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ABSTRACT

Large Vision-Language Models (LVLMs) often suffer from object hallucination,
where the model generates descriptions of objects that do not exist in the image.
Our analysis reveals a boundary effect in scaling resolution of visual input: mod-
erate increases in visual resolution alleviates hallucination, while excessive tokens
diffuse attention and reintroduce errors, analogous to long-context issues in text
generation. To address this, we propose a multi-scale visual decoding framework
that integrates fine-grained grounding and global attention constraints, keeping
captions faithful to both object-level evidence and overall semantics. A fusion-
based scoring mechanism further guides decoding to suppress hallucinated objects
while reinforcing faithful ones. Experiments across multiple benchmarks demon-
strate that our approach effectively mitigates hallucination and delivers superior
caption quality compared to state-of-the-art methods.

1 INTRODUCTION

Large Vision-Language Models (LVLMs) Dai et al. (2023); Bai et al. (2025) have recently demon-
strated strong capabilities in visual understanding and multimodal reasoning, largely by leveraging
the powerful generalization abilities of large language models (LLMs) such as Qwen Bai et al.
(2023), LLaMA Touvron et al. (2023), and GPT Brown et al. (2020). Despite these successes,
LVLMs still suffer from object hallucination, where models generate descriptions of non-existent
objects or fabricated details Zhai et al. (2024); Hu et al. (2023). This issue severely undermines their
reliability in applications that demand precise visual-textual grounding.

Recent studies have attempted to mitigate hallucination through mostly training-free decoding strate-
gies. Some works attribute hallucination to the LLM decoding process and design contrastive or con-
strained decoding methods to balance linguistic fluency with visual grounding Leng et al. (2023);
Manevich & Tsarfaty (2024); Kim et al. (2024). Others recalibrate model focus via attention modu-
lation Huang et al. (2024); Chuang et al. (2024). While effective to some extent, these approaches
mainly intervene at the decoding stage, without fundamentally addressing the limitations of the
underlying visual inputs that provide grounding evidence.

We argue that hallucination in LVLMs often stems from two sources: insufficient fine-grained
grounding in the visual encoder and contextual bias in the LLM decoder. On the one hand, existing
visual encoders compress images into tokenized representations that frequently lose fine-grained
details due to resolution bottlenecks Li et al. (2023); Chen et al. (2024). On the other hand, during
autoregressive decoding, LLMs tend to drift away from visual evidence as textual context accumu-
lates, relying increasingly on contextual plausibility rather than image grounding Zhou et al. (2024);
Wang et al. (2024a). Existing models typically attempt to mitigate hallucination by increasing input
resolution, allowing the encoder to capture more visual details. However, our analysis shows that
this strategy faces an inherent upper bound: as resolution increases, the number of visual tokens
grows excessively, leading to an “attention diffusion” effect where the model struggles to focus on
relevant regions. To verify this, we conduct controlled experiments across different resolutions and
observe a boundary effect—moderate enrichment of visual information reduces hallucination, but
excessively high resolutions cause performance degradation, with hallucinations reemerging.
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fresh salad with a variety of 

ingredients.It includes leafy 

greens (possibly lettuce), sliced 

cucumbers, and

 ________

(b)

Figure 1: (a) The trend of hallucination rates on the CHAIR Rohrbach et al. (2019) benchmark as resolution
increases. Qwen2.5-VL-7B Bai et al. (2025) is selected as backbone. Below 512, higher resolution consistently
reduces hallucination; however, beyond 512, hallucination rises again with further resolution scaling. (b) An
example of VQA question reformed from CHAIR benchmark

Motivated by these findings, we propose a multi-scale visual decoding framework to address the
boundary effect observed in resolution scaling. Instead of simply increasing resolution, our ap-
proach introduces fine-grained grounding to recover lost object-level details and incorporates global
attention constraints to maintain focus on the most relevant regions. By jointly enforcing these com-
plementary signals, the model can exploit detailed evidence without being distracted by redundant
tokens. A fusion module further integrates grounding confidence, attention constraints, and LVLM
likelihood scores to guide decoding. This design effectively mitigates hallucination while requiring
no additional training or external supervision.

Overall, our contributions are summarized as follows:

1. We revisit the origins of object hallucination in LVLMs, focusing on the limitations of low-
resolution visual encoders and the decoding process of LLMs. Through carefully designed experi-
ments, we validate our analysis and show that moderate resolution scaling mitigates hallucination,
while an analogous long-context hallucination also emerges in the visual domain when visual tokens
become overly long under high resolution.

2. We propose a novel decoding framework that integrates fine-grained grounding from grounding
visual inputs with global semantic fidelity from visual attention inputs. By combining these visual
supplements with the likelihood scores of LVLMs, our method mitigates hallucination while pre-
venting the attention diffusion caused by excessively visual tokens, ensuring that the model remains
focused on the correct visual regions.

3. Experimental results validate the effectiveness of our method, demonstrating significant per-
formance improvements across multiple benchmarks while also demonstrating superior generation
quality.

2 VISUAL RESOLUTION EFFECTS ON HALLUCINATION

We argue that a key factor underlying hallucination is the limited capacity of visual encoders to
capture fine-grained object-level information. When such detailed grounding is absent, the model
increasingly relies on language biases, which amplifies hallucination generation. Building on this,
we conduct extensive experiments to validate our analysis.

Early studies such as Li et al. (2024) have suggested that the resolution of the visual encoder plays
a crucial role in mitigating hallucination. Our results indicate that recent LVLMs still suffer from
strong resolution dependence. Using the CHAIR Rohrbach et al. (2019) benchmark, we constructed
a hallucination-oriented VQA task with an encoder initialized at a low resolution as illustrated in
Figure 1b. Further details are provided in Appendix B. We then progressively scaled the input
resolution and tracked the corresponding changes in hallucination rates, as illustrated in Figure 1a.
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Figure 2: We compare the logit similarity of hallucinated tokens across different resolutions with various back-
bone. At 512, the logits diverge most from the language prior (resolution = 0), indicating the strongest con-
tribution of visual evidence. As resolution continues to grow, the logits gradually regress toward the language
prior, reflecting reduced visual grounding.

(a) 112 (b) 512 (c) 768

Figure 3: Visualization of attention maps under different resolution settings

Boundary Effect of Resolution Scaling and Logit Similarity Analysis: We observe a boundary
effect in resolution scaling: while moderate increases significantly reduce hallucination, overly high
resolutions lead to performance degradation, with hallucinations reemerging rather than continuing
to decline. To further analyze the interaction between vision and language, we employ multiple
models Dong et al. (2024); Bai et al. (2025); Wang et al. (2024b) to compute the distribution of
logits across different resolutions on VQA tasks. We additionally treat the case of resolution =
0 as representing the language-only prior of the LLM, since no visual input is provided and the
model generates token solely on textual context to answer the VQA questions. We then measure the
Jensen–Shannon similarity between model outputs and this language-only prior (Figure 2) as shown
in 1 and 2.

yt ∼ softmax
(
fθ(yt | vresolution, x, y<t)

)
, (1)

JS(ri, rj) = JSD
(
y
(ri)
t ∥ y(rj)t

)
, (2)

where vresolution denotes the visual inputs under different resolutions, x represents the input context,
and y<t refers to the previously generated tokens up to step t.
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Figure 4: Overview of our method: We propose a multi-scale visual decoding framework that jointly enforces
fine-grained and global attention constraints to guide LVLM generation. By leveraging these complementary
constraints, the framework ensures that the model attends to the correct visual regions, effectively mitigating
hallucinations while preserving overall semantic consistency. Candidate outputs are iteratively refined under
this framework, resulting in captions that are both faithful to object-level evidence and coherent at the global
level.

The divergence peaks at an intermediate resolution, indicating that visual evidence contributes most
effectively at this scale. Beyond this point, the similarity gradually decreases, suggesting that model
generation drifts back toward language priors despite higher-resolution inputs. As noted in prior
work Zhou et al. (2024); Wang et al. (2024a), hallucination severity tends to increase with longer
textual sequences, as models overemphasize local continuity while disregarding the input signal. We
identify an analogous effect in the visual domain: as resolution increases, the growing number of
visual tokens disperses attention, weakening effective grounding and reintroducing language-driven
hallucination. Figure 3 illustrates this phenomenon, showing that at excessively high resolutions,
attention becomes broadly distributed across the image rather than concentrated on salient regions,
thereby undermining grounding.

Hypothesis. While higher resolution alleviates hallucination by enriching visual information, reso-
lution scaling alone is insufficient. Effective mitigation requires mechanisms that guide attention to
the correct regions, allowing the model to leverage fine-grained details without being overwhelmed
by redundant tokens.

To address this, we propose a multi-scale visual input framework that integrates fine-grained ground-
ing with global attention constraints, achieving more effective hallucination mitigation. Exten-
sive experiments validate our hypothesis, demonstrating that the proposed framework significantly
achieves both visual grounding and global attention constraint.

3 METHOD

In this section, we present the detailed approach of our method. An overview of the framework
is shown in Figure 4. Our method incorporates multi-scale visual inputs, where high-resolution
inputs contribute fine-grained grounding, while lower-resolution features provide global attention
constraint. A fusion module then integrates these complementary information to iteratively refine
the generated captions, ensuring both global consistency and object-level grounding.
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3.1 FINE-GRAINED GROUNDING

To address the limitation of visual encoders in capturing fine-grained object details, we integrate
GroundingDINO as a high-resolution grounding module. GroundingDINO localizes fine-grained
object regions and aligns them with the corresponding caption tokens, thereby ensuring that each
described object is supported by concrete visual evidence. This object-level grounding complements
the global consistency provided by lower-resolution inputs, reinforcing faithfulness and reducing
hallucination at a finer scale.

At time step i, given an image ximg and a set of sampled sentences {si1, si2, . . . , sik}, we apply
named entity recognition (NER) Neumann et al. (2019) to extract object terms in sampled sentences.
For each extracted object term wijl, we compute a confidence score σijl from the transformer atten-
tion maps Liu et al. (2024):

σijl = max
wijl

(pij,wijl
), (3)

and define the grounding score as:

G(ximg, wijl) =

{
C, if σijl > δ,

0, otherwise,
(4)

where δ is the threshold from the default GroundingDINO settings, and the hyperparameter C de-
notes the weight of the grounding score. This score indicates how well the object is represented in
the image.

For each sentence sij , we aggregate word-level scores into a sentence-level grounding score:

G(ximg, sij) = min
wijl

G(ximg, wijl), (5)

where min
wijl

denotes the minimum value of the grounding score across all wijl in sij . The aggregated

score gives a measure of how well the sentence reflects the visual content of the image, particularly
with regard to the objects mentioned.

The rationale for using a constant instead of a likelihood score, and for adopting the minimum rather
than the average or maximum, is detailed in Appendix E. This high-resolution grounding penalizes
hallucinated objects while reinforcing valid ones mentioned in the caption.

3.2 GLOBAL ATTENTION CONSTRAINT

While high-resolution grounding enforces object-level fidelity, it is also crucial to maintain attention
between the generated caption and the image to avoid the effect of overextended tokens. To this
end, we employ the CLIP module at lower resolution, which embeds both text and images into a
shared semantic space. This allows us to measure global image-text alignment and introduce global
attention constraint.

At time step i, given an image ximg and a set of sampled sentences {si1, si2, . . . , sik}, we compute
a sentence-level alignment score:

Asentence(ximg, sij) = cos (fCLIP(ximg), fCLIP(sij)) , (6)

where fCLIP(·) denotes the CLIP embedding function. A higher cosine similarity indicates stronger
alignment between the sentence and the image.

To further constrain hallucination at the object level, we apply named entity recognition (NER) Neu-
mann et al. (2019) to extract object terms (e.g., “dog”, “ball”), and compute word-level alignment:

Aword(ximg, wijl) = cos (fCLIP(ximg), fCLIP(wijl)) . (7)

The final alignment score is a weighted combination of sentence- and word-level alignment:

A(ximg, sij) = γ ·Asentence(ximg, sij) + (1− γ) ·Aword(ximg, sij), (8)

where γ balances global semantic alignment and object-level grounding at the intermediate resolu-
tion scale.
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Method InstructBLIP mPLUG-Owl2 LLAVA-1.5
CHAIRS ↓ CHAIRI ↓ BLEU ↑ CHAIRS ↓ CHAIRI ↓ BLEU ↑ CHAIRS ↓ CHAIRI ↓ BLEU ↑

Greedy 57.9 17.1 15.9 52.7 16.0 18.1 47.0 13.6 18.9
DoLa 55.6 17.0 16.5 52.6 15.2 18.1 46.6 13.6 19.2
VCD 63.2 19.5 17.7 51.4 16.0 17.5 44.6 12.5 17.8

OPERA 51.5 15.6 18.3 48.5 16.1 17.9 49.5 13.7 18.4
HALC 61.6 18.9 18.1 51.7 15.5 17.4 40.6 11.0 19.0
AGLA 49.0 12.1 16.8 47.6 12.0 19.0 43.0 14.1 18.8
CODE 37.8 11.1 16.1 41.7 12.3 17.4 35.4 9.3 18.8

SID 43.6 13.1 16.4 46.0 12.9 19.1 45.0 11.7 18.4
Ours 23.5 6.3 19.4 24.6 6.8 18.0 22.2 5.8 19.4

Table 1: Experimental results of different decoding methods on various LVLMs using the MSCOCO-CHAIR
Lin et al. (2015) dataset. The results are reproduced based on the original papers or official code. CS refers
to CHAIRS , CI refers to CHAIRI and B refers to BLEU-1 Score. Higher BLEU-1 scores indicate better
text generation quality, while lower CHAIRS and CHAIRI scores reflect stronger hallucination mitigation.
Bold values indicate the best performance across other methods.

3.3 MODULE FUSION:

To preserve the generative quality of LVLMs, we introduce the concept of LLM likelihood and
utilize this probability as a scoring metric in the subsequent evaluation. Given a premise question
text s = {t1, t2, . . . , tm}, where ti denotes the token generated at the i-th timestep, we utilize
Predictive Entropy (PE) for uncertainty estimation Kadavath et al. (2022); Duan et al. (2024); Kuhn
et al. (2023), which is defined as the entropy of the entire sentence. To mitigate the impact of
generation length on predictive entropy and ensure the proper functioning of LVLM, we adopt a
variant known as length-normalized predictive entropy as Equation 9. This variant divides the joint
log-probability of each sequence by the length of the sequence, as proposed by Malinin and Gales
Malinin & Gales (2021) in the context of natural language generation (NLG) uncertainty, and has
been empirically shown to be advantageous in the work by Kuhn Kuhn et al. (2023).

fθ(si) =
1

m

m∑
i=1

− log pθ(xi|s<i) (9)

where θ represents the LVLM parameters and m is the length of the generated sentence.

To combine the strengths of both the grounding and constraint inputs, we propose a score fusion
strategy. This module integrates the consistency score from global attention constraint, the visual
alignment score from grounding, and the internal likelihood score from the LVLM to compute a
final fusion score. The final score F (ximg, sij) for each generated caption sij is given by:

F (ximg, sij) = (1− α)
(
G(ximg, sij) +A(ximg, sij)

)
+ α · fθ(sij) (10)

where Gfine(ximg, sij) is the fine-grained visual grounding score from the grounding module,
A(ximg, sij) is the global attention score capturing overall image context, and fθ(sij) is the in-
ternal likelihood from the LVLM for caption sij . The hyperparameter α controls the influence of
these auxiliary visual scores on the decoding distribution; when α = 1, the fusion module reduces
to standard greedy decoding.

The fusion score F (ximg, sij) provides a comprehensive measure of hallucination by integrating
both fine-grained and global attention constraint. It is used to rank generated captions, with top
candidates selected for further refinement. We adopt an iterative decoding strategy to progressively
improve caption quality. At each iteration, the LVLM generates a set of candidate captions, which
are evaluated using the fusion score F (ximg, sij). The top N candidates are retained and refined
over k iterations, ensuring that captions gradually leverage both object-level grounding and global
attention to enhance faithfulness and visual fidelity. The full iteration procedure is summarized in
Algorithm 1 (Appendix F).

4 EXPERIMENTS

In this section, we evaluate the performance of our method on caption generation, focusing on its
effectiveness in mitigating object hallucination while maintaining caption quality. Our experiments
include CHAIR, OPOPE, and GPT-4V-assisted evaluations. Additional experimental results and
analyses are provided in Appendix B.
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Setting Deooding InstructBLIP mPLUG-Owl2 LLAVA-1.5
A ↑ P ↑ F0.2 ↑ A ↑ P ↑ F0.2 ↑ A ↑ P ↑ F0.2 ↑

Random
Greedy 76.8 94.2 91.8 75.1 92.3 90 78.4 94.8 92.6
HALC 76.7 93.8 91.5 73.7 92.2 89.5 73.8 95.8 92.4
Ours 71.9 94.4 90.8 72.3 95.0 91.4 73.4 96.1 92.6

Popular
Greedy 73.1 83.9 82.4 71.5 82.6 81 74.9 85.7 84.3
HALC 73.3 84.2 82.7 70.2 82.1 80.3 71.4 87.7 84.9
Ours 70.1 87.9 84.9 70.5 88.8 85.8 72.7 90.3 87.6

Adversarial
Greedy 72.5 82.6 81.2 68.9 76.5 75.3 73.1 81.5 80.4
HALC 71.2 79.4 78.2 68.4 77.5 76.1 70.3 84.6 82.2
Ours 69.2 85.0 82.4 68.9 83.5 81.1 70.7 86.9 84.3

Table 2: Experimental results of different decoding methods on various LVLMs in the MSCOCO-
OPOPE Chen et al. (2024). The results are reproduced using the original papers or official code. A refers
to Accuracy, P refers to Precision and F0.2 refers to F0.2 Score. Higher Accuracy, Precision and F0.2 Score
scores indicate better quality, whereas lower CHAIRS and CHAIRI scores reflect stronger hallucination
mitigation. Bold values represent the best results among all methods.

4.1 EXPERIMENT SETUPS

Baselines: To effectively evaluate our method, we include regular greedy decoding as baselines.
Additionally, we incorporate state-of-the-art methods specifically designed to mitigate object hallu-
cination (OH), including DoLa Chuang et al. (2024), OPERA Huang et al. (2024), VCD Leng et al.
(2023), CODE Zhai et al. (2024) ALGA An et al. (2025), HALC Chen et al. (2024) and SID Huo
et al. (2024) in our analysis.

LVLM Backbones: We conduct our experiments on different LVLMs—InstructBLIP Dai et al.
(2023), LLaVA-1.5 Liu et al. (2023), and mPLUG-Owl2 Li et al. (2022)—to evaluate our method
and all the previously mentioned baselines.

4.2 METRICS

Datasets: We conduct our experiments mainly on three benchmark:We conducted our experiments
primarily on three benchmarks: CHAIR, POPE, and a GPT-4V assisted evaluation. Detailed de-
scriptions of these datasets are provided in Appendix A. The results across all three benchmarks
consistently demonstrate the effectiveness of our approach in mitigating object hallucination, while
maintaining high-quality text generation.

CHAIR: To evaluate the effectiveness of our method in mitigating object hallucination, we follow
the standard CHAIR evaluation setting Rohrbach et al. (2019). For all backbones, we use the prompt
“Please describe this image in detail” . The generated parameters for our method are provided in
Appendix B, with hyperparameters α = 0.01 and γ = 0.5. The CHAIR results are shown in Ta-
ble 1. Throughout the experiments, our method achieves state-of-the-art (SOTA) performance in
reducing hallucinations across other methods while maintaining caption generation quality. Specif-
ically, our method achieves improvement over the previous SOTA under the CHAIR metrics. We
observe that our method performs better with backbones exhibiting high levels of hallucination,
which can be attributed to the alignment module’s effectiveness in mitigating hallucinations. The
generated sentences contain an average of 80 to 90 words, with the max new tokens parameter set
to 512. Notably, we conduct experiments on different lengths of generated captions in Appendix
and evaluate our method on other LVLMs under the CHAIR benchmark in Appendix. These results
demonstrate that the superior performance of our method remains consistent across both long and
short description generation tasks.

POPE: Following the HALC’s OPOPE setup Chen et al. (2024), We conduct the POPE experiment,
and the results are presented in Table 2. Throughout the evaluation, our method achieves better
results compared to the greedy baseline and the HALC method, despite yielding a lower accuracy
score. As noted by HALC, false positives become less reliable in offline POPE testing, and the
diversity of described content may introduce biases in true positive samples. Consequently, this can
result in deviations in the accuracy metric. Therefore, we primarily utilize precision and F0.2 score
as reference metrics. According to our experimental results, our approach achieves state-of-the-art
performance within HALC’s OPOPE framework.
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Method InstructBLIP mPLUG-Owl2 LLAVA-1.5
C D C D C D

Greedy 4.47 5.11 5.10 5.71 5.95 6.11
Ours 5.08 5.93 5.83 5.74 6.27 6.34

OPERA 5.44 5.75 5.35 5.70 5.98 6.24
Ours 5.90 6.04 5.78 5.71 6.11 6.29

HALC 5.95 6.34 5.51 6.29 5.10 4.91
Ours 6.27 6.11 6.24 6.16 6.28 6.40

Table 3: Experimental results of different decoding methods
on GPT4V assist evaluation in OPERA Chen et al. (2024).

Parameter CS CI P ↑ F0.2 ↑
α = 0.9 32.2 9.2 89.9 86.6
α = 0.1 25.6 6.6 90.6 87.0
α = 0.01 22.2 5.8 91.1 88.2
γ = 0.2 22.4 5.7 91.1 88.0
γ = 0.5 22.1 5.8 91.1 88.2
γ = 0.8 22.2 6.0 91.0 88.3

Table 4: Ablation study on different values
of α and γ.

Greedy Relation Attribute Object CHAIRS CHAIRI P ↑ F0.2 ↑
✓ 47.0 13.6 87.3 85.8

✓ 45.5 14.4 87.3 85.6
✓ 42.4 13.1 88.7 87.1

✓ 38.9 11.7 89.6 87.2
✓ ✓ 40.3 12.6 88.4 86.0
✓ ✓ 40.5 12.4 88.2 86.7

✓ ✓ 42.4 12.1 88.6 86.4
✓ ✓ ✓ 45.4 12.8 87.2 85.7

Table 5: Comparison of performance for Word Categories in CLIP input.

GPT-4V assisted evaluation: Following the OPERA Huang et al. (2024) protocol, we conduct a
GPT-4V assisted evaluation to assess the effectiveness of our method in mitigating hallucinations
in generated captions. Notably, we observe that GPT-4V tends to assign higher scores to captions
presented second in sequence. To mitigate this bias, we conduct a second round of evaluation where
the order of captions in each pair was swapped. The evaluation results, adjusted for order bias, are
presented in the Table 3. And the comprehensive results of GPT-4V assisted evaluation are shown
in Appendix. Experimental results demonstrate that our method outperforms existing approaches in
both hallucination mitigation and generation quality.

4.3 ABLATION STUDY AND ANALYSIS

All ablation experiments are conducted using LLaVA-1.5 as the backbone model, with hyperparam-
eters consistent with those described in Section 4.1 for LLaVA-1.5.

Effectiveness of Modules: To demonstrate the effectiveness of individual modules and the improve-
ment in hallucination mitigation achieved by combining them, we conducted ablation experiments
under four conditions, as shown in Table 6. The results demonstrate that both the GroundingDINO
and CLIP modules, when used individually, significantly reduce hallucinations, with the effect being
more pronounced when using grounding alone. This validates the effectiveness of using grounding
and constraint as alignment mechanisms in our approach. Moreover, when both grounding and
constraint are used together, the performance surpasses that of either module alone, confirming the
enhanced effect of their combined supervision.

Granularity of Inputs: We conduct ablation experiments by using object, attribute, and relation as
separate inputs for GroundingDINO and CLIP. Additionally, we test various input combinations for
CLIP to evaluate the effectiveness of both object and sentence inputs. The greedy setting refers to
the greedy decoding baseline used for comparison. The GroundingDINO experimental results are
shown in Table 6 in Appendix.

Although attribute and relation are semantically important categories, and previous studies, such as
HALC and HalluciDoctor Yu et al. (2024), have used existence, attribute, and relation as keywords
for hallucination mitigation, our results indicate that the best performance in hallucination mitigation
is achieved when only object is used as the input for CLIP, as shown in Table 5.

Our analysis reveals that grounding module struggles to effectively localize attribute and relation,
resulting in excessive meaningless grounding. This issue is also discussed in R-Bench Wu et al.
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Greedy Grounding Object Sentence CHAIRS CHAIRI P ↑ F0.2 ↑
✓ 47.0 13.6 87.3 85.8

✓ 46.2 12.5 88.2 86.7
✓ 44.2 12.4 87.2 85.7

✓ ✓ 38.0 11.4 89.7 87.2
✓ 24.8 6.8 90.4 87.2
✓ ✓ ✓ 22.2 5.8 91.1 88.2

Table 6: Comparison of performance under different input for Grounding and Constraint.

(2024). Considering the time efficiency of the grounding module, we ultimately choose to use only
object as the input for grounding and constraint.

Hyper Parameters: Due to the use of multiple modules in our method, we conduct detailed
ablation experiments on various hyperparameters of the model.

We first investigate the impact of the auxiliary-to-likelihood score ratio, controlled by the hyper-
parameter α in Eq. 10. Specifically, we evaluate α ∈ {0.01, 0.1, 0.9} and report the corresponding
CHAIRS and CHAIRI metrics in Figure 4. We then examine the balance between word-level and
sentence-level CLIP scores, modulated by γ. Experiments with γ ∈ {0.2, 0.5, 0.8} are presented in
Figure 4, showing the effect of this trade-off on hallucination performance.

We observe that the model achieves the best performance when α = 0.01. For the γ parameter,
values such as 0.2 and 0.8 lead to instability across different datasets, whereas γ = 0.5 yields more
consistent results. Based on this analysis, we fix α = 0.01 and γ = 0.5 for all experiments.

5 LIMITATIONS.

While our method demonstrates strong effectiveness in mitigating hallucinations, there are two pri-
mary limitations.

(1) While the method performs well across general benchmarks, its effectiveness in specialized do-
mains, such as medical imaging, low-resource languages, or scenes with densely packed objects
remains underexplored. Nonetheless, preliminary experiments in the safety domain have yielded
promising results as shown in Appendix E. In future work, we plan to further validate its effective-
ness across a broader range of application scenarios.

(2) Although our method remains reasonably efficient in practice, there remains room for improve-
ment in decoding speed. We provide a detailed time complexity analysis and discuss potential
acceleration strategies in Appendix C.

6 CONCLUSION

Motivated by our discovery of a boundary effect in visual resolution scaling—where moderate en-
richment of visual information reduces hallucination, but excessive visual tokens diffuse attention
and reintroduce errors—we propose a multi-scale visual decoding framework to mitigate object hal-
lucinations in large vision-language models (LVLMs). By combining complementary fine-grained
and global visual information with a fusion-based scoring mechanism, our method ensures that
generated captions are grounded in both object-level grounding and gobal attention. Extensive ex-
periments across multiple benchmarks show that our approach consistently reduces hallucinations,
enhances caption quality, and achieves improvement in all metrics over state-of-the-art methods.
Importantly, the effectiveness of hallucination mitigation relies on both fine-grained information
and global attention constraints, and our framework maintains robust performance for both short
and long descriptions without additional training or external data, making it a practical solution for
existing LVLMs.

9
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7 REPRODUCIBILITY STATEMENT

For the VQA hallucination and logits experiments discussed in Section 3, we provide a detailed
explanation in Appendix A. The experiments reported in Sections 5.2 and 5.3 can be reproduced by
following the experimental setup described in Section 5.1 and Appendix A. In addition, we present
the algorithmic details of our framework in Appendix D.
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A DATASETS

CHAIR: The Caption Hallucination Assessment with Image Relevance (CHAIR) Rohrbach et al.
(2019) tool is specifically designed to assess hallucinations in image captioning tasks. It quantifies
hallucinations by evaluating how many objects mentioned in the caption are absent from the ground
truth label set. CHAIR provides two distinct evaluation metrics: CHAIRS , which measures the
proportion of hallucinated sentences relative to the total number of sentences, and CHAIRI , which
evaluates the proportion of hallucinated objects relative to the total number of generated objects.
Lower scores on either metric indicate fewer hallucinations. We also evaluate the methods using
BLEU Papineni et al. (2002), a caption-related metric that measures the similarity between generated
and ground truth captions. Higher BLEU scores, specifically BLEU-1, indicate better generation
quality.

OPOPE: Polling-based Object Probing Evaluation (POPE) is a method specifically designed to
assess hallucination issues in LVLM. POPE focuses on evaluating object hallucination by utilizing
an essay-style prompt in the format: “Is there a <object> in the image?” to pose visual question
answering (VQA) queries to the model. The complete POPE test is divided into three splits: Random
Split: Objects are randomly selected from the entire dataset for evaluation. Popular Split: This split
assesses the presence of objects that most frequently appear in the dataset. Adversarial Split: This
evaluates the model’s ability to identify objects that are highly relevant to those present in the image.
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Method InstuctBlip mPLUG-Owl2 LLAVA-1.5
CHAIRS ↓ CHAIRI ↓ CHAIRS ↓ CHAIRI ↓ CHAIRS ↓ CHAIRI ↓

Greedy 30.9 12.3 23.2 8.3 20.8 6.8
VCD 30.3 12.6 27.3 9.7 23.3 7.90

OPERA 30.0 11.7 22.1 7.6 21.1 6.7
HALC 30.0 11.4 17.3 7.4 13.8 5.5
Ours 21.8 8.1 16.4 5.9 11.5 4.2

Table 7: Experimental results of various methods with a 64 max new tokens setting on different LVLMs in the
MSCOCO-CHAIR dataset. Results are reproduced using the original papers and official code.

Method MiniGPT-4 LLAVA-Next
CHAIRS ↓ CHAIRI ↓ BLEU ↑ CHAIRS ↓ CHAIRI ↓ BLEU ↑

Greedy 40.6 14.1 16.7 19.8 6.2 16.6
Nucleus 34.0 12.5 17.3 23.0 7.9 16.3

TopK 35.0 12.5 17.1 21.2 7.1 16.4
Beam 32.2 11.9 17.1 15.5 5.5 16.8
DoLa 31.8 11.6 17.0 17.8 6.1 16.8
VCD 35.7 13.8 18.1 21.4 7.3 16.4

OPERA 36.4 12.7 17.0 17.8 6.1 16.8
HALC 34.3 11.8 16.8 16.6 6.3 16.7
Ours 21.0 8.2 16.2 14.1 4.7 16.2

Table 8: Experimental results of different methods on MiniGPT-4 and LLAVA-Next in the MSCOCO-CHAIR
.

We adopt the OPOPE evaluation method proposed by HALC to assess hallucination under descrip-
tive conditions rather than simple “yes” or “no” answers. This approach enables our method to
be evaluated in a long-sentence generation environment. In practice, OPOPE employs the prompt
“Please describe this image in detail” to generate captions. OPOPE then checks whether the sam-
pled positive and negative objects appear in the generated captions to compute the POPE scores.
To ensure consistency, we used the F0.2 score, as proposed by HALC, where false negatives (FN)
and the resulting recall are given less weight due to their limited trustworthiness in offline checks.
Additionally, we used the same parameters and generated captions of the same average length as
CHAIR.

GPT-4V assisted evaluation: We adopt the GPT-4V assisted evaluation method proposed by
OPERA to assess the generation quality and hallucination phenomena of our approach compared
to other decoding methods. Specifically, we randomly sample 500 images from the MSCOCO
validation set and use decoding methods to generate descriptions for these images. The caption
generation parameters and prompt we use are the same as CHAIR experiment. The evaluation
involves presenting GPT-4V with the image and the corresponding descriptions generated using two
decoding methods. GPT-4V is subsequently prompted to assign a score ranging from 0 to 10 for
each description, evaluating two key aspects: correctness (C) and detailedness (D).

VQA: In Section 3, we construct a VQA task to evaluate the severity of hallucination under different
resolution settings. Specifically, we select Qwen2.5-VL-7B to generate captions on the CHAIR
benchmark at a resolution of 64, extract hallucinated generation samples, and substitute them into
the prompt to form VQA-style questions. We further use these VQA questions to assess the logits
produced in subsequent generations. To ensure that resolution settings remain meaningful, we filter
images from the CHAIR benchmark such that overly low-resolution samples are excluded.

B EXPERIMENTATION DETAILS

B.1 EXPERIMENT SETUPS

The main generation parameters are configured as follows: the maximum number of new tokens is
set to 512, top-k to 5, top-p to 1, and the temperature to 1. Our method targets hallucination mitiga-
tion in captions comprising multiple sentences; therefore, the maximum new tokens parameter is set
to 512 to evaluate its effectiveness in long-caption scenarios. This generation length is aligned with
the standard configuration in mainstream methods. The remaining parameters follow the default
settings of the sampling method implemented in the HuggingFace Transformers library1.

1https://huggingface.co/docs/transformers
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B.2 GENERATION LENGTH COMPARISON

In our experiments, similar to mainstream methods, we use 512 tokens for caption generation. Ad-
ditionally, to ensure a fair comparison with other decoding methods, such as HALC and OPERA,
we conduct experiments on the CHAIR benchmark with a max new tokens setting of 64, as shown
in Table 7. Experimental results demonstrate that our method attains optimal performance at this
generation length.

B.3 MORE RESULTS ON CHAIR BENCHMARK

We conduct CHAIR experiments on other mainstream LVLMs, including Minigpt4 Zhu et al. (2023)
and LLAVA-Next Team (2024), which are less commonly used with CHAIR compared to models
such as LLAVA-1.5, Instructblip, and mPLUG-Owl2. For Minigpt4, we use Llama2 as its large
language model, and for LLAVA-Next, we use the Vicuna-7B version2. The experimental results are
shown in Table B.1. These experiments demonstrate the generalizability of our method, highlighting
its ability to mitigate hallucinations even when applied to more advanced models.

B.4 COMPREHENSIVE GPT-4V ASSISTED EVALUATION

Following the GPT-4V assisted evaluation proposed by OPERA, we conduct experiments on main-
stream LVLMs such as LLAVA-1.5, InstructBLIP, and Mplug-Owl2. Two aspects are evaluated:
correctness (C) and detailedness (D), both scored by GPT-4V. Since we observe that GPT-4V tends
to assign higher scores to captions presented second in sequence, we construct prompts in both or-
ders: the original prompt order, as used in OPERA’s official code, where baseline captions appear
first followed by our method’s captions, and the reverse prompt order, where our method’s cap-
tions appear first followed by baseline captions. Experimental results from Table 11 to Table 10
demonstrate that our method outperforms existing approaches in both hallucination mitigation and
generation quality.

Order Method InstructBLIP mPLUG-Owl2 LLAVA-1.5
C D C D C D

Original Order
OPERA 5.25 5.79 5.55 5.82 5.97 6.09

Ours 6.02 6.05 5.56 5.81 6.03 6.18
Difference +0.77 +0.26 +0.01 -0.01 +0.06 +0.09

Reverse Order
Ours 5.77 6.02 6.00 6.5 6.19 6.4

OPERA 5.63 5.70 5.14 5.58 5.99 6.39
Difference +0.14 +0.32 +0.86 +0.92 +0.20 +0.01

Table 9: Experimental results of comparing between our decoding method and OPERA decoding method on
GPT4V-assist benchmark. The “original order” and “reverse order” correspond to the same content as described
in Table 11.

Order Method InstructBLIP mPLUG-Owl2 LLAVA-1.5
C D C D C D

Original Order
HALC 6.05 6.28 6.03 6.18 5.21 4.89
Ours 6.14 6.07 5.97 6.13 6.13 6.41

Difference +0.09 -0.21 -0.06 -0.05 +0.92 +1.52

Reverse Order
Ours 6.39 6.14 6.5 6.19 6.42 6.38

HALC 5.85 6.40 5.99 6.39 4.98 4.93
Difference +0.54 -0.26 +0.51 -0.20 +1.44 +1.45

Table 10: Experimental results of comparing between our decoding method and HALC decoding method on
GPT4V-assist benchmark. The The “original order” and “reverse order” correspond to the same content as
described in Table 11.

B.5 ABLATION STUDY AND ANALYSIS

We also conduct experiment on different granularity inputs for DINO, which contains object, at-
tribute and relation. The experimental results are presented in Table 14. Our analysis reveals that

2https://huggingface.co/liuhaotian/llava-v1.6-vicuna-7b
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Order Method InstructBLIP mPLUG-Owl2 LLAVA-1.5
C D C D C D

Original Order
Greedy 4.63 5.12 5.25 5.62 6.05 6.07
Ours 5.73 5.89 5.63 5.61 6.14 6.28

Difference +1.10 +0.77 +0.38 -0.01 +0.09 +0.17

Reverse Order
Ours 6.42 5.96 6.02 5.87 6.39 6.4

Greedy 4.3 5.09 4.95 5.8 5.85 6.14
Difference +2.17 +0.87 +1.07 +0.07 +0.54 +0.26

Table 11: Experimental results of comparing between our decoding method and greedy decoding methods on
GPT4V-assist benchmark in OPERA paper. The “original order” refers to the prompt where greedy captions
appear first, followed by our method’s captions. In contrast, the “reverse order” refers to the prompt where our
method’s captions appear first, followed by greedy captions.

DINO struggles to effectively localize attribute and relation, resulting in excessive meaningless
grounding.

Equation 3 – Why use minimum instead of average: We conducted an ablation study comparing
the use of minimum versus average CLIP similarity scores in Equation 3. As shown in Table below,
the performance difference is modest, but the minimum yields slightly better hallucination reduction.
We adopt the minimum aggregation as it provides a more conservative and principled estimate by
emphasizing the least-aligned region, which is important for flagging potential hallucinations.

Aggregation CHAIRS ↓ CHAIRI ↓
average 39.4 11.6

minimum 38.0 11.4

Table 12: Ablation study on the aggregation strategy in Equation 3. Using the minimum CLIP score slightly
improves hallucination reduction by focusing on the weakest region-text alignment.

CHAIRS ↓ CHAIRI ↓
σ (original) 30.8 11.4
C = 0.1 31.1 11.2
C = 1 24.8 6.8
C = 10 25.0 6.7

Table 13: Ablation study on hyperparameter C in Equation 7. The best hallucination mitigation is achieved
when C = 1, which we adopt as default.

We also observe that replacing σ with a constant C reduces the influence of potentially noisy visual
signals, and in some cases leads to improved stability. This supports the use of calibrated visual
guidance for more robust alignment.

C TIME ANALYSIS.

Figure 5 demonstrates that the best results are achieved with a sampling time of 3. To optimize
generation efficiency, we set the sampling time to 3 for all experiments. Table 15. The experimental
parameters for each method are selected based on their best performance. The results indicate
that our method achieves state-of-the-art hallucination mitigation while maintaining competitive
generation efficiency.

Based on the Biber et al. (2000), nouns comprise approximately 25% of generated words. Since
sentence-level decoding is independent, these steps can be parallelized, enabling a tractable estima-
tion of time cost. Assuming an average sentence length of m words, and that each sentence triggers
one additional CLIP evaluation, the average per-token time cost can be approximated as:

TLVLM + 0.25× (TDINO + TCLIP) +
1

m
TCLIP

Here, TLVLM denotes the time required for the base vision-language model to decode one token.
The term 0.25× (TDINO+TCLIP) reflects the fact that roughly 25% of tokens (nouns) are grounded
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Greedy Rel Attr Obj CHAIRS CHAIRI

✓ 47.0 13.6
✓ 47.4 13.6

✓ 46.6 13.9
✓ 22.2 5.8

Table 14: Comparison of CHAIRS and CHAIRI for different DINO inputs, Bold values represent the best
results.
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Figure 5: Performance of our method sampling times in range of 2 to 5

using DINO and undergo additional CLIP validation, while the 1
mTCLIP accounts for sentence-level

scoring applied once per sentence.

In practice, since TDINO and TCLIP are significantly smaller than TLVLM, the overall time cost is
close to standard greedy decoding. Therefore, despite the integration of two alignment modules, the
expected runtime overhead remains minimal due to both their low per-call latency and the paralleliz-
able nature of the added operations.

D ALGORITHM

We summarize the process of our method in Algorithm 1.

Algorithm 1 Our method’s Algorithm
Input: LVLM parameterized by θ, sampling times k, candidates number N , weight hyperparameter α, image
input ximg and text prompt s0
Parameter: θ, k, N , α
Output: y
1: Let t = 0
2: SET0 ← {⟨Input(ximg, s0) ⟩}
3: while SETt is not empty do
4: SETt+1 ← ∅
5: for all candidate in SETi do
6: repeat
7: Sample s ∼ LVLMθ(st+1|x, s0, s1, . . . , sij)
8: F (ximg, sij) = (1− α)

(
gDINO(ximg, sij)) + gCLIP(ximg, sij)

)
+ α · fθ(sij)

9: SETt+1 ← SETt+1 ∪ {x, s0, s1, . . . , sij}
10: until k times
11: end for
12: Rank SETt+1 by F(s)
13: SETt+1 ← Top N candidates in SETt+1

14: t← t+ 1
15: end while
16: y = argmax(SET)
17: return y

E EFFECTIVENESS OF OUR FRAMEWORK IN OTHER DOMAINS

We further evaluate our method on the ECSO task (“Eyes Closed, Safety On”: Protecting Mul-
timodal LLMs via Image-to-Text Transformation, ECCV 2024) to assess its generalizability. As
shown in Figure 16, our approach not only reduces hallucinations but also improves the overall
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Method Decoding Time
Greedy 3.90
HALC 89.88
CGD 19.13
Ours 27.68

Table 15: Comparison of time cost of different decoding method. The parameters are configured to the official
settings.

quality of generated descriptions. These results highlight the broader applicability of our framework
beyond hallucination-specific benchmarks.

Backbone: LLAVA-1.5 Baseline ECSO VCD Ours
SD 82.95 89.17 89.21 92.32

OCR 59.44 79.45 79.35 90.50
SD OCR 59.73 77.69 77.50 88.73

Table 16: Performance comparison on MM-SafetyBench . Baseline denotes LLaVA-1.5 without any enhance-
ment. ECSO is a prior method. VCD uses VCD decoding as an improvement. Ours is our proposed method.

F CASE STUDY

We present case studies on hallucination mitigation using the COCO 2014 validation dataset, as
shown in Figure 6. The table compares captions generated by Greedy, HALC, CGD, and our pro-
posed approach for the images in the leftmost column. Notably, our method generates longer and
more detailed captions. Hallucinated content in the descriptions is highlighted in red.
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Image Greedy HALC CGD Ours

The image features a 

delicious breakfast plate 

filled with various fruits 

and waffles. The plate is 

placed on a dining table, 

and it contains a generous 

portion of blueberries, 

apples, and bananas. The 

fruits are spread across the 

plate, with some blueberries 

on the left.

The image features a 

delicious breakfast plate 

filled with various fruits and 

waffles. The plate is placed 

on a dining tablecloth, and it 

is adorned with a blue floral 

pattern. The breakfast 

consists of two waffles, 

each topped with 

blueberries and apples.

The image shows a plate filled 

with delicious food consisting of 

pancakes topped with sliced 

apples, blueberries, and syrup. 

The blueberries are spread out 

across the plate, with some 

closer to the center and others 

closer to the edges. This 

combination of flavors is not 

only visually appealing but also 

looks like a tasty and healthy 

breakfast option.

The image displays a plate of 

delicious food, containing waffles, 

fruit, and syrup on a dining table. 

The waffles are garnished with 

fresh blueberries, adding a touch 

of color and flavor to the dish. 

There are multiple blueberries on 

the plate, distributed evenly 

throughout the waffles. The 

presentation of this scrumptious 

breakfast is quite appetizing and 

inviting.

The image features a 

woman with short hair, 

wearing a black shirt, and 

holding a banana in her 

mouth. She appears to be 

making a funny face while 

eating the banana. The 

woman is standing in a 

kitchen, with a refrigerator 

visible in the background.

The image features a 

woman with short hair, 

wearing a black shirt, and 

holding a banana in her 

mouth. She appears to be 

making a funny face while 

eating the banana. The 

woman is standing in a 

kitchen, with a refrigerator 

visible in the background.

In the image, a woman is sitting 

in a kitchen, chewing on a 

banana. She is leaning back with 

the banana in her mouth, and her 

eyes are closed. In the 

background, there is an oven and 

a microwave visible, which are 

likely part of the kitchen 

appliances. Additionally, a knife 

can be seen placed nearby on the 

counter.

She is wearing a black shirt and is 

holding a half-eaten banana in her 

mouth. The woman is looking at 

the camera, showcasing her 

unique style and humor. In the 

background, there are a few 

kitchen items visible. An oven is 

placed near the top left corn is 

placed near the top left corner of 

the scene, and a cup is located on 

the right side.

The image depicts a small, 

cluttered kitchen with a 

wooden dining table 

surrounded by chairs. The 

table is covered with papers, 

and there are several chairs 

placed around it. A 

refrigerator is located on the 

left side of the room, and a 

microwave can be seen 

above.

The image depicts a small, 

cluttered kitchen with a 

wooden dining table 

surrounded by chairs. The 

table is covered with papers, 

and there are several chairs 

placed around it. A person is 

standing near the table, 

possibly working on the 

papers.

The image depicts a large 

residential garage turned into a 

multipurpose room, featuring 

various appliances and furniture. 

There is a refrigerator on the left 

side of the room, surrounded by 

numerous chairs and dining 

tables. Some of the chairs are 

closer to the refrigerator, while 

others are situated around the 

dining tables.

The image depicts a small home 

office space, likely an unfinished 

garage, set up for various 

activities. It is equipped with a 

refrigerator situated on the left 

side of the room and a white table 

in the center. The table is 

surrounded by four wooden chairs, 

with two chairs positioned on the 

left side, one on the right side, and 

one chair at the head of the table. 

A variety of objects and supplies 

can be found throughout the space.

The image features a 

woman standing in front of 

a video game display, 

possibly at a convention or 

a store. She is wearing a 

white shirt and appears to 

be observing the game. The 

display consists of a large 

TV screen and a Wii 

console, with a remote 

control placed nearby. A 

chair is positioned in the 

background, and a handbag 

can be seen placed on the 

floor.

The image features a 

woman standing in front of 

a video game display, 

possibly at a convention or 

a store. She is wearing a 

white shirt and appears to 

be observing the game. The 

display consists of a large 

TV screen and a Wii 

console, with a man's image 

on the screen. There are also 

a few chairs in the area, 

with one located near the 

center of the scene and 

another towards the right 

side. A chair is also present 

in the background.

The scene features a person 

standing in front of a video game 

display, which includes a 

Nintendo Wii gaming console 

with a TV screen attached. The 

display is set up in a booth-like 

area to attract visitors, and there 

is a person positioned in the 

background of the display, 

potentially working behind the 

counter. A chair is positioned in 

the background, and a handbag 

can be seen placed on the floor.

The image displays a busy event 

featuring a large screen in the 

center, which appears to be a 

Nintendo Wii game. Numerous 

individuals can be seen playing 

games at the event, with some 

standing around and enjoying the 

experience. The main display 

features a black and white image 

of a man playing with a Nintendo 

Wii, likely on a television screen 

or a large monitor. A row of 

figures, representing the Wii 

players, are also present, likely set 

up on the front of the screen for an 

interactive element at the event.

Figure 6: A comparison of text generated by Greedy Search, HALC, CGD, and our proposed method, using
examples from the COCO 2014 validation dataset with LLaVA-1.5. The hallucinated parts are highlighted in
red.
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