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ABSTRACT

The efficacy of Large Vision-Language Models (LVLMs) is critically dependent
on the quality of their training data, requiring a precise balance between vi-
sual fidelity and instruction-following capability. Existing datasets, however, are
plagued by inconsistent quality, and current data filtering methods rely on coarse-
grained scores that lack the granularity to identify nuanced semantic flaws like
logical fallacies or factual errors. This creates a fundamental bottleneck in devel-
oping more reliable models. To address this, we make three core contributions.
First, we construct a large-scale, 300K-sample benchmark by systematically in-
jecting diverse, subtle defects to provide a challenging testbed for data auditing.
Second, we introduce a novel “Decomposition-then-Evaluation” paradigm that
breaks model responses into constituent cognitive components: visual descrip-
tion, subjective inference, and factual claim, enabling targeted analysis. Third,
we instantiate this paradigm via EVIAN (Explainable Visual Instruction-tuning
Data AuditiNg), a pipeline that evaluates these components along the orthogo-
nal axes of Image-Text Consistency, Logical Coherence, and Factual Accuracy.
Our empirical findings challenge the prevailing scale-centric paradigm: a model
fine-tuned on a compact, high-quality subset curated by EVIAN consistently sur-
passed models trained on orders-of-magnitude larger datasets. We also reveal that
dividing complex auditing into verifiable subtasks enables robust curation, and
that Logical Coherence is the most critical factor in data quality evaluation.

1 INTRODUCTION

Large Vision-Language Models (LVLMs) (Chen et al., 2024e) have recently demonstrated remark-
able progress in aligning visual perception with natural language understanding, enabling a wide
range of applications from medical assistance to robotic control (Yin et al., 2024). An important
factor of this success is Visual Instruction Tuning (VIT), which aligns visual representations with
language instructions to enhance instruction-following capability (Liu et al., 2023). However, the ef-
fectiveness of VIT hinges on the quality of the underlying training data, which must strike a delicate
balance between adhering to user commands and maintaining fidelity to visual inputs.

Existing datasets and filtering methods fall short of this requirement. Large-scale data synthesis
(e.g., LLaVA-Instruct-150K ) improves instruction following but often introduces noise (Liu et al.,
2024c; Tang et al., 2024), while similarity-based filtering methods (e.g., CLIP score) promote visual
grounding but lack the granularity to detect subtle semantic flaws (Wang et al., 2024a). As a result,
current LVLMs frequently suffer from fine-grained errors, including object hallucination, attribute
misattribution, factual inconsistency, and flawed reasoning (Liu et al., 2024a; Bai et al., 2024; Chen
et al., 2024d). These deficiencies reveal a fundamental bottleneck: prevailing approaches rely on
coarse, uni-dimensional quality measures that collapse diverse error types into a single opaque score.

In this work, we argue that evaluating model-generated responses requires moving beyond mono-
lithic scoring toward structured verification. Our core insight is that a response is not an indivisible
block of text but a composite of distinct, verifiable components. Building on this principle, we pro-
pose the Decomposition-then-Evaluation paradigm, which reframes the task of auditing complex
responses into targeted sub-tasks. Specifically, we isolate and validate pure visual descriptions to
address visual misrepresentation, external factual claims to correct factual inaccuracies, and subjec-
tive inferences to mitigate flawed reasoning.
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Figure 1: Illustration of the core challenge in Visual Instruction Tuning (VIT), showing positive
examples (middle) and negative examples (right).

To operationalize this paradigm, we introduce EVIAN (Explainable Visual Instruction-tuning Data
AuditiNg), an automated and interpretable framework that systematically evaluates responses along
three orthogonal axes: Image-Text Consistency, Logical Coherence, and Factual Accuracy. Comple-
menting this framework, we construct a large-scale, 300K-sample benchmark by injecting diverse,
subtle defects, providing a challenging testbed for fine-grained data auditing. Our empirical findings
show that models fine-tuned on compact, high-quality subsets curated by EVIAN consistently out-
perform models trained on orders-of-magnitude larger datasets, highlighting that interpretable data
curation, rather than sheer scale, is the key to advancing LVLMs.

Our main contributions are as follows:

• To spur research in LVLM visual instruction tuning data quality and facilitate rigorous evaluation,
we introduce a 300K-sample benchmark for visual instruction data selection, built by systemati-
cally injecting diverse semantic defects to support fine-grained auditing.

• We propose the Decomposition-then-Evaluation paradigm and instantiate it in EVIAN, a fully
automated and interpretable framework that decomposes responses into visual descriptions, sub-
jective inferences, and factual claims, and evaluates them along three orthogonal dimensions.

• We conduct extensive experiments showing that for LVLMs, the logical integrity of training data
is a more decisive factor for downstream performance than its informational richness, establishing
the critical need to prioritize reasoning and factual correctness in data curation.

2 RELATED WORK

The evolution of vision-language data curation from coarse pre-training filters to more nuanced in-
struction tuning methods reveals a persistent bottleneck: the lack of scalable, fine-grained evaluation.
This forces a reliance on shallow quality proxies, hindering the development of more trustworthy
models.

Data Selection for Vision-Language Pre-training. The initial challenge in vision-language
learning is distilling high-quality subsets from noisy web-crawled datasets like LAION (Schuhmann
et al., 2021). A dominant strategy uses pre-trained models such as CLIP (Radford et al., 2021), AL-
BEF (Li et al., 2021), and BLIP (Li et al., 2022; 2023) for similarity-based filtering (Hessel et al.,
2021; Xu et al., 2025a; Wang et al., 2024c), a technique later refined by methods like mixture
models (Shi et al., 2024a). Another approach leverages generative models to sanitize datasets by re-
captioning or correcting labels (Vasa et al., 2025; Mahjourian & Nguyen, 2025; Zhang et al., 2024;
Zhu et al., 2023). However, both paradigms rely on coarse proxies like a single similarity score,
lacking the diagnostic insight to avoid erroneously removing valuable, complex samples.

Data Curation for Visual Instruction Tuning. As the training objective shifts from broad repre-
sentation learning to nuanced instruction-following in VIT (Safaei et al., 2025), the need for high-
quality data becomes more acute (Chen et al., 2024c). One strategy involves generating synthetic
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data (Liu et al., 2024d; Chen et al., 2024a), but this can bypass the complexity of real-world noise.
A more prominent approach is curating data via the LLM-as-a-Judge paradigm (Gu et al., 2024; Li
et al., 2024; Pu et al., 2025). This method, however, is vulnerable to the cognitive biases, reason-
ing shortcuts, and instability of LLM judges, especially without ground-truth references (Shi et al.,
2024b; Hwang et al., 2025; Ye et al., 2024; Guerdan et al., 2025; Wei et al., 2024). Thus, scalable
and trustworthy data curation remains an unsolved problem.

The Gap in Fine-Grained Evaluation. The reliance on coarse-grained proxies stems from a
deeper challenge: the absence of scalable, fine-grained evaluation. While research has pursued
metrics beyond a single holistic score (Adlakha et al., 2024), a framework for deep error diagnosis
remains elusive. Early automated methods were constrained by fixed criteria ill-suited for open-
ended semantic errors (Zhao et al., 2024). Recent pipelines like SCALE (Xu et al., 2025b) offer a
more holistic assessment but still lack a deep focus on compositional logic. Specialized benchmarks
for tasks like logical reasoning have been introduced (Xiao et al., 2024; Xu et al., 2025c), but their
specialization renders them too narrow for general use. While some work advocates for more com-
prehensive evaluation (Tu et al., 2025), it often remains conceptual. This void of effective diagnostic
tools forces data curation back to shallow logic, perpetuating a cycle that limits model improvement
and highlights the urgent need for a new paradigm in fine-grained assessment.

3 THE METHOD: EVIAN

We propose EVIAN, an automated pipeline for auditing visual instruction data. As illustrated in
Figure 2, EVIAN follows a two-phase process: (i) response decomposition, which disentangles
complex answers into verifiable components, and (ii) multi-faceted evaluation, which scores these
components across orthogonal quality dimensions.

Figure 2: Overview of the EVIAN framework’s two-phase process. EVIAN first decomposes a re-
sponse into its visual, inferential, and factual components, then evaluates them across the orthogonal
dimensions of Image-Text Consistency, Logical Coherence, and Factual Accuracy.

3.1 PROBLEM DEFINITION AND DATA QUALITY METRICS

We define visual instruction data auditing as the task of assigning interpretable quality scores to
image-instruction-response triples. Formally, given xi = (Ii, Pi, Ri) from dataset D, our auditing
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function Φ maps each sample to a three-dimensional score vector:

Si = Φ(xi) = (SL,i, SK,i, SV,i), (1)

where each score ranges from 1 (low) to 5 (high). The three metrics are:

• Logical Coherence (SL): soundness of reasoning relative to the instruction and visual evidence.
• Factual Accuracy (SK): correctness of knowledge claims against external facts.
• Image-Text Consistency (SV ): fidelity of the textual response to the visual input.

Together, these axes provide a comprehensive measure of data quality, capturing both semantic
integrity and visual fidelity.

3.2 PHASE 1: RESPONSE DECOMPOSITION VIA CHAIN-OF-THOUGHT

The first phase disentangles raw responses into verifiable components, separating visual descriptions
from subjective inferences and factual claims. This is achieved through a three-step chain-of-thought
(CoT) process, Ψdeconstruct, implemented with the Qwen3-235B-A22B-Instruct model (Yang et al.,
2025). The result is an annotated response with explicit tags and a purified visual summary, which
together form the basis for systematic auditing.

Instruct: What is this photo about?
Original Response: The image
captures a serene scene at the
Tidal Basin...

... in Washington D.C. <KNOW>The
Tidal Basin is a man-made basin in
Washington D.C. ...</KNOW> ...
<INFER> ... adding a sense of life
and activity to the otherwise tranquil
setting.</INFER> ... <INFER> ...
gives the viewer a sense of being
part of the scene.</INFER>

A cherry blossom tree is in full
bloom, with branches heavy
with pink and white flowers. A
group of people are on the
left side of the image ...

... <KNOW>The Tidal Basin is ...
</KNOW> The focal point is ...
<INFER>... adding a sense ...
</INFER> The Tidal Basin itself is
visible ...<INFER>... gives the viewer
a sense ...</INFER>

Step 1: Semantic
Tagging

Step 2: Visual Distillation

Step 3: Fluent
Synthesis

Figure 3: The three-stage Chain-of-Thought (CoT) process for response decomposition. It involves:
1) isolating subjective inferences and factual claims via semantic tagging, 2) purifying the text
through visual distillation, and 3) refining the output into a cohesive, purely visual summary.

Step 1: Semantic Tagging. The process begins by parsing the raw response Ri while strictly
preserving its original wording. Subjective judgments (e.g., “the room feels cozy”) are wrapped in
<INFER> tags, and knowledge-dependent claims (e.g., “this is a Bauhaus-style lamp”) are wrapped
in <KNOW> tags. Untagged text is treated as purely visual description. This produces an annotated
response Rannotated

i that explicitly separates cognitive components without altering their content.

Step 2: Visual Distillation. Next, the annotated response is distilled into a purely visual form.
Segments within <INFER> or <KNOW> tags are either rewritten into neutral, descriptive statements
or deleted if unverifiable. For example, “this is likely a wedding dress” becomes “a white dress”;
unverifiable claims are dropped entirely. Untagged visual statements remain unchanged. The result
is a draft Rdraft

i containing only objective, image-grounded content.

Step 3: Fluent Synthesis. Since distillation may fragment the text, a final synthesis step restores
fluency and coherence. The draft response is reorganized into a single, natural paragraph while
strictly forbidden from adding new content. This ensures the output Rvisual

i is a faithful, high-quality
visual summary.

Together, these steps yield two complementary artifacts: Rannotated
i , which retains the full response

structure with explicit tags, and Rvisual
i , which isolates objective descriptions. This decomposition

provides the foundation for precise, component-level auditing in Phase 2.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.3 PHASE 2: MULTI-FACETED QUALITY ASSESSMENT

The second phase conducts a multi-faceted evaluation of each decomposed response along three or-
thogonal dimensions: logical coherence, factual accuracy, and image-text consistency. We employ
Qwen2.5-VL-7B-Instruct (Bai et al., 2025) as an automated auditor, which assigns interpretable 1–5
scores and textual rationales based on a detailed rubric. This step provides fine-grained diagnos-
tics of different error types while producing standardized quality scores that can be aggregated for
ranking and selection.

Logical Coherence (SL). This dimension evaluates whether reasoning in the <INFER> tags fol-
lows plausibly from visual evidence. Scores increase with reasoning strength: a default of 2 when
no inference is given, 3 for plausible but unsubstantiated claims, 4 for well-supported reasoning,
and 5 for logically undeniable conclusions. This rubric rewards depth of reasoning while penalizing
speculation.

Factual Accuracy (SK). This dimension fact-checks knowledge claims in the <KNOW> tags
against the auditor’s internal knowledge. Fully correct claims receive 5, minor inaccuracies lower the
score to 4, and a single major error (e.g., misidentifying a capital city) caps the score at 2. In the ab-
sence of knowledge claims, the default score is 2, distinguishing informative from non-informative
responses.

Image-Text Consistency (SV ). This dimension measures the alignment of the purified visual de-
scription Rvisual with the image. The principle is consistency over completeness: omissions are
acceptable, but contradictions or unverifiable assertions are heavily penalized. Perfectly faithful de-
scriptions receive 5, minor imprecisions result in 4, and any clear contradiction drops the score to 2
or below. This ensures that only visually accurate responses achieve the highest marks.

By producing a triplet (SL, SK , SV ) with explicit explanations, Phase 2 delivers an interpretable
and multi-dimensional quality assessment. These scores directly guide downstream data ranking
and selection.

3.4 DATA RANKING AND SELECTION

To enable downstream filtering, the three-dimensional score vector S is aggregated into a single
scalar:

Soverall =
SL + SK + SV

3
. (2)

This default scheme assumes equal importance, but weights can be tuned for specific applications.
For example, emphasizing SK for knowledge-intensive tasks or SL/SV for creative captioning. This
flexibility ensures that data selected by EVIAN aligns with diverse modeling objectives.

4 BENCHMARKING DATA QUALITY VIA CONTROLLED DEFECT INJECTION

To quantitatively validate a data auditing pipeline’s ability to detect fine-grained flaws in logical
coherence, factual accuracy, and image-text consistency, a tailored benchmark with systematically
injected defects is essential, as existing datasets lack the controlled errors needed for such a targeted
evaluation. To ensure consistency with prior work, we adopt the SCALE methodology (Xu et al.,
2025b) as the starting point for benchmark construction. From its source pool of 500,000 multimodal
samples across eight datasets (Table 1), we derive two complementary components: (i) a 50,000-
sample “gold standard” set purified by SCALE, and (ii) a 250,000-sample “challenge” set obtained
via random down-sampling followed by our defect injection pipeline. Together, these components
yield a reproducible benchmark of 300,000 samples, designed to evaluate whether data auditing
methods can distinguish clean data from semantically corrupted examples.

Defect Injection Pipeline. The challenge set is generated through a three-stage pipeline that lever-
ages the Qwen3-235B-A22B-Instruct model to embed subtle, context-aware flaws. The process is
guided by a principled taxonomy (Table 2) spanning three critical dimensions for auditing: percep-
tual consistency, factual accuracy, and logical coherence.
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Table 1: Overview of the eight foundational source datasets forming our comprehensive evaluation
pool. This curated selection covers a broad spectrum of tasks, from general VQA to specialized
domains like chart interpretation, providing a diverse and challenging testbed for robust multimodal
data auditing. (I: Image, T: Text)

Dataset Size Format Task Selected size

LLaVA-1.5-Mix (Liu et al., 2024b) 665K I+T General QA 154K
ShareGPT-4V (Chen et al., 2024b) 1.2M I+T Caption 289K
Geometry3K (Lu et al., 2021) 3K I+T Mathematics 466
ChartQA (Masry et al., 2022) 32K I+T Chart 6K
InfoVQA (Mathew et al., 2022) 30K I+T OCR 5K
A-OKVQA (Schwenk et al., 2022) 24K I+T Knowledge 3K
DocVQA (Mathew et al., 2021) 50K I+T Document 9K
AllSeeing-V2 (Wang et al., 2024b) 127K I+T Grounding 29K

Table 2: Principled taxonomy of semantic defects, driving our LLM-driven injection pipeline for
benchmark construction. These three categories (Image-Text Consistency, Logical Coherence, Fac-
tual Accuracy) align with EVIAN’s evaluation dimensions, detailing fine-grained subtypes and
LLM-guided strategies for embedding subtle, context-aware flaws, crucial for a nuanced data quality
testbed.

Category Error Subtype Description / Generation Strategy

Consistency attribute Describes an object’s attribute incorrectly.
spatial Details incorrect spatial relations between objects.
action Assigns a wrong action or state to a subject.
fake Introduces a plausible yet non-existent object.
misidentification Misidentifies an existing object.

Reasoning conclusion Generalizes hastily from a single detail.
causal Mistakes correlation for causation between events.
prediction Makes a baseless prediction from scant evidence.
procedural Adds a flawed or superfluous step to a process.
comparison Forms a misleading analogy from superficial traits.

Knowledge entity Corrupts facts about a named entity.
context Places an object in a wrong historical/tech context.
definition Provides an incorrect definition of a concept.
attribution Misattributes a quote or work to the wrong source.

Stage 1: Content Analysis. Each source response is analyzed by an LLM to identify whether it
contains external knowledge or logical reasoning. This structured analysis, output in JSON, serves
as a prior to ensure that subsequent errors are coherent with the intrinsic properties of the text.

Stage 2: Contextual Error Selection. An error category is chosen via a probabilistic cascade. To
counter their rarity, knowledge-related and reasoning-related errors are prioritized with probabilities
of 0.8 and 0.6, respectively, while perceptual consistency serves as the default. Subtypes are selected
randomly for consistency errors, whereas an additional LLM call determines the most plausible
subtype for knowledge and reasoning cases.

Stage 3: Guided Rewriting. The chosen error is injected by prompting the LLM with a targeted
transformation instruction. A strict system prompt constrains the model to output only the modified
text, ensuring automation and reproducibility.

This injection strategy goes beyond simple noise addition: it produces realistic, semantically rich
corruptions aligned with the three audit dimensions. As a result, the benchmark offers a challenging
testbed for assessing whether auditing pipelines can detect not only superficial inconsistencies but
also deeper factual and logical flaws.
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Figure 4: Examples of our controlled defect injection. For each pair, the original high-quality
text (top) is rewritten to include a subtle, context-aware flaw (bottom), illustrating various error
categories from our taxonomy (Table 2).

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Baselines. In order to better evaluate the effectiveness of our proposed method and other data
auditing approaches, we include a wide range of approaches, including visual language pretraining
data filtering methods, to the most recent visual instruction tuning data auditing methods. The
baselines include: (1) Random Sampling, which serves as a non-selective performance lower bound
by selecting 10,000 samples randomly; (2) Image-Text Similarity Filters, a dominant paradigm
where we evaluate several models, including the canonical CLIPScore (ViT-B/32), ALBEF, BLIP,
and BLIP-2, each used to rank the entire pool and select the top-10,000 scoring samples based on
their holistic visual-language correspondence scores; (3) SCALE, a multi-stage filtering method that
comprehensively evaluates single-modality quality, image-text relevance, clarity, and task rarity, and
selects samples based on a final weighted score.

Evaluation Protocol. To rigorously compare data curation methods, our protocol involves fine-
tuning the Qwen2-VL-2B model on each selected 10,000-sample subset, after which the resulting
model’s performance is measured with the VLMEvalKit toolkit (Duan et al., 2024). Since the model
architecture, SFT procedure, and all hyperparameters are held constant across experiments, this
controlled approach ensures that any observed differences in downstream performance are directly
attributable to the quality and utility of the data curated by each respective method.

5.2 BENCHMARK ANALYSIS: EVIAN SCORE DISTRIBUTION AND DISCRIMINATIVE POWER

To study the effectiveness of prior data auditing methods applied to the VIT dataset, as well as
our proposed method, we evaluate EVIAN on the proposed benchmark, which comes with data
entries without modification and defect-injected instances. As shown in Figure 5, EVIAN effectively
distinguishes between these two groups. The pristine sample entries cluster around or near ratings
with high scores, with 92.3% scoring 3.0 or above, demonstrating the benchmark’s intrinsic quality.
In contrast, the defect-injected samples show a concentrated peak in the mid-range around a score of
3.0, which demonstrates that the EVIAN’s promising performance in distinguishing low-quality
entries from high-quality entries.
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Figure 5: Our proposed benchmark comprised both orig-
inal data entries (50,000 samples) and touched instances
(250,000 samples). The horizontal axis represents the fi-
nal score obtained through the EVIAN. And the vertical
axis illustrates the number of instances located in this score.
The result reflects that EVIAN can decisively distinguish the
data quality of each entry.

This clear separation in score distri-
butions is quantitatively validated by
a significant Jensen-Shannon (JS) di-
vergence of 0.35 and an Area Un-
der the Curve (AUC) of 0.86, un-
derscoring the benchmark’s utility in
evaluating the discriminative power
of data auditing methods. The high
AUC score indicates that EVIAN’s
scores are strongly correlated with
the presence of defects in the bench-
mark, providing a reliable measure of
data quality. The mid-range peak ob-
served for the defective data, rather
than a concentration at the lowest
scores, confirms that EVIAN is sen-
sitive to the subtle nature of the in-
jected errors within our benchmark.
A closer analysis of the distribution
tails further highlights the metric’s
characteristics: the small fraction of
defect-injected samples that receive high scores typically contain nuanced semantic or factual er-
rors, representing the current challenges and future directions for improvement in data auditing
techniques within the scope of our benchmark. Therefore, the pronounced and quantifiable dis-
tinction provides compelling evidence for EVIAN’s validity as a robust and sensitive filter for data
quality, as evaluated on our benchmark.

5.3 DOWNSTREAM TASK PERFORMANCE

To evaluate the practical impact of EVIAN, we fine-tuned models on 10K-sample subsets curated
by different methods and compared their downstream performance across multiple benchmarks.
As shown in Table 3, the model trained on the EVIAN-selected subset achieves the current
best performance (average score of 65.16), surpassing both the previous SOTA method (SCALE,
63.63) and the model trained on the full 300K unfiltered dataset (58.06). This “less is more” result
highlights the diagnostic precision of EVIAN, which consistently extracts higher-quality data from
a noisy pool.

Table 3: Downstream performance of models fine-tuned on 10K-sample subsets curated by various
methods. The Full Data row is a baseline trained on the unfiltered 300K-sample pool. Our method
(EVIAN) achieves the best results on almost all benchmarks. Note that the average scores are
computed by normalizing each metric to a scale of 100.

Model A-OKVQA LLaVABench MMBench EN MME ScienceQA SEEDBench Average
Random 0.7092 44.6 0.5353 1475.76 0.6614 0.6031 58.03
Full Data 0.6934 43.9 0.5953 1553.05 0.6267 0.5743 58.06

CLIPScore 0.7301 46.4 0.5746 1565.29 0.6906 0.6170 60.59
ALBEF 0.7048 40.9 0.6003 1590.70 0.6748 0.6107 59.46
BLIP 0.6978 47.5 0.6183 1686.62 0.6802 0.6115 61.42
BLIP-2 0.7127 48.6 0.6317 1810.34 0.7045 0.6187 63.34
SCALE 0.7066 50.2 0.6318 1844.97 0.6906 0.6280 63.63

EVIAN (Ours) 0.7493 49.6 0.6463 1876.89 0.7115 0.6359 65.16

These gains stem from EVIAN’s “Decomposition-then-Evaluation” paradigm, which addresses fine-
grained defects overlooked by coarse similarity-based methods. Filters such as CLIPScore and
BLIP-2 provide moderate improvements but fail to capture errors like factual inaccuracies or logi-
cal fallacies. In contrast, EVIAN explicitly evaluates Image-Text Consistency, Logical Coherence,
and Factual Accuracy, yielding targeted diagnostics that translate into stronger downstream mod-
els. For example, EVIAN’s top score on MME (1876.89), a benchmark sensitive to hallucinations,
demonstrates the strength of our image-text verification, while its gains on A-OKVQA (0.7493) and
ScienceQA (0.7115) highlight the benefit of auditing factual and reasoning components.
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Overall, these results reveal a fundamental limitation of existing curation strategies: high similarity
scores do not guarantee utility and often mask critical defects. EVIAN shows that multi-dimensional
auditing produces cleaner, more reliable training data, enabling models to outperform those trained
on much larger but noisier datasets. This suggests a clear direction for the field: advancing LVLMs
depends less on scaling data volume and more on fine-grained, interpretable auditing that ensures
visual fidelity, factual accuracy, and logical coherence.

5.4 ABLATION EXPERIMENT

To assess the contribution of each component in EVIAN, we conducted ablation experiments focus-
ing on the three Phase 2 evaluation dimensions: Logical Coherence (SL), Factual Accuracy (SK),
and Image-Text Consistency (SV ). The results, summarized in Table 4, show that each dimension
plays a distinct and complementary role: SV ensures reliable grounding in visual input, SK improves
factual reliability, and SL is critical for preventing logically inconsistent or misleading samples. By
selectively removing these axes from the scoring criteria, we can isolate their individual impact on
dataset quality and downstream performance.

Table 4: Ablation study of the EVIAN framework. We report the performance of models fine-
tuned on 10k-sample subsets curated by different scoring configurations. ‘ours’ represents the full
framework. ‘EVIAN - SL’ and ‘EVIAN - SK’ remove the respective component from the scoring.
‘EVIAN - SL - SK’ relies solely on the Image-Text Consistency score (SV ).

Method A-OKVQA LLaVABench MMBench EN MME ScienceQA SEEDBench Average
w/o Decomposition 0.7170 47.2 0.6401 1756.70 0.7085 0.6312 63.27
EVIAN - SL 0.6288 45.7 0.3425 1656.62 0.5563 0.5324 51.81
EVIAN - SK 0.6629 46.6 0.6110 1604.91 0.6604 0.5875 59.35
EVIAN - SL - SK 0.7389 48.7 0.5605 1807.13 0.6822 0.6092 62.05

EVIAN(Ours) 0.7493 49.6 0.6463 1876.89 0.7115 0.6359 65.16

The full EVIAN framework achieves the best average performance (65.16), confirming the syner-
gistic benefit of combining all three evaluation axes. Removing any dimension degrades results, but
the effects are uneven.

Most notably, removing Logical Coherence (SL) causes a drastic collapse to 51.81, worse than when
both SL and SK are removed simultaneously (62.05). This counterintuitive outcome arises be-
cause averaging only SK and SV rewards responses that are factually correct and visually grounded
but logically inconsistent. Concentrating such “cognitive poison” produces training data that ac-
tively misleads the model, leading to failures on reasoning-heavy benchmarks (e.g., ScienceQA)
and hallucination-sensitive tasks (e.g., MME). Removing Factual Accuracy (SK) also reduces per-
formance (59.35), though less severely.

Interestingly, relying solely on Image-Text Consistency (SV ) yields a relatively strong baseline
(62.05). While this configuration ignores logical and factual dimensions, it avoids systematically
amplifying specific defects. The resulting dataset is simpler but visually faithful, adhering to a
“first, do no harm” principle that proves more effective than partial, biased filtering.

In summary, these results show that multi-dimensional auditing is essential: removing any axis
weakens performance, but excluding Logical Coherence is particularly damaging. This highlights
SL not as an auxiliary metric but as a cornerstone of trustworthy dataset curation.

6 CONCLUSION

In this work, our proposed visual instruction tuning data auditing method EVIAN, advances LVLM
data quality auditing through three contributions: a 300K-sample benchmark with systematically in-
jected defects, a “Decomposition-then-Evaluation” paradigm that separates visual, inferential, and
factual components, and the EVIAN framework, which scores data along Image-Text Consistency,
Logical Coherence, and Factual Accuracy. Experiments show that EVIAN-curated subsets con-
sistently outperform models trained on much larger unfiltered datasets, and ablations confirm the
necessity of each evaluation dimension. Surprisingly, our study also reveals that dividing complex
auditing into verifiable subtasks enables robust curation, and that Logical Coherence is the
most critical factor for downstream reliability. These results establish interpretable, fine-grained
auditing—not scale—as the foundation for advancing LVLMs.
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7 REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our work. The complete source code for our
EVIAN framework, including the defect injection pipeline, data curation scripts, and downstream
evaluation, will be made publicly available upon acceptance of the paper. All experiments were con-
ducted using publicly available models, with specific model versions and computational resources
detailed in Appendix A. The construction of our 300K-sample benchmark is described in Section
4, with source datasets listed in Table 1. The core EVIAN methodology is detailed in Section 3,
and the exact prompts and rubrics used for response decomposition and multi-faceted evaluation are
provided in Appendix A and Appendix B. The experimental setup, including hyperparameters for
fine-tuning (Table 5) and the evaluation protocol, is detailed in Section 5.1 and Appendix A.
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A EVIAN FRAMEWORK IMPLEMENTATION DETAILS

A.1 MODELS AND COMPUTATIONAL RESOURCES

Decomposition and Defect Injection We performed response decomposition and defect injection
for the 300,000-sample dataset using the Qwen/Qwen3-235B-A22B-Instruct-2507-FP8 model.
This model was deployed on eight NVIDIA H100 (80GB) GPUs via vLLM (v0.10.0), with sam-
pling parameters set to a temperature of 0.7, Top-P of 0.8, Top-K of 20, and Min-P of 0.0. The entire
process was run in a software environment consisting of PyTorch (v2.7.1) and CUDA (v12.6).

Multi-faceted Quality Assessment The multi-faceted quality assessment was conducted using
the Qwen/Qwen2.5-VL-7B-Instruct model, which operated with a greedy sampling strategy for
deterministic evaluation. This auditor model was deployed on an identical eight-GPU NVIDIA
H100 (80GB) node, utilizing the Hugging Face Transformers library (v4.55.2) within the same
PyTorch (v2.7.1) and CUDA (v12.6) environment.

A.2 SUPERVISED FINE-TUNING (SFT) DETAILS

To efficiently fine-tune the Qwen2-VL-2B base model, we implemented a selective update strategy,
freezing the vision tower while training the projector MLP and language model. This training pro-
cess was conducted on a server equipped with eight NVIDIA vGPU (48 GB) cards. It leveraged
DeepSpeed ZeRO Stage 3 for memory optimization, resulting in an effective global batch size of
128. All key hyperparameters are detailed in Table 5.

Table 5: Supervised Fine-Tuning (SFT) Hyperparameters for the Base Model.

Hyperparameter Value
Base Model Qwen/Qwen2-VL-2B
Epochs 1
Learning Rate 5× 10−6

Batch Size (per device) 2
Gradient Accumulation Steps 8
Weight Decay 0.0
Warmup Ratio 0.1
LR Scheduler Cosine (cosine)
Max Gradient Norm 1.0
Precision BF16
Max Sequence Length 8192
Gradient Checkpointing Enabled
Optimization DeepSpeed ZeRO Stage 3

A.3 PROMPT ENGINEERING FOR PHASE 1: RESPONSE DECOMPOSITION

Step 1: Prompt for Semantic Tagging

Response: {response}
Your task is to precisely insert <INFER> for subjective judgments and <KNOW> for exter-
nal knowledge.
Critical Guidelines for Annotation:

1. Tag the Complete Thought: Precisely wrap the shortest, complete phrase that con-
veys the entire logical idea (like a cause-and-effect statement) or the full piece of
external information.

2. Tag Interpretations of Effect/Cause: Always tag phrases that describe the effect,
purpose, or reason for a visual element.
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3. Strictly Visual is NOT Tagged: DO NOT tag objective, verifiable descriptions of
visual facts.

4. Do Not Change Words: Do not add, delete, or rephrase any original words, like
Visible Text or Numbers.

5. Output Format: Your response must start with the prefix “Marked Response:”.
Examples:
Input: The lighting in the room is soft, creating a cozy atmosphere. The design suggests it is
from the Victorian era.
Output: Marked Response: The lighting in the room is soft, <INFER>creating a cozy atmo-
sphere</INFER>. <INFER>The design suggests it is from the Victorian era</INFER>.
Input: This is a 1976 postage stamp from Hungary, a country in Central Europe.
Output: Marked Response: This is a 1976 postage stamp from Hungary, <KNOW>a country
in Central Europe</KNOW>.
Input: The image shows a can of Coca-Cola.
Output: Marked Response: The image shows a can of Coca-Cola.

Step 2: Prompt for Visual Distillation

Instruction: {instruction}
Annotated Response: {marked response}
Task: Process the “Annotated Response” by modifying ONLY the segments wrapped in <IN-
FER>...</INFER> or <KNOW>...</KNOW> tags.

• Rewrite or entirely remove tagged segments to leave only what is directly and objec-
tively visible in the image.

• Crucially, all content NOT wrapped in tags MUST be preserved exactly as is,
without any modification.

Guidelines:
1. Rewrite When Possible: If a tagged idea can be rephrased as a neutral, objective,

image-based description, rewrite it and remove the tags. For example, change “<IN-
FER>creating a cozy atmosphere</INFER>” to “which illuminates the scene.”

2. Delete When Necessary: For clearly irrelevant or purely speculative content that
cannot be visually confirmed, delete the entire tagged segment (including the tags).

3. No New Information: DO NOT introduce any new guesses, opinions, or visual de-
tails that were not already present in the untagged parts of the original response.

4. Output Format: Your response must start with the prefix “Cleaned Response:”.
Example:
Input Annotated Response:
A person wearing sunglasses stands under a tree. <INFER>She must be shielding her eyes
from harsh sunlight.</INFER> Leaves are scattered on the ground. <KNOW>This park is
famous for its autumn foliage tours.</KNOW>
Output:
Cleaned Response: A person wearing sunglasses stands under a tree. Leaves are scattered on
the ground.

Step 3: Prompt for Fluent Synthesis

Instruction: {instruction}
Cleaned Response: {cleaned response}
Task: Rephrase the “Cleaned Response” into a single, cohesive, and purely visual description.
Guidelines:
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1. Strictly Adhere to Input: Your output MUST be a faithful reorganization of ONLY
the information present in the “Cleaned Response.”

2. Preserve All Details: Do not omit any visual information. Every object, attribute,
and spatial relation from the input must be represented in your summary.

3. No New Content or Inference: Crucially, DO NOT add any new visual details,
reasoning, assumptions, or subjective/interpretive language (e.g., “beautiful”, “seems
like”, “creates a sense of”). Your job is to describe, not to analyze.

4. Improve Flow: Focus on improving sentence structure and grammatical correctness
to create a natural-sounding paragraph.

5. Output Format: Your response must start with the prefix “Visual Summary:”.
Example:
Input Cleaned Response: A white cat is on a windowsill. The background shows buildings.
Light is coming through the window.
Output:
Visual Summary: A white cat sits on a windowsill where bright light is streaming in. Buildings
are visible in the background.

A.4 PROMPTING AND RUBRICS FOR PHASE 2: MULTI-FACETED QUALITY ASSESSMENT

Dimension SL: Prompt for Logical Coherence

Input Text for Evaluation: {text to evaluate}
Task: You are an AI assistant designed to evaluate the correctness of logical reasoning. Your
primary focus is to rigorously scrutinize the logical soundness and validity of the reasoning
contained ONLY within the <INFER>...</INFER> tags, based on the visual evidence in the
image.
Evaluation and Scoring Rules:

1. Isolate and Evaluate: Focus exclusively on the statements inside the <INFER> tags.
2. Assess Plausibility against Image: Judge if the inference is a logical and plausible

conclusion derived from the visual information in the image.
3. Output Format:

• Score: integer 1-5
• Explanation: A brief evaluation of the logical rigor, noting key flaws or

strengths.
Scoring Rubric:
Score 1: Grossly Illogical or Baseless. The inference is pure speculation with no connec-

tion to the image (e.g., predicting the future from a photo of a cat), or it’s self-
contradictory.

Score 2: Significant Logical Gaps. The inference is a major leap in logic. While loosely
related to the image, it is highly unlikely or requires many unsupported assumptions.
(e.g., “A person is running, <INFER>so this must be a professional athlete training
for the Olympics</INFER>.” )

Score 3: Plausible but Unprovable. The inference is reasonable and could be true, but it is not
strongly supported by visual evidence and remains a subjective interpretation. (e.g.,
“The room is dim, <INFER>creating a sad atmosphere</INFER>.” )

Score 4: Logically Sound. The inference is very likely correct and follows directly from
strong visual evidence, with only very minor room for doubt. (e.g., “The man holds
an umbrella, <INFER>suggesting it is raining or about to rain</INFER>.” )
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Score 5: Logically Airtight. The inference is an undeniable conclusion based on the visual
facts and common-sense logic; it is virtually irrefutable. (e.g., “The wreck shows a
crushed car, <INFER>indicating a high-impact collision occurred</INFER>.” )

Dimension SK: Prompt for Factual Accuracy

Input Text for Evaluation: {text to evaluate}
Task: You are an expert fact-checking assistant. Your task is to evaluate the factual correct-
ness of the information contained ONLY within the <KNOW>...</KNOW> tags. Base your
assessment on your internal, general knowledge.
Output Format:
Score: integer 1-5
Explanation: A brief justification for your score, specifying which facts are correct or incor-
rect.
Scoring Rubric:
Score 1: Entirely Incorrect or Fabricated. The information is factually wrong, nonsensi-

cal, or a complete fabrication (e.g., contains imaginary objects like the ‘Luminara
Scepter’).

Score 2: Largely Incorrect. Contains a core factual error, even if minor details are correct.
(e.g., “<KNOW>Paris, the capital of England...</KNOW>”). The presence of a
single major error means the score cannot be higher than 2.

Score 3: Partially Correct but Misleading. Contains a mix of correct and incorrect infor-
mation, or the information is technically correct but presented in a highly misleading
context.

Score 4: Mostly Correct. The core assertion is factually sound but contains a minor, non-
critical inaccuracy (e.g., a slightly wrong year, a minor detail about a standard fea-
ture).

Score 5: Fully Correct and Accurate. Every single claim within the tags is factually sound,
precise, and widely accepted.

Dimension SV : Prompt for Image-Text Consistency

Input Text: {text input}
Task: You are a visual consistency scoring assistant. Your task is to evaluate whether the
extracted text description’s assertions can be verified by the given image. Only assess consis-
tency, not completeness: do NOT penalize the description for omitting image details, but DO
penalize any assertions that contradict or cannot be supported by the image.
CORE SCORING GUIDELINE: Be decisive in your scoring. If the description is fully and
accurately supported by the image without any errors, the score must be 5. Do not default to 4
if a 5 is warranted.
Output Format:
Score: integer 1-5
Explanation: Brief justification, indicating which assertions are verifiable and which are in-
consistent or unclear.
Scoring Rubric:
Score 1: Severely inconsistent or completely unrelated. Most or all assertions contradict the

image.
Score 2: Largely inconsistent. Only one or two minor assertions can be matched to the image.
Score 3: Partially consistent. Some key assertions align with the image, but others are vague,

potentially incorrect, or unsupported.
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Score 4: Mostly consistent. The bulk of assertions are supported by the image, but there is at
least one minor imprecision or slight unsupported detail that does not mislead. Use
this score for responses that are good but not perfect.

Score 5: Fully consistent and accurate. Every single assertion in the text is clearly and pre-
cisely verifiable in the image. There are no unsupported or contradictory claims. If
all claims are verified, you MUST assign this score.

B DEFECT INJECTION PIPELINE AND PROMPT CATALOG

To create a challenging and diverse evaluation set, we designed and implemented a three-stage,
LLM-driven pipeline for injecting controlled, contextually-relevant defects into high-quality re-
sponses. This automated pipeline ensures that the generated errors are not random but are intel-
ligently tailored to the content of the source text.

B.1 THE THREE-STAGE DEFECT INJECTION PIPELINE

The core of our data generation process is a sequential pipeline that first analyzes the text, then
selects an appropriate error type, and finally rewrites the text to introduce the defect.

Stage 1: Content Analysis First, an LLM analyzes the source text to determine if it contains
logical reasoning or external knowledge. This classification serves as a prior for the subsequent
error selection stage. The analysis is performed using the prompt below.

Prompt for Content Analysis

You are a text analysis expert. Analyze the following text and determine if it contains a) logical
reasoning, inference, or conclusion, and b) specific external knowledge (like names of people,
places, brands, historical facts).
Respond ONLY with a JSON object with two boolean keys:
{“contains reasoning”: boolean, “contains knowledge”: boolean}.
Text to analyze: “{text to analyze}”

Stage 2: Category and Subtype Selection The primary error category is selected via a proba-
bilistic cascade that prioritizes the knowledge category with a probability of 0.8 for texts flagged
contains knowledge, followed by the reasoning category with a probability of 0.6 for those with
contains reasoning, and otherwise defaults to the consistency category. This initial choice, in turn,
dictates the method for subtype determination: while subtypes for the consistency category are
chosen uniformly at random, a more nuanced approach is employed for the contextually-sensitive
knowledge and reasoning categories, for which a second LLM call intelligently selects the most
plausible subtype using the following prompt.

Prompt for Category and Subtype Selection

You are a text analysis expert. Your task is to select the single best error-injection strategy for
the “Original Text” from the “Available Options”.
Available Options: {error options text}
Original Text: “{text to analyze}”
Analyze the text and choose the error code from the options that is most relevant to the text’s
content. Respond ONLY with a JSON object containing your choice.
Example response: {“best choice”: “reasoning causal”}
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Stage 3: Defect Generation Finally, with a specific error subtype selected, a third LLM call
rewrites the original text according to the corresponding instruction. The final prompt is constructed
from a template, and a strict system prompt is used to ensure clean output.

Prompts for Defect Generation

You are an AI assistant that rewrites text according to user instructions. You must only output
the rewritten text itself, without any other words or explanation.
Task: {prompt instruction for chosen subtype}
Original Text: “{original text}”

B.2 CATALOG OF DEFECT INJECTION INSTRUCTIONS

The complete set of instructions used in the defect generation stage is detailed below.

A. Consistency Errors

• consistency attribute: Rewrite the response by changing an attribute (like color, count, or
size) of one key object.

• consistency spatial: Rewrite the response by incorrectly describing the spatial relationship
between two objects (e.g., change ‘on the table’ to ‘under the table’).

• consistency action: Rewrite the response by describing an incorrect action or state for a
subject (e.g., change ‘a man is sitting’ to ‘a man is running’).

• consistency fake: Rewrite the response to include a mention of a plausible but non-existent
object.

• consistency misidentification: Rewrite the response by misidentifying an existing object
(e.g., call a ‘cup’ a ‘bowl’).

B. Reasoning Correctness Errors

• reasoning conclusion: Your task is to rewrite the text by making a hasty generalization.
The method is to grab a single detail from the text (such as one person running) and then
extrapolate it into a grand conclusion that seems plausible but is actually very arbitrary
(such as concluding this must be a professional marathon training session). Ensure you use
reasoning words like ‘so’ or ‘therefore’ to connect this flawed logical chain.

• reasoning causal: Your task is to confuse correlation with causation. Find two things in
the text that might happen concurrently but have no direct causal link, and then forcibly
establish a cause-and-effect relationship between them using words like ‘because’ or ‘lead-
ing to’. For instance, you could take the action ‘a man holding an umbrella indoors’ and
incorrectly present it as the cause for ‘a power outage in the room’, creating a deceptive
misattribution.

• reasoning prediction: Your task is to make an overly arbitrary and confident prediction
based on extremely limited information. You need to take a trivial, small action (such
as a child stacking blocks) and lead it directly to a very grand and distant future (such
as predicting they will surely become a great architect). This prediction needs to sound
physically possible, but its logical leap must be huge and baseless.

• reasoning procedural: Your task is to, within a normal process description, insert a step
that seems plausible but is actually superfluous or based on pseudoscience. This step must
not cause the entire process to fail but will make it logically flawed. For instance, when
describing the process of brewing tea, you could add a step claiming that ‘before adding
water, you need to let the tea leaves sit for a minute to absorb the room’s energy,’ thereby
making the process imprecise.

• reasoning comparison: Your task is to construct a faulty analogy. You need to find two
things that have only minor superficial similarities but are completely different in their core
essence to make a comparison, and then draw a misleading conclusion from it. A classic
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example is to compare ‘company strategy’ to a ‘car engine’ and then argue that ‘as long as
there’s enough fuel (funding), success is guaranteed,’ an analogy that deliberately ignores
more critical factors like the ‘steering wheel (strategic direction)’

C. External Knowledge Errors

• knowledge entity: If the response mentions a real-world named entity, rewrite it by cor-
rupting that entity (e.g., ‘Eiffel Tower in London’).

• knowledge context: Rewrite the response to place an object or scene in a wrong historical
or technological context.

• knowledge definition: If the response defines a concept, rewrite it to provide an incorrect
definition.

• knowledge attribution: If the response mentions a creation or quote, misattribute it to the
wrong source.

C EXAMPLES OF EVIAN AUDITING

Instruction: How many windows are there in the bedroom?
Response: There are no windows in the bedroom.
Marked_response: There are no windows in the bedroom.
Final_visual_summary: The bedroom contains no windows.
Visual_consistency_score: 
Score: 1 
Explanation: The image clearly shows two windows in the bedroom, which
directly contradicts the statement that the bedroom contains no windows.
Therefore, the description is severely inconsistent with the image.
Inference_correctness_score: 
Score: 2
Explanation: No content detected.
External_knowledge_correctness_score: 
Score: 2
Explanation: No content detected.
Composite_score: 1.6666666666666667

Instruction: What is this photo about?
Response: The chair is folded because the stark white background emits a low-level
electromagnetic field that deactivates any extended structures in its vicinity, leading to the
automatic collapse of the chair’s frame. This explains why the chair remains unused—its
folding state is directly caused by the oppressive visual emptiness of the background, which
suppresses functionality through psychological deterrence.
Marked_response: The chair is folded because <INFER>the stark white background emits
a low-level electromagnetic field that deactivates any extended structures in its vicinity,
leading to the automatic collapse of the chair’s frame</INFER>. <INFER>This explains why
the chair remains unused—its folding state is directly caused by the oppressive visual
emptiness of the background, which suppresses functionality through psychological
deterrence</INFER>.
Final_visual_summary: A folded chair is positioned against a stark white background,
indicating it is unused.
Visual_consistency_score: 
Score: 5 
Explanation: The description is fully and accurately supported by the image. The chair is
indeed folded, and it is positioned against a stark white background, indicating it is unused.
There are no contradictions or unsupported claims in the description.
Inference_correctness_score: 
Score: 1 
Explanation: The inference within the <INFER> tags is grossly illogical and baseless. The
image shows a folding chair in a folded position, but there is no evidence of a stark white
background emitting a low-level electromagnetic field. The chair's folding state is a result of
its design and structure, not due to any external electromagnetic field. The background in
the image is indeed stark white, but this is a visual property of the image and does not have
any causal effect on the chair's folding. The inference is purely speculative and lacks any
logical connection to the visual evidence provided.
External_knowledge_correctness_score: 
Score: 2 
Explanation: No content detected.
Composite_score: 2.6666666666666665
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Instruction: What are the key elements in this picture?
Response: The image captures a bustling scene at the Hoog Catharijne shopping mall in Utrecht, Netherlands. The mall, a
modern architectural marvel, stands out with its unique curved design. Its facade is a blend of glass and steel, reflecting the
clear blue sky above. The entrance to the mall is clearly marked with a sign that reads "HOOG CATHARIJNE THE MALL",
inviting visitors in. The mall is situated on a busy street, with people going about their day, adding a dynamic element to the
scene. The sky above is a clear blue, suggesting a bright and sunny day. In the background, trees can be seen, adding a
touch of nature to the urban setting. The image is a snapshot of everyday life in Utrecht, capturing the blend of modern
architecture and the vibrancy of city life.
Marked_response: The image captures a bustling scene at the Hoog Catharijne shopping mall in Utrecht, Netherlands.
<KNOW>The mall, a modern architectural marvel</KNOW>, stands out with its unique curved design. Its facade is a blend
of glass and steel, reflecting the clear blue sky above. The entrance to the mall is clearly marked with a sign that reads
"HOOG CATHARIJNE THE MALL", inviting visitors in. <INFER>The mall is situated on a busy street, with people going
about their day, adding a dynamic element to the scene</INFER>. The sky above is a clear blue, suggesting a bright and
sunny day. In the background, trees can be seen, adding a touch of nature to the urban setting. <INFER>The image is a
snapshot of everyday life in Utrecht, capturing the blend of modern architecture and the vibrancy of city life</INFER>.
Final_visual_summary: The Hoog Catharijne shopping mall in Utrecht, Netherlands, features a curved architectural
design with a glass and steel facade that reflects a clear blue sky. A sign at the entrance reads "HOOG CATHARIJNE THE
MALL." People are present on the street in front of the mall, and trees are visible in the background, set against the bright,
sunny sky.
Visual_consistency_score: 
Score: 5
Explanation: The description is fully and accurately supported by the image. The curved architectural design, glass and
steel facade, and the sign "HOOG CATHARIJNE THE MALL" are clearly visible in the image. The presence of people on
the street and trees in the background are also consistent with the description. The bright, sunny sky is reflected in the
glass facade, further supporting the description. There are no contradictions or unsupported claims in the text.
Inference_correctness_score: 
Score: 3
Explanation: The inference that the image captures the blend of modern architecture and the vibrancy of city life is plausible
and reasonable. The image clearly shows a modern, architecturally unique building with a bustling street scene in front of it,
which is typical of city life. However, the inference is not strongly supported by visual evidence and remains a subjective
interpretation. The image does not provide direct evidence of the vibrancy of city life beyond the presence of people, and
the connection to the vibrancy of city life is a reasonable but not definitive conclusion.
External_knowledge_correctness_score: 
Score: 4
Explanation: The information within the <KNOW> tags is mostly correct. The Hoog Catharijne shopping mall in Utrecht,
Netherlands, is indeed a modern architectural marvel with a unique curved design and a facade of glass and steel. The
mall's entrance is marked with a sign that reads "HOOG CATHARIJNE THE MALL," and the presence of people going
about their day on a busy street adds a dynamic element to the scene. However, the statement that the sky is a clear blue
and trees can be seen in the background is not entirely accurate. While the sky appears clear in the image, the presence of
trees is not clearly visible in the provided image. Therefore, the score is 4, indicating that the core assertion is factually
sound but contains a minor, non-critical inaccuracy.
Composite_score: 4.0

D LLM USAGE STATEMENT

Following the ICLR 2026 guidelines, we disclose the use of Google’s Gemini 2.5 Pro as an assistive
tool in this work. Its application in manuscript preparation was limited to language polishing and
proofreading. All core scientific ideas, methodologies, and analyses presented herein are the original
contributions of the authors, who are fully responsible for the accuracy and reproducibility of this
research.
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