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Abstract

The recent advancements in visual reasoning capabilities
of large multimodal models (LMMs) and the semantic en-
richment of 3D feature fields have expanded the horizons
of robotic capabilities. These developments hold signifi-
cant potential for bridging the gap between high-level rea-
soning from LMMs and low-level control policies utilizing
3D feature fields. In this work, we introduce LMM-3DP, a
framework that can integrate LMM planners and 3D skill
Policies. Our approach consists of three key perspectives:
high-level planning, low-level control, and effective integra-
tion. For high-level planning, LMM-3DP supports dynamic
scene understanding for environment disturbances, a critic
agent with self-feedback, history policy memorization, and
reattempts after failures. For low-level control, LMM-3DP
utilizes a semantic-aware 3D feature field for accurate ma-
nipulation. In aligning high-level planning and low-level
control for robot actions, language embeddings represent-
ing the high-level policy are jointly attended with the 3D
feature field in the 3D transformer for seamless integration.
We extensively evaluate our approach across multiple skills
and long-horizon tasks in a real-world kitchen environment.
Our results show a significant 1.45x success rate increase
in low-level control and an approximate 1.5x improvement
in high-level planning accuracy compared to LLM-based
baselines. Demo videos and an overview of LMM-3DP are
available at ht tps://Imm-3dp-release.github.
io.

1. Introduction

Building generally capable robots that can perform a wide
range of long-horizon tasks in the real world is a long-
standing problem. Recent advancements in robotics have
been driven by large language models (LLMs) that have
shown remarkable capabilities in understanding the real
world and common sense reasoning. Some studies lever-
age LLMs to decompose an abstract task into a sequence
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of high-level language instructions for planning [3, 12, 21,
22,34, 38, 39,41, 47, 51]. Despite the significant advance-
ments they have facilitated in various real-world tasks, the
current integration of LLMs into robotics presents several
major drawbacks. First, LLMs can only process natural lan-
guage with no visual understanding, making it difficult to
comprehend and adapt to dynamic real-world scenarios re-
quiring rich visual information. Additionally, LLM-based
planners usually depended on human language feedback to
perform long-horizon planning consistently [21, 39, 47],
which significantly constrains autonomy. However, large
multimodal models (LMMs), with multi-sensory inputs,
have emerged as a powerful tool to equip robots with strong
visual understanding and generalization capabilities across
various environments. This allows the robot to adjust
language plans according to the environment change. In
this paper, we focus on leveraging LMMs to generate lan-
guage plans based on environment feedback and keep self-
improvement in a closed-loop manner.

Existing LLM-based planners typically rely on a prede-
fined set of primitive skills for low-level control [2, 8, 22,
25, 35, 51], which is the main bottleneck of large-scale ap-
plications to open-world environments. Therefore, the abil-
ity to acquire robust low-level skills capable of adapting to
the novel environment in a data-efficient manner presents
a significant challenge for most LLM-based frameworks.
Some recent studies use LLMs to directly output low-level
control [24, 48]. However, they are only effective in rela-
tively simple manipulation tasks that do not involve rapid
high-dimensional control. Due to insufficient 3D under-
standing, LLMs often fail in complex environments that
require comprehending the 3D structure of the scene effi-
ciently. In addition, recent works leverage vision-language
models (VLMs) for visual grounding by predicting bound-
ing boxes or keypoints of target objects [3, 23]. Despite
promising results, they rely on off-the-shelf VLMs which
may not be fully optimized for specific, complex tasks in
dynamic environments.

To address these challenges, we introduce LMM-3DP,
an LMM-empowered framework that integrates LMM for
self-improved high-level planning and an efficient 3D pol-
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icy for low-level control (see Fig. 1). Our framework is
designed to satisfy two key requirements: 1) it ensures our
LMM agent achieves high autonomy during continuous de-
ployment by decomposing a long-horizon task into high-
level plans, calling low-level policy for execution, receiving
the environment feedback, and updating language plans ac-
cordingly. 2) it allows the low-level policy to learn various
skills efficiently with only a few human demonstrations and
improve continually.

For high-level planning, we introduce three key mod-
ules to build an autonomous agent capable of planning a
sequence of language instructions: 1) Interactive planning
with visual feedback. Incorporating visual feedback within
the loop is crucial for enabling an agent to rapidly adapt to
dynamic scene changes. In this work, we adopt GPT-4V
[1, 30] as an LMM planner to receive environmental feed-
back and monitor the ongoing events during execution. 2)
Self-improvement with memory and critic. We introduce
a critic agent to analyze the plan generated by the LMM
planner. It outputs the critique of the planner’s decisions
and informs whether the plan needs to be updated. In addi-
tion, LMM-3DP stores history critique into a memory mod-
ule and summarizes learned experience for the planner. This
approach significantly improves planning accuracy and con-
sistency, especially in challenging long-horizon tasks. 3)
Life-long learning with a skill library. Open-ended real-
world scenarios usually bring an infinite set of tasks with
different skill compositions. The ability to acquire new
skills in a data-efficient manner is critical for robots to be
generally capable of performing various real-world tasks.
Thus, LMM-3DP builds a skill library to retrieve differ-
ent skills required by the LMM planner. When requiring
new skills, we adopt an efficient imitation learning policy
to grasp such skills with limited human demonstrations.

More specifically, for precise low-level control, we de-
velop a language-conditioned multi-task 3D policy to learn
generalizable skills. To tackle challenging tasks with vari-
ous object categories and complex environments (e.g., par-
tial occlusion, various geometry shapes, and intricate spa-
tial relationships), it is essential to have a comprehensive
semantic and geometry understanding of the scene. There-
fore, we first use a vision foundation model to extract 2D
semantic features from RGB images, which are then back-
projected into 3D space. We then fuse the semantic feature
with the geometric point cloud features from a point-based
network [32]. Based on this unified 3D and semantic repre-
sentation, we train an end-to-end imitation learning policy
with a 3D transformer architecture. Our approach is capable
of learning various skills efficiently, only requiring a limited
number of demonstrations. This facilitates the construction
of our ever-growing skill library with robust low-level skills
that are reusable and generalizable to novel tasks and envi-
ronments.

For evaluation, we designed a series of experiments
to demonstrate our framework’s reliable high-level plan-
ning, generalizable low-level control, and exceptional per-
formance in long-horizon tasks. For challenging long hori-
zon tasks, LMM-3DP have an average accuracy of 56.5%,
while our baseline only has an overall average accuracy of
7% and first step average accuracy of 50% (in a multi-step
execution). Additionally, we ablate the design of the critic
agent and visual feedback in the loop to delve deeper into
the contribution of each component in our framework.

2. Related Work

LLMs as Task Planners. Recent advancements in large
language models (LLMs) have greatly influenced robotics
in various applications. Notable methods typically include
using LLMs to generate high-level plans [3, 12, 22,45, 51].
For example, SayCan [3] underscores the extraordinary
commonsense reasoning ability of LLMs by generating fea-
sible language plans and adopting an affordance function to
weigh the skill’s likelihood for execution. Some approaches
also leverage LLMs to produce programming code or sym-
bolic API as plan [4, 20, 25, 26, 38, 40, 50]. However,
these methods only take natural language instructions as in-
put and lack the ability to perceive the world with multi-
modal sensory observations. Therefore, they cannot adjust
the language plans based on environmental feedback, which
strongly limits their performance in dynamic real-world en-
vironments. Due to the emergence of LMMs, some stud-
ies [17, 19, 42] leverage GPT-4V [1] for planning with vi-
sual input. However, they only use GPT-4V as a fixed plan-
ner without critic and self-improvement while we allow the
agent to continue exploring and improving in open-world
environments.

Low-Level Robot Primitives. Despite the significant
progress in high-level planning, previous LLM-based lan-
guage planners [2, 8, 22, 25, 51] hold a strong assumption
that there exist reliable low-level skills for high-level plan-
ners to retrieve, which are usually manually pre-defined set
of skills. Some studies [10, 25, 43, 48] use LLMs to output
direct low-level control in text, which is impractical to ap-
ply to complex real-world tasks requiring high-dimensional
control. Some methods [16, 18, 23, 27, 36] also lever-
age vision language models (VLMs) to infer language-
grounded affordances and perform motion planning. How-
ever, they still lack accurate 3D understanding for chal-
lenging environments with diverse geometry shapes and
intricate 3D structures. However, LMM-3DP addresses
this challenge by integrating the high-level planner with a
language-conditioned 3D policy that can efficiently learn
new skills with a comprehensive 3D understanding of the
scene structure.

3D Representations for Low-Level Skills. To learn
a visual imitation learning policy for various skills, most
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Figure 2. Full Framework Pipeline.

previous works [5, 6, 11, 13, 15, 31] have been lever-
aging 2D image-based representation for policy training,
while the advantage of 3D representation over 2D im-
ages has been increasingly recognized by recent studies
[9,37,46,49,52,53]. GNFactor [49] and DNAct [46] learn
a 3D representation by distilling 2D features from vision
foundation models. However, they still require laborious
multi-view image collection to train a NeRF [28] model,
which poses a challenge to large-scale deployment. In this

work, we learn a unified 3D and semantic representation by
adopting a two-branch architecture with PointNext [32] and
DINO [7] to provide geometry and semantic understand-
ing respectively. Our policy is capable of learning multiple
skills with only a few demonstrations.

3. Method

In this work, we aim to develop a robust planning frame-
work to generate high-level language plans, along with a
generalizable skill-level control policy to follow language
plans and execute actions. In this section, we first discuss
the design of our self-improved high-level planner, then
introduce our language-conditioned skill-level policy (see
Fig. 2 for the whole pipeline).

3.1. LMM for High-Level Planning.

Planning with Visual Feedback. In the real world, the op-
timal plan to execute a task may not be the one initially
devised. For instance, you might plan to put vegetables
in your favorite blue bowl for dinner, but upon discover-
ing that the blue bowl is unavailable, you use a red bowl
instead. Similarly, in robotic planning, the robot must be
able to update its plan according to the current situation,
which necessitates visual feedback during task execution.
We integrate GPT-4V as a planner within the robot’s execu-
tion loop, enabling it to update the plan after each skill is
executed. This design enhances the robot’s ability to adapt
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Figure 3. Example of how our planner updates the plan during the
robot’s execution.

to dynamic scenes (e.g., when there are environmental dis-
turbances) and reattempt a previous skill if the low-level
control fails to execute (see Fig. 3).

Critic Agent. To ensure that the plan generated by the
planner is correct and reliable, we introduce an additional
critic agent to proactively identify flaws in the generated
plan with continuous self-improvement. The critic agent,
which only takes visual observation and proposed plan as
input (without human instruction), checks whether the next
step is feasible in the current situation. If the critic finds
that executing the next step will result in an undesirable out-
come, its reasoning is input back to the planner, which then
proposes a new plan. For instance, the planner’s output can
be easily skewed by human instructions. This issue persists
even with popular prompting techniques [44]. If the human
instruction is to close all the drawers, but some drawers are
already closed in the scene, the planner might still gener-
ate a plan that involves closing all the drawers. However,
the critic can accurately determine that the robot should not
close a drawer that is already closed, thereby correcting the
planner’s mistake.

Lifelong Learning. We aim for the planner to improve
over time and avoid repeating mistakes by learning from
past experience, similar to human learning. However, fine-
tuning the planner is computationally expensive. Instead,
we employ human critiques of the GPT-4V’s output plan
and reasoning and then summarize these critiques for in-
context learning. These summaries are stored as memory
for the planner to reference in the future. Additionally, the
planner can propose new skills to the skill library when nec-
essary, then the low-level policy will be updated accord-
ingly with these new skills. For example, in a cooking task,
without the click skill, the robot cannot turn on the stove.
The planner would identify the click skill as essential for
future learning. This approach enables our framework to
handle more complex tasks as the skill library expands.

3.2. Skill learning with 3D Semantic Representation

Given the language instructions generated by the plan-
ner, we train a language-conditioned 3D policy to learn
the required low-level skills from human demonstration
data. Instead of predicting every continuous action, we ex-
tract keyframe actions and convert the skill learning into a

Ours ‘ Grasp‘ Place‘ Turn ‘ Open‘ Close
w/o distractor ‘ 90% ‘ 65% ‘ 80% ‘ 40% ‘ 100%
w/ distractor | 56% | 50% | 70% | 40% | 80%

Table 1. Skill Accuracy.

Ours ‘ OWL-v2 ‘

Grasp | Place
60% | 45%

Voxposer

Grasp | Place
90% | 65%

Grasp | Place
60% | 50%

Table 2. Skill Comparison.

keyframe-based action prediction problem. This approach
simplifies continuous control and is more sample-efficient
for learning a generalizable policy capable of handling
novel objects and environments.

Vision and language encoder. To tackle complex real-
world environments with various objects and scene struc-
tures, we learn a unified 3D and semantic representa-
tion by adopting a two-branch architecture: i) Pre-trained
with internet-scale data, the vision foundation model has
achieved great success in understanding complex scenes
with strong zero-shot generalization ability. To leverage
these powerful vision foundation models in robotics, we ap-
ply a foundation model (e.g., DINO [7]) to extract 2D image
features with rich semantics. We then obtain a 3D point fea-
ture by back-projecting the 2D feature maps to 3D space. ii)
Despite rich semantics from the vision foundation model, it
still lacks an accurate geometric understanding. Therefore,
we adopt a separate branch of a point-based model (e.g.,
PointNext [32]) to learn a geometry point feature for better
capturing local 3D structures. Subsequently, both semantic
and geometry point features are fused by an MLP layer. To
incorporate language understanding into our policy, we use
a pre-trained language encoder from CLIP [33] to obtain a
language embedding.

Keyframe action prediction. Given the fused 3D point
feature, language embedding, and robot proprioception, we
adopt a 3D transformer architecture to predict the 6-DOF
pose of the next best keyframe. Instead of predicting con-
tinuous action, we simplify the model prediction into trans-
lation ayans € R3, rotation a, € 0,1369/5)3 gripper
openness dopen € [0, 1], and collision avoidance dcoiision €
[0, 1]. Specifically, we approximate the continuous 3D field
via sampling a fixed set of query points in the gripper’s
workspace. We do this because, unlike voxel-based meth-
ods that discretize the output space and are memory inef-
ficient, the sampling-based approach provides a continuous
output space and saves memory during training. We also de-
fine a learnable token to attend to the local structures more
efficiently. Both the query points and the learnable token



are passed through multiple cross-attention layers with the
visual and language features, to obtain the token feature f
and query point feature fy. We then assign a score for each
query point by computing the inner product of f; and fq.
The next best waypoint P; is chosen by applying an argmax
operation to the score. Inspired by [14], we subsequently
resample a reduced set of query points around P; and refine
the selection of waypoints among these query points based
on previous predictions.

»Cbc = )\trans : CEa(Vtransa Krans) + >\rot : CE(VI‘Otv Y}ot)
+>\open ‘ CE(Vopena Y;)pen) + )\collide : CE(vcollide; Y;:ollide)a

where V; = softmax(Q;) for Q; IS
{erans; Qrota Qopena Qcollide}~ Y; S
{Yiranss Yrot> Yopens Yeonide} i the ground-truth one-hot
encoding. CE(p,y) = — Zj y; log p; is the cross-entropy
loss, and CE, denotes cross-entropy with label smooth-
ing parameter «, applied only to the translation term to
prevent overfitting and mitigate label noise in real-world
demonstrations.

4. Experiments

Experiment Setup & Implementation Details. We set
up a real-world kitchen environment for our experiments,
which is more complicated and has more visual features
compared to a simple tabletop setting. Our robot is a 7-
DoF Franka Emika Panda robot with a 1-DoF deformable
gripper. For visual input, we use two Intel RealSense
D435 cameras: one provides a front view, and the other is
mounted on the gripper. To collect data for our imitation
learning-based low-level policy, we use an HTC VIVE con-
troller and base station to track the 6-DOF poses of human
hand movement. Then we use SteamVR to map the con-
troller movement to the end effector of the Franka robot.
In low-level policy training, we use 100 human demonstra-
tions for one kitchen setting and 200 demonstrations for two
kitchen settings (10 demonstrations for each task). We em-
ploy the Adam optimizer with a learning rate of 3 x 10~%.
The training is conducted on one NVIDIA GeForce RTX
3090 with a batch size of 16. We apply color dropout and
translation augmentation techniques to improve the model’s
performance.

4.1. Main Results

To perform well on long-horizon tasks, we need to ensure
the following: 1) a generalizable low-level policy capable of
performing various skills, 2) an adaptable low-level policy
that can compose these skills together, and 3) a situation-
aware high-level planner with strong reasoning abilities. We
systematically evaluate our framework on each of the three
criteria individually, then integrate all these components and
test our framework’s performance on long-horizon tasks

Location / Object ‘ pineapple (s,d) starfruit (s) milk duck(d) pan
sink ‘ 90% 90% 80% 80% 50%
drawer ‘ 90% 80 % 70% 90% 40%

Table 3. Pick/Place Accuracy. s means the object has been trained
to be placed in the sink. d means the object has been trained to be
placed in the drawer.

Task ‘ SayCan  Voxposer  Ours
Open both drawer doors. ‘ 20% 90% 90%
Place the gray pan in the drawer, which is closed initially. ‘ 0% 50 % 80%
Put the fruits (pineapple, starfruit) into the bowl. 40% 100% 90%

Stack all the bowls on the kitchen table. ‘ 90% 100 % 100 %

Place the pineapple in the sink. 100 % 100 % 100 %

Table 4. High-level Planning Comparison.

(See Fig. | for qualitative results). If not otherwise stated,
each reported accuracy rate is obtained with 10 trials.

Low Level Skills. We train and evaluate our pipeline’s
performance across five distinct skills: grasping, placing,
turning, opening, and closing. Each skill is tested with var-
ious objects and task scenarios (Pick is tested 5 times for
each of 5 objects, place 5 times for each of 4 locations, and
other skills 10 times total). To show the generalization abil-
ity of our low-level policy, we report the individual skill
accuracy with and without distractors, where the distractors
include 1 - 2 extra toys placed in the kitchen to make it more
cluttered (see Table 1).

We use two baselines. First, we use OWL-v2 [29], an
open-vocabulary object detector as an affordance model to
output bounding boxes for different objects. This base-
line is similar to the approach used in recent works, like
[27]. We also include Voxposer [23] as a baseline, which
is a recent SOTA method on LLM for long-horizon tasks
and robot manipulation. Our results demonstrate that our
method significantly outperforms the baseline (see Table 2).
The detector performs poorly with asymmetrical objects,
whereas our method learns to grasp these items from hu-
man demonstrations efficiently. Also, the detector is highly
view-dependent for locating the center of the object of inter-
est, whereas our method performs well as long as the front
camera captures the entire scene.

Skill Composition. To successfully compose different
skills in sequence, it is essential to demonstrate that these
skills are disentangled so that the execution of one skill does
not impact the subsequent skills. Our focus is on pick and
place operations, as they are highly interrelated. For in-
stance, after training the model on the tasks of putting ob-
ject A to location B, and putting object C to location D, the
model should also be capable of putting C to B. We ran-
domly combine two locations and five objects. Our results
in Table 3 show that the pick and place skills can be com-



‘ Grasp ‘ Place ‘ Turn ‘ Open ‘ Close
Ist kitchen (2 kitchen checkpoint) | 72% | 75% | 70% | 50% | 90%
2nd kitchen (2 kitchen checkpoint) | 72% | 60% | 70% | 30% | 80%
Overall (2 kitchen checkpoint) | 72% | 67.5% | 70% | 40% | 85%
Ist kitchen (1 kitchen checkpoint) | 90% | 65% | 80% | 40% | 100%

Table 5. Two kitchen setting experiments.

Human demonstrations per task | Grasp | Place | Turn | Open | Close
10 | 72% | 67.5% | 70% | 40% | 85%
5 | 56% | 65% | 80% | 50% | 75%

Table 6. 5 vs 10 human demonstrations on two kitchens.

posed together arbitrarily without extra training. For exam-
ple, though the milk hasn’t been directly trained on being
placed in the sink and drawer, the place skill still achieves a
high accuracy rate on the milk object.

High level planning: GPT4V vs LLM. We compare
our high-level planning method with SayCan [2], a widely
used method that leverages LLM reasoning with affordance
scores to generate robotic plans, and Voxposer [23], a recent
SoTA method on LLM for long-horizon tasks and robot ma-
nipulation. We found that SayCan’s method of selecting the
next action based on maximum log-likelihood from an ac-
tion list limits the language model’s reasoning ability. This
approach makes the model verb-insensitive, fails to under-
stand the semantic meaning of nouns, and is prone to re-
peating previous actions. Our proposed framework, similar
to Voxposer, directly prompts the planning agent in a con-
versational format rather than a language completion ap-
proach, which produces overall better results. Additionally,
both Saycan and Voxposer cannot generate plans that con-
sider the state of objects due to the absence of visual in-
put, whereas our method benefits from visual feedback to
generate the most reasonable plan. Our results show that
our model performs comparably to Voxposer on common
kitchen tasks that do not require visual information for rea-
soning, but demonstrates superior performance when vi-
sual information is necessary (see Table 4). In the “place
gray pan in drawer” task, our method reliably identifies the
closed drawer, opens it, and then places the pan inside. In
contrast, SayCan and Voxposer frequently neglect to open
the drawer.

Long-Horizon [Multi-Steps] Tasks. Here we define
long-horizon tasks as those that require > 3 action steps
to complete (see the Actions column in Table 7). To eval-
uate performance, we design three such tasks that combine
skill-level control, skill composition, and high-level plan-
ning, and test their accuracy rates. Our first baseline in-
cludes a high-level planning module from SayCan [2] and
a 2D object detection control module using OWLv2 [29],

similar to our previous experiments. We also use Voxposer
[23] as a second baseline. The result (see Table 7 and Fig.
1) shows that our method achieves a much higher accuracy
rate compared to the baseline methods. We found that Say-
can usually fails with incorrect planning; while Voxposer
has better planning ability, it mostly fails due to its sub-
optimal low-level policy, and its inability to re-plan upon
failure attempts. Out planning part, with visual feedback
and a critic agent, has nearly 100 % accuracy. Our mis-
takes mostly stem from low-level policy, which accumulates
through each step.

Two Kitchen Results. To further investigate the gener-
alization ability of our low-level policy, we also trained our
model jointly on 2 kitchens and reported the accuracy rates
of each skill in each kitchen. Because of the more diverse
and complicated data in the two kitchen setting, we notice
there is an accuracy decrease of about 10% to 20% accuracy
in each of the skills (see Table 5).

Human Demonstrations. We conduct experiments to
show that our model scales effectively with the number of
human demonstrations provided. Increasing the number of
demonstrations from 5 to 10 per task significantly improves
the performance of the grasping and placing skills, while
other skills can be learned fairly well with 5 demonstrations
already (see Table 0).

4.2. Ablation Studies

We ablate two of our design choices: visual feedback and
the critic agent. The key findings are: 1) visual feedback
enables the robot to update its initial plan when there are
environmental disturbances, and 2) it allows the robot to
reattempt a skill if the previous attempt is unsuccessful. 3)
The critic agent is essential when free-form language in-
structions are unclear or do not align with visual observa-
tions.

Ablation on Planning with Visual Feedback. We in-
vestigate the advantages of having GPT-4V’s visual feed-
back in the execution loop through “random noise” and “en-
vironment disturbances” experiments (see Table 8 and Fig.
1). In the “random noise” experiments, uniform random
noise is added to the predicted pose to simulate a flawed
low-level policy (-0.05 to 0.05 in x/y, 0 to 0.08 in z for
the “turn faucet” task, and -0.05 to 0.05 in x/y, -0.03 to
0.03 in z for the close drawer” task), so the robot needs
to retry tasks until successful completion. Our observations
indicate that our method can replan effectively with visual
feedback in the robot’s execution loop while using GPT-4V
only for one shot at the beginning and can’t replan accord-
ingly. Most errors in our methods stem from the robot arm
colliding with the kitchen after the noise is introduced. Our
baseline Voxposer, however, struggles to turn the faucet or
open the kitchen drawer even without noise, thus failing in
all the trials.



Task Description Actions

Ours Saycan + Owl-v2  Voxposer

Put all the fruits in the 1) Pick up the pineapple. 2) Place it in the 60% (80%) 20% (60%) 20% (70%)
sink. sink. 3) Pick up the starfruit. 4) Place it in

the sink.
Put the duck in the right 1) Pick up the duck. 2) Place it in the right 40% (90%) 0% (20%) 0% (70%)
drawer and close the drawer. 3) Close the left red drawer door. 4)
drawer doors. Close the right orange drawer door.
Wash the pineapple. 1) Pick up the pineapple. 2) Place it in the 70% (90%) 0% (40 %) 10% (60%)

sink. 3) Turn faucet.

Table 7. Long horizon task accuracy. The notation (. .. ) refers to the accuracy of successfully finishing the first step.

Voxposer ‘ Ours w/o close-loop & critic Ours
random noise turn faucet  close left drawer | turn faucet  close left drawer | turn faucet close left drawer
0% 0% 40% 40% 80% 70%
environment disturbances | find fruits close both drawers | find fruits close both drawers | find fruits close both drawers
0% 0% 0% 0% 60% 50%
unaligned instruction pick pan open drawer pick pan open drawer pick pan open drawer
0% 0% 10% 50% 100% 90%

Table 8. Ablation on GPT-4V close-loop planning and reflection. “Ours w/o close-loop & critic” means we only use GPT-4V planning
once at the beginning without including the Critic Agent and updating the planning in the following steps.

In the “environment disturbances” experiments, we mod-
ify the scene after the robot’s initial execution to determine
if the in-the-loop update adjusts the plan according to the
novel scene. In the “find fruits” task, the robot is required
to pick up all the fruits in the scene and place them in the
sink. Initially, only a pineapple is visible on the table, but
a starfruit appears after the robot’s first action. The exper-
iment is successful if our framework updates the original
plan and places the starfruit in the sink. In the “close both
drawers” task, the robot is asked to close both drawers. Af-
ter the robot closes one drawer, a human closes the other.
Success is achieved if the framework updates the original
plan to avoid closing the already closed drawer again. Our
method can adapt to new scenes with a high accuracy rate
(see Table 8). Our baseline Voxposer cannot update its plan
once the environment changes, leading to failures in all tests
again.

Ablation on Critic Agent. We find the critic agent in the
execution loop useful when there is “unaligned instruction”:
human instruction is not fully aligned with visual observa-
tion. In the “pick pan” task, the robot is asked to pick up
a pan not present in the scene. The experiment is success-
ful if the framework correctly reasons and outputs “Done”
directly. In the “open drawer” task, the robot is instructed
to open a drawer that is already open. Success is achieved
if the framework outputs “Done” directly without attempt-
ing to open it again. While the planner is easily skewed by

human instruction, the critic agent can consistently base its
reasoning on visual observation, since it does not take in hu-
man instruction as input. This corrects the planner, resulting
in accurate plan outputs in subsequent iterations (see Table
8 and Fig. 1). Our baseline Voxposer has 0% in “unaligned
instruction”: it misinterprets the scene information by, for
example, searching for a pan that is not present and attempt-
ing to open a drawer that is already open, which indicates a
lack of understanding of the objects’ states.

5. Conclusion

In this work, we propose LMM-3DP, a framework that
includes LMMs as high-level planners and a language-
conditioned 3D policy capable of learning various skills
with only a few human demonstrations. Our experiments
show that our high-level planning surpasses baselines
by 1.5x and our low-level control outperforms base-
lines by 1.45x. These designs enable a significantly
improved ability to handle environment disturbances
and unaligned language instructions, execute various
low-level skills in sequence, and recover from failed at-
tempts. Our work’s limitations include the need for careful
prompt crafting, difficulty with tasks requiring continuous
trajectories, and challenges in generalizing skills like
picking objects to novel items with limited demonstrations.
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