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ABSTRACT

In this paper, we aim to tackle the limitation of the Adversarial Inverse Reinforce-
ment Learning methods in stochastic environments where theoretical results cannot
hold and performance is degraded. To address this issue, we propose a novel
off-policy method, based on maximum causal entropy framework, which infuses
the dynamics information into the reward shaping with the theoretical guarantee
for the induced optimal policy in the stochastic environments. Incorporating our
novel model-based rewards, we present a novel Model-Enhanced AIRL frame-
work, which integrates transition model estimation directly into reward shaping.
Furthermore, we provide a comprehensive theoretical analysis of the reward error
bound and performance difference bound for our method. The experimental results
in MuJoCo benchmarks show that our method can achieve superior performance
in stochastic environments and competitive performance in deterministic environ-
ments, with significant improvement in sample efficiency, compared to existing
baselines.

1 INTRODUCTION

Reinforcement learning (RL) has achieved considerable success across various domains, including
board game (Schrittwieser et al., 2020), MOBA game (Berner et al., 2019), time-delayed system (Wu
et al.; 2024), and cyber-physical systems (Wang et al., 2023a;b;c; Zhan et al., 2024). Despite these
advances, RL highly depends on the quality of reward function design which demands expertise,
intensive labour, and a great amount of time (Russell, 1998). To address this, imitation learning (IL)
methods, such as Behavior Cloning (BC) (Torabi et al., 2018a) and Inverse Reinforcement Learning
(IRL) (Arora & Doshi, 2021), leverage human or expert demonstrations to bypass the need for explicit
reward functions. These methods aim to learn from the demonstrations to eventually match the
distribution of expert behavior, and have shown great promise in applications like autonomous driving
(Codevilla et al., 2018; Sun et al., 2018), legged locomotion (Peng et al., 2020; Ratliff et al., 2009),
and planning tasks (Choudhury et al., 2018; Yin et al., 2022).

The notable approaches within IRL are Adversarial Imitation Learning (AIL) methods that build
upon maximum entropy framework (Ziebart et al., 2008). These adversarial methods frame imitation
learning as a maximum likelihood estimation problem on trajectory distributions, converting the
distribution into a Boltzmann distribution parameterized by rewards under deterministic environment
settings (Wu et al., 2024). This closely mirrors the distribution approximation found in generative
models (Finn et al., 2016a; Swamy et al., 2021). Thus, model-free AIL approaches often follow
generative model structures, such as GANs (Ho & Ermon, 2016; Fu et al., 2017) or diffusion models
(Reuss et al., 2023), and require extensive sampling for distribution matching gradient updates in
on-policy fashion (Orsini et al., 2021). Model-based IL frameworks have also emerged, where
model-based framework is designed to provide estimation for gradient and planning, leading to
innovative combinations such as gradient-based IRL with model predictive control (MPC) (Das
et al., 2021) and end-to-end differentiable IRL frameworks for complex robotics tasks (Baram et al.,
2016; 2017; Sun et al., 2021; Rafailov et al., 2021). However, these approaches primarily address
deterministic settings and struggle when applied to stochastic environments.
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The only learning "deterministic" reward techniques among the existing AIL methods, rooted in
their maximum entropy nature, face significant performance degeneration in stochastic environments,
leading to risk-seeking behavior and increased data requirements (Ziebart et al., 2010). For example,
an agent trained under the deterministic Markov Decision Process (MDP) might aim to imitate expert
behavior by seeking high rewards, yet fail to account for the low probability of some transitions
in stochastic MDP settings. This happens because, in stochastic environments, the assumption
of maximum entropy that trajectory distributions are aligned with a Boltzmann distribution solely
parameterized by deterministic rewards no longer holds. Instead, the dynamics information must also
be incorporated into the formulation. There are two possible solutions. One is massive sampling to
cover all possible outcomes, which is computationally expensive in large state action spaces (Devlin
& Kudenko, 2011; Gupta et al., 2022). The other is changing from maximum entropy framework to
maximum causal entropy framework, estimating the dynamics information, and integrating it into
the reward design, making the reward "stochastic". Traditional reward design is usually based on
state only R(st) (Torabi et al., 2018b), state-action pair R(st, at) (Blondé & Kalousis, 2019), or
transition tuple R(st, at, st+1) (Fu et al., 2017), where the information inputted can be thought as a
deterministic sample piece under the stochastic setting. The challenge in stochastic environments
calls for a different perspective of rewards – stochastic rewards absorbing the transition information.

Inspired by this idea, we propose a novel maximum causal entropy based off-policy model-based
adversarial IRL framework with a specifically tailored model-enhanced reward shaping approach
to elevate performance in stochastic environments while remaining competitive in deterministic
settings. In contrast to existing methods, our approach leverages the predictive power of the estimated
transition model to shape rewards, represented as R̂(st, at, T̂ ). This also enables us to generate
synthetic trajectories to help guide policy optimization and reduce dependency on costly real-world
interactions. As part of our analysis, we provide a theoretical guarantee on the optimal behavior for
policies induced by our reward shaping and derive a bound on the performance gap with respect to
the transition model errors. Empirically, we demonstrate that this integration significantly enhances
sample complexity and policy performance in both settings, providing a comprehensive solution to
the limitations of existing AIL methods in uncertain environments.

Contributions of this work include:

• A novel reward shaping method with model estimation under the stochastic MDP setting,
which provides the optimal policy invariance guarantee.

• A novel model-based off-policy adversarial IRL framework rooted in maximum causal
entropy theory that seamlessly incorporates transition model training, adversarial reward
learning with model estimation and forward model-based RL process, enhancing perfor-
mance in stochastic environments, and sample efficiency.

• Theoretical analysis on reward learning with model estimation under the adversarial frame-
work and performance difference under transition model learning errors.

• Empirical validation that demonstrates our approach’s performance improvements in stochas-
tic environments as well as significant improvement in sample efficiency and comparable
performance in deterministic environments.

In Sec. 2, we introduce related works in AIL and reward shaping. In Sec. 3, we provide the necessary
preliminaries for MDP and IRL. In Sec. 4, we present our model-enhanced reward shaping method
and corresponding theoretical guarantee. In Sec. 5, we present our Model-Enhanced AIRL framework
design together with derivation from maximum causal entropy objective, theoretical analysis on
reward error bound, and performance difference bound. In Sec. 6, we show the experimental results
in Mujoco for various benchmarks. Sec. 7 concludes the paper.

2 RELATED WORKS

Adversarial Imitation Learning. Margin optimization based IRL methods (Ng et al., 2000; Abbeel
& Ng, 2004; Ratliff et al., 2006) aim to learn reward functions that explain expert behavior better than
other policies by a margin. Bayesian approaches were introduced with different prior assumptions
on reward distributions, such as Boltzmann distributions (Ramachandran & Amir, 2007; Choi &
Kim, 2011; Chan & van der Schaar, 2021) or Gaussian Processes (Levine et al., 2011). Other
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statistical learning methods include multi-class classification (Klein et al., 2012; Brown et al., 2019)
and regression trees (Levine et al., 2010). The entropy optimization approach has seen significant
development. To avoid biases from maximum margin methods, the maximum entropy principle (Shore
& Johnson, 1980) is used to infer distributions over trajectories parameterized by reward weights.
Ziebart et al. (2008; 2010) proposed a Lagrangian dual framework to cast the reward learning into a
maximum likelihood problem with linear-weighted feature-based reward representation. Wulfmeier
et al. (2015) extended the framework to nonlinear reward representations, and Finn et al. (2016b)
combines importance sampling techniques to enable model-free estimation. Inspired by GANs,
adversarial methods were introduced for policy and reward learning in IRL (Ho & Ermon, 2016;
Fu et al., 2017; Torabi et al., 2018b). However, these methods typically work with Maximum
Entropy (ME) formulation yet suffer from sample inefficiency and stochasticity. Although there
have been efforts to combine adversarial methods with off-policy RL agents to improve sample
efficiency (Kostrikov et al., 2018; Blondé & Kalousis, 2019; Blondé et al., 2022), few extend it to the
model-based setting which might further the improvement, and none of these approaches addresses
the rewards learning in stochastic MDP settings.

Rewards Shaping. Reward shaping (Dorigo & Colombetti, 1994; Randløv & Alstrøm, 1998)
is a technique that enhances the original reward signal by adding additional domain information,
making it easier for the agent to learn optimal behavior. This can be defines as R̂ = R+ F , where
F is the shaping function and R̂ is the shaped reward function. Potential-based reward shaping
(PBRS) (Ng et al., 2000) builds the potential function on states, F (s, a, s′) = ϕ(s′)− ϕ(s), while
ensuring the policy invariance property, which refers to inducing the same optimal behavior under
different rewards R and R̂. Nonetheless, there also exist other variants on the inputs of the potential
functions such as state-action (Wiewiora et al., 2003), state-time (Devlin & Kudenko, 2012), and
value function (Harutyunyan et al., 2015) as potential function input. There are also some latest
attempts of reward shaping without utilization of domain knowledge potential function to solve
exploration under sparse rewards (Hu et al., 2020; Devidze et al., 2022; Gupta et al., 2022; Skalse
et al., 2023).

MBIRL. Model-Based RL (MBRL) has emerged as a promising direction for improving sample
efficiency and generalization (Janner et al., 2019; Yu et al., 2020). MBRL combines various learned
dynamics neural network structures with planning (Hansen et al., 2022; Sikchi et al., 2022).This
framework has been successfully extended to vision-based control tasks (Hafner et al., 2019; Zhan
et al., 2024). Integrating IRL with MBRL has also shown success. For example, Das et al. (2021) and
Herman et al. (2016) presented a gradient-based IRL approach using different policy optimization
methods with dynamic models for linear-weighted features reward learning. In Das et al. (2021),
the dynamic model is used to pass forward/backward the gradient in order to update the IRL and
policy optimization modules. Similarly, end-to-end differentiable adversarial IRL frameworks to
various state spaces have also been explored (Baram et al., 2016; 2017; Sun et al., 2021; Rafailov
et al., 2021), where dynamic model serves a similar role. Despite these advancements, existing
methods rarely address the specific challenges posed by stochastic environments, which limit reward
learning performance. To our knowledge, this is the first study that provide a theoretical analysis
on the performance difference with learned dynamic model for the adversarial IRL problem under
stochastic MDP.

3 PRELIMINARIES

MDP. RL is usually formulated as a Markov Decision Process (MDP) M (Puterman, 2014)
denoted as a tuple ⟨S,A, T , γ, R, ρ0⟩. ρ0 is the initial distribution of the state. s ∈ S, a ∈ A
stands for the state and action space respectively. T stands for the transition dynamic such that
T : S ×A× S → [0, 1]. γ ∈ (0, 1) is the discounted factor, R stands for reward function such that
R : S × A → R and ∥R∥∞ ≤ Rmax. The discounted visitation distribution of trajectory τ with
policy π is given by:

p(τ) = ρ0

T−1∏
t=0

γtT (st+1|st, at)π(at|st). (1)
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The objective function of RL is maxEτ∼p(τ)

[∑T
t=0 γ

tR(τ)−H(π)
]
, where H is the log likelihood

of the policy. We introduce Soft Value Iteration for bellmen update (Haarnoja et al., 2018), where
Qsoft and V soft denotes the soft Q function and Value function respectively:

V soft(st) = log
∑
at∈A

expQsoft(st, at)dat, (2)

Qsoft(st, at) = R(st, at) + γET
[
V soft(st+1)|st, at

]
, (3)

π(at|st) = exp (Qsoft(st, at)− V soft(st)), (4)

where the soft Advantage function is defined as Asoft(st, at) = Qsoft(st, at)− V soft(st).

Inverse RL. In IRL setting, we usually consider the MDP without reward as M′ where R is also
unknown. We denote the data buffer Dexp which collects trajectories from an expert policy πE . We
consider a reward function Rθ : S ×A → R, where θ is the reward parameter. An IRL problem can
be defined as a pair B = (M′, πE). A reward function Rθ is feasible for B if πE is an optimal policy
for the MDP M′ ∪Rθ, and we denote the set of feasible rewards as RB. Using maximize likelihood
estimation framework, we can formulate the IRL as the following maximum causal entropy problem:

argmax
θ

Eτ∼Dexp log pθ(τ), (5)

where Qsoft
Rθ

and V soft
Rθ

are based on Rθ and pθ(τ) ∝ ρ0
∏T−1

t=0 T (st+1|st, at) exp(Qsoft
Rθ

(st, at)−
V soft
Rθ

(st)) (Ziebart et al., 2010). Under deterministic MDP, the above problem can be simplified
as ME problem, where pθ(τ) ∝ 1

Zθ
exp

∑T−1
t=0 Rθ(st, at) and Zθ is the temperature factor of the

Boltzmann Distribution (Ziebart et al., 2008).

4 MODEL ESTIMATION IN REWARD SHAPING

Table 1: We summarize the different reward formulations and their dynamic properties in this table.
Components refer to the input pair that the reward functions take. Reward Shaping indicates whether
there is the extra physical potential information involved where X means no reward shaping used.
Dynamics information shows whether transitions are involved in the reward function.

Methods Components Reward Shaping Dynamics Information
AIRL (Fu et al., 2017) st, at, st+1 R(st, at) + γϕ(st+1)− ϕ(st) single sample

AIRL(State Only) st R(st) + constant X
DAC (Kostrikov et al., 2018) st, at X X

SAM (Blondé & Kalousis, 2019) st, at X X
SQIL (Reddy et al., 2019) st, at binary X

GAIfO (Torabi et al., 2018b) st, st+1 X single sample
Ours st, at, T R(st, at) + γET [ϕ(st+1)|st, at]− ϕ(st) transition model

In this section, we illustrate the advantages of involving transition dynamics into the reward shaping,
especially in stochastic MDP settings. Most of literature work has various formulations and defini-
tions (Table 1), but few considers transition dynamic information in the reward shaping. Defining
rewards solely based on states, Rs(st), offers limited utility in environments where actions are critical.
Even though the state-action pair-based rewards Rsa(st, at) can capture the missing information
of the taken action, it fails to consider any future information, the successive state st+1. Transition
tuple-based rewards Rtuple(st, at, st+1) incorporate the dynamics information in a sampling-based
way, which requires abundant data to learn the underlying relationship of two consecutive states,
potentially raising the sample efficiency issue in the stochastic environment with the huge state
space. To address this issue, we propose dynamics-based rewards shaping R̂(st, at, T ), which explic-
itly infuse the dynamics information T on the potential function, thus significantly improving the
sample-efficiency. Specifically, our rewards shaping is defined as

R̂(st, at, T ) = R(st, at) + γET [ϕ(st+1)|st, at]− ϕ(st), (6)

where ϕ is a state-only potential function, T is the dynamics. Another insight of the above reward
shaping is to resemble the advantage function with the soft value function as the potential function,
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which we will elaborate in Sec. 5.1. With the given reward shaping R̂, it is crucial to show that it
induces the same optimal behaviour as the ground-true reward R. We formally define this policy
invariance property as follows.

Definition 4.1. (Memarian et al., 2021) Let R and R̂ be two reward functions. We say they induce
the same soft optimal policy under transition dynamics T if, for all states s ∈ S and actions a ∈ A:

Asoft
R (st, at) = Asoft

R̂
(st, at). (7)

With the above definition, we can transfer the proof of policy invariant property of our designed
reward shaping (Eq. (6)) to showing the equivalence of soft advantage functions, which is proved in
the following theorem. The detailed proof can be found in A.1.

Theorem 4.2 (Policy Invariance). Let R and R̂ be two reward functions. R and R̂ induce the same soft
optimal policy under all transition dynamics T if R̂(st, at, T ) = R(st, at) + γET [ϕ(st+1)|st, at]−
ϕ(st) for some potential-shaping function ϕ : S → R.

Thm. 4.2 implies that the optimal policy induced from our model-enhanced rewards shaping R̂
(Eq. (6)) is equivalent to the optimal policy trained by the ground-truth reward function R under the
soft Value Iteration fashion.

5 MODEL ENHANCED ADVERSARIAL IRL

In this section, we first elaborate on the adversarial formulation of our reward shaping (Eq. (8)) and
present the theoretical insight (Proposition 5.1) of the equivalence between cross-entropy training loss
of adversarial reward shaping formulation and maximum log-likelihood loss of original maximum
causal entropy IRL problem. Then, in the Sec. 5.2, we showcase our practical algorithm framework
with trajectory generation and transition model learning in the loop, as shown in Fig. 1. Furthermore,
we theoretically investigate the reward function bound (Thm. 5.3) and performance difference bound
(Thm. 5.4) under the transition model learning error.

RL

Critic

Actor

Inverse RL

GANsExperts

Rewards Shaping
Real Environment

Learned Transition

Mixed traj

Synthetic 

traj

Real

traj

Synthetic

Buffer

Environment

Buffer

Figure 1: Framework overview of Model-Enhanced Adversarial IRL. Different color arrows stand
for different sample flows. Purple stands for real environmental interaction samples, pink stands for
synthetic samples generated from learned transition model, and blue stands for mixed of both.

5.1 ADVERSARIAL FORMULATION OF REWARD SHAPING

In this section, we connect the reward shaping in adversarial training framework with rewards learning
objective under the MCE framework. Inspired by GANs (Goodfellow et al., 2014), the idea behind
adversarial framework is to train a binary discriminator D(st, at, st+1) or D(st, at) to distinguish
state-action-transition samples from an expert and those generated by imitator policy following the
original ME setting. However, as mentioned above, we only take in state-action pair and transition
function to define our reward function which also extends to our discriminator as follows:

Dθ(st, at, T ) =
exp{fθ(st, at, T )}

exp{fθ(st, at, T )}+ π(at|st)
, (8)
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Algorithm 1 Model Enhanced Adversarial IRL

1: Obtain expert buffer Dexp.
2: Initialize policy π, discriminator Dθ, buffers Denv,Dgen, and transition model T̂ .
3: for step t in {1, . . . , N} do
4: Interact with real environments and add state-action pair to Denv .
5: if t < STARTING_STEP then
6: Pretrain transition model T̂ .
7: else
8: Sample state-action batch from Dexp,Denv respectively.
9: Train Dθ via cross entropy loss Eq. (9) to classify expert data from samples.

10: Update dynamic model T̂ with MLE loss and generate H-steps trajectories to Dgen.
11: Sample state-action batches from Denv, and Dgen with varying ratio.
12: Update π with respect to R̂θ using Soft Actor Critic policy optimization.
13: end if
14: end for

where fθ(st, at, T ) = Rθ(st, at) + γET [ϕθ(st+1)|st, at] − ϕθ(st) resembles the reward shaping
defined above. The loss function for the training discriminator is defined below.

Ldisc = −EDexp
[logDθ(s, a, T )]− Eπ [log(1−Dθ(s, a, T ))] . (9)

We bridge this adversarial formulation with the original MCE IRL problem. In the following
proposition, we give a sketch of proof to show the connection between the objective function of
discriminator and MCE IRL. Proof details can be found in Appendix B.1.
Proposition 5.1. Consider an undiscounted MDP. Suppose fθ and π at the current iteration are the
soft-optimal advantage function and policy for reward function Rθ. Minimising the cross-entropy
loss of the discriminator under generator π is equivalent to maximising the log-likelihood under
Maximum Causal Entropy IRL.

With above given proposition, we can construct a direct intuition that f∗
θ should be equal to R̂θ the

reward shaping we introduced early and resemble the soft advantage function. To extract rewards
to represent reward used for policy optimization, we use log(Dθ(s, a, T ))− log(1−Dθ(s, a, T )),
which resembles the entropy-regularized reward shaping fθ(s, a, T )− log π(a|s). Given this entropy-
regularized reward, it is straightforward to see why the optimal policy can satisfy the RL objectives.

5.2 ALGORITHM FRAMEWORK

In this section, we present the overall framework of Model-Enhanced Adversarial IRL and illustrate
how transition model training is incorporated into the learning loop. We assume the estimated
transition distribution T̂ (·|s, a) follows a Gaussian distribution with mean and standard deviation
parameterized by the MLP, and the model is updated with standard maximum likelihood loss.
The transition model is updated in each policy optimization iteration similar as model-based RL
approaches (Janner et al., 2019; Hansen et al., 2022; Zhan et al., 2024). At each iteration, the updated
transition model is utilized for reward learning and synthetic data generation in eval mode, which is
stored in the synthetic trajectory replay buffer. Unlike AIRL and GAIL, our framework operates in
an off-policy fashion, where samples used for both discriminator and policy update are drawn from a
combination of the environmental replay buffer and the synthetic replay buffer. An overview of our
framework is shown in Fig. 1, and detailed algorithmic steps and parameters are provided in Alg. 1
and Appendix F.

Sample Efficiency: To improve sample efficiency, we leverage the estimated transition model
to generate H-steps synthetic trajectories data alongside real interaction data, facilitating policy
optimization. Given that the estimated transition model is inaccurate at the beginning, we employ a
dynamic ratio between real and synthetic data to prevent the model from being misled by unlikely
synthetic transitions (Janner et al., 2019; Zhan et al., 2024). Specifically, early-stage generated
trajectories are not stored persistently, unlike real interactions which are fully stored in the off-policy
environmental replay buffer. To maintain training stability, we use a synthetic replay buffer with a
size that gradually increases as training progresses, ensuring a balanced inclusion of synthetic data

6
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over time. The growth rates of the data ratio and buffer size are adjusted based on the complexity
of the transition model learning process and can be fine-tuned via hyper-parameters. H horizon
choosing and buffer size update scheme can be found in Appendix F.

Distribution Shift: To mitigate distribution shift (Lee et al., 2020; Lin et al., 2020) during training,
we employ a strategy involving the learned transition model. Typically, during interaction, the
real state st is used as input to the actor, and the resulting action at is applied in the environment.
To incorporate the transition model, we predict a synthetic state ŝt from previous st−1 and at−1.
This generated ŝt is then fed into the actor to produce action ât. The actions at and ât are mixed
and applied to the environment with a certain ratio, and the resulting pairs (st, at) or (st, ât) are
stored in the environmental replay buffer. This approach helps balance the exploration of real and
model-predicted dynamics, reducing the impact of distributional discrepancies.

5.3 PERFORMANCE ANALYSIS

In this section, we analyze the optimal performance bound in the presence of transition model learning
errors. Our results show that as the transition model error approaches zero, the performance gap at
the optimal point vanishes at the same time. The learned transition model T̂ persists in some errors
compared with the ground-true transition dynamic. In this section, we investigate how this error will
affect performance of our method. As a reminder, we define an IRL problem as B = (M′, πE),
where M′ is a MDP without R and πE is an optimal expert policy. We denote RB as the set of
feasible rewards set for B. Since under our case T is approximated by T̂ , we have another IRL
problem defined as B̂ = (M̂′, πE) where M̂′ has the same state and action space, discount factor,
and initial distribution but an estimated transition model T̂ . For notation, we use DTV to denote the
total variation distance, ∥ · ∥ to represent the infinity norm (with ∞ omitted for simplicity), |S| to
denote the cardinality of the state space, and V π∗

M′∪R to represent the value function of policy π∗

under the MDP M′ with reward R, and vice versa.

Assumption 5.2 (Transition Model Error). Since transition model is trained through a supervised
fashion, we can use a PAC generalization bound (Shalev-Shwartz & Ben-David, 2014) for sample
error. Therefore, we assume that the total variation distance between T and T̂ is bounded by ϵT
through [0, T ]:

max
t

Es∼πD,t

[
DTV (T (s′|s, a)|T̂ (s′|s, a))

]
≤ ϵT , (10)

which is a common assumption that adopted in literature (Janner et al., 2019; Sikchi et al., 2022).

Next, with the assumed total visitation bound on transition models ( Assumption 5.2), we want to
reflect this bound to the error in rewards learning through our model-enhanced reward shaping.

Theorem 5.3 (Reward Function Error Bound). Let B = (M′, π∗) and B̂ = (M̂′, π∗) be two
IRL problems with transition functions T and T̂ respectively, then for any RE ∈ RB there is a
corresponding R̂E ∈ RB̂ such that

∥RE − R̂E∥ ≤ γ

1− γ
|S|ϵT Rmax. (11)

Proof of Thm. 5.3 can be found in Appendix C.3. With rewards bound above, we can extend the
bound to the value function, which represents the performance difference brought up by estimated
transition model error under RL setting.

Theorem 5.4 (Performance Difference Bound). The performance difference between the optimal
policies (π∗ and π̂∗) in corresponding MDPs (M′ ∪R and M̂′ ∪ R̂) can be bounded as follows:

∥V π∗

M′∪RE − V π̂∗

M̂′∪R̂E∥ ≤ ϵT

[
γ

(1− γ)2
Rmax +

1 + γ

(1− γ)2
Rmax|S|

]
. (12)

The detailed proof of Thm. 5.4 is presented in Appendix C.6. The above theorem highlights
the relationship between the performance gap and the transition model error, also implying that a
perfectly-learned transition model (ϵT → 0) could make the performance difference negligible.

7
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Table 2: Best performance of expert and all algorithms in deterministic MuJoCo Environments under
conditions of different numbers of expert trajectories provided (10, 100, and 1000). AIRL and GAIL
are trained with 10M environmental steps. DAC and Our are trained with 1M environmental steps.

Environment Expert Trajs Expert GAIL AIRL DAC Ours
InvertedPendulum-v4 10 1000.0±0.0 1000.0±0.0 1000.0±0.0 1000.0±0.0 1000.0±0.0

100 1000.0±0.0 1000.0±0.0 1000.0±0.0 1000.0±0.0 1000.0±0.0

1000 986.09±95.97 1000.0±0.0 1000.0±0.0 1000.0±0.0 1000.0±0.0

InvertedDoublePendulum-v4 10 131.3±77.0 155.0±58.1 163.0±48.6 100.6±11.8 193.4±15.5

100 108.0±43.2 167.2±26.6 151.2±28.6 94.5±9.9 198.1±76.3

1000 140.44±76.62 189.5±28.8 150.2±18.3 105.6±20.4 182.2±29.6

Hopper-v4 10 1786.0±803.0 1266.9±366.2 2092.2±57.4 1000.4±5.3 2408.4±641.7

100 1489.6±659.6 2385.9±350.0 2789.9±30.8 993.1±10.5 2820.9±89.8

1000 1516.0±692.6 2746.5±270.9 2744.3±37.4 2007.1±719.7 2858.8±76.9

HalfCheetah-v4 10 1567.4±74.1 368.5±53.7 463.9±61.2 9.5±457.2 888.6±67.3

100 1120.5±67.5 398.1±123.5 556.0±12.8 615.9±250.5 1108.3±13.9

1000 1113.5±76.1 735.6±44.0 708.7±14.5 1046.4±13.9 1162.8±62.2

Walker2d-v4 10 3109.4±1031.5 1262.8±396.3 1170.5±484.0 101.4±149.1 2509.0±860.0

100 3295.4±704.0 956.4±313.2 1740.7±609.8 416.1±243.2 3311.0±157.2

1000 3268.9±746.1 1430.6±489.8 3051.3±210.5 3531.3±105.3 3497.8±51.7

6 EXPERIMENTS

In this section, we evaluate the performance and sample efficiency of our Model-Enhanced Adversarial
IRL framework. We aim to demonstrate the superiority of our method in stochastic environments,
achieving better performance and sample efficiency compared to existing approaches. Additionally, in
deterministic settings, our method maintains competitive performance with baselines. All experiments
are conducted on the MuJoCo benchmarks (Todorov et al., 2012). To simulate stochastic dynamics in
MuJoCo, we introduce the agent-unknown Gaussian noise with a mean of 0 and a standard deviation
of 0.5 to the environmental interaction steps. All the expert trajectories are collected by an expert
agent trained with standard SAC (Haarnoja et al., 2018) under deterministic or stochastic MuJoCo
environments. Our experiments are designed to highlight the key advantages of our framework:

• Performance in Stochastic Environments: In stochastic settings, our method signifi-
cantly outperforms other approaches, consistently surpassing expert-level performance more
rapidly. This enhanced ability to learn under uncertainty is attributed to our framework’s
effectiveness in leveraging model-based predictiton capability.

• Sample Efficiency For stochastic settings, our method can reach expert performance with
fewer training steps than all the other baselines with various conditions on expert demonstra-
tions provided. Besides, we showcase that our method can extract reward signal from few
expert demonstrations under the stochastic setting, which majority of the baseline failed.

• Performance in Deterministic Environments: We demonstrate that our method is compet-
itive with existing AIL methods’ performances in deterministic settings.

We primarily compare our approach with other Adversarial Imitation Learning (AIL) methods, in-
cluding the on-policy algorithms GAIL (Ho & Ermon, 2016) and AIRL (Fu et al., 2017), and the
off-policy method Discriminator Actor-Critic (DAC) (Kostrikov et al., 2018). For policy optimization,
we use Proximal Policy Optimization (PPO) (Schulman et al., 2017) for both GAIL and AIRL,
and Soft Actor-Critic (SAC) (Haarnoja et al., 2018) for DAC. All implementations of PPO and
SAC are referenced from the Clean RL library (Huang et al., 2022). Each algorithm is trained
with 100k environmental steps and evaluated each 1k steps across 5 different seeds for tasks in-
cluding InvertedPendulum-v4 and InvertedDoublePendulum-v4. For Hopper-v4,
HalfCheetah-v4, and Walker2d-v4, AIRL and GAIL are trained with 10M steps and eval-
uated each 100k steps across 5 different seeds, but DAC and our algorithm are trained with 1M
environmental steps and evaluated each 10k steps across 5 different seeds. We conduct aforemen-
tioned series of experiments under various numbers of expert trajectories ranging from 5 to 1000.
All the experiments are run on the Desktop equipped with RTX 4090 and Core-i9 13900K. The
learning curves of all methods are provided in Appendix D.

Performance in Stochastic MuJoCo. In Table 2, we present the performance of our method and
baseline methods in stochastic MuJoCo environments with varying numbers of expert trajectories.
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Figure 2: Training curves of all 4 methods in 5 different stochastic environments with 100 expert
trajectories. For better comparison in sample efficiency, graph is presented under 10M landscape.

Our method consistently achieves the best performance across the majority of these environ-
ments, outperforming all baselines under different levels of expert trajectory availability. In
simpler environments, such as InvertedPendulum-v4, the introduction of stochasticity and
variations in expert trajectory have minimal impact on the final performance for both our method and
the baselines. However, for more complex environments, the effect of stochasticity becomes more
pronounced. Specifically, in InvertedDoublePendulum-v4, stochasticity notably degrades
performance. Our method, however, maintains a competitive edge over all baselines, achieving
better results with limited expert trajectories (10 and 100) and reaching similar performance to the
baselines when more expert trajectories are available. In Hopper-v4, our method substantially
outperforms all baselines, especially when fewer expert trajectories are provided. As the number of
expert demonstrations increases, the performance gap between our method and the baselines narrows
due to the growing reference sample size. Nonetheless, our method maintains an edge in sample
efficiency, which we will discuss further in the next paragraph. Similar performance trends are
observed in environments such as HalfCheetah-v4 and Walker2d-v4. These results indicate
that our approach can effectively recover the reward function more closely from demonstrations
in stochastic environments, resulting in significant performance improvement. Additionally, in the
stochastic settings, the performance of DAC decreases significantly, due to DAC’s ineffective reward
formulation on state-action pairs discussed in Sec. 4, which also result in training instability shown in
Appendix D.

Sample Efficiency. In Appendix D, we display the sample efficiency across various environments
and with different numbers of expert trajectories. Since AIRL and GAIL use distinct environmental
training steps from DAC and our method, we provide a clearer comparison in Fig. 2. Based on results,
our method shows significant superiority in sample efficiency across all of the benchmarks
under the stochastic settings. Additionaly, our method also demonstrate significant advan-
tage when limited expert trajectories are available. Specifically, for InvertedPendulum-v4,
as shown in Fig. 3, all methods can achieve expert-level performance except DAC, which ex-
hibits instability with limited demonstrations. Our method, however, consistently reaches expert-
level performance in the fewest training steps, regardless of the number of expert trajectories. In
InvertedDoublePendulum-v4 as shown in Fig. 4, introducing stochasticity into the dynam-
ics makes it challenging for all algorithms to achieve reasonable performance from noisy expert
demonstrations. Notably, DAC completely fails to reach expert-level performance, whereas our
method attains it with the fewest training steps across all levels of expert trajectory availability. For
Hopper-v4 in Fig. 5, our method is the only approach capable of reaching expert-level performance

9
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Table 3: Best performance of expert and all algorithms in deterministic MuJoCo Environments with
1000 expert trajectories provided. DAC and our methods are trained for 1M environmental steps.
GAIL and AIRL are trained for 10M environmental steps.

Environment Expert GAIL AIRL DAC Ours
InvertedPendulum-v4 1000.0±0.0 1000.0±0.0 1000.0±0.0 1000.0±0.0 1000.0±0.0

InvertedDoublePendulum-v4 9356.7±0.2 9324.4±0.4 355.3±76.3 9359.8±0.1 9359.8±0.1

Walker2d-v4 4520.7±648.44 3387.0±617.8 3623.6±189.6 4655.3±126.4 4396.7±147.4

Hopper-v3 3262.8±314.4 3420.8±77.9 3385.8±50.5 3481.6±94.6 3506.6±23.5

HalfCheetah-v3 13498.6±710.9 3502.6±202.3 3237.8±85.5 10102.2±297.6 6509.8±177.7

consistently even with limited number of expert trajectories. GAIL and AIRL borh fail to reach
the expert within 1M environmental training steps. DAC was able to reach expert performance only
when expert trajectories are sufficient, though it still suffers from sample inefficiency and training
instability. Similar trends can also be observed in HalfCheetah-v4 (Fig. 6) and Walker2d-v4
(Fig. 7). We also observe a universal trend across all stochastic environments: as the number of
expert trajectories increases, both the sample efficiency and performance of all methods improve
accordingly, which aligns with intuitive expectations.

Performance in Deterministic MuJoCo. The performance of deterministic MuJoCo en-
vironments can be found in Table 3. For the tasks with deterministic dynamics, our
method can achieve the performance aligning with all of baselines and the expert in
InvertedDoublePendulum-v4, InvertedDoublePendulum-v4, Hopper-v4, and
Walker2d-v4. For HalfCheetah-v4, our method has exceeding performance comparing
with AIRL and GAIL, but fail to reach the similar level as DAC and expert. Since as the dynamic
becomes complicated, our shallow MLP structure dynamic model cannot fully capture the transition
info leading to high transition model error, which result in the performance deficit. Our theoretical
analysis in Sec. 5.3 supports this finding, and we will explore the efficacy of different dynamic model
structures for future works. Generally, our method shows competitive performance with the
baselines in the deterministic environments.

7 CONCLUSION

In this paper, we presented a novel model-enhanced adversarial inverse reinforcement learning frame-
work starting from Maximum Causal Entropy framework by incorporating model-based techniques
with reward shaping, specifically designed to enhance performance in stochastic environments with
significant sample efficiency improvement comparing to existing approaches and maintain competi-
tive performance in deterministic setting. The theoretical analysis provides guarantees on the optimal
policy invariance under the transition model involved reward shaping and highlight the relationship
between performance gap and transition model error, showing that the gaps becomes negligible
with a well-learned model. Empirical evaluations on Mujoco benchmark environments validate
the effectiveness of our method, showcasing its superior performance and sample efficiency across
different tasks. Future works will focus on further refining the model estimation process to handle
more complex and dynamic environments and exploring extensions of the framework to multi-agent
and hierarchical reinforcement learning scenarios. Additionally, it would be valuable to investigate
the generalization ability of our framework in a transfer learning tasks. Overall, our approach offers
a promising direction for advancing model-based adversarial IRL, with the potential to scale to a
broader range of real-world applications.

8 REPRODUCIBLE STATEMENT

This work uses the open-source MuJoCo (Todorov et al., 2012) as the benchmark. The practical
implementation of our method is built on the CleanRL repository (Huang et al., 2022). All
hyperparameters to reproduce our experimental results, including learning rates and transition model
settings, are explicitly listed in Appendix F. For every reported result, we averaged the performance
over three random seeds, and the seed initialization is included for exact reproducibility.
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A REWARD SHAPING SOFT OPTIMAL POLICY

Theorem A.1. Let R and R̂ be two reward functions. R and R̂ induce the same soft optimal policy
under all transition dynamics T if R̂(st, at) = R(st, at) + γET [ϕ(st+1)|st, at] − ϕ(st) for some
potential-shaping function ϕ : S → R.

Proof. According to Soft VI ( Eq. (2)), we can expand the representation of Qsoft

R̂
(st, at) as follows.

Qsoft

R̂
(st, at) = R(st, at) + γET [ϕ(st+1)|st, at]− ϕ(st) + γET

[
V soft

R̂
(st+1)|st, at

]
,

Qsoft

R̂
(st, at) + ϕ(st) = R(st, at) + γET

[
V soft

R̂
(st+1) + ϕ(st+1)|st, at

]
,

Qsoft

R̂
(st, at) + ϕ(st) = R(st, at) + γET

[
log

∑
a∈A

exp
(
Qsoft

R̂
(st+1, a) + ϕ(st+1)

)
|st, at

]
.

From above induction, we can tell that Qsoft

R̂
(st, at) + ϕ(st) satisfy the soft bellmen update with

original R. Thus, with simple induction, we can arrive that Qsoft
R (st, at) = Qsoft

R̂
(st, at) + ϕ(st).

Then, we can derive the advantage function

Asoft

R̂
(st, at) = Qsoft

R̂
(s, a)− V soft

R̂
(st)

= Qsoft

R̂
(st, at)− log

∑
a∈A

exp
(
Qsoft

R̂
(st, at)

)
= Qsoft

R̂
(st, at) + ϕ(st)− log

∑
a∈A

exp
(
Qsoft

R̂
(st, at) + ϕ(st)

)
= Qsoft

R (st, at)− log
∑
a∈A

exp
(
Qsoft

R (st, at)
)

= Asoft
R (st, at).

B ADVERSARIAL REWARD LEARNING

Proposition B.1. Consider an undiscounted MDP. Suppose fθ and π at current iteration are the
soft-optimal advantage function and policy for reward function Rθ. Minimising the cross-entropy
loss of the discriminator under generator π is equivalent to maximising the log-likelihood under
Maximum Causal Entropy IRL.

Proof.

LIRL(Dexp, θ) = EDexp
[log pθ(τ)]

= EDexp

[
T−1∑
t=0

log π(at|st) + log ρ0 +

T∑
t=1

log T (st+1|st, at)

]

= EDexp

[
T−1∑
t=0

(
Qsoft

θ (st, at)− V soft
θ (st)

)]
+ constant.

Breaking down above equations with soft VI (Eq. (2)), we can arrive the following.

EDexp

[
T−1∑
t=0

Rθ(st, at)

]
+EDexp

[
T−2∑
t=0

ET

[
V soft
θ (st+1)|st, at

]]
−EDexp

[
T−1∑
t=0

V soft
θ (st)

]
. (13)
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Next we will derive the gradient of the loss.

∇θL(Dexp, θ) = ∇θEDexp

[
T−1∑
t=0

Rθ(st, at)

]
︸ ︷︷ ︸

A

+

∇θEDexp

[
T−2∑
t=0

(
ET

[
V soft
θ (st+1)|st, at

])
− V soft

θ (st+1)

]
︸ ︷︷ ︸

B

−∇θV
soft
θ (s0)︸ ︷︷ ︸
C

. (14)

Let’s get explicit expression of each part.

A = EDexp

[
T−1∑
t=0

∇θRθ(st, at)

]
C = ∇θ log

∑
at∈A

expQsoft
θ (st, at)

=
∑
at∈A

π(at|st)∇θQ
soft
θ (st, at)

= Eπ

[
T−1∑
t=0

∇θRθ(st, at)

]
.

In our case, the transition function T is estimated by an approximation function T̂ , which is updated
with samples from Dexp and samples from off-policy buffer Denv, thus we can safely drop the ET
here. And B term will cancel out, ending up to 0. To summarize, the gradient of log MLE loss of
MCE IRL is the following.

∇θLIRL(Dexp, θ) = EDexp

[
T−1∑
t=0

∇θRθ(st, at)

]
− Eπ

[
T−1∑
t=0

∇θRθ(st, at)

]
. (15)

Next, we will start to derive the gradient of cross-entropy discriminator training loss. Remember the
discriminator loss is defined in Eq 9.

logDθ(s, a, T ) = fθ(s, a, T )− log(exp{fθ(s, a, T )}+ π(a|s)),
log(1−Dθ(s, a, T )) = log π(a|s)− log(exp{fθ(s, a, T )}+ π(a|s)).

Then, the gradient of each term is as follow:

∇θ logDθ(s, a, T ) = ∇θfθ(s, a, T )− exp{fθ(s, a, T )}∇θfθ(s, a, T )

exp{fθ(s, a, T )}+ π(a|s)
,

∇θ log(1−Dθ(s, a, T )) = −exp{fθ(s, a, T )}∇θfθ(s, a, T )

exp{fθ(s, a, T )}+ π(a|s)
.

Since π is trained by using fθ as shaped reward, from soft VI we can derive that π∗
fθ
(a|s) =

expAsoft
fθ

(s, a). By assumption, we assume that fθ is the advantage function of Rθ, fθ(s, a) =

Asoft
Rθ

(s, a). From Thm 4.2, we know that Asoft
Rθ

(s, a) = Asoft
fθ

(s, a), which also implies that
π∗
fθ

= π∗
Rθ

. Then, we can deduce the gradient of the loss of discriminator.

−∇θLdisc = EDexp
[∇θ logDθ(s, a, T )] + Eπ [∇θ log(1−Dθ(s, a, T ))]

= EDexp

[
1

2
∇θfθ(s, a, T )

]
− Eπ

[
1

2
∇θfθ(s, a, T )

]
,

−2∇θLdisc = EDexp
[∇θfθ(s, a, T )]− Eπ [∇θfθ(s, a, T )] .
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C PERFORMANCE GAP ANALYSIS

Lemma C.1 (Implicit Feasible Reward Set (Ng et al., 2000)). Let B = (M′, π∗) be an IRL problem.
Then R ∈ RB if and only if for all (s, a) ∈ S ×A the following holds:

Qπ∗

M′∪R(s, a)− V π∗

M′∪R(s) = 0 if π∗(a|s) > 0,

Qπ∗

M′∪R(s, a)− V π∗

M′∪R(s) ≤ 0 if π∗(a|s) = 0.

Combined with the traditional Value Iteration of RL, we can write out the explicit form of the reward
function R.

Lemma C.2 (Explicit Feasible Reward Function (Metelli et al., 2021)). With the above lemma
conditions, R ∈ RB if and only if there exist ξ ∈ RS×A

≥0 and value function V ∈ RS such that:

R(s, a) = V (s)− γ
∑
s′∈S

T (s′|s, a)V (s′)− ξ(s, a)I{π∗(a|s) = 0}. (16)

With Eq. (16), we can derive the following error bound between R ∈ RE
B and R̂E ∈ RB̂.

Theorem C.3 (Reward Function Error Bound). Let B = (M′, π∗) and B̂ = (M̂′, π∗) be two IRL
problems, then for any RE ∈ RB there is a corresponding R̂E ∈ RB̂ such that

∥RE − R̂E∥ ≤ γ

1− γ
|S|ϵT Rmax. (17)

Proof. From Lem. C.2, we can derive the following representations of R and R̂ with the same set of
V and ξ:

RE(s, a) = V (s)− γ
∑
s′∈S

T (s′|s, a)V (s′)− ξ(s, a)I{π∗(a|s) = 0},

R̂E(s, a) = V (s)− γ
∑
s′∈S

T̂ (s′|s, a)V (s′)− ξ(s, a)I{π∗(a|s) = 0}.

The difference between RE and R̂E can be bounded as follows:

∥RE − R̂E∥ ≤ γ
∑
s′∈S

DTV

(
T (s′|s, a)|T̂ (s′|s, a)

)
· ∥V (s′)∥.

Given that the total variation distance between the two dynamics is bounded by ϵT , and the reward
function is bounded by Rmax, together with the definition of the value function, we have ∥V ∥∞ ≤
Rmax

1−γ . Substituting these bounds, we derive the following inequality:

∥RE − R̂E∥ ≤ γ

1− γ
|S|ϵT Rmax.

Next, we will propagate this bound to the value functions of optimal policy regarding different reward
functions RE and R̂E . From the traditional Value iteration, we can write out the value function.

V π
M′∪RE (s) =

∑
a∈A

π(a|s)
∑
s′∈S

T (s′|s, a)
[
RE(s, a) + γV π

M′∪RE (s
′)
]
. (18)

Lemma C.4 (Value Function Error under same policy and different rewards and MDP). ||V π
M′∪R(s)−

V π
M̂′∪R̂

(s)||: the performance difference of the same policy in different MDPs.

||V π
M′∪RE (s)− V π

M̂′∪R̂E (s)|| ≤ ϵT
1 + γ

(1− γ)2
Rmax|S|. (19)
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Proof.

||V π
M′∪RE (s)− V π

M̂′∪R̂E (s)||

≤
∑
a∈A

π(a|s)
∑
s′∈S

||T (s′|s, a)
[
RE(s, a) + γV π

M′∪RE (s
′)
]
− T̂ (s′|s, a)

[
RE(s, a) + γV π

M′∪RE (s
′)
]

+ T̂ (s′|s, a)
[
RE(s, a) + γV π

M′∪RE (s
′)
]
− T̂ (s′|s, a)

[
R̂E(s, a) + γV π

M̂′∪R̂E (s
′)
]
||

≤
∑
a∈A

π(a|s)
∑
s′∈S

(ϵT
Rmax

1− γ
+ T̂ (s′|s, a)ϵT (

γRmax

1− γ
|S|+ γ||V π

M′∪RE (s
′)− V π

M̂′∪R̂E (s
′)||))

=
∑
a∈A

π(a|s)(ϵT
Rmax

1− γ
|S|+ ϵT

γRmax

1− γ
|S|+ γ||V π

M′∪RE (s
′)− V π

M̂′∪R̂E (s
′)||)

≤ ϵT
1 + γ

1− γ
Rmax|S|+ γ||V π

M′∪RE (s
′)− V π

M̂′∪R̂E (s
′)||

≤ ϵT
1 + γ

(1− γ)2
Rmax|S|.

(20)

Lemma C.5. Let ∥V π1

M̂′∪R̂E
(s)− V π2

M̂′∪R̂E
(s)∥ denote the performance difference between different

policies π1 and π2 in the same learned MDP (Viano et al., 2021; Zhang et al., 2020). The following
inequality holds:

∥V π1

M̂′∪R̂E
(s)− V π2

M̂′∪R̂E
(s)∥ ≤ γ

(1− γ)2
ϵT Rmax.

Theorem C.6 (Performance Difference Bound). The performance difference between the optimal
policies (π∗ and π̂∗) in corresponding MDPs (M′ ∪RE and M̂′ ∪ R̂E) can be bounded as follows:

∥V π∗

M′∪RE − V π̂∗

M̂′∪R̂E∥ ≤ ϵT

[
γ

(1− γ)2
Rmax +

1 + γ

(1− γ)2
Rmax|S|

]
. (21)

Proof.

||V π∗

M′∪RE (s)− V π̂∗

M̂′∪R̂E (s)||

≤ ||V π∗

M̂′∪R̂E (s)− V π̂∗

M̂′∪R̂E (s)||+ ||V π̂∗

M′∪RE (s)− V π̂∗

M̂′∪R̂E (s)||

= ϵT
γ

(1− γ)2
Rmax + ϵT

1 + γ

(1− γ)2
Rmax|S|

= ϵT

[
γ

(1− γ)2
Rmax +

1 + γ

(1− γ)2
Rmax|S|

]
.
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D GRAPH RESULTS

Below is the testing return diagrams from stochastic Mujoco Environments under 1M landscape.
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Figure 3: Training return diagram averaging across three seeds for different numbers of expert
trajectories in Stochastic InvertedPendulum-v4.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

0 20k 40k 60k 80k 100k

Steps

50

75

100

125

150

175

200

225

250
5 expert trajectories

0 20k 40k 60k 80k 100k

Steps

50

75

100

125

150

175

200

225
10 expert trajectories

0 20k 40k 60k 80k 100k

Steps

50

75

100

125

150

175

200

225

250

25 expert trajectories

0 20k 40k 60k 80k 100k

Steps

50

100

150

200

250

100 expert trajectories

0 20k 40k 60k 80k 100k

Steps

50

75

100

125

150

175

200

225

1000 expert trajectories

airl
dac
gail
ours
expert

InvertedDoublePendulum-v4

Figure 4: Training return diagram averaging across three seeds for different numbers of expert
trajectories in Stochastic InvertedDoublePendulum-v4.
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Figure 5: Training return diagram averaging across three seeds for different numbers of expert
trajectories in Stochastic Hopper-v4.
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Figure 6: Training return diagram averaging across three seeds for different numbers of expert
trajectories in Stochastic HalfCheetah-v4.
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Figure 7: Training return diagram averaging across three seeds for different numbers of expert
trajectories in Stochsatic Walker2d-v4.
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E ABLATION STUDY

E.1 ROBUSTNESS TO STOCHASTICITY

In this study, we examine the robustness of our method across varying levels of stochasticity in the
environment. Following the same setup as in our main experiments, we introduce an unknown Gaus-
sian noise with different standard deviations in InvertedPendulum-v4 to simulate increased
stochasticity. As shown in Appendix E.1 and Fig. 8, our method consistently recovers expert-level
performance despite the presence of stochastic disturbances. However, as the level of stochasticity
increases, we observe that training stability decreases, as reflected in the increased variance in Fig. 8.
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Figure 8: Training return diagram averaging across
three seeds for different numbers of expert trajec-
tories in InvertedPendulum-v4.

Std Expert Ours
0.5 1000.0±0.0 1000.0±0.0

0.55 802.4±305.8 1000.0±0.0

0.6 582.1±360.5 906.3±59.1

0.65 438.2±322.3 709.9±80.6

0.7 270.7±236.0 472.7±85.7

Table 4: Best performance of expert and our
method in InvertedPendulum-v4 envi-
ronments with different Gaussian noises (stan-
dard deviations ranging from 0.5 to 0.7) for
stochasticity under provided 100 expert tra-
jectories.

E.2 MODEL ESTIMATION ERROR AND REWARD LEARNING

In this study, we empirically evaluate the effect of dynamic model learning errors on our method’s
performance, extending the theoretical analysis presented in Sec. 5.3. To isolate the impact of
model errors specifically on reward learning, we use SAC on real trajectories for policy optimization,
thereby removing any influence of model errors on trajectory generation that would typically affect
model-based policy optimization. To quantify the relationship between model errors and performance,
we standardize the model architecture as a 2-layer MLP with varying hidden layer dimensions from
8 to 256 to adjust model capacity. Our experiments are conducted in HalfCheetah-v4 with
random, policy-unknown Gaussian noise (mean 0 and standard deviation 0.5), as described in Sec. 6.
From Fig. 10 and Fig. 9, we observe the general trend that as modeling error decrease together with
increasing capacity of the model structure, performances also increases, which is obvious when
hidden dimension bumps up from 8 to 16 and 16 to 32. As transition model error narrows down, the
performance improvement also becomes less obvious.

0 200k 400k 600k 800k 1M

Steps

0.6

0.8

1.0

1.2

1.4

1.6

1.8

M
ea

n 
R

et
ur

n

HalfCheetah-v4 under Different Dynamic Models
size=8
size=16
size=32
size=256

Figure 9: Transition model learning error di-
agram averaging across three seeds for 10
expert trajectories in HalfCheetah-v4.
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Figure 10: Training return diagram averaging
across three seeds for 10 expert trajectories in
HalfCheetah-v4.
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E.3 DOES MODEL-BASED TRAJECTORIES GENERATION HELP?

In this study, we empirically investigate the effectiveness of model-based policy optimization on
our model-enhanced reward shaping IRL framework. We compare three off-policy approaches
namely Discriminator Actor-Critic (DAC (Kostrikov et al., 2018)), model-enhanced reward shaping
with pure SAC for policy optimization (labeled as mbirl_sac), and our original model-enhanced
reward shaping with model-based technique for policy optimization. Noted that synthetic data is
also not used in reward learning in mbirl_sac approach. We conduct the experiment in stochastic
Hopper-v4 with 1000 provided expert trajectories. From Fig. 11 and Appendix E.3, we can tell
that both methods using model-enhanced reward shaping have much better performance and sample
efficiency comparing to DAC which doesn’t have. In terms of performance, both methods perform at
the similar level. However, as the synthetic trajectories generation boost the training process, our
model-based method has better sample efficiency than the pure SAC-based method.
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Figure 11: Performance diagram averaging
across three seeds for different algorithms in
Hopper-v4 with 1000 expert trajectories pro-
vided. DAC is in red color; mbirl_sac is in green;
Our method is in blue

Method Performance
DAC 2007.1±719.7

mbirl_sac 2694.5±77.5

Ours 2798.8±82.9

Table 5: Best performance of three methods
in stochastic Hopper-v4 environment with
under provided 1000 expert trajectories.
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F IMPLEMENTATION DETAILS

For our framework, we use two identical 2-layer Multi-Layer Perceptrons (MLPs) with 100 hid-
den units and ReLU activations for both the reward function R and the shaping potential func-
tion ϕ. To initialize the replay buffer for both DAC and ours, we collect 1,000 steps samples in
InvertedPendulum-v4 and InvertedDoublePendulum-v4, and 10,000 steps samples in
Hopper-v4, HalfCheetah-v4, and Walker2d-v4with initial policy. During this pre-training
phase, we also update the transition model at each step to mitigate divergence might happen at the
beginning of the training. Additionally, the transition model is only trained using samples from real
environment buffer Denv in policy optimization section before actor and critics updates during train-
ing phase. As discussed in Sec. 5, the size of the synthetic data buffer Dgen and the ratio of samples
drawn from it increase as the model accuracy improves. Both parameters increase linearly with
training steps, up to a maximum synthetic-to-real data ratio of 0.5 per training step and a maximum
buffer size of 1 million samples in Dgen. For consistency in comparisons, we used similar network
structures and hyper-parameters for AIRL, GAIL, and DAC baselines, which we reference the imple-
mentations from Arulkumaran & Lillrank (2024) and Gleave et al. (2022). Detailed hyper-parameters
for these networks are provided in the table below. For on-policy baselines AIRL and GAIL, the roll-
out length is set to 1,000 for InvertedPendulum-v4 and InvertedDoublePendulum-v4,
and 5,000 for Hopper-v4, Walker2d-v4, and HalfCheetah-v4. For the SAC and PPO
policy optimization components, we reference implementations from the CleanRL repository
(Huang et al., 2022). The code for our method and all baseline implementations can be found here:
https://anonymous.4open.science/r/MBIRL-4C2F/README.md.

Table 6: Hyper-parameters table.

Hyper-parameter Value
Seeds 0, 5, 10

Buffer Size 1M
Batch Size 128

Max Grad Norm 10
Starting Steps 1,000/10,000

Global Timesteps 100k/1M
Discount Factor 0.99

Model-based Policy Optimization
Learning Rate for Actor 3e-4
Learning Rate for Critic 3e-4
Learning Rate for Model 3e-4

Network Layers 3
Policy Network Neurons [64, 64]
Critic Network Neurons [128, 128]
Model Network Neurons [256, 256]

Activation Tanh(Policy)/ReLU
Optimizer Adam

Initial Entropy −|A|
Learning Rate for Entropy 3e-4
Train Frequency for Actor 1
Train Frequency for Critic 1
Train Frequency for Model 1

Synthetic and Real Data Mix Coef 0.5
Horizon(H) 2

Adversarial Discriminator
Learning Rate 3e-4

R Network Neurons [100, 100]
ϕ Network Neurons [100, 100]

Optimizer Adam
Loss Binary Cross-Entropy
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