , . . . , 𝑓 𝑣

𝑁

}
.

𝐹𝑣 = Transformer(𝑉 ) (15)
We tokenize image segments{𝑣𝑖 }𝑁𝑖=1 using the image tokenizer

of BEIT [3], obtaining labels 𝑌𝑣 =
{
𝑦𝑣1 , 𝑦

𝑣
2 , . . . , 𝑦

𝑣
𝑁 ∗𝛼

}
for all masked

patches. Then, we predict the labels of masked image segments
with the unmasked image segment features and paired text global
features.

𝑦𝑣𝑖 = Linear
(
𝑓 vmask
𝑖 + 𝑓 𝑡𝑔

)
(16)

L𝑖𝑘𝑙𝑟 = − 1
𝐵

𝐵∑︁
𝑖=1

𝛽∗𝑛∑︁
𝑗=1

(
𝑦𝑣𝑖, 𝑗 log𝑦

𝑣
𝑖, 𝑗 +

(
1 − 𝑦𝑣𝑖, 𝑗

)
log

(
1 − 𝑦𝑣𝑖, 𝑗

))
(17)

Finally, the total loss of our EKLSR framework is defined as:

L = L𝑐𝑒 + 𝜆 · L𝑡𝑘𝑙𝑟 + 𝜂 · L𝑖𝑘𝑙𝑟 (18)
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where L𝑐𝑒 denotes the image-text matching loss. L𝑡𝑘𝑙𝑟 and L𝑖𝑘𝑙𝑟

respectively denote the reconstruction loss of key segments for the
text and image.

4 EXPERIMENTAL
4.1 Datasets
In this paper, we experimented with two Remote Sensing Image-
Text Retrieval (RSITR) datasets and three Text-Image Person Re-
identification (TIReID) datasets.

4.1.1 RSITR datasets. We conducted experiments on two remote
sensing image-text datasets, RSICD [33], RSITMD [53]. The RSICD
dataset consists of 10,921 RS images in 30 semantic categories, each
of which has 5 captions. The RSITMD dataset consists of 4743
images in 32 semantic categories, with a total of 23,715 captions.

4.1.2 TIReID datasets. We conducted experiments on three TIReID
datasets, CUHK-PEDES [27], ICFG-PEDES [10], RSTPReid [60]. The
CUHK-PEDES contains 40,206 images and 80,412 textual descrip-
tions for 13,003 identities. The ICFG-PEDES contains a total of
54,522 images for 4,102 identities. Each image has only one corre-
sponding textual description. RSTPReid contains 20,505 images of
4,101 identities from 15 cameras.

4.2 Metrics and Implementation Details
4.2.1 Evaluation Metrics. The experimental metrics are R@K and
mR, where R@K (K=1, 5, and 10) is defined as the similarity ranking
of matching pairs included in the top K retrieval results, and a
higher value of R@K indicates better performance. mR represents
the average of all R@K, which is more reasonable for evaluating
the overall performance of the model.

4.2.2 Implementation Details. For KLSF, the probability of select-
ing key features in the image, 𝛼 , is set to 0.3 for RSITR and 0.55 for
TIReID. The probability of selecting key features in the text, 𝛽 , is
set to 0.3 for RSITR and 0.70 for TIReID. For KLR, the probability
of masking the image, 𝜏 , is set to 0.5 for RSITR and 0.2 for TIReID,
and the probability of masking the text, 𝛾 , is set to 0.5 for RSITR
and 0.2 for TIReID. Both 𝜆 and 𝜂 are set to 0.1. We employ a cosine
annealing learning rate strategy with a warm-up period of 2000
steps. The learning rate is set to 1e-05, the batch size is 128, and
the total number of epochs is 10 for RSITR and 50 for TIReID. The
initialization of our framework is based on CLIP-ViT-B/16. The
experiments are conducted using the PyTorch on an NVIDIA RTX
3090 GPU for RSITR task and an A100 GPU for TIReID task.

4.3 Comparison with State-of-the-Art Methods
We conducted an extensive evaluation of the EKLSR performance
across two specific domains: RSITR (RSITMD and RSICD) and
TIReID (CUHK-PEDE, ICFG-PEDES, and RSTPReid). We bench-
marked our EKLSR against the best comparison model and the
CLIP (baseline), as depicted in Figure 4, clearly demonstrating our
method’s superior performance. Detailed analyses for each dataset
are presented below.

4.3.1 RSITR Results. In this section, we compare our approach
with state-of-the-art methods on two RSITR benchmark datasets,

RSITMD

(RSITR)

RSTPReid

(TIReID)

ICFG-PEDES

(TIReID)

Best comparison modelCLIP (baseline) EKLSR (our)

51.59

48.56

48.14

73.20

73.26

70.84

58.21

71.80

73.81

82.28

83.0

082.2137.43 35.82
33.71

CUHK-PEDES

(TIReID)
RSICD

(RSITR)

Figure 4: Comparison of EKLSR with other models based on
the mRmetric across two RSITR (RSITMD, RSICD) and three
TIReID (CUHK-PEDE, ICFG-PEDES, RSTPReid) datasets.

RSICD and RSITMD, as shown in Table 1. The "Type" column clas-
sifications "F," "R," "V," and "C" correspond to image backbones
based on bottom-up attention models, ResNet, VIT, and CLIP, re-
spectively. Text Retrieval refers to image-to-text retrieval. Image
Retrieval refers to text-to-image retrieval.

Performance Comparisons on RSITMD. As indicated in Ta-
ble 1, EKLSR outperforms all methods across all recall rates R@K,
achieving mR accuracy of 51.59%, which is 3.03% higher than the
baseline and 3.45% higher than the current best method, TGKT [30].
Notably, our directly fine-tuned CLIP baseline already surpasses
the advanced TGKT [30] method with an mR accuracy of 48.56%. It
is evident from the "Type" column in Table 1 that the robust feature
extraction backbones in RSITR are key, with VLP-based methods
becoming increasingly dominant. This underscores the significance
of our research in optimizing VLP models for specific domain tasks.

Performance Comparisons on RSICD. As shown in Table 1,
the baseline exceeds the most recent state-of-the-art results by
+2.11% inmR accuracy. Furthermore, our proposed EKLSR surpasses
all methods across all R@K accuracy, significantly outperforming
the latest advanced method, TGKT, by +3.73% in mR accuracy.

EKLSR consistently delivers state-of-the-art performance across
all metrics on two RSITR datasets. This underscores the efficacy of
EKLSR in effectively leveraging VLP model knowledge for RSITR.

4.3.2 TIReID Results. In this section, we evaluate the generaliza-
tion capability of our proposed EKLSR model on TIReID by conduct-
ing experiments across three public TIReID benchmark datasets
(CUHK-PEDES, ICFG-PEDES, and RSTPReid).

Performance Comparisons on CUHK-PEDES. We evaluated
our EKLSR model on the widely-used CUHK-PEDES dataset, with
performance comparisons shown in Table 2. EKLSR achieved an
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RSITMD RSICD
Text Retrieval Image Retrieval Text Retrieval Image Retrieval

Type R@1 R@5 R@10 R@1 R@5 R@10 mR R@1 R@5 R@10 R@1 R@5 R@10 mR
SCAN [23] ECCV’18 F 11.06 25.88 39.38 9.82 29.38 42.12 26.28 5.85 12.89 19.84 3.71 16.40 26.73 14.23
CAMP [46] ICCV’19 F 11.73 26.99 38.05 8.27 27.79 44.34 26.20 5.12 12.89 21.12 4.15 15.23 27.81 14.39
AMFMN [53] TGRS’22 R 11.06 29.20 38.72 9.96 34.03 52.96 29.32 5.39 15.08 23.40 4.90 18.28 31.44 16.42
GaLR [54] TGRS’22 R 14.82 31.64 42.48 11.15 36.68 51.68 31.41 6.59 19.85 31.04 4.69 19.48 32.13 18.96
SWAN [36] ICMR’23 R 13.35 32.15 46.90 11.24 40.40 60.60 34.11 7.41 20.13 30.86 5.56 22.26 37.41 20.61
KAMCL [20] TGRS’23 R 16.51 36.28 49.12 13.50 42.15 59.32 36.14 12.08 27.26 38.70 8.65 27.43 42.51 26.10
MSITA [4] TGRS’24 V 15.22 34.2 47.65 12.15 39.92 57.72 34.48 8.67 22.71 33.91 6.13 21.98 35.39 21.47

VIT+BERT V 12.83 31.19 46.24 9.60 36.59 54.42 31.81 9.06 22.78 32.75 5.32 19.47 33.71 20.52
ResNet101+ BERT R 13.50 32.30 46.24 11.90 36.46 52.43 32.14 9.15 23.70 35.32 5.07 19.69 33.21 21.02

RemoteCLIP [31] arXiv’23 C 22.79 49.12 61.50 18.14 51.73 70.09 45.89 15.83 36.51 51.69 12.42 34.38 51.27 33.68
TGKT [30] IGRS’24 C 25.88 50.00 63.05 20.58 55.18 74.16 48.14 15.37 35.50 50.50 12.83 36.21 51.88 33.71

Baseline (CLIP-ViT-B/16) C 25.88 50.22 63.27 23.14 56.11 72.74 48.56 19.21 38.15 50.59 14.07 38.50 54.40 35.82
EKLSR(ours) C 30.08 53.76 66.15 27.87 57.61 74.11 51.59 19.48 39.98 53.33 15.33 39.92 56.54 37.43

Table 1: Experimental results on RSITR task.

Method Type R@1 R@5 R@10 mR
TIMAM [41] ICCV’19 R 54.51 77.56 79.27 70.44
ViTAA [45] ECCV’20 R 54.92 75.18 82.9 71.00
NAFS [13] arXiv’21 R 59.36 79.13 86.00 74.83
LBUL [47] MM’22 R 64.04 82.66 87.22 77.97
TIPCB [5] Neuro’22 R 64.26 83.19 89.10 78.85
SAF [26] ICASSP’22 R 64.13 82.62 88.40 78.38
IVT [42] ECCVW’22 R 65.59 83.11 89.21 79.30
CFine [49] arXiv’22 C 69.57 85.93 91.15 82.21
TGDA [14] TCSVT’23 R 64.64 83.38 89.34 79.12

Baseline (CLIP-ViT-B/16) C 67.91 86.98 91.95 82.28
EKLSR (ours) C 69.62 87.34 92.05 83.00

Table 2: Experimental Evaluation on CUHK-PEDES for
TIReID.

Method Type R@1 R@5 R@10 mR
DSSL [59] MM‘21 R 39.05 62.60 73.95 58.53
SSAN [9] arXiv’21 R 43.50 67.80 77.15 62.81
LBUL [47] MM’22 R 45.55 68.20 77.85 63.86

IVT [42] ECCVW’22 V 46.70 70.00 78.80 65.16
CFine [49] arXiv’22 C 50.55 72.50 81.60 68.21
TGDA [14] TCSVT’23 R 48.35 73.15 80.30 67.26

Baseline (CLIP-ViT-B/16) C 53.60 77.20 84.60 71.80
EKLSR (ours) C 55.30 79.15 87.00 73.81

Table 3: Experimental Evaluation on RSTPReid for TIReID.

Method Type R@1 R@5 R@10 mR
CMPM/C [57] ECCV‘18 R 43.51 65.44 74.26 61.07
ViTAA [45] ECCV’20 R 50.98 68.79 75.78 65.18
SSAN [9] arXiv’21 R 54.23 72.63 79.53 68.79
IVT [42] ECCVW’22 V 56.04 73.60 80.22 69.95
CFine [49] arXiv’22 C 60.83 76.55 82.42 73.26
TGDA [14] TCSVT’23 R 57.26 75.19 81.80 71.41

Baseline (CLIP-ViT-B/16) C 55.23 75.38 81.90 70.84
EKLSR (ours) C 59.03 77.26 83.57 73.29

Table 4: Experimental Evaluation on ICFG-PEDES for
TIReID.

R@1 accuracy of 51.59%, surpassing the baseline by 1.71%.Moreover,
when compared to the strongest competitor, a similar CLIP-based
method CFine [49], EKLSR reached 87.34% (+1.41%) and 92.05%
(+0.9%) in Rank-5 and Rank-10 accuracy, respectively. These results
validate the effectiveness of our proposed key local selection and
enhancement strategies (KLSF and KLR) in bridging the modality
gap critical for TIReID tasks.

Performance Comparisons on ICFG-PEDES and RSTPReid.
We compared our EKLSR against previous works on two additional
benchmarks, RSTPReid and ICFG-PEDES, as illustrated in Tables 3
and Table 4. EKLSR consistently outperforms the baselines on both
datasets. Specifically, on the RSTPReeid dataset, EKLSR significantly
surpasses the same CLIP-based method, CFine, achieving 55.30%
(+4.95) and 73.81% (+5.60%) in Rank-1 and mR accuracy, respectively.
Similarly, on the ICFG-PEDES, it significantly outperforms the
baseline and achieves performance comparable to the CFine. These
results demonstrate the robustness and generalizability of EKLSR.

4.4 Ablation Experiments
To fully demonstrate the impact of different components in EKLSR,
we use the CLIP-ViT-B/16 models as the baseline and conduct ex-
periments on the RSITMD (RSITR task) and CUHK-PEDES (TIReID
task) datasets. Refer to Table 5 for the experimental results. The
"ours (w/o interaction)" denotes that the global information from
paired modalities is not used during masked segment reconstruc-
tion.

(1) By comparing No.0 and No.1, we demonstrate the effective-
ness of the KLSF module, showing an approximately 1% improve-
ment in mR accuracy on the RSITMD and CUHK-PEDES datasets.
This indicates that the KLSF module can extract key local informa-
tion from the powerful multimodal knowledge representation of
CLIP to enhance the final feature representation.

(2) Comparing No.2 and No.1 on the RSITMD dataset shows
text retrieval gains with R@1, R@5, and R@10 increasing by 0.44%,
1.77%, and 1.11%, respectively. However, image retrieval improve-
ments are negligible across datasets. This can be attributed to Text
KLR’s focus on text reconstruction, only improving the discrim-
inability of text local features and benefiting unidirectional text
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RSITMD CUHK-PEDES
Components Text Retrieval Image Retrieval Image Retrieval

No. Methods KLSF Text KLR Image KLR R@1 R@5 R@10 R@1 R@5 R@10 mR R@1 R@5 R@10 mR
0 baseline 25.88 50.22 63.27 68.66 56.11 72.74 48.56 67.91 86.98 91.95 82.28
1 +KLSF ✓ 29.86 50.66 64.15 23.27 56.90 73.14 49.66 68.66 86.82 91.84 82.44
2 +KTSF+Text KLR ✓ ✓ 30.30 52.43 65.26 23.31 55.92 72.61 49.97 69.16 87.11 92.17 82.81
3 +KTSF+Image KLR ✓ ✓ 28.53 52.65 65.26 25.00 57.56 73.45 50.40 69.28 86.85 91.81 82.65
4 ours (w/o interaction) ✓ ✓ ✓ 28.70 53.57 65.5 27.21 56.36 73.59 50.82 69.16 87.11 92.17 82.81
5 ours ✓ ✓ ✓ 30.08 53.76 66.15 27.87 57.61 74.11 51.59 69.62 87.34 92.05 83.00

Table 5: Ablation study on each component of EKLSR on RSITMD and CUHK-PEDES.

RSITMD CUHK-PEDES
Selection Method Text Retrieval Image Retrieval Image Retrieval

No. Module random topk our R@1 R@5 R@10 R@1 R@5 R@10 mR R@1 R@5 R@10 mR
0 ✓ 25.22 46.46 61.73 22.35 55.40 73.14 47.38 64.71 84.81 90.62 80.05
1 KLSF ✓ 28.32 47.79 62.83 22.43 55.62 71.42 48.06 69.20 86.56 91.66 82.47
2 ✓ 29.86 50.66 64.15 23.27 56.90 73.14 49.66 69.28 86.85 91.81 82.65
3 ✓ 28.98 49.33 61.94 24.73 55.88 72.87 48.96 66.14 84.92 91.04 80.70
4 KLR ✓ 30.30 53.98 65.70 24.77 56.94 74.07 50.96 68.79 87.29 92.21 82.77
5 ✓ 30.08 53.76 66.15 27.87 57.61 74.11 51.60 69.62 87.34 92.05 83.00

Table 6: Comparisons between different key local feature selection methods in KLSF and comparisons between different mask
methods in KLR on the RSITMD and CUHK-PEDES.

retrieval. Similarly, Image KLR refines image local feature repre-
sentations, which positively impacts unidirectional image retrieval.
Consequently, a comparison between No.3 and No.1 reveals im-
provements in all R@K accuracy for image retrieval on the RSITMD
dataset and in R@1 for image retrieval on the CUHK-PEDES dataset.

Text KLR and Image KLR are more focused on improving the
unidirectional retrieval performance, and when used together, they
improve the bidirectional retrieval performance. Comparing No.2
and No.1, significant increases in all R@K accuracy were observed
on both RSITMD and CUHK-PEDES datasets, with the mR for
bidirectional retrieval rising by 3.03% and 0.96%, respectively. The
above experiments demonstrate the effectiveness of KLR.

(3) By comparing No.5 with No.4, we observe that the recon-
struction with crossmodal information consistently outperforms
the reconstruction with only intra-modal information, with an ap-
proximate 1% improvement in the mR on the RSITMD dataset. This
indicates that crossmodal interaction benefits reconstruction tasks.

The above experiments demonstrate the effectiveness of each
component in our EKLSR framework.

Different Key Local Selection and Mask Strategies.We in-
vestigate the selection method for key local features in the KLSF
module and the masking methods in the KLR task in Table 6. The
random represents a random selection (masking) method. The topk
indicates selecting (masking) only the top k local features (seg-
ments) based on their importance factor ranking. The our represents
the polynomial probability selection method, the characteristic of
which is that segment features with higher importance factors have
a greater probability of being selected, while also allowing segment
features with lower importance factors to be selected.

Comparisons between No.2 and No.1 with No.0 indicate methods
focusing on key local feature selection (topk and our) significantly
outperform random selection on the mR metric. Similar trends

are observed in comparisons between No.5 and No.4 with No.3,
with topk and our methods outperforming random mask. These
highlight the pivotal role of key local features in specific domain
tasks. Additionally, the our method performs better than the topk
method in KLSF and KLR because it may also select (mask) image
background regions and text words with low-importance factors.
Although these segments have low importance factor, they are still
essential for the overall understanding of the image and text.

5 CONCLUSION
To adapt the VLP model like CLIP to specific domain image-text
retrieval tasks such as Text-Image Re-identification (TIReID) and
Remote Sensing Image Text Retrieval (RSITR), we introduce the Ex-
plicit Key Local information Selection and Reconstruction (EKLSR)
framework tailored for high similarity characteristics in specific do-
main data. Our Key Local information Selection and Fusion (KLSF)
module leverages interpretable importance factors from CLIP’s
prior knowledge to identify key local features. These key token
features, selected based on importance factors, are dynamically
fused with instance-level global features to enhance feature repre-
sentation in a shared space. Additionally, our approach employs
Key Local segment Reconstruction based on multimodal interac-
tion (KLR) to reconstruct key local segments of images (and text)
using intra-modal contextual information and global information
from matched modalities. This not only enriches the discriminative
information of key local features but also intensifies the interaction
between multimodal local features. Furthermore, our framework
facilitates offline inference, catering to the real-time demands of
specific domain applications. Ultimately, our EKLSR model attains
substantial performance on two benchmark RSITR datasets and
three TIReID datasets. In future work, we plan to conduct experi-
ments on a broader range of VLP models.
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